1 // © 2017 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
4 #include "unicode/utypes.h"
6 #if !UCONFIG_NO_FORMATTING
7 #ifndef __NUMBER_DECIMALQUANTITY_H__
8 #define __NUMBER_DECIMALQUANTITY_H__
11 #include "unicode/umachine.h"
12 #include "standardplural.h"
13 #include "plurrule_impl.h"
14 #include "number_types.h"
16 U_NAMESPACE_BEGIN
namespace number
{
19 // Forward-declare (maybe don't want number_utils.h included here):
23 * An class for representing a number to be processed by the decimal formatting pipeline. Includes
24 * methods for rounding, plural rules, and decimal digit extraction.
26 * <p>By design, this is NOT IMMUTABLE and NOT THREAD SAFE. It is intended to be an intermediate
27 * object holding state during a pass through the decimal formatting pipeline.
29 * <p>Represents numbers and digit display properties using Binary Coded Decimal (BCD).
31 * <p>Java has multiple implementations for testing, but C++ has only one implementation.
33 class U_I18N_API DecimalQuantity
: public IFixedDecimal
, public UMemory
{
35 /** Copy constructor. */
36 DecimalQuantity(const DecimalQuantity
&other
);
38 /** Move constructor. */
39 DecimalQuantity(DecimalQuantity
&&src
) U_NOEXCEPT
;
43 ~DecimalQuantity() override
;
46 * Sets this instance to be equal to another instance.
48 * @param other The instance to copy from.
50 DecimalQuantity
&operator=(const DecimalQuantity
&other
);
52 /** Move assignment */
53 DecimalQuantity
&operator=(DecimalQuantity
&& src
) U_NOEXCEPT
;
56 * Sets the minimum and maximum integer digits that this {@link DecimalQuantity} should generate.
57 * This method does not perform rounding.
59 * @param minInt The minimum number of integer digits.
60 * @param maxInt The maximum number of integer digits.
62 void setIntegerLength(int32_t minInt
, int32_t maxInt
);
65 * Sets the minimum and maximum fraction digits that this {@link DecimalQuantity} should generate.
66 * This method does not perform rounding.
68 * @param minFrac The minimum number of fraction digits.
69 * @param maxFrac The maximum number of fraction digits.
71 void setFractionLength(int32_t minFrac
, int32_t maxFrac
);
74 * Rounds the number to a specified interval, such as 0.05.
76 * <p>If rounding to a power of ten, use the more efficient {@link #roundToMagnitude} instead.
78 * @param roundingIncrement The increment to which to round.
79 * @param mathContext The {@link RoundingMode} to use if rounding is necessary.
81 void roundToIncrement(double roundingIncrement
, RoundingMode roundingMode
,
82 int32_t maxFrac
, UErrorCode
& status
);
84 /** Removes all fraction digits. */
88 * Rounds the number to a specified magnitude (power of ten).
90 * @param roundingMagnitude The power of ten to which to round. For example, a value of -2 will
91 * round to 2 decimal places.
92 * @param mathContext The {@link RoundingMode} to use if rounding is necessary.
94 void roundToMagnitude(int32_t magnitude
, RoundingMode roundingMode
, UErrorCode
& status
);
97 * Rounds the number to an infinite number of decimal points. This has no effect except for
98 * forcing the double in {@link DecimalQuantity_AbstractBCD} to adopt its exact representation.
100 void roundToInfinity();
103 * Multiply the internal value. Uses decNumber.
105 * @param multiplicand The value by which to multiply.
107 void multiplyBy(const DecNum
& multiplicand
, UErrorCode
& status
);
110 * Divide the internal value. Uses decNumber.
112 * @param multiplicand The value by which to multiply.
114 void divideBy(const DecNum
& divisor
, UErrorCode
& status
);
116 /** Flips the sign from positive to negative and back. */
120 * Scales the number by a power of ten. For example, if the value is currently "1234.56", calling
121 * this method with delta=-3 will change the value to "1.23456".
123 * @param delta The number of magnitudes of ten to change by.
124 * @return true if integer overflow occured; false otherwise.
126 bool adjustMagnitude(int32_t delta
);
129 * @return The power of ten corresponding to the most significant nonzero digit.
130 * The number must not be zero.
132 int32_t getMagnitude() const;
134 /** @return Whether the value represented by this {@link DecimalQuantity} is zero. */
137 /** @return Whether the value represented by this {@link DecimalQuantity} is less than zero. */
138 bool isNegative() const;
140 /** @return -1 if the value is negative; 1 if positive; or 0 if zero. */
141 int8_t signum() const;
143 /** @return Whether the value represented by this {@link DecimalQuantity} is infinite. */
144 bool isInfinite() const U_OVERRIDE
;
146 /** @return Whether the value represented by this {@link DecimalQuantity} is not a number. */
147 bool isNaN() const U_OVERRIDE
;
149 /** @param truncateIfOverflow if false and the number does NOT fit, fails with an assertion error. */
150 int64_t toLong(bool truncateIfOverflow
= false) const;
152 uint64_t toFractionLong(bool includeTrailingZeros
) const;
155 * Returns whether or not a Long can fully represent the value stored in this DecimalQuantity.
156 * @param ignoreFraction if true, silently ignore digits after the decimal place.
158 bool fitsInLong(bool ignoreFraction
= false) const;
160 /** @return The value contained in this {@link DecimalQuantity} approximated as a double. */
161 double toDouble() const;
163 /** Computes a DecNum representation of this DecimalQuantity, saving it to the output parameter. */
164 void toDecNum(DecNum
& output
, UErrorCode
& status
) const;
166 DecimalQuantity
&setToInt(int32_t n
);
168 DecimalQuantity
&setToLong(int64_t n
);
170 DecimalQuantity
&setToDouble(double n
);
172 /** decNumber is similar to BigDecimal in Java. */
173 DecimalQuantity
&setToDecNumber(StringPiece n
, UErrorCode
& status
);
175 /** Internal method if the caller already has a DecNum. */
176 DecimalQuantity
&setToDecNum(const DecNum
& n
, UErrorCode
& status
);
179 * Appends a digit, optionally with one or more leading zeros, to the end of the value represented
180 * by this DecimalQuantity.
182 * <p>The primary use of this method is to construct numbers during a parsing loop. It allows
183 * parsing to take advantage of the digit list infrastructure primarily designed for formatting.
185 * @param value The digit to append.
186 * @param leadingZeros The number of zeros to append before the digit. For example, if the value
187 * in this instance starts as 12.3, and you append a 4 with 1 leading zero, the value becomes
189 * @param appendAsInteger If true, increase the magnitude of existing digits to make room for the
190 * new digit. If false, append to the end like a fraction digit. If true, there must not be
191 * any fraction digits already in the number.
193 * @deprecated This API is ICU internal only.
195 void appendDigit(int8_t value
, int32_t leadingZeros
, bool appendAsInteger
);
197 double getPluralOperand(PluralOperand operand
) const U_OVERRIDE
;
199 bool hasIntegerValue() const U_OVERRIDE
;
202 * Gets the digit at the specified magnitude. For example, if the represented number is 12.3,
203 * getDigit(-1) returns 3, since 3 is the digit corresponding to 10^-1.
205 * @param magnitude The magnitude of the digit.
206 * @return The digit at the specified magnitude.
208 int8_t getDigit(int32_t magnitude
) const;
211 * Gets the largest power of ten that needs to be displayed. The value returned by this function
212 * will be bounded between minInt and maxInt.
214 * @return The highest-magnitude digit to be displayed.
216 int32_t getUpperDisplayMagnitude() const;
219 * Gets the smallest power of ten that needs to be displayed. The value returned by this function
220 * will be bounded between -minFrac and -maxFrac.
222 * @return The lowest-magnitude digit to be displayed.
224 int32_t getLowerDisplayMagnitude() const;
226 int32_t fractionCount() const;
228 int32_t fractionCountWithoutTrailingZeros() const;
232 /** This method is for internal testing only. */
233 uint64_t getPositionFingerprint() const;
236 // * If the given {@link FieldPosition} is a {@link UFieldPosition}, populates it with the fraction
237 // * length and fraction long value. If the argument is not a {@link UFieldPosition}, nothing
240 // * @param fp The {@link UFieldPosition} to populate.
242 // void populateUFieldPosition(FieldPosition fp);
245 * Checks whether the bytes stored in this instance are all valid. For internal unit testing only.
247 * @return An error message if this instance is invalid, or null if this instance is healthy.
249 const char16_t* checkHealth() const;
251 UnicodeString
toString() const;
253 /** Returns the string in standard exponential notation. */
254 UnicodeString
toScientificString() const;
256 /** Returns the string without exponential notation. Slightly slower than toScientificString(). */
257 UnicodeString
toPlainString() const;
259 /** Visible for testing */
260 inline bool isUsingBytes() { return usingBytes
; }
262 /** Visible for testing */
263 inline bool isExplicitExactDouble() { return explicitExactDouble
; };
265 bool operator==(const DecimalQuantity
& other
) const;
267 inline bool operator!=(const DecimalQuantity
& other
) const {
268 return !(*this == other
);
272 * Bogus flag for when a DecimalQuantity is stored on the stack.
278 * The power of ten corresponding to the least significant digit in the BCD. For example, if this
279 * object represents the number "3.14", the BCD will be "0x314" and the scale will be -2.
281 * <p>Note that in {@link java.math.BigDecimal}, the scale is defined differently: the number of
282 * digits after the decimal place, which is the negative of our definition of scale.
287 * The number of digits in the BCD. For example, "1007" has BCD "0x1007" and precision 4. The
288 * maximum precision is 16 since a long can hold only 16 digits.
290 * <p>This value must be re-calculated whenever the value in bcd changes by using {@link
291 * #computePrecisionAndCompact()}.
296 * A bitmask of properties relating to the number represented by this object.
298 * @see #NEGATIVE_FLAG
299 * @see #INFINITY_FLAG
304 // The following three fields relate to the double-to-ascii fast path algorithm.
305 // When a double is given to DecimalQuantityBCD, it is converted to using a fast algorithm. The
306 // fast algorithm guarantees correctness to only the first ~12 digits of the double. The process
307 // of rounding the number ensures that the converted digits are correct, falling back to a slow-
308 // path algorithm if required. Therefore, if a DecimalQuantity is constructed from a double, it
309 // is *required* that roundToMagnitude(), roundToIncrement(), or roundToInfinity() is called. If
310 // you don't round, assertions will fail in certain other methods if you try calling them.
313 * Whether the value in the BCD comes from the double fast path without having been rounded to
319 * The original number provided by the user and which is represented in BCD. Used when we need to
320 * re-compute the BCD for an exact double representation.
325 * The change in magnitude relative to the original double. Used when we need to re-compute the
326 * BCD for an exact double representation.
330 // Four positions: left optional '(', left required '[', right required ']', right optional ')'.
331 // These four positions determine which digits are displayed in the output string. They do NOT
332 // affect rounding. These positions are internal-only and can be specified only by the public
333 // endpoints like setFractionLength, setIntegerLength, and setSignificantDigits, among others.
335 // * Digits between lReqPos and rReqPos are in the "required zone" and are always displayed.
336 // * Digits between lOptPos and rOptPos but outside the required zone are in the "optional zone"
337 // and are displayed unless they are trailing off the left or right edge of the number and
338 // have a numerical value of zero. In order to be "trailing", the digits need to be beyond
339 // the decimal point in their respective directions.
340 // * Digits outside of the "optional zone" are never displayed.
342 // See the table below for illustrative examples.
344 // +---------+---------+---------+---------+------------+------------------------+--------------+
345 // | lOptPos | lReqPos | rReqPos | rOptPos | number | positions | en-US string |
346 // +---------+---------+---------+---------+------------+------------------------+--------------+
347 // | 5 | 2 | -1 | -5 | 1234.567 | ( 12[34.5]67 ) | 1,234.567 |
348 // | 3 | 2 | -1 | -5 | 1234.567 | 1(2[34.5]67 ) | 234.567 |
349 // | 3 | 2 | -1 | -2 | 1234.567 | 1(2[34.5]6)7 | 234.56 |
350 // | 6 | 4 | 2 | -5 | 123456789. | 123(45[67]89. ) | 456,789. |
351 // | 6 | 4 | 2 | 1 | 123456789. | 123(45[67]8)9. | 456,780. |
352 // | -1 | -1 | -3 | -4 | 0.123456 | 0.1([23]4)56 | .0234 |
353 // | 6 | 4 | -2 | -2 | 12.3 | ( [ 12.3 ]) | 0012.30 |
354 // +---------+---------+---------+---------+------------+------------------------+--------------+
356 int32_t lOptPos
= INT32_MAX
;
359 int32_t rOptPos
= INT32_MIN
;
362 * The BCD of the 16 digits of the number represented by this object. Every 4 bits of the long map
363 * to one digit. For example, the number "12345" in BCD is "0x12345".
365 * <p>Whenever bcd changes internally, {@link #compact()} must be called, except in special cases
366 * like setting the digit to zero.
376 bool usingBytes
= false;
379 * Whether this {@link DecimalQuantity} has been explicitly converted to an exact double. true if
380 * backed by a double that was explicitly converted via convertToAccurateDouble; false otherwise.
383 bool explicitExactDouble
= false;
386 * Returns a single digit from the BCD list. No internal state is changed by calling this method.
388 * @param position The position of the digit to pop, counted in BCD units from the least
389 * significant digit. If outside the range supported by the implementation, zero is returned.
390 * @return The digit at the specified location.
392 int8_t getDigitPos(int32_t position
) const;
395 * Sets the digit in the BCD list. This method only sets the digit; it is the caller's
396 * responsibility to call {@link #compact} after setting the digit.
398 * @param position The position of the digit to pop, counted in BCD units from the least
399 * significant digit. If outside the range supported by the implementation, an AssertionError
401 * @param value The digit to set at the specified location.
403 void setDigitPos(int32_t position
, int8_t value
);
406 * Adds zeros to the end of the BCD list. This will result in an invalid BCD representation; it is
407 * the caller's responsibility to do further manipulation and then call {@link #compact}.
409 * @param numDigits The number of zeros to add.
411 void shiftLeft(int32_t numDigits
);
413 void shiftRight(int32_t numDigits
);
416 * Sets the internal representation to zero. Clears any values stored in scale, precision,
417 * hasDouble, origDouble, origDelta, and BCD data.
422 * Sets the internal BCD state to represent the value in the given int. The int is guaranteed to
423 * be either positive. The internal state is guaranteed to be empty when this method is called.
425 * @param n The value to consume.
427 void readIntToBcd(int32_t n
);
430 * Sets the internal BCD state to represent the value in the given long. The long is guaranteed to
431 * be either positive. The internal state is guaranteed to be empty when this method is called.
433 * @param n The value to consume.
435 void readLongToBcd(int64_t n
);
437 void readDecNumberToBcd(const DecNum
& dn
);
439 void readDoubleConversionToBcd(const char* buffer
, int32_t length
, int32_t point
);
441 void copyFieldsFrom(const DecimalQuantity
& other
);
443 void copyBcdFrom(const DecimalQuantity
&other
);
445 void moveBcdFrom(DecimalQuantity
& src
);
448 * Removes trailing zeros from the BCD (adjusting the scale as required) and then computes the
449 * precision. The precision is the number of digits in the number up through the greatest nonzero
452 * <p>This method must always be called when bcd changes in order for assumptions to be correct in
453 * methods like {@link #fractionCount()}.
457 void _setToInt(int32_t n
);
459 void _setToLong(int64_t n
);
461 void _setToDoubleFast(double n
);
463 void _setToDecNum(const DecNum
& dn
, UErrorCode
& status
);
465 void convertToAccurateDouble();
467 /** Ensure that a byte array of at least 40 digits is allocated. */
468 void ensureCapacity();
470 void ensureCapacity(int32_t capacity
);
472 /** Switches the internal storage mechanism between the 64-bit long and the byte array. */
473 void switchStorage();
477 } // namespace number
481 #endif //__NUMBER_DECIMALQUANTITY_H__
483 #endif /* #if !UCONFIG_NO_FORMATTING */