1 /************************************************************************
2 * Copyright (C) 1996-2008, International Business Machines Corporation *
3 * and others. All Rights Reserved. *
4 ************************************************************************
5 * 2003-nov-07 srl Port from Java
10 #if !UCONFIG_NO_FORMATTING
12 #include "unicode/calendar.h"
15 #include "unicode/putil.h"
20 #include <stdio.h> // for toString()
27 # include "uresimp.h" // for debugging
29 static void debug_astro_loc(const char *f
, int32_t l
)
31 fprintf(stderr
, "%s:%d: ", f
, l
);
34 static void debug_astro_msg(const char *pat
, ...)
38 vfprintf(stderr
, pat
, ap
);
41 #include "unicode/datefmt.h"
42 #include "unicode/ustring.h"
43 static const char * debug_astro_date(UDate d
) {
44 static char gStrBuf
[1024];
45 static DateFormat
*df
= NULL
;
47 df
= DateFormat::createDateTimeInstance(DateFormat::MEDIUM
, DateFormat::MEDIUM
, Locale::getUS());
48 df
->adoptTimeZone(TimeZone::getGMT()->clone());
52 u_austrncpy(gStrBuf
,str
.getTerminatedBuffer(),sizeof(gStrBuf
)-1);
56 // must use double parens, i.e.: U_DEBUG_ASTRO_MSG(("four is: %d",4));
57 #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg x;}
59 #define U_DEBUG_ASTRO_MSG(x)
62 static inline UBool
isINVALID(double d
) {
63 return(uprv_isNaN(d
));
66 static UMTX ccLock
= NULL
;
69 static UBool
calendar_astro_cleanup(void) {
70 umtx_destroy(&ccLock
);
78 * The number of standard hours in one sidereal day.
79 * Approximately 24.93.
81 * @deprecated ICU 2.4. This class may be removed or modified.
83 #define SIDEREAL_DAY (23.93446960027)
86 * The number of sidereal hours in one mean solar day.
87 * Approximately 24.07.
89 * @deprecated ICU 2.4. This class may be removed or modified.
91 #define SOLAR_DAY (24.065709816)
94 * The average number of solar days from one new moon to the next. This is the time
95 * it takes for the moon to return the same ecliptic longitude as the sun.
96 * It is longer than the sidereal month because the sun's longitude increases
97 * during the year due to the revolution of the earth around the sun.
98 * Approximately 29.53.
100 * @see #SIDEREAL_MONTH
102 * @deprecated ICU 2.4. This class may be removed or modified.
104 const double CalendarAstronomer::SYNODIC_MONTH
= 29.530588853;
107 * The average number of days it takes
108 * for the moon to return to the same ecliptic longitude relative to the
109 * stellar background. This is referred to as the sidereal month.
110 * It is shorter than the synodic month due to
111 * the revolution of the earth around the sun.
112 * Approximately 27.32.
114 * @see #SYNODIC_MONTH
116 * @deprecated ICU 2.4. This class may be removed or modified.
118 #define SIDEREAL_MONTH 27.32166
121 * The average number number of days between successive vernal equinoxes.
122 * Due to the precession of the earth's
123 * axis, this is not precisely the same as the sidereal year.
124 * Approximately 365.24
126 * @see #SIDEREAL_YEAR
128 * @deprecated ICU 2.4. This class may be removed or modified.
130 #define TROPICAL_YEAR 365.242191
133 * The average number of days it takes
134 * for the sun to return to the same position against the fixed stellar
135 * background. This is the duration of one orbit of the earth about the sun
136 * as it would appear to an outside observer.
137 * Due to the precession of the earth's
138 * axis, this is not precisely the same as the tropical year.
139 * Approximately 365.25.
141 * @see #TROPICAL_YEAR
143 * @deprecated ICU 2.4. This class may be removed or modified.
145 #define SIDEREAL_YEAR 365.25636
147 //-------------------------------------------------------------------------
148 // Time-related constants
149 //-------------------------------------------------------------------------
152 * The number of milliseconds in one second.
154 * @deprecated ICU 2.4. This class may be removed or modified.
156 #define SECOND_MS U_MILLIS_PER_SECOND
159 * The number of milliseconds in one minute.
161 * @deprecated ICU 2.4. This class may be removed or modified.
163 #define MINUTE_MS U_MILLIS_PER_MINUTE
166 * The number of milliseconds in one hour.
168 * @deprecated ICU 2.4. This class may be removed or modified.
170 #define HOUR_MS U_MILLIS_PER_HOUR
173 * The number of milliseconds in one day.
175 * @deprecated ICU 2.4. This class may be removed or modified.
177 #define DAY_MS U_MILLIS_PER_DAY
180 * The start of the julian day numbering scheme used by astronomers, which
181 * is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseconds
182 * since 1/1/1970 AD (Gregorian), a negative number.
183 * Note that julian day numbers and
184 * the Julian calendar are <em>not</em> the same thing. Also note that
185 * julian days start at <em>noon</em>, not midnight.
187 * @deprecated ICU 2.4. This class may be removed or modified.
189 #define JULIAN_EPOCH_MS -210866760000000.0
193 * Milliseconds value for 0.0 January 2000 AD.
195 #define EPOCH_2000_MS 946598400000.0
197 //-------------------------------------------------------------------------
198 // Assorted private data used for conversions
199 //-------------------------------------------------------------------------
201 // My own copies of these so compilers are more likely to optimize them away
202 const double CalendarAstronomer::PI
= 3.14159265358979323846;
204 #define CalendarAstronomer_PI2 (CalendarAstronomer::PI*2.0)
205 #define RAD_HOUR ( 12 / CalendarAstronomer::PI ) // radians -> hours
206 #define DEG_RAD ( CalendarAstronomer::PI / 180 ) // degrees -> radians
207 #define RAD_DEG ( 180 / CalendarAstronomer::PI ) // radians -> degrees
210 * Given 'value', add or subtract 'range' until 0 <= 'value' < range.
211 * The modulus operator.
213 inline static double normalize(double value
, double range
) {
214 return value
- range
* ClockMath::floorDivide(value
, range
);
218 * Normalize an angle so that it's in the range 0 - 2pi.
219 * For positive angles this is just (angle % 2pi), but the Java
220 * mod operator doesn't work that way for negative numbers....
222 inline static double norm2PI(double angle
) {
223 return normalize(angle
, CalendarAstronomer::PI
* 2.0);
227 * Normalize an angle into the range -PI - PI
229 inline static double normPI(double angle
) {
230 return normalize(angle
+ CalendarAstronomer::PI
, CalendarAstronomer::PI
* 2.0) - CalendarAstronomer::PI
;
233 //-------------------------------------------------------------------------
235 //-------------------------------------------------------------------------
238 * Construct a new <code>CalendarAstronomer</code> object that is initialized to
239 * the current date and time.
241 * @deprecated ICU 2.4. This class may be removed or modified.
243 CalendarAstronomer::CalendarAstronomer():
244 fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE
) {
249 * Construct a new <code>CalendarAstronomer</code> object that is initialized to
250 * the specified date and time.
252 * @deprecated ICU 2.4. This class may be removed or modified.
254 CalendarAstronomer::CalendarAstronomer(UDate d
): fTime(d
), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE
) {
259 * Construct a new <code>CalendarAstronomer</code> object with the given
260 * latitude and longitude. The object's time is set to the current
263 * @param longitude The desired longitude, in <em>degrees</em> east of
264 * the Greenwich meridian.
266 * @param latitude The desired latitude, in <em>degrees</em>. Positive
267 * values signify North, negative South.
269 * @see java.util.Date#getTime()
271 * @deprecated ICU 2.4. This class may be removed or modified.
273 CalendarAstronomer::CalendarAstronomer(double longitude
, double latitude
) :
274 fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE
) {
275 fLongitude
= normPI(longitude
* (double)DEG_RAD
);
276 fLatitude
= normPI(latitude
* (double)DEG_RAD
);
277 fGmtOffset
= (double)(fLongitude
* 24. * (double)HOUR_MS
/ (double)CalendarAstronomer_PI2
);
281 CalendarAstronomer::~CalendarAstronomer()
285 //-------------------------------------------------------------------------
286 // Time and date getters and setters
287 //-------------------------------------------------------------------------
290 * Set the current date and time of this <code>CalendarAstronomer</code> object. All
291 * astronomical calculations are performed based on this time setting.
293 * @param aTime the date and time, expressed as the number of milliseconds since
294 * 1/1/1970 0:00 GMT (Gregorian).
299 * @deprecated ICU 2.4. This class may be removed or modified.
301 void CalendarAstronomer::setTime(UDate aTime
) {
303 U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime
, debug_astro_date(aTime
+fGmtOffset
)));
308 * Set the current date and time of this <code>CalendarAstronomer</code> object. All
309 * astronomical calculations are performed based on this time setting.
311 * @param jdn the desired time, expressed as a "julian day number",
312 * which is the number of elapsed days since
313 * 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day
314 * numbers start at <em>noon</em>. To get the jdn for
315 * the corresponding midnight, subtract 0.5.
318 * @see #JULIAN_EPOCH_MS
320 * @deprecated ICU 2.4. This class may be removed or modified.
322 void CalendarAstronomer::setJulianDay(double jdn
) {
323 fTime
= (double)(jdn
* DAY_MS
) + JULIAN_EPOCH_MS
;
329 * Get the current time of this <code>CalendarAstronomer</code> object,
330 * represented as the number of milliseconds since
331 * 1/1/1970 AD 0:00 GMT (Gregorian).
336 * @deprecated ICU 2.4. This class may be removed or modified.
338 UDate
CalendarAstronomer::getTime() {
343 * Get the current time of this <code>CalendarAstronomer</code> object,
344 * expressed as a "julian day number", which is the number of elapsed
345 * days since 1/1/4713 BC (Julian), 12:00 GMT.
348 * @see #JULIAN_EPOCH_MS
350 * @deprecated ICU 2.4. This class may be removed or modified.
352 double CalendarAstronomer::getJulianDay() {
353 if (isINVALID(julianDay
)) {
354 julianDay
= (fTime
- (double)JULIAN_EPOCH_MS
) / (double)DAY_MS
;
360 * Return this object's time expressed in julian centuries:
361 * the number of centuries after 1/1/1900 AD, 12:00 GMT
365 * @deprecated ICU 2.4. This class may be removed or modified.
367 double CalendarAstronomer::getJulianCentury() {
368 if (isINVALID(julianCentury
)) {
369 julianCentury
= (getJulianDay() - 2415020.0) / 36525.0;
371 return julianCentury
;
375 * Returns the current Greenwich sidereal time, measured in hours
377 * @deprecated ICU 2.4. This class may be removed or modified.
379 double CalendarAstronomer::getGreenwichSidereal() {
380 if (isINVALID(siderealTime
)) {
381 // See page 86 of "Practial Astronomy with your Calculator",
382 // by Peter Duffet-Smith, for details on the algorithm.
384 double UT
= normalize(fTime
/(double)HOUR_MS
, 24.);
386 siderealTime
= normalize(getSiderealOffset() + UT
*1.002737909, 24.);
391 double CalendarAstronomer::getSiderealOffset() {
392 if (isINVALID(siderealT0
)) {
393 double JD
= uprv_floor(getJulianDay() - 0.5) + 0.5;
394 double S
= JD
- 2451545.0;
395 double T
= S
/ 36525.0;
396 siderealT0
= normalize(6.697374558 + 2400.051336*T
+ 0.000025862*T
*T
, 24);
402 * Returns the current local sidereal time, measured in hours
404 * @deprecated ICU 2.4. This class may be removed or modified.
406 double CalendarAstronomer::getLocalSidereal() {
407 return normalize(getGreenwichSidereal() + (fGmtOffset
/(double)HOUR_MS
), 24.);
411 * Converts local sidereal time to Universal Time.
413 * @param lst The Local Sidereal Time, in hours since sidereal midnight
414 * on this object's current date.
416 * @return The corresponding Universal Time, in milliseconds since
419 double CalendarAstronomer::lstToUT(double lst
) {
420 // Convert to local mean time
421 double lt
= normalize((lst
- getSiderealOffset()) * 0.9972695663, 24);
423 // Then find local midnight on this day
424 double base
= (DAY_MS
* ClockMath::floorDivide(fTime
+ fGmtOffset
,(double)DAY_MS
)) - fGmtOffset
;
426 //out(" lt =" + lt + " hours");
427 //out(" base=" + new Date(base));
429 return base
+ (long)(lt
* HOUR_MS
);
433 //-------------------------------------------------------------------------
434 // Coordinate transformations, all based on the current time of this object
435 //-------------------------------------------------------------------------
438 * Convert from ecliptic to equatorial coordinates.
440 * @param ecliptic A point in the sky in ecliptic coordinates.
441 * @return The corresponding point in equatorial coordinates.
443 * @deprecated ICU 2.4. This class may be removed or modified.
445 CalendarAstronomer::Equatorial
& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial
& result
, const CalendarAstronomer::Ecliptic
& ecliptic
)
447 return eclipticToEquatorial(result
, ecliptic
.longitude
, ecliptic
.latitude
);
451 * Convert from ecliptic to equatorial coordinates.
453 * @param eclipLong The ecliptic longitude
454 * @param eclipLat The ecliptic latitude
456 * @return The corresponding point in equatorial coordinates.
458 * @deprecated ICU 2.4. This class may be removed or modified.
460 CalendarAstronomer::Equatorial
& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial
& result
, double eclipLong
, double eclipLat
)
462 // See page 42 of "Practial Astronomy with your Calculator",
463 // by Peter Duffet-Smith, for details on the algorithm.
465 double obliq
= eclipticObliquity();
466 double sinE
= ::sin(obliq
);
467 double cosE
= cos(obliq
);
469 double sinL
= ::sin(eclipLong
);
470 double cosL
= cos(eclipLong
);
472 double sinB
= ::sin(eclipLat
);
473 double cosB
= cos(eclipLat
);
474 double tanB
= tan(eclipLat
);
476 result
.set(atan2(sinL
*cosE
- tanB
*sinE
, cosL
),
477 asin(sinB
*cosE
+ cosB
*sinE
*sinL
) );
482 * Convert from ecliptic longitude to equatorial coordinates.
484 * @param eclipLong The ecliptic longitude
486 * @return The corresponding point in equatorial coordinates.
488 * @deprecated ICU 2.4. This class may be removed or modified.
490 CalendarAstronomer::Equatorial
& CalendarAstronomer::eclipticToEquatorial(CalendarAstronomer::Equatorial
& result
, double eclipLong
)
492 return eclipticToEquatorial(result
, eclipLong
, 0); // TODO: optimize
497 * @deprecated ICU 2.4. This class may be removed or modified.
499 CalendarAstronomer::Horizon
& CalendarAstronomer::eclipticToHorizon(CalendarAstronomer::Horizon
& result
, double eclipLong
)
501 Equatorial equatorial
;
502 eclipticToEquatorial(equatorial
, eclipLong
);
504 double H
= getLocalSidereal()*CalendarAstronomer::PI
/12 - equatorial
.ascension
; // Hour-angle
506 double sinH
= ::sin(H
);
507 double cosH
= cos(H
);
508 double sinD
= ::sin(equatorial
.declination
);
509 double cosD
= cos(equatorial
.declination
);
510 double sinL
= ::sin(fLatitude
);
511 double cosL
= cos(fLatitude
);
513 double altitude
= asin(sinD
*sinL
+ cosD
*cosL
*cosH
);
514 double azimuth
= atan2(-cosD
*cosL
*sinH
, sinD
- sinL
* ::sin(altitude
));
516 result
.set(azimuth
, altitude
);
521 //-------------------------------------------------------------------------
523 //-------------------------------------------------------------------------
526 // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990
527 // Angles are in radians (after multiplying by CalendarAstronomer::PI/180)
529 #define JD_EPOCH 2447891.5 // Julian day of epoch
531 #define SUN_ETA_G (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longitude at epoch
532 #define SUN_OMEGA_G (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longitude of perigee
533 #define SUN_E 0.016713 // Eccentricity of orbit
534 //double sunR0 1.495585e8 // Semi-major axis in KM
535 //double sunTheta0 (0.533128 * CalendarAstronomer::PI/180) // Angular diameter at R0
537 // The following three methods, which compute the sun parameters
538 // given above for an arbitrary epoch (whatever time the object is
539 // set to), make only a small difference as compared to using the
540 // above constants. E.g., Sunset times might differ by ~12
541 // seconds. Furthermore, the eta-g computation is befuddled by
542 // Duffet-Smith's incorrect coefficients (p.86). I've corrected
543 // the first-order coefficient but the others may be off too - no
544 // way of knowing without consulting another source.
547 // * Return the sun's ecliptic longitude at perigee for the current time.
548 // * See Duffett-Smith, p. 86.
551 // private double getSunOmegaG() {
552 // double T = getJulianCentury();
553 // return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD;
557 // * Return the sun's ecliptic longitude for the current time.
558 // * See Duffett-Smith, p. 86.
561 // private double getSunEtaG() {
562 // double T = getJulianCentury();
563 // //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD;
565 // // The above line is from Duffett-Smith, and yields manifestly wrong
566 // // results. The below constant is derived empirically to match the
567 // // constant he gives for the 1990 EPOCH.
569 // return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD;
573 // * Return the sun's eccentricity of orbit for the current time.
574 // * See Duffett-Smith, p. 86.
577 // private double getSunE() {
578 // double T = getJulianCentury();
579 // return 0.01675104 - (0.0000418 + 0.000000126*T)*T;
583 * Find the "true anomaly" (longitude) of an object from
584 * its mean anomaly and the eccentricity of its orbit. This uses
585 * an iterative solution to Kepler's equation.
587 * @param meanAnomaly The object's longitude calculated as if it were in
588 * a regular, circular orbit, measured in radians
589 * from the point of perigee.
591 * @param eccentricity The eccentricity of the orbit
593 * @return The true anomaly (longitude) measured in radians
595 static double trueAnomaly(double meanAnomaly
, double eccentricity
)
597 // First, solve Kepler's equation iteratively
598 // Duffett-Smith, p.90
600 double E
= meanAnomaly
;
602 delta
= E
- eccentricity
* ::sin(E
) - meanAnomaly
;
603 E
= E
- delta
/ (1 - eccentricity
* ::cos(E
));
605 while (uprv_fabs(delta
) > 1e-5); // epsilon = 1e-5 rad
607 return 2.0 * ::atan( ::tan(E
/2) * ::sqrt( (1+eccentricity
)
608 /(1-eccentricity
) ) );
612 * The longitude of the sun at the time specified by this object.
613 * The longitude is measured in radians along the ecliptic
614 * from the "first point of Aries," the point at which the ecliptic
615 * crosses the earth's equatorial plane at the vernal equinox.
617 * Currently, this method uses an approximation of the two-body Kepler's
618 * equation for the earth and the sun. It does not take into account the
619 * perturbations caused by the other planets, the moon, etc.
621 * @deprecated ICU 2.4. This class may be removed or modified.
623 double CalendarAstronomer::getSunLongitude()
625 // See page 86 of "Practial Astronomy with your Calculator",
626 // by Peter Duffet-Smith, for details on the algorithm.
628 if (isINVALID(sunLongitude
)) {
629 getSunLongitude(getJulianDay(), sunLongitude
, meanAnomalySun
);
635 * TODO Make this public when the entire class is package-private.
637 /*public*/ void CalendarAstronomer::getSunLongitude(double jDay
, double &longitude
, double &meanAnomaly
)
639 // See page 86 of "Practial Astronomy with your Calculator",
640 // by Peter Duffet-Smith, for details on the algorithm.
642 double day
= jDay
- JD_EPOCH
; // Days since epoch
644 // Find the angular distance the sun in a fictitious
645 // circular orbit has travelled since the epoch.
646 double epochAngle
= norm2PI(CalendarAstronomer_PI2
/TROPICAL_YEAR
*day
);
648 // The epoch wasn't at the sun's perigee; find the angular distance
649 // since perigee, which is called the "mean anomaly"
650 meanAnomaly
= norm2PI(epochAngle
+ SUN_ETA_G
- SUN_OMEGA_G
);
652 // Now find the "true anomaly", e.g. the real solar longitude
653 // by solving Kepler's equation for an elliptical orbit
654 // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different
655 // equations; omega_g is to be correct.
656 longitude
= norm2PI(trueAnomaly(meanAnomaly
, SUN_E
) + SUN_OMEGA_G
);
660 * The position of the sun at this object's current date and time,
661 * in equatorial coordinates.
663 * @deprecated ICU 2.4. This class may be removed or modified.
665 CalendarAstronomer::Equatorial
& CalendarAstronomer::getSunPosition(CalendarAstronomer::Equatorial
& result
) {
666 return eclipticToEquatorial(result
, getSunLongitude(), 0);
671 * Constant representing the vernal equinox.
672 * For use with {@link #getSunTime getSunTime}.
673 * Note: In this case, "vernal" refers to the northern hemisphere's seasons.
675 * @deprecated ICU 2.4. This class may be removed or modified.
677 /*double CalendarAstronomer::VERNAL_EQUINOX() {
682 * Constant representing the summer solstice.
683 * For use with {@link #getSunTime getSunTime}.
684 * Note: In this case, "summer" refers to the northern hemisphere's seasons.
686 * @deprecated ICU 2.4. This class may be removed or modified.
688 double CalendarAstronomer::SUMMER_SOLSTICE() {
689 return (CalendarAstronomer::PI
/2);
693 * Constant representing the autumnal equinox.
694 * For use with {@link #getSunTime getSunTime}.
695 * Note: In this case, "autumn" refers to the northern hemisphere's seasons.
697 * @deprecated ICU 2.4. This class may be removed or modified.
699 /*double CalendarAstronomer::AUTUMN_EQUINOX() {
700 return (CalendarAstronomer::PI);
704 * Constant representing the winter solstice.
705 * For use with {@link #getSunTime getSunTime}.
706 * Note: In this case, "winter" refers to the northern hemisphere's seasons.
708 * @deprecated ICU 2.4. This class may be removed or modified.
710 double CalendarAstronomer::WINTER_SOLSTICE() {
711 return ((CalendarAstronomer::PI
*3)/2);
714 CalendarAstronomer::AngleFunc::~AngleFunc() {}
717 * Find the next time at which the sun's ecliptic longitude will have
720 * @deprecated ICU 2.4. This class may be removed or modified.
722 class SunTimeAngleFunc
: public CalendarAstronomer::AngleFunc
{
724 virtual double eval(CalendarAstronomer
& a
) { return a
.getSunLongitude(); }
727 UDate
CalendarAstronomer::getSunTime(double desired
, UBool next
)
729 SunTimeAngleFunc func
;
730 return timeOfAngle( func
,
737 CalendarAstronomer::CoordFunc::~CoordFunc() {}
739 class RiseSetCoordFunc
: public CalendarAstronomer::CoordFunc
{
741 virtual void eval(CalendarAstronomer::Equatorial
& result
, CalendarAstronomer
&a
) { a
.getSunPosition(result
); }
744 UDate
CalendarAstronomer::getSunRiseSet(UBool rise
)
748 // Make a rough guess: 6am or 6pm local time on the current day
749 double noon
= ClockMath::floorDivide(fTime
+ fGmtOffset
, (double)DAY_MS
)*DAY_MS
- fGmtOffset
+ (12*HOUR_MS
);
751 U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon
, debug_astro_date(noon
+fGmtOffset
), fGmtOffset
));
752 setTime(noon
+ ((rise
? -6 : 6) * HOUR_MS
));
753 U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise
? -6. : 6.) * HOUR_MS
)));
755 RiseSetCoordFunc func
;
756 double t
= riseOrSet(func
,
758 .533 * DEG_RAD
, // Angular Diameter
759 34. /60.0 * DEG_RAD
, // Refraction correction
760 MINUTE_MS
/ 12.); // Desired accuracy
766 // Commented out - currently unused. ICU 2.6, Alan
767 // //-------------------------------------------------------------------------
768 // // Alternate Sun Rise/Set
769 // // See Duffett-Smith p.93
770 // //-------------------------------------------------------------------------
772 // // This yields worse results (as compared to USNO data) than getSunRiseSet().
774 // * TODO Make this when the entire class is package-private.
776 // /*public*/ long getSunRiseSet2(boolean rise) {
777 // // 1. Calculate coordinates of the sun's center for midnight
778 // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
779 // double[] sl = getSunLongitude(jd);// double lambda1 = sl[0];
780 // Equatorial pos1 = eclipticToEquatorial(lambda1, 0);
782 // // 2. Add ... to lambda to get position 24 hours later
783 // double lambda2 = lambda1 + 0.985647*DEG_RAD;
784 // Equatorial pos2 = eclipticToEquatorial(lambda2, 0);
786 // // 3. Calculate LSTs of rising and setting for these two positions
787 // double tanL = ::tan(fLatitude);
788 // double H = ::acos(-tanL * ::tan(pos1.declination));
789 // double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / CalendarAstronomer_PI2;
790 // double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2;
791 // H = ::acos(-tanL * ::tan(pos2.declination));
792 // double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
793 // double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2;
794 // if (lst1r > 24) lst1r -= 24;
795 // if (lst1s > 24) lst1s -= 24;
796 // if (lst2r > 24) lst2r -= 24;
797 // if (lst2s > 24) lst2s -= 24;
799 // // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2.
800 // double gst1r = lstToGst(lst1r);
801 // double gst1s = lstToGst(lst1s);
802 // double gst2r = lstToGst(lst2r);
803 // double gst2s = lstToGst(lst2s);
804 // if (gst1r > gst2r) gst2r += 24;
805 // if (gst1s > gst2s) gst2s += 24;
807 // // 5. Calculate GST at 0h UT of this date
808 // double t00 = utToGst(0);
810 // // 6. Calculate GST at 0h on the observer's longitude
811 // double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_ to nearest 15 deg.
812 // double t00p = t00 - offset*1.002737909;
813 // if (t00p < 0) t00p += 24; // do NOT normalize
816 // if (gst1r < t00p) {
820 // if (gst1s < t00p) {
826 // double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r);
827 // double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s);
829 // // 9. Correct for parallax, refraction, and sun's diameter
830 // double dec = (pos1.declination + pos2.declination) / 2;
831 // double psi = ::acos(sin(fLatitude) / cos(dec));
832 // double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter
833 // double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG;
834 // double delta_t = 240 * y / cos(dec) / 3600; // hours
836 // // 10. Add correction to GSTs, subtract from GSTr
840 // // 11. Convert GST to UT and then to local civil time
841 // double ut = gstToUt(rise ? gstr : gsts);
842 // //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta_t);
843 // long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this day
844 // return midnight + (long) (ut * 3600000);
847 // Commented out - currently unused. ICU 2.6, Alan
849 // * Convert local sidereal time to Greenwich sidereal time.
850 // * Section 15. Duffett-Smith p.21
851 // * @param lst in hours (0..24)
852 // * @return GST in hours (0..24)
854 // double lstToGst(double lst) {
855 // double delta = fLongitude * 24 / CalendarAstronomer_PI2;
856 // return normalize(lst - delta, 24);
859 // Commented out - currently unused. ICU 2.6, Alan
861 // * Convert UT to GST on this date.
862 // * Section 12. Duffett-Smith p.17
863 // * @param ut in hours
864 // * @return GST in hours
866 // double utToGst(double ut) {
867 // return normalize(getT0() + ut*1.002737909, 24);
870 // Commented out - currently unused. ICU 2.6, Alan
872 // * Convert GST to UT on this date.
873 // * Section 13. Duffett-Smith p.18
874 // * @param gst in hours
875 // * @return UT in hours
877 // double gstToUt(double gst) {
878 // return normalize(gst - getT0(), 24) * 0.9972695663;
881 // Commented out - currently unused. ICU 2.6, Alan
883 // // Common computation for UT <=> GST
885 // // Find JD for 0h UT
886 // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5;
888 // double s = jd - 2451545.0;
889 // double t = s / 36525.0;
890 // double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t;
894 // Commented out - currently unused. ICU 2.6, Alan
895 // //-------------------------------------------------------------------------
896 // // Alternate Sun Rise/Set
897 // // See sci.astro FAQ
898 // // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html
899 // //-------------------------------------------------------------------------
901 // // Note: This method appears to produce inferior accuracy as
902 // // compared to getSunRiseSet().
905 // * TODO Make this when the entire class is package-private.
907 // /*public*/ long getSunRiseSet3(boolean rise) {
909 // // Compute day number for 0.0 Jan 2000 epoch
910 // double d = (double)(time - EPOCH_2000_MS) / DAY_MS;
912 // // Now compute the Local Sidereal Time, LST:
914 // double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/
915 // fLongitude*RAD_DEG;
917 // // (east long. positive). Note that LST is here expressed in degrees,
918 // // where 15 degrees corresponds to one hour. Since LST really is an angle,
919 // // it's convenient to use one unit---degrees---throughout.
921 // // COMPUTING THE SUN'S POSITION
922 // // ----------------------------
924 // // To be able to compute the Sun's rise/set times, you need to be able to
925 // // compute the Sun's position at any time. First compute the "day
926 // // number" d as outlined above, for the desired moment. Next compute:
928 // double oblecl = 23.4393 - 3.563E-7 * d;
930 // double w = 282.9404 + 4.70935E-5 * d;
931 // double M = 356.0470 + 0.9856002585 * d;
932 // double e = 0.016709 - 1.151E-9 * d;
934 // // This is the obliquity of the ecliptic, plus some of the elements of
935 // // the Sun's apparent orbit (i.e., really the Earth's orbit): w =
936 // // argument of perihelion, M = mean anomaly, e = eccentricity.
937 // // Semi-major axis is here assumed to be exactly 1.0 (while not strictly
938 // // true, this is still an accurate approximation). Next compute E, the
939 // // eccentric anomaly:
941 // double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD) );
943 // // where E and M are in degrees. This is it---no further iterations are
944 // // needed because we know e has a sufficiently small value. Next compute
945 // // the true anomaly, v, and the distance, r:
947 // /* r * cos(v) = */ double A = cos(E*DEG_RAD) - e;
948 // /* r * ::sin(v) = */ double B = ::sqrt(1 - e*e) * ::sin(E*DEG_RAD);
952 // // r = sqrt( A*A + B*B )
953 // double v = ::atan2( B, A )*RAD_DEG;
955 // // The Sun's true longitude, slon, can now be computed:
957 // double slon = v + w;
959 // // Since the Sun is always at the ecliptic (or at least very very close to
960 // // it), we can use simplified formulae to convert slon (the Sun's ecliptic
961 // // longitude) to sRA and sDec (the Sun's RA and Dec):
963 // // ::sin(slon) * cos(oblecl)
964 // // tan(sRA) = -------------------------
967 // // ::sin(sDec) = ::sin(oblecl) * ::sin(slon)
969 // // As was the case when computing az, the Azimuth, if possible use an
970 // // atan2() function to compute sRA.
972 // double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon*DEG_RAD))*RAD_DEG;
974 // double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD);
975 // double sDec = ::asin(sin_sDec)*RAD_DEG;
977 // // COMPUTING RISE AND SET TIMES
978 // // ----------------------------
980 // // To compute when an object rises or sets, you must compute when it
981 // // passes the meridian and the HA of rise/set. Then the rise time is
982 // // the meridian time minus HA for rise/set, and the set time is the
983 // // meridian time plus the HA for rise/set.
985 // // To find the meridian time, compute the Local Sidereal Time at 0h local
986 // // time (or 0h UT if you prefer to work in UT) as outlined above---name
987 // // that quantity LST0. The Meridian Time, MT, will now be:
990 // double MT = normalize(sRA - LST, 360);
992 // // where "RA" is the object's Right Ascension (in degrees!). If negative,
993 // // add 360 deg to MT. If the object is the Sun, leave the time as it is,
994 // // but if it's stellar, multiply MT by 365.2422/366.2422, to convert from
995 // // sidereal to solar time. Now, compute HA for rise/set, name that
998 // // ::sin(h0) - ::sin(lat) * ::sin(Dec)
999 // // cos(HA0) = ---------------------------------
1000 // // cos(lat) * cos(Dec)
1002 // // where h0 is the altitude selected to represent rise/set. For a purely
1003 // // mathematical horizon, set h0 = 0 and simplify to:
1005 // // cos(HA0) = - tan(lat) * tan(Dec)
1007 // // If you want to account for refraction on the atmosphere, set h0 = -35/60
1008 // // degrees (-35 arc minutes), and if you want to compute the rise/set times
1009 // // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes).
1011 // double h0 = -50/60 * DEG_RAD;
1013 // double HA0 = ::acos(
1014 // (sin(h0) - ::sin(fLatitude) * sin_sDec) /
1015 // (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG;
1017 // // When HA0 has been computed, leave it as it is for the Sun but multiply
1018 // // by 365.2422/366.2422 for stellar objects, to convert from sidereal to
1019 // // solar time. Finally compute:
1021 // // Rise time = MT - HA0
1022 // // Set time = MT + HA0
1024 // // convert the times from degrees to hours by dividing by 15.
1026 // // If you'd like to check that your calculations are accurate or just
1027 // // need a quick result, check the USNO's Sun or Moon Rise/Set Table,
1028 // // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>.
1030 // double result = MT + (rise ? -HA0 : HA0); // in degrees
1032 // // Find UT midnight on this day
1033 // long midnight = DAY_MS * (time / DAY_MS);
1035 // return midnight + (long) (result * 3600000 / 15);
1038 //-------------------------------------------------------------------------
1040 //-------------------------------------------------------------------------
1042 #define moonL0 (318.351648 * CalendarAstronomer::PI/180 ) // Mean long. at epoch
1043 #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 ) // Mean long. of perigee
1044 #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 ) // Mean long. of node
1045 #define moonI ( 5.145366 * CalendarAstronomer::PI/180 ) // Inclination of orbit
1046 #define moonE ( 0.054900 ) // Eccentricity of orbit
1048 // These aren't used right now
1049 #define moonA ( 3.84401e5 ) // semi-major axis (km)
1050 #define moonT0 ( 0.5181 * CalendarAstronomer::PI/180 ) // Angular size at distance A
1051 #define moonPi ( 0.9507 * CalendarAstronomer::PI/180 ) // Parallax at distance A
1054 * The position of the moon at the time set on this
1055 * object, in equatorial coordinates.
1057 * @deprecated ICU 2.4. This class may be removed or modified.
1059 const CalendarAstronomer::Equatorial
& CalendarAstronomer::getMoonPosition()
1062 // See page 142 of "Practial Astronomy with your Calculator",
1063 // by Peter Duffet-Smith, for details on the algorithm.
1065 if (moonPositionSet
== FALSE
) {
1066 // Calculate the solar longitude. Has the side effect of
1067 // filling in "meanAnomalySun" as well.
1071 // Find the # of days since the epoch of our orbital parameters.
1072 // TODO: Convert the time of day portion into ephemeris time
1074 double day
= getJulianDay() - JD_EPOCH
; // Days since epoch
1076 // Calculate the mean longitude and anomaly of the moon, based on
1077 // a circular orbit. Similar to the corresponding solar calculation.
1078 double meanLongitude
= norm2PI(13.1763966*PI
/180*day
+ moonL0
);
1079 meanAnomalyMoon
= norm2PI(meanLongitude
- 0.1114041*PI
/180 * day
- moonP0
);
1082 // Calculate the following corrections:
1083 // Evection: the sun's gravity affects the moon's eccentricity
1084 // Annual Eqn: variation in the effect due to earth-sun distance
1085 // A3: correction factor (for ???)
1087 double evection
= 1.2739*PI
/180 * ::sin(2 * (meanLongitude
- sunLongitude
)
1089 double annual
= 0.1858*PI
/180 * ::sin(meanAnomalySun
);
1090 double a3
= 0.3700*PI
/180 * ::sin(meanAnomalySun
);
1092 meanAnomalyMoon
+= evection
- annual
- a3
;
1095 // More correction factors:
1096 // center equation of the center correction
1097 // a4 yet another error correction (???)
1099 // TODO: Skip the equation of the center correction and solve Kepler's eqn?
1101 double center
= 6.2886*PI
/180 * ::sin(meanAnomalyMoon
);
1102 double a4
= 0.2140*PI
/180 * ::sin(2 * meanAnomalyMoon
);
1104 // Now find the moon's corrected longitude
1105 moonLongitude
= meanLongitude
+ evection
+ center
- annual
+ a4
;
1108 // And finally, find the variation, caused by the fact that the sun's
1109 // gravitational pull on the moon varies depending on which side of
1110 // the earth the moon is on
1112 double variation
= 0.6583*CalendarAstronomer::PI
/180 * ::sin(2*(moonLongitude
- sunLongitude
));
1114 moonLongitude
+= variation
;
1117 // What we've calculated so far is the moon's longitude in the plane
1118 // of its own orbit. Now map to the ecliptic to get the latitude
1119 // and longitude. First we need to find the longitude of the ascending
1120 // node, the position on the ecliptic where it is crossed by the moon's
1121 // orbit as it crosses from the southern to the northern hemisphere.
1123 double nodeLongitude
= norm2PI(moonN0
- 0.0529539*PI
/180 * day
);
1125 nodeLongitude
-= 0.16*PI
/180 * ::sin(meanAnomalySun
);
1127 double y
= ::sin(moonLongitude
- nodeLongitude
);
1128 double x
= cos(moonLongitude
- nodeLongitude
);
1130 moonEclipLong
= ::atan2(y
*cos(moonI
), x
) + nodeLongitude
;
1131 double moonEclipLat
= ::asin(y
* ::sin(moonI
));
1133 eclipticToEquatorial(moonPosition
, moonEclipLong
, moonEclipLat
);
1134 moonPositionSet
= TRUE
;
1136 return moonPosition
;
1140 * The "age" of the moon at the time specified in this object.
1141 * This is really the angle between the
1142 * current ecliptic longitudes of the sun and the moon,
1143 * measured in radians.
1145 * @see #getMoonPhase
1147 * @deprecated ICU 2.4. This class may be removed or modified.
1149 double CalendarAstronomer::getMoonAge() {
1150 // See page 147 of "Practial Astronomy with your Calculator",
1151 // by Peter Duffet-Smith, for details on the algorithm.
1153 // Force the moon's position to be calculated. We're going to use
1154 // some the intermediate results cached during that calculation.
1158 return norm2PI(moonEclipLong
- sunLongitude
);
1162 * Calculate the phase of the moon at the time set in this object.
1163 * The returned phase is a <code>double</code> in the range
1164 * <code>0 <= phase < 1</code>, interpreted as follows:
1166 * <li>0.00: New moon
1167 * <li>0.25: First quarter
1168 * <li>0.50: Full moon
1169 * <li>0.75: Last quarter
1174 * @deprecated ICU 2.4. This class may be removed or modified.
1176 double CalendarAstronomer::getMoonPhase() {
1177 // See page 147 of "Practial Astronomy with your Calculator",
1178 // by Peter Duffet-Smith, for details on the algorithm.
1179 return 0.5 * (1 - cos(getMoonAge()));
1183 * Constant representing a new moon.
1184 * For use with {@link #getMoonTime getMoonTime}
1186 * @deprecated ICU 2.4. This class may be removed or modified.
1188 const CalendarAstronomer::MoonAge
CalendarAstronomer::NEW_MOON() {
1189 return CalendarAstronomer::MoonAge(0);
1193 * Constant representing the moon's first quarter.
1194 * For use with {@link #getMoonTime getMoonTime}
1196 * @deprecated ICU 2.4. This class may be removed or modified.
1198 /*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() {
1199 return CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2);
1203 * Constant representing a full moon.
1204 * For use with {@link #getMoonTime getMoonTime}
1206 * @deprecated ICU 2.4. This class may be removed or modified.
1208 const CalendarAstronomer::MoonAge
CalendarAstronomer::FULL_MOON() {
1209 return CalendarAstronomer::MoonAge(CalendarAstronomer::PI
);
1212 * Constant representing the moon's last quarter.
1213 * For use with {@link #getMoonTime getMoonTime}
1215 * @deprecated ICU 2.4. This class may be removed or modified.
1218 class MoonTimeAngleFunc
: public CalendarAstronomer::AngleFunc
{
1220 virtual double eval(CalendarAstronomer
&a
) { return a
.getMoonAge(); }
1223 /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() {
1224 return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2);
1228 * Find the next or previous time at which the Moon's ecliptic
1229 * longitude will have the desired value.
1231 * @param desired The desired longitude.
1232 * @param next <tt>true</tt> if the next occurrance of the phase
1233 * is desired, <tt>false</tt> for the previous occurrance.
1235 * @deprecated ICU 2.4. This class may be removed or modified.
1237 UDate
CalendarAstronomer::getMoonTime(double desired
, UBool next
)
1239 MoonTimeAngleFunc func
;
1240 return timeOfAngle( func
,
1248 * Find the next or previous time at which the moon will be in the
1251 * @param desired The desired phase of the moon.
1252 * @param next <tt>true</tt> if the next occurrance of the phase
1253 * is desired, <tt>false</tt> for the previous occurrance.
1255 * @deprecated ICU 2.4. This class may be removed or modified.
1257 UDate
CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge
& desired
, UBool next
) {
1258 return getMoonTime(desired
.value
, next
);
1261 class MoonRiseSetCoordFunc
: public CalendarAstronomer::CoordFunc
{
1263 virtual void eval(CalendarAstronomer::Equatorial
& result
, CalendarAstronomer
&a
) { result
= a
.getMoonPosition(); }
1267 * Returns the time (GMT) of sunrise or sunset on the local date to which
1268 * this calendar is currently set.
1270 * @deprecated ICU 2.4. This class may be removed or modified.
1272 UDate
CalendarAstronomer::getMoonRiseSet(UBool rise
)
1274 MoonRiseSetCoordFunc func
;
1275 return riseOrSet(func
,
1277 .533 * DEG_RAD
, // Angular Diameter
1278 34 /60.0 * DEG_RAD
, // Refraction correction
1279 MINUTE_MS
); // Desired accuracy
1282 //-------------------------------------------------------------------------
1283 // Interpolation methods for finding the time at which a given event occurs
1284 //-------------------------------------------------------------------------
1286 UDate
CalendarAstronomer::timeOfAngle(AngleFunc
& func
, double desired
,
1287 double periodDays
, double epsilon
, UBool next
)
1289 // Find the value of the function at the current time
1290 double lastAngle
= func
.eval(*this);
1292 // Find out how far we are from the desired angle
1293 double deltaAngle
= norm2PI(desired
- lastAngle
) ;
1295 // Using the average period, estimate the next (or previous) time at
1296 // which the desired angle occurs.
1297 double deltaT
= (deltaAngle
+ (next
? 0.0 : - CalendarAstronomer_PI2
)) * (periodDays
*DAY_MS
) / CalendarAstronomer_PI2
;
1299 double lastDeltaT
= deltaT
; // Liu
1300 UDate startTime
= fTime
; // Liu
1302 setTime(fTime
+ uprv_ceil(deltaT
));
1304 // Now iterate until we get the error below epsilon. Throughout
1305 // this loop we use normPI to get values in the range -Pi to Pi,
1306 // since we're using them as correction factors rather than absolute angles.
1308 // Evaluate the function at the time we've estimated
1309 double angle
= func
.eval(*this);
1311 // Find the # of milliseconds per radian at this point on the curve
1312 double factor
= uprv_fabs(deltaT
/ normPI(angle
-lastAngle
));
1314 // Correct the time estimate based on how far off the angle is
1315 deltaT
= normPI(desired
- angle
) * factor
;
1319 // If abs(deltaT) begins to diverge we need to quit this loop.
1320 // This only appears to happen when attempting to locate, for
1321 // example, a new moon on the day of the new moon. E.g.:
1323 // This result is correct:
1324 // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))=
1325 // Sun Jul 22 10:57:41 CST 1990
1327 // But attempting to make the same call a day earlier causes deltaT
1329 // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 ->
1330 // 1.3649828540224032E9
1331 // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))=
1332 // Sun Jul 08 13:56:15 CST 1990
1334 // As a temporary solution, we catch this specific condition and
1335 // adjust our start time by one eighth period days (either forward
1336 // or backward) and try again.
1338 if (uprv_fabs(deltaT
) > uprv_fabs(lastDeltaT
)) {
1339 double delta
= uprv_ceil (periodDays
* DAY_MS
/ 8.0);
1340 setTime(startTime
+ (next
? delta
: -delta
));
1341 return timeOfAngle(func
, desired
, periodDays
, epsilon
, next
);
1344 lastDeltaT
= deltaT
;
1347 setTime(fTime
+ uprv_ceil(deltaT
));
1349 while (uprv_fabs(deltaT
) > epsilon
);
1354 UDate
CalendarAstronomer::riseOrSet(CoordFunc
& func
, UBool rise
,
1355 double diameter
, double refraction
,
1359 double tanL
= ::tan(fLatitude
);
1364 // Calculate the object's position at the current time, then use that
1365 // position to calculate the time of rising or setting. The position
1366 // will be different at that time, so iterate until the error is allowable.
1368 U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n",
1369 rise
?"T":"F", diameter
, refraction
, epsilon
));
1371 // See "Practical Astronomy With Your Calculator, section 33.
1372 func
.eval(pos
, *this);
1373 double angle
= ::acos(-tanL
* ::tan(pos
.declination
));
1374 double lst
= ((rise
? CalendarAstronomer_PI2
-angle
: angle
) + pos
.ascension
) * 24 / CalendarAstronomer_PI2
;
1376 // Convert from LST to Universal Time.
1377 UDate newTime
= lstToUT( lst
);
1379 deltaT
= newTime
- fTime
;
1381 U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf, A=%.3lf/D=%.3lf\n",
1382 count
, deltaT
, angle
, lst
, pos
.ascension
, pos
.declination
));
1384 while (++ count
< 5 && uprv_fabs(deltaT
) > epsilon
);
1386 // Calculate the correction due to refraction and the object's angular diameter
1387 double cosD
= ::cos(pos
.declination
);
1388 double psi
= ::acos(sin(fLatitude
) / cosD
);
1389 double x
= diameter
/ 2 + refraction
;
1390 double y
= ::asin(sin(x
) / ::sin(psi
));
1391 long delta
= (long)((240 * y
* RAD_DEG
/ cosD
)*SECOND_MS
);
1393 return fTime
+ (rise
? -delta
: delta
);
1396 * Return the obliquity of the ecliptic (the angle between the ecliptic
1397 * and the earth's equator) at the current time. This varies due to
1398 * the precession of the earth's axis.
1400 * @return the obliquity of the ecliptic relative to the equator,
1401 * measured in radians.
1403 double CalendarAstronomer::eclipticObliquity() {
1404 if (isINVALID(eclipObliquity
)) {
1405 const double epoch
= 2451545.0; // 2000 AD, January 1.5
1407 double T
= (getJulianDay() - epoch
) / 36525;
1409 eclipObliquity
= 23.439292
1412 + 0.00181/3600 * T
*T
*T
;
1414 eclipObliquity
*= DEG_RAD
;
1416 return eclipObliquity
;
1420 //-------------------------------------------------------------------------
1422 //-------------------------------------------------------------------------
1423 void CalendarAstronomer::clearCache() {
1424 const double INVALID
= uprv_getNaN();
1426 julianDay
= INVALID
;
1427 julianCentury
= INVALID
;
1428 sunLongitude
= INVALID
;
1429 meanAnomalySun
= INVALID
;
1430 moonLongitude
= INVALID
;
1431 moonEclipLong
= INVALID
;
1432 meanAnomalyMoon
= INVALID
;
1433 eclipObliquity
= INVALID
;
1434 siderealTime
= INVALID
;
1435 siderealT0
= INVALID
;
1436 moonPositionSet
= FALSE
;
1439 //private static void out(String s) {
1440 // System.out.println(s);
1443 //private static String deg(double rad) {
1444 // return Double.toString(rad * RAD_DEG);
1447 //private static String hours(long ms) {
1448 // return Double.toString((double)ms / HOUR_MS) + " hours";
1453 * @deprecated ICU 2.4. This class may be removed or modified.
1455 /*UDate CalendarAstronomer::local(UDate localMillis) {
1457 TimeZone *tz = TimeZone::createDefault();
1460 UErrorCode status = U_ZERO_ERROR;
1461 tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status);
1463 return localMillis - rawOffset;
1466 // Debugging functions
1467 UnicodeString
CalendarAstronomer::Ecliptic::toString() const
1469 #ifdef U_DEBUG_ASTRO
1471 sprintf(tmp
, "[%.5f,%.5f]", longitude
*RAD_DEG
, latitude
*RAD_DEG
);
1472 return UnicodeString(tmp
, "");
1474 return UnicodeString();
1478 UnicodeString
CalendarAstronomer::Equatorial::toString() const
1480 #ifdef U_DEBUG_ASTRO
1482 sprintf(tmp
, "%f,%f",
1483 (ascension
*RAD_DEG
), (declination
*RAD_DEG
));
1484 return UnicodeString(tmp
, "");
1486 return UnicodeString();
1490 UnicodeString
CalendarAstronomer::Horizon::toString() const
1492 #ifdef U_DEBUG_ASTRO
1494 sprintf(tmp
, "[%.5f,%.5f]", altitude
*RAD_DEG
, azimuth
*RAD_DEG
);
1495 return UnicodeString(tmp
, "");
1497 return UnicodeString();
1502 // static private String radToHms(double angle) {
1503 // int hrs = (int) (angle*RAD_HOUR);
1504 // int min = (int)((angle*RAD_HOUR - hrs) * 60);
1505 // int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600);
1507 // return Integer.toString(hrs) + "h" + min + "m" + sec + "s";
1510 // static private String radToDms(double angle) {
1511 // int deg = (int) (angle*RAD_DEG);
1512 // int min = (int)((angle*RAD_DEG - deg) * 60);
1513 // int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600);
1515 // return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\"";
1518 // =============== Calendar Cache ================
1520 void CalendarCache::createCache(CalendarCache
** cache
, UErrorCode
& status
) {
1521 ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR
, calendar_astro_cleanup
);
1523 status
= U_MEMORY_ALLOCATION_ERROR
;
1525 *cache
= new CalendarCache(32, status
);
1526 if(U_FAILURE(status
)) {
1533 int32_t CalendarCache::get(CalendarCache
** cache
, int32_t key
, UErrorCode
&status
) {
1536 if(U_FAILURE(status
)) {
1541 if(*cache
== NULL
) {
1542 createCache(cache
, status
);
1543 if(U_FAILURE(status
)) {
1544 umtx_unlock(&ccLock
);
1549 res
= uhash_igeti((*cache
)->fTable
, key
);
1550 U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache
)->fTable
, key
, res
));
1552 umtx_unlock(&ccLock
);
1556 void CalendarCache::put(CalendarCache
** cache
, int32_t key
, int32_t value
, UErrorCode
&status
) {
1557 if(U_FAILURE(status
)) {
1562 if(*cache
== NULL
) {
1563 createCache(cache
, status
);
1564 if(U_FAILURE(status
)) {
1565 umtx_unlock(&ccLock
);
1570 uhash_iputi((*cache
)->fTable
, key
, value
, &status
);
1571 U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache
)->fTable
, key
, value
));
1573 umtx_unlock(&ccLock
);
1576 CalendarCache::CalendarCache(int32_t size
, UErrorCode
&status
) {
1577 fTable
= uhash_openSize(uhash_hashLong
, uhash_compareLong
, NULL
, size
, &status
);
1578 U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable
));
1581 CalendarCache::~CalendarCache() {
1582 if(fTable
!= NULL
) {
1583 U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable
));
1584 uhash_close(fTable
);
1590 #endif // !UCONFIG_NO_FORMATTING