]> git.saurik.com Git - apple/icu.git/blob - icuSources/i18n/rematch.cpp
ICU-6.2.14.tar.gz
[apple/icu.git] / icuSources / i18n / rematch.cpp
1 //
2 // file: rematch.cpp
3 //
4 // Contains the implementation of class RegexMatcher,
5 // which is one of the main API classes for the ICU regular expression package.
6 //
7 /*
8 **************************************************************************
9 * Copyright (C) 2002-2004 International Business Machines Corporation *
10 * and others. All rights reserved. *
11 **************************************************************************
12 */
13
14 #include "unicode/utypes.h"
15 #if !UCONFIG_NO_REGULAR_EXPRESSIONS
16
17 #include "unicode/regex.h"
18 #include "unicode/uniset.h"
19 #include "unicode/uchar.h"
20 #include "unicode/ustring.h"
21 #include "unicode/rbbi.h"
22 #include "uassert.h"
23 #include "cmemory.h"
24 #include "uvector.h"
25 #include "uvectr32.h"
26 #include "regeximp.h"
27 #include "regexst.h"
28
29 // #include <malloc.h> // Needed for heapcheck testing
30
31 U_NAMESPACE_BEGIN
32
33 //-----------------------------------------------------------------------------
34 //
35 // Constructor and Destructor
36 //
37 //-----------------------------------------------------------------------------
38 RegexMatcher::RegexMatcher(const RegexPattern *pat) {
39 fPattern = pat;
40 fPatternOwned = NULL;
41 fInput = NULL;
42 fTraceDebug = FALSE;
43 fDeferredStatus = U_ZERO_ERROR;
44 fStack = new UVector32(fDeferredStatus);
45 fData = fSmallData;
46 fWordBreakItr = NULL;
47 if (pat==NULL) {
48 fDeferredStatus = U_ILLEGAL_ARGUMENT_ERROR;
49 return;
50 }
51 if (pat->fDataSize > (int32_t)(sizeof(fSmallData)/sizeof(int32_t))) {
52 fData = (int32_t *)uprv_malloc(pat->fDataSize * sizeof(int32_t));
53 }
54 if (fStack == NULL || fData == NULL) {
55 fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
56 }
57
58 reset(*RegexStaticSets::gStaticSets->fEmptyString);
59 }
60
61
62
63 RegexMatcher::RegexMatcher(const UnicodeString &regexp, const UnicodeString &input,
64 uint32_t flags, UErrorCode &status) {
65 UParseError pe;
66 fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
67 fPattern = fPatternOwned;
68 fTraceDebug = FALSE;
69 fDeferredStatus = U_ZERO_ERROR;
70 fStack = new UVector32(status);
71 fData = fSmallData;
72 fWordBreakItr = NULL;
73 if (U_FAILURE(status)) {
74 return;
75 }
76 if (fPattern->fDataSize > (int32_t)(sizeof(fSmallData)/sizeof(int32_t))) {
77 fData = (int32_t *)uprv_malloc(fPattern->fDataSize * sizeof(int32_t));
78 }
79 if (fStack == NULL || fData == NULL) {
80 status = U_MEMORY_ALLOCATION_ERROR;
81 }
82 reset(input);
83 }
84
85
86 RegexMatcher::RegexMatcher(const UnicodeString &regexp,
87 uint32_t flags, UErrorCode &status) {
88 UParseError pe;
89 fTraceDebug = FALSE;
90 fDeferredStatus = U_ZERO_ERROR;
91 fStack = new UVector32(status);
92 fData = fSmallData;
93 fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
94 fPattern = fPatternOwned;
95 fWordBreakItr = NULL;
96 if (U_FAILURE(status)) {
97 return;
98 }
99
100 if (fPattern->fDataSize > (int32_t)(sizeof(fSmallData)/sizeof(int32_t))) {
101 fData = (int32_t *)uprv_malloc(fPattern->fDataSize * sizeof(int32_t));
102 }
103 if (fStack == NULL || fData == NULL) {
104 status = U_MEMORY_ALLOCATION_ERROR;
105 }
106 reset(*RegexStaticSets::gStaticSets->fEmptyString);
107 }
108
109
110
111 RegexMatcher::~RegexMatcher() {
112 delete fStack;
113 if (fData != fSmallData) {
114 uprv_free(fData);
115 fData = NULL;
116 }
117 if (fPatternOwned) {
118 delete fPatternOwned;
119 fPatternOwned = NULL;
120 fPattern = NULL;
121 }
122 #if UCONFIG_NO_BREAK_ITERATION==0
123 delete fWordBreakItr;
124 #endif
125 }
126
127
128
129 static const UChar BACKSLASH = 0x5c;
130 static const UChar DOLLARSIGN = 0x24;
131 //--------------------------------------------------------------------------------
132 //
133 // appendReplacement
134 //
135 //--------------------------------------------------------------------------------
136 RegexMatcher &RegexMatcher::appendReplacement(UnicodeString &dest,
137 const UnicodeString &replacement,
138 UErrorCode &status) {
139 if (U_FAILURE(status)) {
140 return *this;
141 }
142 if (U_FAILURE(fDeferredStatus)) {
143 status = fDeferredStatus;
144 return *this;
145 }
146 if (fMatch == FALSE) {
147 status = U_REGEX_INVALID_STATE;
148 return *this;
149 }
150
151 // Copy input string from the end of previous match to start of current match
152 int32_t len = fMatchStart-fLastReplaceEnd;
153 if (len > 0) {
154 dest.append(*fInput, fLastReplaceEnd, len);
155 }
156 fLastReplaceEnd = fMatchEnd;
157
158
159 // scan the replacement text, looking for substitutions ($n) and \escapes.
160 // TODO: optimize this loop by efficiently scanning for '$' or '\',
161 // move entire ranges not containing substitutions.
162 int32_t replLen = replacement.length();
163 int32_t replIdx = 0;
164 while (replIdx<replLen) {
165 UChar c = replacement.charAt(replIdx);
166 replIdx++;
167 if (c == BACKSLASH) {
168 // Backslash Escape. Copy the following char out without further checks.
169 // Note: Surrogate pairs don't need any special handling
170 // The second half wont be a '$' or a '\', and
171 // will move to the dest normally on the next
172 // loop iteration.
173 if (replIdx >= replLen) {
174 break;
175 }
176 c = replacement.charAt(replIdx);
177
178 if (c==0x55/*U*/ || c==0x75/*u*/) {
179 // We have a \udddd or \Udddddddd escape sequence.
180 UChar32 escapedChar = replacement.unescapeAt(replIdx);
181 if (escapedChar != (UChar32)0xFFFFFFFF) {
182 dest.append(escapedChar);
183 // TODO: Report errors for mal-formed \u escapes?
184 // As this is, the original sequence is output, which may be OK.
185 continue;
186 }
187 }
188
189 // Plain backslash escape. Just put out the escaped character.
190 dest.append(c);
191 replIdx++;
192 continue;
193 }
194
195 if (c != DOLLARSIGN) {
196 // Normal char, not a $. Copy it out without further checks.
197 dest.append(c);
198 continue;
199 }
200
201 // We've got a $. Pick up a capture group number if one follows.
202 // Consume at most the number of digits necessary for the largest capture
203 // number that is valid for this pattern.
204
205 int32_t numDigits = 0;
206 int32_t groupNum = 0;
207 UChar32 digitC;
208 for (;;) {
209 if (replIdx >= replLen) {
210 break;
211 }
212 digitC = replacement.char32At(replIdx);
213 if (u_isdigit(digitC) == FALSE) {
214 break;
215 }
216 replIdx = replacement.moveIndex32(replIdx, 1);
217 groupNum=groupNum*10 + u_charDigitValue(digitC);
218 numDigits++;
219 if (numDigits >= fPattern->fMaxCaptureDigits) {
220 break;
221 }
222 }
223
224
225 if (numDigits == 0) {
226 // The $ didn't introduce a group number at all.
227 // Treat it as just part of the substitution text.
228 dest.append(DOLLARSIGN);
229 continue;
230 }
231
232 // Finally, append the capture group data to the destination.
233 dest.append(group(groupNum, status));
234 if (U_FAILURE(status)) {
235 // Can fail if group number is out of range.
236 break;
237 }
238
239 }
240
241 return *this;
242 }
243
244
245
246 //--------------------------------------------------------------------------------
247 //
248 // appendTail Intended to be used in conjunction with appendReplacement()
249 // To the destination string, append everything following
250 // the last match position from the input string.
251 //
252 //--------------------------------------------------------------------------------
253 UnicodeString &RegexMatcher::appendTail(UnicodeString &dest) {
254 int32_t len = fInput->length()-fMatchEnd;
255 if (len > 0) {
256 dest.append(*fInput, fMatchEnd, len);
257 }
258 return dest;
259 }
260
261
262
263 //--------------------------------------------------------------------------------
264 //
265 // end
266 //
267 //--------------------------------------------------------------------------------
268 int32_t RegexMatcher::end(UErrorCode &err) const {
269 return end(0, err);
270 }
271
272
273
274 int32_t RegexMatcher::end(int group, UErrorCode &err) const {
275 if (U_FAILURE(err)) {
276 return -1;
277 }
278 if (fMatch == FALSE) {
279 err = U_REGEX_INVALID_STATE;
280 return -1;
281 }
282 if (group < 0 || group > fPattern->fGroupMap->size()) {
283 err = U_INDEX_OUTOFBOUNDS_ERROR;
284 return -1;
285 }
286 int32_t e = -1;
287 if (group == 0) {
288 e = fMatchEnd;
289 } else {
290 // Get the position within the stack frame of the variables for
291 // this capture group.
292 int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1);
293 U_ASSERT(groupOffset < fPattern->fFrameSize);
294 U_ASSERT(groupOffset >= 0);
295 e = fFrame->fExtra[groupOffset + 1];
296 }
297 return e;
298 }
299
300
301
302 //--------------------------------------------------------------------------------
303 //
304 // find()
305 //
306 //--------------------------------------------------------------------------------
307 UBool RegexMatcher::find() {
308 // Start at the position of the last match end. (Will be zero if the
309 // matcher has been reset.
310 //
311 if (U_FAILURE(fDeferredStatus)) {
312 return FALSE;
313 }
314
315 int32_t startPos = fMatchEnd;
316
317 if (fMatch) {
318 // Save the position of any previous successful match.
319 fLastMatchEnd = fMatchEnd;
320
321 if (fMatchStart == fMatchEnd) {
322 // Previous match had zero length. Move start position up one position
323 // to avoid sending find() into a loop on zero-length matches.
324 if (startPos == fInput->length()) {
325 fMatch = FALSE;
326 return FALSE;
327 }
328 startPos = fInput->moveIndex32(startPos, 1);
329 }
330 } else {
331 if (fLastMatchEnd >= 0) {
332 // A previous find() failed to match. Don't try again.
333 // (without this test, a pattern with a zero-length match
334 // could match again at the end of an input string.)
335 return FALSE;
336 }
337 }
338
339 int32_t inputLen = fInput->length();
340
341 // Compute the position in the input string beyond which a match can not begin, because
342 // the minimum length match would extend past the end of the input.
343 int32_t testLen = inputLen - fPattern->fMinMatchLen;
344 if (startPos > testLen) {
345 fMatch = FALSE;
346 return FALSE;
347 }
348
349 const UChar *inputBuf = fInput->getBuffer();
350 UChar32 c;
351 U_ASSERT(startPos >= 0);
352
353 switch (fPattern->fStartType) {
354 case START_NO_INFO:
355 // No optimization was found.
356 // Try a match at each input position.
357 for (;;) {
358 MatchAt(startPos, fDeferredStatus);
359 if (U_FAILURE(fDeferredStatus)) {
360 return FALSE;
361 }
362 if (fMatch) {
363 return TRUE;
364 }
365 if (startPos >= testLen) {
366 return FALSE;
367 }
368 U16_FWD_1(inputBuf, startPos, inputLen);
369 // Note that it's perfectly OK for a pattern to have a zero-length
370 // match at the end of a string, so we must make sure that the loop
371 // runs with startPos == testLen the last time through.
372 }
373 U_ASSERT(FALSE);
374
375 case START_START:
376 // Matches are only possible at the start of the input string
377 // (pattern begins with ^ or \A)
378 if (startPos > 0) {
379 fMatch = FALSE;
380 return FALSE;
381 }
382 MatchAt(startPos, fDeferredStatus);
383 if (U_FAILURE(fDeferredStatus)) {
384 return FALSE;
385 }
386 return fMatch;
387
388
389 case START_SET:
390 {
391 // Match may start on any char from a pre-computed set.
392 U_ASSERT(fPattern->fMinMatchLen > 0);
393 for (;;) {
394 int32_t pos = startPos;
395 U16_NEXT(inputBuf, startPos, inputLen, c); // like c = inputBuf[startPos++];
396 if (c<256 && fPattern->fInitialChars8->contains(c) ||
397 c>=256 && fPattern->fInitialChars->contains(c)) {
398 MatchAt(pos, fDeferredStatus);
399 if (U_FAILURE(fDeferredStatus)) {
400 return FALSE;
401 }
402 if (fMatch) {
403 return TRUE;
404 }
405 }
406 if (pos >= testLen) {
407 fMatch = FALSE;
408 return FALSE;
409 }
410 }
411 }
412 U_ASSERT(FALSE);
413
414 case START_STRING:
415 case START_CHAR:
416 {
417 // Match starts on exactly one char.
418 U_ASSERT(fPattern->fMinMatchLen > 0);
419 UChar32 theChar = fPattern->fInitialChar;
420 for (;;) {
421 int32_t pos = startPos;
422 U16_NEXT(inputBuf, startPos, inputLen, c); // like c = inputBuf[startPos++];
423 if (c == theChar) {
424 MatchAt(pos, fDeferredStatus);
425 if (U_FAILURE(fDeferredStatus)) {
426 return FALSE;
427 }
428 if (fMatch) {
429 return TRUE;
430 }
431 }
432 if (pos >= testLen) {
433 fMatch = FALSE;
434 return FALSE;
435 }
436 }
437 }
438 U_ASSERT(FALSE);
439
440 case START_LINE:
441 {
442 UChar32 c;
443 if (startPos == 0) {
444 MatchAt(startPos, fDeferredStatus);
445 if (U_FAILURE(fDeferredStatus)) {
446 return FALSE;
447 }
448 if (fMatch) {
449 return TRUE;
450 }
451 U16_NEXT(inputBuf, startPos, inputLen, c); // like c = inputBuf[startPos++];
452 }
453
454 for (;;) {
455 c = inputBuf[startPos-1];
456 if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
457 (c == 0x0a || c == 0x0d || c==0x0c || c==0x85 ||c==0x2028 || c==0x2029 )) {
458 if (c == 0x0d && startPos < inputLen && inputBuf[startPos] == 0x0a) {
459 startPos++;
460 }
461 MatchAt(startPos, fDeferredStatus);
462 if (U_FAILURE(fDeferredStatus)) {
463 return FALSE;
464 }
465 if (fMatch) {
466 return TRUE;
467 }
468 }
469 if (startPos >= testLen) {
470 fMatch = FALSE;
471 return FALSE;
472 }
473 U16_NEXT(inputBuf, startPos, inputLen, c); // like c = inputBuf[startPos++];
474 // Note that it's perfectly OK for a pattern to have a zero-length
475 // match at the end of a string, so we must make sure that the loop
476 // runs with startPos == testLen the last time through.
477 }
478 }
479
480 default:
481 U_ASSERT(FALSE);
482 }
483
484 U_ASSERT(FALSE);
485 return FALSE;
486 }
487
488
489
490 UBool RegexMatcher::find(int32_t start, UErrorCode &status) {
491 if (U_FAILURE(status)) {
492 return FALSE;
493 }
494 if (U_FAILURE(fDeferredStatus)) {
495 status = fDeferredStatus;
496 return FALSE;
497 }
498 int32_t inputLen = fInput->length();
499 if (start < 0 || start > inputLen) {
500 status = U_INDEX_OUTOFBOUNDS_ERROR;
501 return FALSE;
502 }
503 this->reset();
504 fMatchEnd = start;
505 return find();
506 }
507
508
509
510 //--------------------------------------------------------------------------------
511 //
512 // group()
513 //
514 //--------------------------------------------------------------------------------
515 UnicodeString RegexMatcher::group(UErrorCode &status) const {
516 return group(0, status);
517 }
518
519
520
521 UnicodeString RegexMatcher::group(int32_t groupNum, UErrorCode &status) const {
522 int32_t s = start(groupNum, status);
523 int32_t e = end(groupNum, status);
524
525 // Note: calling start() and end() above will do all necessary checking that
526 // the group number is OK and that a match exists. status will be set.
527 if (U_FAILURE(status)) {
528 return UnicodeString();
529 }
530 if (U_FAILURE(fDeferredStatus)) {
531 status = fDeferredStatus;
532 return UnicodeString();
533 }
534
535 if (s < 0) {
536 // A capture group wasn't part of the match
537 return UnicodeString();
538 }
539 U_ASSERT(s <= e);
540 return UnicodeString(*fInput, s, e-s);
541 }
542
543
544
545
546 int32_t RegexMatcher::groupCount() const {
547 return fPattern->fGroupMap->size();
548 }
549
550
551
552 const UnicodeString &RegexMatcher::input() const {
553 return *fInput;
554 }
555
556
557
558
559 //--------------------------------------------------------------------------------
560 //
561 // lookingAt()
562 //
563 //--------------------------------------------------------------------------------
564 UBool RegexMatcher::lookingAt(UErrorCode &status) {
565 if (U_FAILURE(status)) {
566 return FALSE;
567 }
568 if (U_FAILURE(fDeferredStatus)) {
569 status = fDeferredStatus;
570 return FALSE;
571 }
572 reset();
573 MatchAt(0, status);
574 return fMatch;
575 }
576
577
578 UBool RegexMatcher::lookingAt(int32_t start, UErrorCode &status) {
579 if (U_FAILURE(status)) {
580 return FALSE;
581 }
582 if (U_FAILURE(fDeferredStatus)) {
583 status = fDeferredStatus;
584 return FALSE;
585 }
586 if (start < 0 || start > fInput->length()) {
587 status = U_INDEX_OUTOFBOUNDS_ERROR;
588 return FALSE;
589 }
590 reset();
591 MatchAt(start, status);
592 return fMatch;
593 }
594
595
596
597 //--------------------------------------------------------------------------------
598 //
599 // matches()
600 //
601 //--------------------------------------------------------------------------------
602 UBool RegexMatcher::matches(UErrorCode &status) {
603 if (U_FAILURE(status)) {
604 return FALSE;
605 }
606 if (U_FAILURE(fDeferredStatus)) {
607 status = fDeferredStatus;
608 return FALSE;
609 }
610 reset();
611 MatchAt(0, status);
612 UBool success = (fMatch && fMatchEnd==fInput->length());
613 return success;
614 }
615
616
617 UBool RegexMatcher::matches(int32_t start, UErrorCode &status) {
618 if (U_FAILURE(status)) {
619 return FALSE;
620 }
621 if (U_FAILURE(fDeferredStatus)) {
622 status = fDeferredStatus;
623 return FALSE;
624 }
625 if (start < 0 || start > fInput->length()) {
626 status = U_INDEX_OUTOFBOUNDS_ERROR;
627 return FALSE;
628 }
629 reset();
630 MatchAt(start, status);
631 UBool success = (fMatch && fMatchEnd==fInput->length());
632 return success;
633 }
634
635
636
637 const RegexPattern &RegexMatcher::pattern() const {
638 return *fPattern;
639 }
640
641
642
643 //--------------------------------------------------------------------------------
644 //
645 // replaceAll
646 //
647 //--------------------------------------------------------------------------------
648 UnicodeString RegexMatcher::replaceAll(const UnicodeString &replacement, UErrorCode &status) {
649 if (U_FAILURE(status)) {
650 return *fInput;
651 }
652 if (U_FAILURE(fDeferredStatus)) {
653 status = fDeferredStatus;
654 return *fInput;
655 }
656 UnicodeString destString;
657 for (reset(); find(); ) {
658 appendReplacement(destString, replacement, status);
659 if (U_FAILURE(status)) {
660 break;
661 }
662 }
663 appendTail(destString);
664 return destString;
665 }
666
667
668
669
670 //--------------------------------------------------------------------------------
671 //
672 // replaceFirst
673 //
674 //--------------------------------------------------------------------------------
675 UnicodeString RegexMatcher::replaceFirst(const UnicodeString &replacement, UErrorCode &status) {
676 if (U_FAILURE(status)) {
677 return *fInput;
678 }
679 if (U_FAILURE(fDeferredStatus)) {
680 status = fDeferredStatus;
681 return *fInput;
682 }
683
684 reset();
685 if (!find()) {
686 return *fInput;
687 }
688
689 UnicodeString destString;
690 appendReplacement(destString, replacement, status);
691 appendTail(destString);
692 return destString;
693 }
694
695
696
697 //--------------------------------------------------------------------------------
698 //
699 // reset
700 //
701 //--------------------------------------------------------------------------------
702 RegexMatcher &RegexMatcher::reset() {
703 fMatchStart = 0;
704 fMatchEnd = 0;
705 fLastMatchEnd = -1;
706 fLastReplaceEnd = 0;
707 fMatch = FALSE;
708 resetStack();
709 return *this;
710 }
711
712
713
714 RegexMatcher &RegexMatcher::reset(const UnicodeString &input) {
715 fInput = &input;
716 reset();
717 if (fWordBreakItr != NULL) {
718 #if UCONFIG_NO_BREAK_ITERATION==0
719 fWordBreakItr->setText(input);
720 #endif
721 }
722 return *this;
723 }
724
725 RegexMatcher &RegexMatcher::reset(const UChar *) {
726 fDeferredStatus = U_INTERNAL_PROGRAM_ERROR;
727 return *this;
728 }
729
730
731 RegexMatcher &RegexMatcher::reset(int32_t position, UErrorCode &status) {
732 if (U_FAILURE(status)) {
733 return *this;
734 }
735 reset();
736 if (position < 0 || position >= fInput->length()) {
737 status = U_INDEX_OUTOFBOUNDS_ERROR;
738 return *this;
739 }
740 fMatchEnd = position;
741 return *this;
742 }
743
744
745
746
747
748 //--------------------------------------------------------------------------------
749 //
750 // setTrace
751 //
752 //--------------------------------------------------------------------------------
753 void RegexMatcher::setTrace(UBool state) {
754 fTraceDebug = state;
755 }
756
757
758
759 //---------------------------------------------------------------------
760 //
761 // split
762 //
763 //---------------------------------------------------------------------
764 int32_t RegexMatcher::split(const UnicodeString &input,
765 UnicodeString dest[],
766 int32_t destCapacity,
767 UErrorCode &status)
768 {
769 //
770 // Check arguements for validity
771 //
772 if (U_FAILURE(status)) {
773 return 0;
774 };
775
776 if (destCapacity < 1) {
777 status = U_ILLEGAL_ARGUMENT_ERROR;
778 return 0;
779 }
780
781
782 //
783 // Reset for the input text
784 //
785 reset(input);
786 int32_t inputLen = input.length();
787 int32_t nextOutputStringStart = 0;
788 if (inputLen == 0) {
789 return 0;
790 }
791
792
793 //
794 // Loop through the input text, searching for the delimiter pattern
795 //
796 int i;
797 int32_t numCaptureGroups = fPattern->fGroupMap->size();
798 for (i=0; ; i++) {
799 if (i>=destCapacity-1) {
800 // There is one or zero output string left.
801 // Fill the last output string with whatever is left from the input, then exit the loop.
802 // ( i will be == destCapicity if we filled the output array while processing
803 // capture groups of the delimiter expression, in which case we will discard the
804 // last capture group saved in favor of the unprocessed remainder of the
805 // input string.)
806 i = destCapacity-1;
807 int32_t remainingLength = inputLen-nextOutputStringStart;
808 if (remainingLength > 0) {
809 dest[i].setTo(input, nextOutputStringStart, remainingLength);
810 }
811 break;
812 }
813 if (find()) {
814 // We found another delimiter. Move everything from where we started looking
815 // up until the start of the delimiter into the next output string.
816 int32_t fieldLen = fMatchStart - nextOutputStringStart;
817 dest[i].setTo(input, nextOutputStringStart, fieldLen);
818 nextOutputStringStart = fMatchEnd;
819
820 // If the delimiter pattern has capturing parentheses, the captured
821 // text goes out into the next n destination strings.
822 int32_t groupNum;
823 for (groupNum=1; groupNum<=numCaptureGroups; groupNum++) {
824 if (i==destCapacity-1) {
825 break;
826 }
827 i++;
828 dest[i] = group(groupNum, status);
829 }
830
831 if (nextOutputStringStart == inputLen) {
832 // The delimiter was at the end of the string. We're done.
833 break;
834 }
835
836 }
837 else
838 {
839 // We ran off the end of the input while looking for the next delimiter.
840 // All the remaining text goes into the current output string.
841 dest[i].setTo(input, nextOutputStringStart, inputLen-nextOutputStringStart);
842 break;
843 }
844 }
845 return i+1;
846 }
847
848
849
850 //--------------------------------------------------------------------------------
851 //
852 // start
853 //
854 //--------------------------------------------------------------------------------
855 int32_t RegexMatcher::start(UErrorCode &status) const {
856 return start(0, status);
857 }
858
859
860
861
862 int32_t RegexMatcher::start(int group, UErrorCode &status) const {
863 if (U_FAILURE(status)) {
864 return -1;
865 }
866 if (U_FAILURE(fDeferredStatus)) {
867 status = fDeferredStatus;
868 return -1;
869 }
870 if (fMatch == FALSE) {
871 status = U_REGEX_INVALID_STATE;
872 return -1;
873 }
874 if (group < 0 || group > fPattern->fGroupMap->size()) {
875 status = U_INDEX_OUTOFBOUNDS_ERROR;
876 return -1;
877 }
878 int32_t s;
879 if (group == 0) {
880 s = fMatchStart;
881 } else {
882 int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1);
883 U_ASSERT(groupOffset < fPattern->fFrameSize);
884 U_ASSERT(groupOffset >= 0);
885 s = fFrame->fExtra[groupOffset];
886 }
887 return s;
888 }
889
890
891
892 //================================================================================
893 //
894 // Code following this point in this file is the internal
895 // Match Engine Implementation.
896 //
897 //================================================================================
898
899
900 //--------------------------------------------------------------------------------
901 //
902 // resetStack
903 // Discard any previous contents of the state save stack, and initialize a
904 // new stack frame to all -1. The -1s are needed for capture group limits,
905 // where they indicate that a group has not yet matched anything.
906 //--------------------------------------------------------------------------------
907 REStackFrame *RegexMatcher::resetStack() {
908 // Discard any previous contents of the state save stack, and initialize a
909 // new stack frame to all -1. The -1s are needed for capture group limits, where
910 // they indicate that a group has not yet matched anything.
911 fStack->removeAllElements();
912
913 int32_t *iFrame = fStack->reserveBlock(fPattern->fFrameSize, fDeferredStatus);
914 int i;
915 for (i=0; i<fPattern->fFrameSize; i++) {
916 iFrame[i] = -1;
917 }
918 return (REStackFrame *)iFrame;
919 }
920
921
922
923 //--------------------------------------------------------------------------------
924 //
925 // isWordBoundary
926 // in perl, "xab..cd..", \b is true at positions 0,3,5,7
927 // For us,
928 // If the current char is a combining mark,
929 // \b is FALSE.
930 // Else Scan backwards to the first non-combining char.
931 // We are at a boundary if the this char and the original chars are
932 // opposite in membership in \w set
933 //
934 // parameters: pos - the current position in the input buffer
935 //
936 //--------------------------------------------------------------------------------
937 UBool RegexMatcher::isWordBoundary(int32_t pos) {
938 UBool isBoundary = FALSE;
939 UBool cIsWord = FALSE;
940
941 // Determine whether char c at current position is a member of the word set of chars.
942 // If we're off the end of the string, behave as though we're not at a word char.
943 if (pos < fInput->length()) {
944 UChar32 c = fInput->char32At(pos);
945 int8_t ctype = u_charType(c);
946 if (ctype==U_NON_SPACING_MARK || ctype==U_ENCLOSING_MARK) {
947 // Current char is a combining one. Not a boundary.
948 return FALSE;
949 }
950 cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c);
951 }
952
953 // Back up until we come to a non-combining char, determine whether
954 // that char is a word char.
955 UBool prevCIsWord = FALSE;
956 int32_t prevPos = pos;
957 for (;;) {
958 if (prevPos == 0) {
959 break;
960 }
961 prevPos = fInput->moveIndex32(prevPos, -1);
962 UChar32 prevChar = fInput->char32At(prevPos);
963 int8_t prevCType = u_charType(prevChar);
964 if (!(prevCType==U_NON_SPACING_MARK || prevCType==U_ENCLOSING_MARK)) {
965 prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar);
966 break;
967 }
968 }
969 isBoundary = cIsWord ^ prevCIsWord;
970 return isBoundary;
971 }
972
973 //--------------------------------------------------------------------------------
974 //
975 // isUWordBoundary
976 //
977 // Test for a word boundary using RBBI word break.
978 //
979 // parameters: pos - the current position in the input buffer
980 //
981 //--------------------------------------------------------------------------------
982 UBool RegexMatcher::isUWordBoundary(int32_t pos) {
983 UBool returnVal = FALSE;
984 #if UCONFIG_NO_BREAK_ITERATION==0
985 UErrorCode status = U_ZERO_ERROR;
986
987 // If we haven't yet created a break iterator for this matcher, do it now.
988 if (fWordBreakItr == NULL) {
989 fWordBreakItr =
990 (RuleBasedBreakIterator *)BreakIterator::createWordInstance(Locale::getEnglish(), status);
991 if (U_FAILURE(status)) {
992 // TODO: reliable error reporting for BI failures.
993 return FALSE;
994 }
995 fWordBreakItr->setText(*fInput);
996 }
997
998 returnVal = fWordBreakItr->isBoundary(pos);
999 #endif
1000 return returnVal;
1001 }
1002
1003 //--------------------------------------------------------------------------------
1004 //
1005 // StateSave
1006 // Make a new stack frame, initialized as a copy of the current stack frame.
1007 // Set the pattern index in the original stack frame from the operand value
1008 // in the opcode. Execution of the engine continues with the state in
1009 // the newly created stack frame
1010 //
1011 // Note that reserveBlock() may grow the stack, resulting in the
1012 // whole thing being relocated in memory.
1013 //
1014 //--------------------------------------------------------------------------------
1015 inline REStackFrame *RegexMatcher::StateSave(REStackFrame *fp, int32_t savePatIdx, int32_t frameSize, UErrorCode &status) {
1016 // push storage for a new frame.
1017 int32_t *newFP = fStack->reserveBlock(frameSize, status);
1018 fp = (REStackFrame *)(newFP - frameSize); // in case of realloc of stack.
1019
1020 // New stack frame = copy of old top frame.
1021 int32_t *source = (int32_t *)fp;
1022 int32_t *dest = newFP;
1023 for (;;) {
1024 *dest++ = *source++;
1025 if (source == newFP) {
1026 break;
1027 }
1028 }
1029
1030 fp->fPatIdx = savePatIdx;
1031 return (REStackFrame *)newFP;
1032 }
1033
1034
1035 //--------------------------------------------------------------------------------
1036 //
1037 // MatchAt This is the actual matching engine.
1038 //
1039 //--------------------------------------------------------------------------------
1040 void RegexMatcher::MatchAt(int32_t startIdx, UErrorCode &status) {
1041 UBool isMatch = FALSE; // True if the we have a match.
1042
1043 int32_t op; // Operation from the compiled pattern, split into
1044 int32_t opType; // the opcode
1045 int32_t opValue; // and the operand value.
1046
1047 #ifdef REGEX_RUN_DEBUG
1048 if (fTraceDebug)
1049 {
1050 printf("MatchAt(startIdx=%d)\n", startIdx);
1051 printf("Original Pattern: ");
1052 int i;
1053 for (i=0; i<fPattern->fPattern.length(); i++) {
1054 printf("%c", fPattern->fPattern.charAt(i));
1055 }
1056 printf("\n");
1057 printf("Input String: ");
1058 for (i=0; i<fInput->length(); i++) {
1059 UChar c = fInput->charAt(i);
1060 if (c<32 || c>256) {
1061 c = '.';
1062 }
1063 printf("%c", c);
1064 }
1065 printf("\n");
1066 printf("\n");
1067 }
1068 #endif
1069
1070 if (U_FAILURE(status)) {
1071 return;
1072 }
1073
1074 // Cache frequently referenced items from the compiled pattern
1075 // in local variables.
1076 //
1077 int32_t *pat = fPattern->fCompiledPat->getBuffer();
1078
1079 const UChar *litText = fPattern->fLiteralText.getBuffer();
1080 UVector *sets = fPattern->fSets;
1081 int32_t inputLen = fInput->length();
1082 const UChar *inputBuf = fInput->getBuffer();
1083
1084 REStackFrame *fp = resetStack();
1085 int32_t frameSize = fPattern->fFrameSize;
1086
1087 fp->fPatIdx = 0;
1088 fp->fInputIdx = startIdx;
1089
1090 // Zero out the pattern's static data
1091 int32_t i;
1092 for (i = 0; i<fPattern->fDataSize; i++) {
1093 fData[i] = 0;
1094 }
1095
1096 //
1097 // Main loop for interpreting the compiled pattern.
1098 // One iteration of the loop per pattern operation performed.
1099 //
1100 for (;;) {
1101 #if 0
1102 if (_heapchk() != _HEAPOK) {
1103 fprintf(stderr, "Heap Trouble\n");
1104 }
1105 #endif
1106 op = pat[fp->fPatIdx];
1107 opType = URX_TYPE(op);
1108 opValue = URX_VAL(op);
1109 #ifdef REGEX_RUN_DEBUG
1110 if (fTraceDebug) {
1111 printf("inputIdx=%d inputChar=%c sp=%3d ", fp->fInputIdx,
1112 fInput->char32At(fp->fInputIdx), (int32_t *)fp-fStack->getBuffer());
1113 fPattern->dumpOp(fp->fPatIdx);
1114 }
1115 #endif
1116 fp->fPatIdx++;
1117
1118 switch (opType) {
1119
1120
1121 case URX_NOP:
1122 break;
1123
1124
1125 case URX_BACKTRACK:
1126 // Force a backtrack. In some circumstances, the pattern compiler
1127 // will notice that the pattern can't possibly match anything, and will
1128 // emit one of these at that point.
1129 fp = (REStackFrame *)fStack->popFrame(frameSize);
1130 break;
1131
1132
1133 case URX_ONECHAR:
1134 if (fp->fInputIdx < inputLen) {
1135 UChar32 c;
1136 U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
1137 if (c == opValue) {
1138 break;
1139 }
1140 }
1141 fp = (REStackFrame *)fStack->popFrame(frameSize);
1142 break;
1143
1144
1145 case URX_STRING:
1146 {
1147 // Test input against a literal string.
1148 // Strings require two slots in the compiled pattern, one for the
1149 // offset to the string text, and one for the length.
1150 int32_t stringStartIdx = opValue;
1151 int32_t stringLen;
1152
1153 op = pat[fp->fPatIdx]; // Fetch the second operand
1154 fp->fPatIdx++;
1155 opType = URX_TYPE(op);
1156 stringLen = URX_VAL(op);
1157 U_ASSERT(opType == URX_STRING_LEN);
1158 U_ASSERT(stringLen >= 2);
1159
1160 if (fp->fInputIdx + stringLen > inputLen) {
1161 // No match. String is longer than the remaining input text.
1162 fp = (REStackFrame *)fStack->popFrame(frameSize);
1163 break;
1164 }
1165
1166 const UChar * pInp = inputBuf + fp->fInputIdx;
1167 const UChar * pPat = litText+stringStartIdx;
1168 const UChar * pEnd = pInp + stringLen;
1169 for(;;) {
1170 if (*pInp == *pPat) {
1171 pInp++;
1172 pPat++;
1173 if (pInp == pEnd) {
1174 // Successful Match.
1175 fp->fInputIdx += stringLen;
1176 break;
1177 }
1178 } else {
1179 // Match failed.
1180 fp = (REStackFrame *)fStack->popFrame(frameSize);
1181 break;
1182 }
1183 }
1184 break;
1185
1186 }
1187 break;
1188
1189
1190
1191 case URX_STATE_SAVE:
1192 fp = StateSave(fp, opValue, frameSize, status);
1193 break;
1194
1195
1196 case URX_END:
1197 // The match loop will exit via this path on a successful match,
1198 // when we reach the end of the pattern.
1199 isMatch = TRUE;
1200 goto breakFromLoop;
1201
1202 // Start and End Capture stack frame variables are layout out like this:
1203 // fp->fExtra[opValue] - The start of a completed capture group
1204 // opValue+1 - The end of a completed capture group
1205 // opValue+2 - the start of a capture group whose end
1206 // has not yet been reached (and might not ever be).
1207 case URX_START_CAPTURE:
1208 U_ASSERT(opValue >= 0 && opValue < frameSize-3);
1209 fp->fExtra[opValue+2] = fp->fInputIdx;
1210 break;
1211
1212
1213 case URX_END_CAPTURE:
1214 U_ASSERT(opValue >= 0 && opValue < frameSize-3);
1215 U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set.
1216 fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real.
1217 fp->fExtra[opValue+1] = fp->fInputIdx; // End position
1218 U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]);
1219 break;
1220
1221
1222 case URX_DOLLAR: // $, test for End of line
1223 // or for position before new line at end of input
1224 if (fp->fInputIdx < inputLen-2) {
1225 // We are no where near the end of input. Fail.
1226 fp = (REStackFrame *)fStack->popFrame(frameSize);
1227 break;
1228 }
1229 if (fp->fInputIdx >= inputLen) {
1230 // We really are at the end of input. Success.
1231 break;
1232 }
1233 // If we are positioned just before a new-line that is located at the
1234 // end of input, succeed.
1235 if (fp->fInputIdx == inputLen-1) {
1236 UChar32 c = fInput->char32At(fp->fInputIdx);
1237 if (c == 0x0a || c==0x0d || c==0x0c || c==0x85 ||c==0x2028 || c==0x2029) {
1238 // If not in the middle of a CR/LF sequence
1239 if ( !(c==0x0a && fp->fInputIdx>0 && inputBuf[fp->fInputIdx-1]==0x0d)) {
1240 break;
1241 // At new-line at end of input. Success
1242 }
1243 }
1244 }
1245
1246 if (fp->fInputIdx == inputLen-2) {
1247 if (fInput->char32At(fp->fInputIdx) == 0x0d && fInput->char32At(fp->fInputIdx+1) == 0x0a) {
1248 break; // At CR/LF at end of input. Success
1249 }
1250 }
1251
1252 fp = (REStackFrame *)fStack->popFrame(frameSize);
1253
1254 break;
1255
1256
1257 case URX_DOLLAR_M: // $, test for End of line in multi-line mode
1258 {
1259 if (fp->fInputIdx >= inputLen) {
1260 // We really are at the end of input. Success.
1261 break;
1262 }
1263 // If we are positioned just before a new-line, succeed.
1264 // It makes no difference where the new-line is within the input.
1265 UChar32 c = inputBuf[fp->fInputIdx];
1266 if (c == 0x0a || c==0x0d || c==0x0c || c==0x85 ||c==0x2028 || c==0x2029) {
1267 // At a line end, except for the odd chance of being in the middle of a CR/LF sequence
1268 if ( !(c==0x0a && fp->fInputIdx>0 && inputBuf[fp->fInputIdx-1]==0x0d)) {
1269 break; // At new-line at end of input. Success
1270 }
1271 }
1272
1273 // not at a new line. Fail.
1274 fp = (REStackFrame *)fStack->popFrame(frameSize);
1275 }
1276 break;
1277
1278
1279 case URX_CARET: // ^, test for start of line
1280 if (fp->fInputIdx != 0) {
1281 fp = (REStackFrame *)fStack->popFrame(frameSize);
1282 }
1283 break;
1284
1285
1286 case URX_CARET_M: // ^, test for start of line in mulit-line mode
1287 {
1288 if (fp->fInputIdx == 0) {
1289 // We are at the start input. Success.
1290 break;
1291 }
1292 // Check whether character just before the current pos is a new-line
1293 // unless we are at the end of input
1294 UChar c = inputBuf[fp->fInputIdx - 1];
1295 if ((fp->fInputIdx < inputLen) &&
1296 (c == 0x0a || c==0x0d || c==0x0c || c==0x85 ||c==0x2028 || c==0x2029)) {
1297 // It's a new-line. ^ is true. Success.
1298 break;
1299 }
1300 // Not at the start of a line. Fail.
1301 fp = (REStackFrame *)fStack->popFrame(frameSize);
1302 }
1303 break;
1304
1305
1306 case URX_BACKSLASH_B: // Test for word boundaries
1307 {
1308 UBool success = isWordBoundary(fp->fInputIdx);
1309 success ^= (opValue != 0); // flip sense for \B
1310 if (!success) {
1311 fp = (REStackFrame *)fStack->popFrame(frameSize);
1312 }
1313 }
1314 break;
1315
1316
1317 case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style
1318 {
1319 UBool success = isUWordBoundary(fp->fInputIdx);
1320 success ^= (opValue != 0); // flip sense for \B
1321 if (!success) {
1322 fp = (REStackFrame *)fStack->popFrame(frameSize);
1323 }
1324 }
1325 break;
1326
1327
1328 case URX_BACKSLASH_D: // Test for decimal digit
1329 {
1330 if (fp->fInputIdx >= inputLen) {
1331 fp = (REStackFrame *)fStack->popFrame(frameSize);
1332 break;
1333 }
1334
1335 UChar32 c = fInput->char32At(fp->fInputIdx);
1336 int8_t ctype = u_charType(c);
1337 UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER);
1338 success ^= (opValue != 0); // flip sense for \D
1339 if (success) {
1340 fp->fInputIdx = fInput->moveIndex32(fp->fInputIdx, 1);
1341 } else {
1342 fp = (REStackFrame *)fStack->popFrame(frameSize);
1343 }
1344 }
1345 break;
1346
1347
1348
1349
1350 case URX_BACKSLASH_G: // Test for position at end of previous match
1351 if (!((fMatch && fp->fInputIdx==fMatchEnd) || fMatch==FALSE && fp->fInputIdx==0)) {
1352 fp = (REStackFrame *)fStack->popFrame(frameSize);
1353 }
1354 break;
1355
1356
1357 case URX_BACKSLASH_X:
1358 // Match a Grapheme, as defined by Unicode TR 29.
1359 // Differs slightly from Perl, which consumes combining marks independently
1360 // of context.
1361 {
1362
1363 // Fail if at end of input
1364 if (fp->fInputIdx >= inputLen) {
1365 fp = (REStackFrame *)fStack->popFrame(frameSize);
1366 break;
1367 }
1368
1369 // Examine (and consume) the current char.
1370 // Dispatch into a little state machine, based on the char.
1371 UChar32 c;
1372 U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
1373 UnicodeSet **sets = fPattern->fStaticSets;
1374 if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend;
1375 if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control;
1376 if (sets[URX_GC_L]->contains(c)) goto GC_L;
1377 if (sets[URX_GC_LV]->contains(c)) goto GC_V;
1378 if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
1379 if (sets[URX_GC_V]->contains(c)) goto GC_V;
1380 if (sets[URX_GC_T]->contains(c)) goto GC_T;
1381 goto GC_Extend;
1382
1383
1384
1385 GC_L:
1386 if (fp->fInputIdx >= inputLen) goto GC_Done;
1387 U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
1388 if (sets[URX_GC_L]->contains(c)) goto GC_L;
1389 if (sets[URX_GC_LV]->contains(c)) goto GC_V;
1390 if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
1391 if (sets[URX_GC_V]->contains(c)) goto GC_V;
1392 U16_PREV(inputBuf, 0, fp->fInputIdx, c);
1393 goto GC_Extend;
1394
1395 GC_V:
1396 if (fp->fInputIdx >= inputLen) goto GC_Done;
1397 U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
1398 if (sets[URX_GC_V]->contains(c)) goto GC_V;
1399 if (sets[URX_GC_T]->contains(c)) goto GC_T;
1400 U16_PREV(inputBuf, 0, fp->fInputIdx, c);
1401 goto GC_Extend;
1402
1403 GC_T:
1404 if (fp->fInputIdx >= inputLen) goto GC_Done;
1405 U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
1406 if (sets[URX_GC_T]->contains(c)) goto GC_T;
1407 U16_PREV(inputBuf, 0, fp->fInputIdx, c);
1408 goto GC_Extend;
1409
1410 GC_Extend:
1411 // Combining characters are consumed here
1412 for (;;) {
1413 if (fp->fInputIdx >= inputLen) {
1414 break;
1415 }
1416 U16_GET(inputBuf, 0, fp->fInputIdx, inputLen, c);
1417 if (sets[URX_GC_EXTEND]->contains(c) == FALSE) {
1418 break;
1419 }
1420 U16_FWD_1(inputBuf, fp->fInputIdx, inputLen);
1421 }
1422 goto GC_Done;
1423
1424 GC_Control:
1425 // Most control chars stand alone (don't combine with combining chars),
1426 // except for that CR/LF sequence is a single grapheme cluster.
1427 if (c == 0x0d && fp->fInputIdx < inputLen && inputBuf[fp->fInputIdx] == 0x0a) {
1428 fp->fInputIdx++;
1429 }
1430
1431 GC_Done:
1432 break;
1433 }
1434
1435
1436
1437
1438 case URX_BACKSLASH_Z: // Test for end of line
1439 if (fp->fInputIdx < inputLen) {
1440 fp = (REStackFrame *)fStack->popFrame(frameSize);
1441 }
1442 break;
1443
1444
1445
1446 case URX_STATIC_SETREF:
1447 {
1448 // Test input character against one of the predefined sets
1449 // (Word Characters, for example)
1450 // The high bit of the op value is a flag for the match polarity.
1451 // 0: success if input char is in set.
1452 // 1: success if input char is not in set.
1453 if (fp->fInputIdx >= inputLen) {
1454 fp = (REStackFrame *)fStack->popFrame(frameSize);
1455 break;
1456 }
1457
1458 UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET);
1459 opValue &= ~URX_NEG_SET;
1460 U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
1461 UChar32 c;
1462 U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
1463 if (c < 256) {
1464 Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
1465 if (s8->contains(c)) {
1466 success = !success;
1467 }
1468 } else {
1469 const UnicodeSet *s = fPattern->fStaticSets[opValue];
1470 if (s->contains(c)) {
1471 success = !success;
1472 }
1473 }
1474 if (!success) {
1475 fp = (REStackFrame *)fStack->popFrame(frameSize);
1476 }
1477 }
1478 break;
1479
1480
1481 case URX_STAT_SETREF_N:
1482 {
1483 // Test input character for NOT being a member of one of
1484 // the predefined sets (Word Characters, for example)
1485 if (fp->fInputIdx >= inputLen) {
1486 fp = (REStackFrame *)fStack->popFrame(frameSize);
1487 break;
1488 }
1489
1490 U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
1491 UChar32 c;
1492 U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
1493 if (c < 256) {
1494 Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
1495 if (s8->contains(c) == FALSE) {
1496 break;
1497 }
1498 } else {
1499 const UnicodeSet *s = fPattern->fStaticSets[opValue];
1500 if (s->contains(c) == FALSE) {
1501 break;
1502 }
1503 }
1504
1505 fp = (REStackFrame *)fStack->popFrame(frameSize);
1506 }
1507 break;
1508
1509
1510 case URX_SETREF:
1511 if (fp->fInputIdx < inputLen) {
1512 // There is input left. Pick up one char and test it for set membership.
1513 UChar32 c;
1514 U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
1515 U_ASSERT(opValue > 0 && opValue < sets->size());
1516 if (c<256) {
1517 Regex8BitSet *s8 = &fPattern->fSets8[opValue];
1518 if (s8->contains(c)) {
1519 break;
1520 }
1521 } else {
1522
1523 UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
1524 if (s->contains(c)) {
1525 // The character is in the set. A Match.
1526 break;
1527 }
1528 }
1529 }
1530 // Either at end of input, or the character wasn't in the set.
1531 // Either way, we need to back track out.
1532 fp = (REStackFrame *)fStack->popFrame(frameSize);
1533 break;
1534
1535
1536 case URX_DOTANY:
1537 {
1538 // . matches anything, but stops at end-of-line.
1539 if (fp->fInputIdx >= inputLen) {
1540 // At end of input. Match failed. Backtrack out.
1541 fp = (REStackFrame *)fStack->popFrame(frameSize);
1542 break;
1543 }
1544 // There is input left. Advance over one char, unless we've hit end-of-line
1545 UChar32 c;
1546 U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
1547 if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
1548 (c == 0x0a || c==0x0d || c==0x0c || c==0x85 ||c==0x2028 || c==0x2029)) {
1549 // End of line in normal mode. . does not match.
1550 fp = (REStackFrame *)fStack->popFrame(frameSize);
1551 break;
1552 }
1553 }
1554 break;
1555
1556
1557 case URX_DOTANY_ALL:
1558 {
1559 // ., in dot-matches-all (including new lines) mode
1560 if (fp->fInputIdx >= inputLen) {
1561 // At end of input. Match failed. Backtrack out.
1562 fp = (REStackFrame *)fStack->popFrame(frameSize);
1563 break;
1564 }
1565 // There is input left. Advance over one char, except if we are
1566 // at a cr/lf, advance over both of them.
1567 UChar32 c;
1568 U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
1569 if (c==0x0d) {
1570 // In the case of a CR/LF, we need to advance over both.
1571 UChar nextc = inputBuf[fp->fInputIdx];
1572 if (nextc == 0x0a) {
1573 fp->fInputIdx++;
1574 }
1575 }
1576 }
1577 break;
1578
1579 case URX_DOTANY_PL:
1580 // Match all up to and end-of-line or end-of-input.
1581 {
1582 // Fail if input already exhausted.
1583 if (fp->fInputIdx >= inputLen) {
1584 fp = (REStackFrame *)fStack->popFrame(frameSize);
1585 break;
1586 }
1587
1588 // There is input left. Fail if we are at the end of a line.
1589 UChar32 c;
1590 U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
1591 if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
1592 (c == 0x0a || c==0x0d || c==0x0c || c==0x85 ||c==0x2028 || c==0x2029)) {
1593 // End of line in normal mode. . does not match.
1594 fp = (REStackFrame *)fStack->popFrame(frameSize);
1595 break;
1596 }
1597
1598 // There was input left. Consume it until we hit the end of a line,
1599 // or until it's exhausted.
1600 while (fp->fInputIdx < inputLen) {
1601 U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
1602 if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
1603 (c == 0x0a || c==0x0d || c==0x0c || c==0x85 ||c==0x2028 || c==0x2029)) {
1604 U16_BACK_1(inputBuf, 0, fp->fInputIdx)
1605 // Scan has reached a line-end. We are done.
1606 break;
1607 }
1608 }
1609 }
1610 break;
1611
1612 case URX_DOTANY_ALL_PL:
1613 {
1614 // Match up to end of input. Fail if already at end of input.
1615 if (fp->fInputIdx >= inputLen) {
1616 fp = (REStackFrame *)fStack->popFrame(frameSize);
1617 } else {
1618 fp->fInputIdx = inputLen;
1619 }
1620 }
1621 break;
1622
1623
1624 case URX_JMP:
1625 fp->fPatIdx = opValue;
1626 break;
1627
1628 case URX_FAIL:
1629 isMatch = FALSE;
1630 goto breakFromLoop;
1631
1632 case URX_JMP_SAV:
1633 U_ASSERT(opValue < fPattern->fCompiledPat->size());
1634 fp = StateSave(fp, fp->fPatIdx, frameSize, status); // State save to loc following current
1635 fp->fPatIdx = opValue; // Then JMP.
1636 break;
1637
1638 case URX_JMP_SAV_X:
1639 // This opcode is used with (x)+, when x can match a zero length string.
1640 // Same as JMP_SAV, except conditional on the match having made forward progress.
1641 // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the
1642 // data address of the input position at the start of the loop.
1643 {
1644 U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size());
1645 int32_t stoOp = pat[opValue-1];
1646 U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC);
1647 int32_t frameLoc = URX_VAL(stoOp);
1648 U_ASSERT(frameLoc >= 0 && frameLoc < frameSize);
1649 int32_t prevInputIdx = fp->fExtra[frameLoc];
1650 U_ASSERT(prevInputIdx <= fp->fInputIdx);
1651 if (prevInputIdx < fp->fInputIdx) {
1652 // The match did make progress. Repeat the loop.
1653 fp = StateSave(fp, fp->fPatIdx, frameSize, status); // State save to loc following current
1654 fp->fPatIdx = opValue;
1655 fp->fExtra[frameLoc] = fp->fInputIdx;
1656 }
1657 // If the input position did not advance, we do nothing here,
1658 // execution will fall out of the loop.
1659 }
1660 break;
1661
1662 case URX_CTR_INIT:
1663 {
1664 U_ASSERT(opValue >= 0 && opValue < frameSize-2);
1665 fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
1666
1667 // Pick up the three extra operands that CTR_INIT has, and
1668 // skip the pattern location counter past
1669 int32_t instrOperandLoc = fp->fPatIdx;
1670 fp->fPatIdx += 3;
1671 int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
1672 int32_t minCount = pat[instrOperandLoc+1];
1673 int32_t maxCount = pat[instrOperandLoc+2];
1674 U_ASSERT(minCount>=0);
1675 U_ASSERT(maxCount>=minCount || maxCount==-1);
1676 U_ASSERT(loopLoc>fp->fPatIdx);
1677
1678 if (minCount == 0) {
1679 fp = StateSave(fp, loopLoc+1, frameSize, status);
1680 }
1681 if (maxCount == 0) {
1682 fp = (REStackFrame *)fStack->popFrame(frameSize);
1683 }
1684 }
1685 break;
1686
1687 case URX_CTR_LOOP:
1688 {
1689 U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
1690 int32_t initOp = pat[opValue];
1691 U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT);
1692 int32_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
1693 int32_t minCount = pat[opValue+2];
1694 int32_t maxCount = pat[opValue+3];
1695 // Increment the counter. Note: we're not worrying about counter
1696 // overflow, since the data comes from UnicodeStrings, which
1697 // stores its length in an int32_t.
1698 (*pCounter)++;
1699 U_ASSERT(*pCounter > 0);
1700 if ((uint32_t)*pCounter >= (uint32_t)maxCount) {
1701 U_ASSERT(*pCounter == maxCount || maxCount == -1);
1702 break;
1703 }
1704 if (*pCounter >= minCount) {
1705 fp = StateSave(fp, fp->fPatIdx, frameSize, status);
1706 }
1707 fp->fPatIdx = opValue + 4; // Loop back.
1708 }
1709 break;
1710
1711 case URX_CTR_INIT_NG:
1712 {
1713 U_ASSERT(opValue >= 0 && opValue < frameSize-2);
1714 fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
1715
1716 // Pick up the three extra operands that CTR_INIT has, and
1717 // skip the pattern location counter past
1718 int32_t instrOperandLoc = fp->fPatIdx;
1719 fp->fPatIdx += 3;
1720 int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
1721 int32_t minCount = pat[instrOperandLoc+1];
1722 int32_t maxCount = pat[instrOperandLoc+2];
1723 U_ASSERT(minCount>=0);
1724 U_ASSERT(maxCount>=minCount || maxCount==-1);
1725 U_ASSERT(loopLoc>fp->fPatIdx);
1726
1727 if (minCount == 0) {
1728 if (maxCount != 0) {
1729 fp = StateSave(fp, fp->fPatIdx, frameSize, status);
1730 }
1731 fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block
1732 }
1733 }
1734 break;
1735
1736 case URX_CTR_LOOP_NG:
1737 {
1738 U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
1739 int32_t initOp = pat[opValue];
1740 U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG);
1741 int32_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
1742 int32_t minCount = pat[opValue+2];
1743 int32_t maxCount = pat[opValue+3];
1744 // Increment the counter. Note: we're not worrying about counter
1745 // overflow, since the data comes from UnicodeStrings, which
1746 // stores its length in an int32_t.
1747 (*pCounter)++;
1748 U_ASSERT(*pCounter > 0);
1749
1750 if ((uint32_t)*pCounter >= (uint32_t)maxCount) {
1751 // The loop has matched the maximum permitted number of times.
1752 // Break out of here with no action. Matching will
1753 // continue with the following pattern.
1754 U_ASSERT(*pCounter == maxCount || maxCount == -1);
1755 break;
1756 }
1757
1758 if (*pCounter < minCount) {
1759 // We haven't met the minimum number of matches yet.
1760 // Loop back for another one.
1761 fp->fPatIdx = opValue + 4; // Loop back.
1762 } else {
1763 // We do have the minimum number of matches.
1764 // Fall into the following pattern, but first do
1765 // a state save to the top of the loop, so that a failure
1766 // in the following pattern will try another iteration of the loop.
1767 fp = StateSave(fp, opValue + 4, frameSize, status);
1768 }
1769 }
1770 break;
1771
1772 // TODO: Possessive flavor of loop ops, or take them out if no longer needed.
1773
1774 case URX_STO_SP:
1775 U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
1776 fData[opValue] = fStack->size();
1777 break;
1778
1779 case URX_LD_SP:
1780 {
1781 U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
1782 int32_t newStackSize = fData[opValue];
1783 U_ASSERT(newStackSize <= fStack->size());
1784 int32_t *newFP = fStack->getBuffer() + newStackSize - frameSize;
1785 if (newFP == (int32_t *)fp) {
1786 break;
1787 }
1788 int32_t i;
1789 for (i=0; i<frameSize; i++) {
1790 newFP[i] = ((int32_t *)fp)[i];
1791 }
1792 fp = (REStackFrame *)newFP;
1793 fStack->setSize(newStackSize);
1794 }
1795 break;
1796
1797 case URX_BACKREF:
1798 case URX_BACKREF_I:
1799 {
1800 U_ASSERT(opValue < frameSize);
1801 int32_t groupStartIdx = fp->fExtra[opValue];
1802 int32_t groupEndIdx = fp->fExtra[opValue+1];
1803 U_ASSERT(groupStartIdx <= groupEndIdx);
1804 int32_t len = groupEndIdx-groupStartIdx;
1805 if (groupStartIdx < 0) {
1806 // This capture group has not participated in the match thus far,
1807 fp = (REStackFrame *)fStack->popFrame(frameSize); // FAIL, no match.
1808 }
1809
1810 if (len == 0) {
1811 // The capture group match was of an empty string.
1812 // Verified by testing: Perl matches succeed in this case, so
1813 // we do too.
1814 break;
1815 }
1816
1817 UBool haveMatch = FALSE;
1818 if (fp->fInputIdx + len <= inputLen) {
1819 if (opType == URX_BACKREF) {
1820 if (u_strncmp(inputBuf+groupStartIdx, inputBuf+fp->fInputIdx, len) == 0) {
1821 haveMatch = TRUE;
1822 }
1823 } else {
1824 if (u_strncasecmp(inputBuf+groupStartIdx, inputBuf+fp->fInputIdx,
1825 len, U_FOLD_CASE_DEFAULT) == 0) {
1826 haveMatch = TRUE;
1827 }
1828 }
1829 }
1830 if (haveMatch) {
1831 fp->fInputIdx += len; // Match. Advance current input position.
1832 } else {
1833 fp = (REStackFrame *)fStack->popFrame(frameSize); // FAIL, no match.
1834 }
1835 }
1836 break;
1837
1838 case URX_STO_INP_LOC:
1839 {
1840 U_ASSERT(opValue >= 0 && opValue < frameSize);
1841 fp->fExtra[opValue] = fp->fInputIdx;
1842 }
1843 break;
1844
1845 case URX_JMPX:
1846 {
1847 int32_t instrOperandLoc = fp->fPatIdx;
1848 fp->fPatIdx += 1;
1849 int32_t dataLoc = URX_VAL(pat[instrOperandLoc]);
1850 U_ASSERT(dataLoc >= 0 && dataLoc < frameSize);
1851 int32_t savedInputIdx = fp->fExtra[dataLoc];
1852 U_ASSERT(savedInputIdx <= fp->fInputIdx);
1853 if (savedInputIdx < fp->fInputIdx) {
1854 fp->fPatIdx = opValue; // JMP
1855 } else {
1856 fp = (REStackFrame *)fStack->popFrame(frameSize); // FAIL, no progress in loop.
1857 }
1858 }
1859 break;
1860
1861 case URX_LA_START:
1862 {
1863 // Entering a lookahead block.
1864 // Save Stack Ptr, Input Pos.
1865 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
1866 fData[opValue] = fStack->size();
1867 fData[opValue+1] = fp->fInputIdx;
1868 }
1869 break;
1870
1871 case URX_LA_END:
1872 {
1873 // Leaving a look-ahead block.
1874 // restore Stack Ptr, Input Pos to positions they had on entry to block.
1875 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
1876 int32_t stackSize = fStack->size();
1877 int32_t newStackSize = fData[opValue];
1878 U_ASSERT(stackSize >= newStackSize);
1879 if (stackSize > newStackSize) {
1880 int32_t *newFP = fStack->getBuffer() + newStackSize - frameSize;
1881 int32_t i;
1882 for (i=0; i<frameSize; i++) {
1883 newFP[i] = ((int32_t *)fp)[i];
1884 }
1885 fp = (REStackFrame *)newFP;
1886 fStack->setSize(newStackSize);
1887 }
1888 fp->fInputIdx = fData[opValue+1];
1889 }
1890 break;
1891
1892 case URX_ONECHAR_I:
1893 if (fp->fInputIdx < inputLen) {
1894 UChar32 c;
1895 U16_NEXT(inputBuf, fp->fInputIdx, inputLen, c);
1896 if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) {
1897 break;
1898 }
1899 }
1900 fp = (REStackFrame *)fStack->popFrame(frameSize);
1901 break;
1902
1903 case URX_STRING_I:
1904 {
1905 // Test input against a literal string.
1906 // Strings require two slots in the compiled pattern, one for the
1907 // offset to the string text, and one for the length.
1908 int32_t stringStartIdx, stringLen;
1909 stringStartIdx = opValue;
1910
1911 op = pat[fp->fPatIdx];
1912 fp->fPatIdx++;
1913 opType = URX_TYPE(op);
1914 opValue = URX_VAL(op);
1915 U_ASSERT(opType == URX_STRING_LEN);
1916 stringLen = opValue;
1917
1918 int32_t stringEndIndex = fp->fInputIdx + stringLen;
1919 if (stringEndIndex <= inputLen) {
1920 if (u_strncasecmp(inputBuf+fp->fInputIdx, litText+stringStartIdx,
1921 stringLen, U_FOLD_CASE_DEFAULT) == 0) {
1922 // Success. Advance the current input position.
1923 fp->fInputIdx = stringEndIndex;
1924 break;
1925 }
1926 }
1927 // No match. Back up matching to a saved state
1928 fp = (REStackFrame *)fStack->popFrame(frameSize);
1929 }
1930 break;
1931
1932 case URX_LB_START:
1933 {
1934 // Entering a look-behind block.
1935 // Save Stack Ptr, Input Pos.
1936 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
1937 fData[opValue] = fStack->size();
1938 fData[opValue+1] = fp->fInputIdx;
1939 // Init the variable containing the start index for attempted matches.
1940 fData[opValue+2] = -1;
1941 // Save input string length, then reset to pin any matches to end at
1942 // the current position.
1943 fData[opValue+3] = inputLen;
1944 inputLen = fp->fInputIdx;
1945 }
1946 break;
1947
1948
1949 case URX_LB_CONT:
1950 {
1951 // Positive Look-Behind, at top of loop checking for matches of LB expression
1952 // at all possible input starting positions.
1953
1954 // Fetch the min and max possible match lengths. They are the operands
1955 // of this op in the pattern.
1956 int32_t minML = pat[fp->fPatIdx++];
1957 int32_t maxML = pat[fp->fPatIdx++];
1958 U_ASSERT(minML <= maxML);
1959 U_ASSERT(minML >= 0);
1960
1961 // Fetch (from data) the last input index where a match was attempted.
1962 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
1963 int32_t *lbStartIdx = &fData[opValue+2];
1964 if (*lbStartIdx < 0) {
1965 // First time through loop.
1966 *lbStartIdx = fp->fInputIdx - minML;
1967 } else {
1968 // 2nd through nth time through the loop.
1969 // Back up start position for match by one.
1970 if (*lbStartIdx == 0) {
1971 (*lbStartIdx)--; // Because U16_BACK is unsafe starting at 0.
1972 } else {
1973 U16_BACK_1(inputBuf, 0, *lbStartIdx);
1974 }
1975 }
1976
1977 if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
1978 // We have tried all potential match starting points without
1979 // getting a match. Backtrack out, and out of the
1980 // Look Behind altogether.
1981 fp = (REStackFrame *)fStack->popFrame(frameSize);
1982 int32_t restoreInputLen = fData[opValue+3];
1983 U_ASSERT(restoreInputLen >= inputLen);
1984 U_ASSERT(restoreInputLen <= fInput->length());
1985 inputLen = restoreInputLen;
1986 break;
1987 }
1988
1989 // Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
1990 // (successful match will fall off the end of the loop.)
1991 fp = StateSave(fp, fp->fPatIdx-3, frameSize, status);
1992 fp->fInputIdx = *lbStartIdx;
1993 }
1994 break;
1995
1996 case URX_LB_END:
1997 // End of a look-behind block, after a successful match.
1998 {
1999 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
2000 if (fp->fInputIdx != inputLen) {
2001 // The look-behind expression matched, but the match did not
2002 // extend all the way to the point that we are looking behind from.
2003 // FAIL out of here, which will take us back to the LB_CONT, which
2004 // will retry the match starting at another position or fail
2005 // the look-behind altogether, whichever is appropriate.
2006 fp = (REStackFrame *)fStack->popFrame(frameSize);
2007 break;
2008 }
2009
2010 // Look-behind match is good. Restore the orignal input string length,
2011 // which had been truncated to pin the end of the lookbehind match to the
2012 // position being looked-behind.
2013 int32_t originalInputLen = fData[opValue+3];
2014 U_ASSERT(originalInputLen >= inputLen);
2015 U_ASSERT(originalInputLen <= fInput->length());
2016 inputLen = originalInputLen;
2017 }
2018 break;
2019
2020
2021 case URX_LBN_CONT:
2022 {
2023 // Negative Look-Behind, at top of loop checking for matches of LB expression
2024 // at all possible input starting positions.
2025
2026 // Fetch the extra parameters of this op.
2027 int32_t minML = pat[fp->fPatIdx++];
2028 int32_t maxML = pat[fp->fPatIdx++];
2029 int32_t continueLoc = pat[fp->fPatIdx++];
2030 continueLoc = URX_VAL(continueLoc);
2031 U_ASSERT(minML <= maxML);
2032 U_ASSERT(minML >= 0);
2033 U_ASSERT(continueLoc > fp->fPatIdx);
2034
2035 // Fetch (from data) the last input index where a match was attempted.
2036 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
2037 int32_t *lbStartIdx = &fData[opValue+2];
2038 if (*lbStartIdx < 0) {
2039 // First time through loop.
2040 *lbStartIdx = fp->fInputIdx - minML;
2041 } else {
2042 // 2nd through nth time through the loop.
2043 // Back up start position for match by one.
2044 if (*lbStartIdx == 0) {
2045 (*lbStartIdx)--; // Because U16_BACK is unsafe starting at 0.
2046 } else {
2047 U16_BACK_1(inputBuf, 0, *lbStartIdx);
2048 }
2049 }
2050
2051 if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
2052 // We have tried all potential match starting points without
2053 // getting a match, which means that the negative lookbehind as
2054 // a whole has succeeded. Jump forward to the continue location
2055 int32_t restoreInputLen = fData[opValue+3];
2056 U_ASSERT(restoreInputLen >= inputLen);
2057 U_ASSERT(restoreInputLen <= fInput->length());
2058 inputLen = restoreInputLen;
2059 fp->fPatIdx = continueLoc;
2060 break;
2061 }
2062
2063 // Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
2064 // (successful match will cause a FAIL out of the loop altogether.)
2065 fp = StateSave(fp, fp->fPatIdx-4, frameSize, status);
2066 fp->fInputIdx = *lbStartIdx;
2067 }
2068 break;
2069
2070 case URX_LBN_END:
2071 // End of a negative look-behind block, after a successful match.
2072 {
2073 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
2074 if (fp->fInputIdx != inputLen) {
2075 // The look-behind expression matched, but the match did not
2076 // extend all the way to the point that we are looking behind from.
2077 // FAIL out of here, which will take us back to the LB_CONT, which
2078 // will retry the match starting at another position or succeed
2079 // the look-behind altogether, whichever is appropriate.
2080 fp = (REStackFrame *)fStack->popFrame(frameSize);
2081 break;
2082 }
2083
2084 // Look-behind expression matched, which means look-behind test as
2085 // a whole Fails
2086
2087 // Restore the orignal input string length, which had been truncated
2088 // inorder to pin the end of the lookbehind match
2089 // to the position being looked-behind.
2090 int32_t originalInputLen = fData[opValue+3];
2091 U_ASSERT(originalInputLen >= inputLen);
2092 U_ASSERT(originalInputLen <= fInput->length());
2093 inputLen = originalInputLen;
2094
2095 // Restore original stack position, discarding any state saved
2096 // by the successful pattern match.
2097 U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
2098 int32_t newStackSize = fData[opValue];
2099 U_ASSERT(fStack->size() > newStackSize);
2100 fStack->setSize(newStackSize);
2101
2102 // FAIL, which will take control back to someplace
2103 // prior to entering the look-behind test.
2104 fp = (REStackFrame *)fStack->popFrame(frameSize);
2105 }
2106 break;
2107
2108
2109 case URX_LOOP_SR_I:
2110 // Loop Initialization for the optimized implementation of
2111 // [some character set]*
2112 // This op scans through all matching input.
2113 // The following LOOP_C op emulates stack unwinding if the following pattern fails.
2114 {
2115 U_ASSERT(opValue > 0 && opValue < sets->size());
2116 Regex8BitSet *s8 = &fPattern->fSets8[opValue];
2117 UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
2118
2119 // Loop through input, until either the input is exhausted or
2120 // we reach a character that is not a member of the set.
2121 int32_t ix = fp->fInputIdx;
2122 for (;;) {
2123 if (ix >= inputLen) {
2124 break;
2125 }
2126 UChar32 c;
2127 U16_NEXT(inputBuf, ix, inputLen, c);
2128 if (c<256) {
2129 if (s8->contains(c) == FALSE) {
2130 U16_BACK_1(inputBuf, 0, ix);
2131 break;
2132 }
2133 } else {
2134 if (s->contains(c) == FALSE) {
2135 U16_BACK_1(inputBuf, 0, ix);
2136 break;
2137 }
2138 }
2139 }
2140
2141 // If there were no matching characters, skip over the loop altogether.
2142 // The loop doesn't run at all, a * op always succeeds.
2143 if (ix == fp->fInputIdx) {
2144 fp->fPatIdx++; // skip the URX_LOOP_C op.
2145 break;
2146 }
2147
2148 // Peek ahead in the compiled pattern, to the URX_LOOP_C that
2149 // must follow. It's operand is the stack location
2150 // that holds the starting input index for the match of this [set]*
2151 int32_t loopcOp = pat[fp->fPatIdx];
2152 U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
2153 int32_t stackLoc = URX_VAL(loopcOp);
2154 U_ASSERT(stackLoc >= 0 && stackLoc < frameSize);
2155 fp->fExtra[stackLoc] = fp->fInputIdx;
2156 fp->fInputIdx = ix;
2157
2158 // Save State to the URX_LOOP_C op that follows this one,
2159 // so that match failures in the following code will return to there.
2160 // Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
2161 fp = StateSave(fp, fp->fPatIdx, frameSize, status);
2162 fp->fPatIdx++;
2163 }
2164 break;
2165
2166
2167 case URX_LOOP_DOT_I:
2168 // Loop Initialization for the optimized implementation of .*
2169 // This op scans through all remaining input.
2170 // The following LOOP_C op emulates stack unwinding if the following pattern fails.
2171 {
2172 // Loop through input until the input is exhausted (we reach an end-of-line)
2173 // In multi-line mode, we can just go straight to the end of the input.
2174 int32_t ix;
2175 if (opValue == 1) {
2176 // Multi-line mode.
2177 ix = inputLen;
2178 } else {
2179 // NOT multi-line mode. Line endings do not match '.'
2180 // Scan forward until a line ending or end of input.
2181 ix = fp->fInputIdx;
2182 for (;;) {
2183 if (ix >= inputLen) {
2184 ix = inputLen;
2185 break;
2186 }
2187 UChar32 c;
2188 U16_NEXT(inputBuf, ix, inputLen, c); // c = inputBuf[ix++]
2189 if (((c & 0x7f) <= 0x29) &&
2190 (c == 0x0a || c==0x0d || c==0x0c || c==0x85 ||c==0x2028 || c==0x2029)) {
2191 // char is a line ending. Put the input pos back to the
2192 // line ending char, and exit the scanning loop.
2193 U16_BACK_1(inputBuf, 0, ix);
2194 break;
2195 }
2196 }
2197 }
2198
2199 // If there were no matching characters, skip over the loop altogether.
2200 // The loop doesn't run at all, a * op always succeeds.
2201 if (ix == fp->fInputIdx) {
2202 fp->fPatIdx++; // skip the URX_LOOP_C op.
2203 break;
2204 }
2205
2206 // Peek ahead in the compiled pattern, to the URX_LOOP_C that
2207 // must follow. It's operand is the stack location
2208 // that holds the starting input index for the match of this [set]*
2209 int32_t loopcOp = pat[fp->fPatIdx];
2210 U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
2211 int32_t stackLoc = URX_VAL(loopcOp);
2212 U_ASSERT(stackLoc >= 0 && stackLoc < frameSize);
2213 fp->fExtra[stackLoc] = fp->fInputIdx;
2214 fp->fInputIdx = ix;
2215
2216 // Save State to the URX_LOOP_C op that follows this one,
2217 // so that match failures in the following code will return to there.
2218 // Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
2219 fp = StateSave(fp, fp->fPatIdx, frameSize, status);
2220 fp->fPatIdx++;
2221 }
2222 break;
2223
2224
2225 case URX_LOOP_C:
2226 {
2227 U_ASSERT(opValue>=0 && opValue<frameSize);
2228 int32_t terminalIdx = fp->fExtra[opValue];
2229 U_ASSERT(terminalIdx <= fp->fInputIdx);
2230 if (terminalIdx == fp->fInputIdx) {
2231 // We've backed up the input idx to the point that the loop started.
2232 // The loop is done. Leave here without saving state.
2233 // Subsequent failures won't come back here.
2234 break;
2235 }
2236 // Set up for the next iteration of the loop, with input index
2237 // backed up by one from the last time through,
2238 // and a state save to this instruction in case the following code fails again.
2239 // (We're going backwards because this loop emulates stack unwinding, not
2240 // the initial scan forward.)
2241 U_ASSERT(fp->fInputIdx > 0);
2242 U16_BACK_1(inputBuf, 0, fp->fInputIdx);
2243 if (inputBuf[fp->fInputIdx] == 0x0a &&
2244 fp->fInputIdx > terminalIdx &&
2245 inputBuf[fp->fInputIdx-1] == 0x0d) {
2246 int32_t prevOp = pat[fp->fPatIdx-2];
2247 if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) {
2248 // .*, stepping back over CRLF pair.
2249 fp->fInputIdx--;
2250 }
2251 }
2252
2253
2254 fp = StateSave(fp, fp->fPatIdx-1, frameSize, status);
2255 }
2256 break;
2257
2258
2259
2260 default:
2261 // Trouble. The compiled pattern contains an entry with an
2262 // unrecognized type tag.
2263 U_ASSERT(FALSE);
2264 }
2265
2266 if (U_FAILURE(status)) {
2267 break;
2268 }
2269 }
2270
2271 breakFromLoop:
2272 fMatch = isMatch;
2273 if (isMatch) {
2274 fLastMatchEnd = fMatchEnd;
2275 fMatchStart = startIdx;
2276 fMatchEnd = fp->fInputIdx;
2277 if (fTraceDebug) {
2278 REGEX_RUN_DEBUG_PRINTF(("Match. start=%d end=%d\n\n", fMatchStart, fMatchEnd));
2279 }
2280 }
2281 else
2282 {
2283 if (fTraceDebug) {
2284 REGEX_RUN_DEBUG_PRINTF(("No match\n\n"));
2285 }
2286 }
2287
2288 fFrame = fp; // The active stack frame when the engine stopped.
2289 // Contains the capture group results that we need to
2290 // access later.
2291
2292 return;
2293 }
2294
2295
2296
2297 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RegexMatcher)
2298
2299 U_NAMESPACE_END
2300
2301 #endif // !UCONFIG_NO_REGULAR_EXPRESSIONS
2302