]> git.saurik.com Git - apple/icu.git/blob - icuSources/common/dictbe.cpp
ICU-57163.0.1.tar.gz
[apple/icu.git] / icuSources / common / dictbe.cpp
1 /**
2 *******************************************************************************
3 * Copyright (C) 2006-2016, International Business Machines Corporation
4 * and others. All Rights Reserved.
5 *******************************************************************************
6 */
7
8 #include "unicode/utypes.h"
9
10 #if !UCONFIG_NO_BREAK_ITERATION
11
12 #include "brkeng.h"
13 #include "dictbe.h"
14 #include "unicode/uniset.h"
15 #include "unicode/chariter.h"
16 #include "unicode/ubrk.h"
17 #include "uvectr32.h"
18 #include "uvector.h"
19 #include "uassert.h"
20 #include "unicode/normlzr.h"
21 #include "cmemory.h"
22 #include "dictionarydata.h"
23
24 U_NAMESPACE_BEGIN
25
26 /*
27 ******************************************************************
28 */
29
30 DictionaryBreakEngine::DictionaryBreakEngine(uint32_t breakTypes) {
31 fTypes = breakTypes;
32 }
33
34 DictionaryBreakEngine::~DictionaryBreakEngine() {
35 }
36
37 UBool
38 DictionaryBreakEngine::handles(UChar32 c, int32_t breakType) const {
39 return (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes)
40 && fSet.contains(c));
41 }
42
43 int32_t
44 DictionaryBreakEngine::findBreaks( UText *text,
45 int32_t startPos,
46 int32_t endPos,
47 UBool reverse,
48 int32_t breakType,
49 UStack &foundBreaks ) const {
50 int32_t result = 0;
51
52 // Find the span of characters included in the set.
53 // The span to break begins at the current position in the text, and
54 // extends towards the start or end of the text, depending on 'reverse'.
55
56 int32_t start = (int32_t)utext_getNativeIndex(text);
57 int32_t current;
58 int32_t rangeStart;
59 int32_t rangeEnd;
60 UChar32 c = utext_current32(text);
61 if (reverse) {
62 UBool isDict = fSet.contains(c);
63 while((current = (int32_t)utext_getNativeIndex(text)) > startPos && isDict) {
64 c = utext_previous32(text);
65 isDict = fSet.contains(c);
66 }
67 if (current < startPos) {
68 rangeStart = startPos;
69 } else {
70 rangeStart = current;
71 if (!isDict) {
72 utext_next32(text);
73 rangeStart = (int32_t)utext_getNativeIndex(text);
74 }
75 }
76 // rangeEnd = start + 1;
77 utext_setNativeIndex(text, start);
78 utext_next32(text);
79 rangeEnd = (int32_t)utext_getNativeIndex(text);
80 }
81 else {
82 while((current = (int32_t)utext_getNativeIndex(text)) < endPos && fSet.contains(c)) {
83 utext_next32(text); // TODO: recast loop for postincrement
84 c = utext_current32(text);
85 }
86 rangeStart = start;
87 rangeEnd = current;
88 }
89 if (breakType >= 0 && breakType < 32 && (((uint32_t)1 << breakType) & fTypes)) {
90 result = divideUpDictionaryRange(text, rangeStart, rangeEnd, foundBreaks);
91 utext_setNativeIndex(text, current);
92 }
93
94 return result;
95 }
96
97 void
98 DictionaryBreakEngine::setCharacters( const UnicodeSet &set ) {
99 fSet = set;
100 // Compact for caching
101 fSet.compact();
102 }
103
104 /*
105 ******************************************************************
106 * PossibleWord
107 */
108
109 // Helper class for improving readability of the Thai/Lao/Khmer word break
110 // algorithm. The implementation is completely inline.
111
112 // List size, limited by the maximum number of words in the dictionary
113 // that form a nested sequence.
114 static const int32_t POSSIBLE_WORD_LIST_MAX = 20;
115
116 class PossibleWord {
117 private:
118 // list of word candidate lengths, in increasing length order
119 // TODO: bytes would be sufficient for word lengths.
120 int32_t count; // Count of candidates
121 int32_t prefix; // The longest match with a dictionary word
122 int32_t offset; // Offset in the text of these candidates
123 int32_t mark; // The preferred candidate's offset
124 int32_t current; // The candidate we're currently looking at
125 int32_t cuLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code units.
126 int32_t cpLengths[POSSIBLE_WORD_LIST_MAX]; // Word Lengths, in code points.
127
128 public:
129 PossibleWord() : count(0), prefix(0), offset(-1), mark(0), current(0) {};
130 ~PossibleWord() {};
131
132 // Fill the list of candidates if needed, select the longest, and return the number found
133 int32_t candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd );
134
135 // Select the currently marked candidate, point after it in the text, and invalidate self
136 int32_t acceptMarked( UText *text );
137
138 // Back up from the current candidate to the next shorter one; return TRUE if that exists
139 // and point the text after it
140 UBool backUp( UText *text );
141
142 // Return the longest prefix this candidate location shares with a dictionary word
143 // Return value is in code points.
144 int32_t longestPrefix() { return prefix; };
145
146 // Mark the current candidate as the one we like
147 void markCurrent() { mark = current; };
148
149 // Get length in code points of the marked word.
150 int32_t markedCPLength() { return cpLengths[mark]; };
151 };
152
153
154 int32_t PossibleWord::candidates( UText *text, DictionaryMatcher *dict, int32_t rangeEnd ) {
155 // TODO: If getIndex is too slow, use offset < 0 and add discardAll()
156 int32_t start = (int32_t)utext_getNativeIndex(text);
157 if (start != offset) {
158 offset = start;
159 count = dict->matches(text, rangeEnd-start, UPRV_LENGTHOF(cuLengths), cuLengths, cpLengths, NULL, &prefix);
160 // Dictionary leaves text after longest prefix, not longest word. Back up.
161 if (count <= 0) {
162 utext_setNativeIndex(text, start);
163 }
164 }
165 if (count > 0) {
166 utext_setNativeIndex(text, start+cuLengths[count-1]);
167 }
168 current = count-1;
169 mark = current;
170 return count;
171 }
172
173 int32_t
174 PossibleWord::acceptMarked( UText *text ) {
175 utext_setNativeIndex(text, offset + cuLengths[mark]);
176 return cuLengths[mark];
177 }
178
179
180 UBool
181 PossibleWord::backUp( UText *text ) {
182 if (current > 0) {
183 utext_setNativeIndex(text, offset + cuLengths[--current]);
184 return TRUE;
185 }
186 return FALSE;
187 }
188
189 /*
190 ******************************************************************
191 * ThaiBreakEngine
192 */
193
194 // How many words in a row are "good enough"?
195 static const int32_t THAI_LOOKAHEAD = 3;
196
197 // Will not combine a non-word with a preceding dictionary word longer than this
198 static const int32_t THAI_ROOT_COMBINE_THRESHOLD = 3;
199
200 // Will not combine a non-word that shares at least this much prefix with a
201 // dictionary word, with a preceding word
202 static const int32_t THAI_PREFIX_COMBINE_THRESHOLD = 3;
203
204 // Ellision character
205 static const int32_t THAI_PAIYANNOI = 0x0E2F;
206
207 // Repeat character
208 static const int32_t THAI_MAIYAMOK = 0x0E46;
209
210 // Minimum word size
211 static const int32_t THAI_MIN_WORD = 2;
212
213 // Minimum number of characters for two words
214 static const int32_t THAI_MIN_WORD_SPAN = THAI_MIN_WORD * 2;
215
216 ThaiBreakEngine::ThaiBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
217 : DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)),
218 fDictionary(adoptDictionary)
219 {
220 fThaiWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]]"), status);
221 if (U_SUCCESS(status)) {
222 setCharacters(fThaiWordSet);
223 }
224 fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Thai:]&[:LineBreak=SA:]&[:M:]]"), status);
225 fMarkSet.add(0x0020);
226 fEndWordSet = fThaiWordSet;
227 fEndWordSet.remove(0x0E31); // MAI HAN-AKAT
228 fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
229 fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK
230 fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
231 fSuffixSet.add(THAI_PAIYANNOI);
232 fSuffixSet.add(THAI_MAIYAMOK);
233
234 // Compact for caching.
235 fMarkSet.compact();
236 fEndWordSet.compact();
237 fBeginWordSet.compact();
238 fSuffixSet.compact();
239 }
240
241 ThaiBreakEngine::~ThaiBreakEngine() {
242 delete fDictionary;
243 }
244
245 int32_t
246 ThaiBreakEngine::divideUpDictionaryRange( UText *text,
247 int32_t rangeStart,
248 int32_t rangeEnd,
249 UStack &foundBreaks ) const {
250 utext_setNativeIndex(text, rangeStart);
251 utext_moveIndex32(text, THAI_MIN_WORD_SPAN);
252 if (utext_getNativeIndex(text) >= rangeEnd) {
253 return 0; // Not enough characters for two words
254 }
255 utext_setNativeIndex(text, rangeStart);
256
257
258 uint32_t wordsFound = 0;
259 int32_t cpWordLength = 0; // Word Length in Code Points.
260 int32_t cuWordLength = 0; // Word length in code units (UText native indexing)
261 int32_t current;
262 UErrorCode status = U_ZERO_ERROR;
263 PossibleWord words[THAI_LOOKAHEAD];
264
265 utext_setNativeIndex(text, rangeStart);
266
267 while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
268 cpWordLength = 0;
269 cuWordLength = 0;
270
271 // Look for candidate words at the current position
272 int32_t candidates = words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
273
274 // If we found exactly one, use that
275 if (candidates == 1) {
276 cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
277 cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength();
278 wordsFound += 1;
279 }
280 // If there was more than one, see which one can take us forward the most words
281 else if (candidates > 1) {
282 // If we're already at the end of the range, we're done
283 if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
284 goto foundBest;
285 }
286 do {
287 int32_t wordsMatched = 1;
288 if (words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
289 if (wordsMatched < 2) {
290 // Followed by another dictionary word; mark first word as a good candidate
291 words[wordsFound%THAI_LOOKAHEAD].markCurrent();
292 wordsMatched = 2;
293 }
294
295 // If we're already at the end of the range, we're done
296 if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
297 goto foundBest;
298 }
299
300 // See if any of the possible second words is followed by a third word
301 do {
302 // If we find a third word, stop right away
303 if (words[(wordsFound + 2) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
304 words[wordsFound % THAI_LOOKAHEAD].markCurrent();
305 goto foundBest;
306 }
307 }
308 while (words[(wordsFound + 1) % THAI_LOOKAHEAD].backUp(text));
309 }
310 }
311 while (words[wordsFound % THAI_LOOKAHEAD].backUp(text));
312 foundBest:
313 // Set UText position to after the accepted word.
314 cuWordLength = words[wordsFound % THAI_LOOKAHEAD].acceptMarked(text);
315 cpWordLength = words[wordsFound % THAI_LOOKAHEAD].markedCPLength();
316 wordsFound += 1;
317 }
318
319 // We come here after having either found a word or not. We look ahead to the
320 // next word. If it's not a dictionary word, we will combine it with the word we
321 // just found (if there is one), but only if the preceding word does not exceed
322 // the threshold.
323 // The text iterator should now be positioned at the end of the word we found.
324
325 UChar32 uc = 0;
326 if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < THAI_ROOT_COMBINE_THRESHOLD) {
327 // if it is a dictionary word, do nothing. If it isn't, then if there is
328 // no preceding word, or the non-word shares less than the minimum threshold
329 // of characters with a dictionary word, then scan to resynchronize
330 if (words[wordsFound % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
331 && (cuWordLength == 0
332 || words[wordsFound%THAI_LOOKAHEAD].longestPrefix() < THAI_PREFIX_COMBINE_THRESHOLD)) {
333 // Look for a plausible word boundary
334 int32_t remaining = rangeEnd - (current+cuWordLength);
335 UChar32 pc;
336 int32_t chars = 0;
337 for (;;) {
338 int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
339 pc = utext_next32(text);
340 int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
341 chars += pcSize;
342 remaining -= pcSize;
343 if (remaining <= 0) {
344 break;
345 }
346 uc = utext_current32(text);
347 if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
348 // Maybe. See if it's in the dictionary.
349 // NOTE: In the original Apple code, checked that the next
350 // two characters after uc were not 0x0E4C THANTHAKHAT before
351 // checking the dictionary. That is just a performance filter,
352 // but it's not clear it's faster than checking the trie.
353 int32_t candidates = words[(wordsFound + 1) % THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
354 utext_setNativeIndex(text, current + cuWordLength + chars);
355 if (candidates > 0) {
356 break;
357 }
358 }
359 }
360
361 // Bump the word count if there wasn't already one
362 if (cuWordLength <= 0) {
363 wordsFound += 1;
364 }
365
366 // Update the length with the passed-over characters
367 cuWordLength += chars;
368 }
369 else {
370 // Back up to where we were for next iteration
371 utext_setNativeIndex(text, current+cuWordLength);
372 }
373 }
374
375 // Never stop before a combining mark.
376 int32_t currPos;
377 while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
378 utext_next32(text);
379 cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
380 }
381
382 // Look ahead for possible suffixes if a dictionary word does not follow.
383 // We do this in code rather than using a rule so that the heuristic
384 // resynch continues to function. For example, one of the suffix characters
385 // could be a typo in the middle of a word.
386 if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cuWordLength > 0) {
387 if (words[wordsFound%THAI_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
388 && fSuffixSet.contains(uc = utext_current32(text))) {
389 if (uc == THAI_PAIYANNOI) {
390 if (!fSuffixSet.contains(utext_previous32(text))) {
391 // Skip over previous end and PAIYANNOI
392 utext_next32(text);
393 int32_t paiyannoiIndex = (int32_t)utext_getNativeIndex(text);
394 utext_next32(text);
395 cuWordLength += (int32_t)utext_getNativeIndex(text) - paiyannoiIndex; // Add PAIYANNOI to word
396 uc = utext_current32(text); // Fetch next character
397 }
398 else {
399 // Restore prior position
400 utext_next32(text);
401 }
402 }
403 if (uc == THAI_MAIYAMOK) {
404 if (utext_previous32(text) != THAI_MAIYAMOK) {
405 // Skip over previous end and MAIYAMOK
406 utext_next32(text);
407 int32_t maiyamokIndex = (int32_t)utext_getNativeIndex(text);
408 utext_next32(text);
409 cuWordLength += (int32_t)utext_getNativeIndex(text) - maiyamokIndex; // Add MAIYAMOK to word
410 }
411 else {
412 // Restore prior position
413 utext_next32(text);
414 }
415 }
416 }
417 else {
418 utext_setNativeIndex(text, current+cuWordLength);
419 }
420 }
421
422 // Did we find a word on this iteration? If so, push it on the break stack
423 if (cuWordLength > 0) {
424 foundBreaks.push((current+cuWordLength), status);
425 }
426 }
427
428 // Don't return a break for the end of the dictionary range if there is one there.
429 if (foundBreaks.peeki() >= rangeEnd) {
430 (void) foundBreaks.popi();
431 wordsFound -= 1;
432 }
433
434 return wordsFound;
435 }
436
437 /*
438 ******************************************************************
439 * LaoBreakEngine
440 */
441
442 // How many words in a row are "good enough"?
443 static const int32_t LAO_LOOKAHEAD = 3;
444
445 // Will not combine a non-word with a preceding dictionary word longer than this
446 static const int32_t LAO_ROOT_COMBINE_THRESHOLD = 3;
447
448 // Will not combine a non-word that shares at least this much prefix with a
449 // dictionary word, with a preceding word
450 static const int32_t LAO_PREFIX_COMBINE_THRESHOLD = 3;
451
452 // Minimum word size
453 static const int32_t LAO_MIN_WORD = 2;
454
455 // Minimum number of characters for two words
456 static const int32_t LAO_MIN_WORD_SPAN = LAO_MIN_WORD * 2;
457
458 LaoBreakEngine::LaoBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
459 : DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)),
460 fDictionary(adoptDictionary)
461 {
462 fLaoWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]]"), status);
463 if (U_SUCCESS(status)) {
464 setCharacters(fLaoWordSet);
465 }
466 fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Laoo:]&[:LineBreak=SA:]&[:M:]]"), status);
467 fMarkSet.add(0x0020);
468 fEndWordSet = fLaoWordSet;
469 fEndWordSet.remove(0x0EC0, 0x0EC4); // prefix vowels
470 fBeginWordSet.add(0x0E81, 0x0EAE); // basic consonants (including holes for corresponding Thai characters)
471 fBeginWordSet.add(0x0EDC, 0x0EDD); // digraph consonants (no Thai equivalent)
472 fBeginWordSet.add(0x0EC0, 0x0EC4); // prefix vowels
473
474 // Compact for caching.
475 fMarkSet.compact();
476 fEndWordSet.compact();
477 fBeginWordSet.compact();
478 }
479
480 LaoBreakEngine::~LaoBreakEngine() {
481 delete fDictionary;
482 }
483
484 int32_t
485 LaoBreakEngine::divideUpDictionaryRange( UText *text,
486 int32_t rangeStart,
487 int32_t rangeEnd,
488 UStack &foundBreaks ) const {
489 if ((rangeEnd - rangeStart) < LAO_MIN_WORD_SPAN) {
490 return 0; // Not enough characters for two words
491 }
492
493 uint32_t wordsFound = 0;
494 int32_t cpWordLength = 0;
495 int32_t cuWordLength = 0;
496 int32_t current;
497 UErrorCode status = U_ZERO_ERROR;
498 PossibleWord words[LAO_LOOKAHEAD];
499
500 utext_setNativeIndex(text, rangeStart);
501
502 while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
503 cuWordLength = 0;
504 cpWordLength = 0;
505
506 // Look for candidate words at the current position
507 int32_t candidates = words[wordsFound%LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
508
509 // If we found exactly one, use that
510 if (candidates == 1) {
511 cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
512 cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength();
513 wordsFound += 1;
514 }
515 // If there was more than one, see which one can take us forward the most words
516 else if (candidates > 1) {
517 // If we're already at the end of the range, we're done
518 if (utext_getNativeIndex(text) >= rangeEnd) {
519 goto foundBest;
520 }
521 do {
522 int32_t wordsMatched = 1;
523 if (words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
524 if (wordsMatched < 2) {
525 // Followed by another dictionary word; mark first word as a good candidate
526 words[wordsFound%LAO_LOOKAHEAD].markCurrent();
527 wordsMatched = 2;
528 }
529
530 // If we're already at the end of the range, we're done
531 if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
532 goto foundBest;
533 }
534
535 // See if any of the possible second words is followed by a third word
536 do {
537 // If we find a third word, stop right away
538 if (words[(wordsFound + 2) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
539 words[wordsFound % LAO_LOOKAHEAD].markCurrent();
540 goto foundBest;
541 }
542 }
543 while (words[(wordsFound + 1) % LAO_LOOKAHEAD].backUp(text));
544 }
545 }
546 while (words[wordsFound % LAO_LOOKAHEAD].backUp(text));
547 foundBest:
548 cuWordLength = words[wordsFound % LAO_LOOKAHEAD].acceptMarked(text);
549 cpWordLength = words[wordsFound % LAO_LOOKAHEAD].markedCPLength();
550 wordsFound += 1;
551 }
552
553 // We come here after having either found a word or not. We look ahead to the
554 // next word. If it's not a dictionary word, we will combine it withe the word we
555 // just found (if there is one), but only if the preceding word does not exceed
556 // the threshold.
557 // The text iterator should now be positioned at the end of the word we found.
558 if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < LAO_ROOT_COMBINE_THRESHOLD) {
559 // if it is a dictionary word, do nothing. If it isn't, then if there is
560 // no preceding word, or the non-word shares less than the minimum threshold
561 // of characters with a dictionary word, then scan to resynchronize
562 if (words[wordsFound % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
563 && (cuWordLength == 0
564 || words[wordsFound%LAO_LOOKAHEAD].longestPrefix() < LAO_PREFIX_COMBINE_THRESHOLD)) {
565 // Look for a plausible word boundary
566 int32_t remaining = rangeEnd - (current + cuWordLength);
567 UChar32 pc;
568 UChar32 uc;
569 int32_t chars = 0;
570 for (;;) {
571 int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
572 pc = utext_next32(text);
573 int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
574 chars += pcSize;
575 remaining -= pcSize;
576 if (remaining <= 0) {
577 break;
578 }
579 uc = utext_current32(text);
580 if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
581 // Maybe. See if it's in the dictionary.
582 // TODO: this looks iffy; compare with old code.
583 int32_t candidates = words[(wordsFound + 1) % LAO_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
584 utext_setNativeIndex(text, current + cuWordLength + chars);
585 if (candidates > 0) {
586 break;
587 }
588 }
589 }
590
591 // Bump the word count if there wasn't already one
592 if (cuWordLength <= 0) {
593 wordsFound += 1;
594 }
595
596 // Update the length with the passed-over characters
597 cuWordLength += chars;
598 }
599 else {
600 // Back up to where we were for next iteration
601 utext_setNativeIndex(text, current + cuWordLength);
602 }
603 }
604
605 // Never stop before a combining mark.
606 int32_t currPos;
607 while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
608 utext_next32(text);
609 cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
610 }
611
612 // Look ahead for possible suffixes if a dictionary word does not follow.
613 // We do this in code rather than using a rule so that the heuristic
614 // resynch continues to function. For example, one of the suffix characters
615 // could be a typo in the middle of a word.
616 // NOT CURRENTLY APPLICABLE TO LAO
617
618 // Did we find a word on this iteration? If so, push it on the break stack
619 if (cuWordLength > 0) {
620 foundBreaks.push((current+cuWordLength), status);
621 }
622 }
623
624 // Don't return a break for the end of the dictionary range if there is one there.
625 if (foundBreaks.peeki() >= rangeEnd) {
626 (void) foundBreaks.popi();
627 wordsFound -= 1;
628 }
629
630 return wordsFound;
631 }
632
633 /*
634 ******************************************************************
635 * BurmeseBreakEngine
636 */
637
638 // How many words in a row are "good enough"?
639 static const int32_t BURMESE_LOOKAHEAD = 3;
640
641 // Will not combine a non-word with a preceding dictionary word longer than this
642 static const int32_t BURMESE_ROOT_COMBINE_THRESHOLD = 3;
643
644 // Will not combine a non-word that shares at least this much prefix with a
645 // dictionary word, with a preceding word
646 static const int32_t BURMESE_PREFIX_COMBINE_THRESHOLD = 3;
647
648 // Minimum word size
649 static const int32_t BURMESE_MIN_WORD = 2;
650
651 // Minimum number of characters for two words
652 static const int32_t BURMESE_MIN_WORD_SPAN = BURMESE_MIN_WORD * 2;
653
654 BurmeseBreakEngine::BurmeseBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
655 : DictionaryBreakEngine((1<<UBRK_WORD) | (1<<UBRK_LINE)),
656 fDictionary(adoptDictionary)
657 {
658 fBurmeseWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]]"), status);
659 if (U_SUCCESS(status)) {
660 setCharacters(fBurmeseWordSet);
661 }
662 fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Mymr:]&[:LineBreak=SA:]&[:M:]]"), status);
663 fMarkSet.add(0x0020);
664 fEndWordSet = fBurmeseWordSet;
665 fBeginWordSet.add(0x1000, 0x102A); // basic consonants and independent vowels
666
667 // Compact for caching.
668 fMarkSet.compact();
669 fEndWordSet.compact();
670 fBeginWordSet.compact();
671 }
672
673 BurmeseBreakEngine::~BurmeseBreakEngine() {
674 delete fDictionary;
675 }
676
677 int32_t
678 BurmeseBreakEngine::divideUpDictionaryRange( UText *text,
679 int32_t rangeStart,
680 int32_t rangeEnd,
681 UStack &foundBreaks ) const {
682 if ((rangeEnd - rangeStart) < BURMESE_MIN_WORD_SPAN) {
683 return 0; // Not enough characters for two words
684 }
685
686 uint32_t wordsFound = 0;
687 int32_t cpWordLength = 0;
688 int32_t cuWordLength = 0;
689 int32_t current;
690 UErrorCode status = U_ZERO_ERROR;
691 PossibleWord words[BURMESE_LOOKAHEAD];
692
693 utext_setNativeIndex(text, rangeStart);
694
695 while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
696 cuWordLength = 0;
697 cpWordLength = 0;
698
699 // Look for candidate words at the current position
700 int32_t candidates = words[wordsFound%BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
701
702 // If we found exactly one, use that
703 if (candidates == 1) {
704 cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text);
705 cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength();
706 wordsFound += 1;
707 }
708 // If there was more than one, see which one can take us forward the most words
709 else if (candidates > 1) {
710 // If we're already at the end of the range, we're done
711 if (utext_getNativeIndex(text) >= rangeEnd) {
712 goto foundBest;
713 }
714 do {
715 int32_t wordsMatched = 1;
716 if (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
717 if (wordsMatched < 2) {
718 // Followed by another dictionary word; mark first word as a good candidate
719 words[wordsFound%BURMESE_LOOKAHEAD].markCurrent();
720 wordsMatched = 2;
721 }
722
723 // If we're already at the end of the range, we're done
724 if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
725 goto foundBest;
726 }
727
728 // See if any of the possible second words is followed by a third word
729 do {
730 // If we find a third word, stop right away
731 if (words[(wordsFound + 2) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
732 words[wordsFound % BURMESE_LOOKAHEAD].markCurrent();
733 goto foundBest;
734 }
735 }
736 while (words[(wordsFound + 1) % BURMESE_LOOKAHEAD].backUp(text));
737 }
738 }
739 while (words[wordsFound % BURMESE_LOOKAHEAD].backUp(text));
740 foundBest:
741 cuWordLength = words[wordsFound % BURMESE_LOOKAHEAD].acceptMarked(text);
742 cpWordLength = words[wordsFound % BURMESE_LOOKAHEAD].markedCPLength();
743 wordsFound += 1;
744 }
745
746 // We come here after having either found a word or not. We look ahead to the
747 // next word. If it's not a dictionary word, we will combine it withe the word we
748 // just found (if there is one), but only if the preceding word does not exceed
749 // the threshold.
750 // The text iterator should now be positioned at the end of the word we found.
751 if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < BURMESE_ROOT_COMBINE_THRESHOLD) {
752 // if it is a dictionary word, do nothing. If it isn't, then if there is
753 // no preceding word, or the non-word shares less than the minimum threshold
754 // of characters with a dictionary word, then scan to resynchronize
755 if (words[wordsFound % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
756 && (cuWordLength == 0
757 || words[wordsFound%BURMESE_LOOKAHEAD].longestPrefix() < BURMESE_PREFIX_COMBINE_THRESHOLD)) {
758 // Look for a plausible word boundary
759 int32_t remaining = rangeEnd - (current + cuWordLength);
760 UChar32 pc;
761 UChar32 uc;
762 int32_t chars = 0;
763 for (;;) {
764 int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
765 pc = utext_next32(text);
766 int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
767 chars += pcSize;
768 remaining -= pcSize;
769 if (remaining <= 0) {
770 break;
771 }
772 uc = utext_current32(text);
773 if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
774 // Maybe. See if it's in the dictionary.
775 // TODO: this looks iffy; compare with old code.
776 int32_t candidates = words[(wordsFound + 1) % BURMESE_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
777 utext_setNativeIndex(text, current + cuWordLength + chars);
778 if (candidates > 0) {
779 break;
780 }
781 }
782 }
783
784 // Bump the word count if there wasn't already one
785 if (cuWordLength <= 0) {
786 wordsFound += 1;
787 }
788
789 // Update the length with the passed-over characters
790 cuWordLength += chars;
791 }
792 else {
793 // Back up to where we were for next iteration
794 utext_setNativeIndex(text, current + cuWordLength);
795 }
796 }
797
798 // Never stop before a combining mark.
799 int32_t currPos;
800 while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
801 utext_next32(text);
802 cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
803 }
804
805 // Look ahead for possible suffixes if a dictionary word does not follow.
806 // We do this in code rather than using a rule so that the heuristic
807 // resynch continues to function. For example, one of the suffix characters
808 // could be a typo in the middle of a word.
809 // NOT CURRENTLY APPLICABLE TO BURMESE
810
811 // Did we find a word on this iteration? If so, push it on the break stack
812 if (cuWordLength > 0) {
813 foundBreaks.push((current+cuWordLength), status);
814 }
815 }
816
817 // Don't return a break for the end of the dictionary range if there is one there.
818 if (foundBreaks.peeki() >= rangeEnd) {
819 (void) foundBreaks.popi();
820 wordsFound -= 1;
821 }
822
823 return wordsFound;
824 }
825
826 /*
827 ******************************************************************
828 * KhmerBreakEngine
829 */
830
831 // How many words in a row are "good enough"?
832 static const int32_t KHMER_LOOKAHEAD = 3;
833
834 // Will not combine a non-word with a preceding dictionary word longer than this
835 static const int32_t KHMER_ROOT_COMBINE_THRESHOLD = 3;
836
837 // Will not combine a non-word that shares at least this much prefix with a
838 // dictionary word, with a preceding word
839 static const int32_t KHMER_PREFIX_COMBINE_THRESHOLD = 3;
840
841 // Minimum word size
842 static const int32_t KHMER_MIN_WORD = 2;
843
844 // Minimum number of characters for two words
845 static const int32_t KHMER_MIN_WORD_SPAN = KHMER_MIN_WORD * 2;
846
847 KhmerBreakEngine::KhmerBreakEngine(DictionaryMatcher *adoptDictionary, UErrorCode &status)
848 : DictionaryBreakEngine((1 << UBRK_WORD) | (1 << UBRK_LINE)),
849 fDictionary(adoptDictionary)
850 {
851 fKhmerWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]]"), status);
852 if (U_SUCCESS(status)) {
853 setCharacters(fKhmerWordSet);
854 }
855 fMarkSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Khmr:]&[:LineBreak=SA:]&[:M:]]"), status);
856 fMarkSet.add(0x0020);
857 fEndWordSet = fKhmerWordSet;
858 fBeginWordSet.add(0x1780, 0x17B3);
859 //fBeginWordSet.add(0x17A3, 0x17A4); // deprecated vowels
860 //fEndWordSet.remove(0x17A5, 0x17A9); // Khmer independent vowels that can't end a word
861 //fEndWordSet.remove(0x17B2); // Khmer independent vowel that can't end a word
862 fEndWordSet.remove(0x17D2); // KHMER SIGN COENG that combines some following characters
863 //fEndWordSet.remove(0x17B6, 0x17C5); // Remove dependent vowels
864 // fEndWordSet.remove(0x0E31); // MAI HAN-AKAT
865 // fEndWordSet.remove(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
866 // fBeginWordSet.add(0x0E01, 0x0E2E); // KO KAI through HO NOKHUK
867 // fBeginWordSet.add(0x0E40, 0x0E44); // SARA E through SARA AI MAIMALAI
868 // fSuffixSet.add(THAI_PAIYANNOI);
869 // fSuffixSet.add(THAI_MAIYAMOK);
870
871 // Compact for caching.
872 fMarkSet.compact();
873 fEndWordSet.compact();
874 fBeginWordSet.compact();
875 // fSuffixSet.compact();
876 }
877
878 KhmerBreakEngine::~KhmerBreakEngine() {
879 delete fDictionary;
880 }
881
882 int32_t
883 KhmerBreakEngine::divideUpDictionaryRange( UText *text,
884 int32_t rangeStart,
885 int32_t rangeEnd,
886 UStack &foundBreaks ) const {
887 if ((rangeEnd - rangeStart) < KHMER_MIN_WORD_SPAN) {
888 return 0; // Not enough characters for two words
889 }
890
891 uint32_t wordsFound = 0;
892 int32_t cpWordLength = 0;
893 int32_t cuWordLength = 0;
894 int32_t current;
895 UErrorCode status = U_ZERO_ERROR;
896 PossibleWord words[KHMER_LOOKAHEAD];
897
898 utext_setNativeIndex(text, rangeStart);
899
900 while (U_SUCCESS(status) && (current = (int32_t)utext_getNativeIndex(text)) < rangeEnd) {
901 cuWordLength = 0;
902 cpWordLength = 0;
903
904 // Look for candidate words at the current position
905 int32_t candidates = words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
906
907 // If we found exactly one, use that
908 if (candidates == 1) {
909 cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
910 cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength();
911 wordsFound += 1;
912 }
913
914 // If there was more than one, see which one can take us forward the most words
915 else if (candidates > 1) {
916 // If we're already at the end of the range, we're done
917 if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
918 goto foundBest;
919 }
920 do {
921 int32_t wordsMatched = 1;
922 if (words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) > 0) {
923 if (wordsMatched < 2) {
924 // Followed by another dictionary word; mark first word as a good candidate
925 words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
926 wordsMatched = 2;
927 }
928
929 // If we're already at the end of the range, we're done
930 if ((int32_t)utext_getNativeIndex(text) >= rangeEnd) {
931 goto foundBest;
932 }
933
934 // See if any of the possible second words is followed by a third word
935 do {
936 // If we find a third word, stop right away
937 if (words[(wordsFound + 2) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd)) {
938 words[wordsFound % KHMER_LOOKAHEAD].markCurrent();
939 goto foundBest;
940 }
941 }
942 while (words[(wordsFound + 1) % KHMER_LOOKAHEAD].backUp(text));
943 }
944 }
945 while (words[wordsFound % KHMER_LOOKAHEAD].backUp(text));
946 foundBest:
947 cuWordLength = words[wordsFound % KHMER_LOOKAHEAD].acceptMarked(text);
948 cpWordLength = words[wordsFound % KHMER_LOOKAHEAD].markedCPLength();
949 wordsFound += 1;
950 }
951
952 // We come here after having either found a word or not. We look ahead to the
953 // next word. If it's not a dictionary word, we will combine it with the word we
954 // just found (if there is one), but only if the preceding word does not exceed
955 // the threshold.
956 // The text iterator should now be positioned at the end of the word we found.
957 if ((int32_t)utext_getNativeIndex(text) < rangeEnd && cpWordLength < KHMER_ROOT_COMBINE_THRESHOLD) {
958 // if it is a dictionary word, do nothing. If it isn't, then if there is
959 // no preceding word, or the non-word shares less than the minimum threshold
960 // of characters with a dictionary word, then scan to resynchronize
961 if (words[wordsFound % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
962 && (cuWordLength == 0
963 || words[wordsFound % KHMER_LOOKAHEAD].longestPrefix() < KHMER_PREFIX_COMBINE_THRESHOLD)) {
964 // Look for a plausible word boundary
965 int32_t remaining = rangeEnd - (current+cuWordLength);
966 UChar32 pc;
967 UChar32 uc;
968 int32_t chars = 0;
969 for (;;) {
970 int32_t pcIndex = (int32_t)utext_getNativeIndex(text);
971 pc = utext_next32(text);
972 int32_t pcSize = (int32_t)utext_getNativeIndex(text) - pcIndex;
973 chars += pcSize;
974 remaining -= pcSize;
975 if (remaining <= 0) {
976 break;
977 }
978 uc = utext_current32(text);
979 if (fEndWordSet.contains(pc) && fBeginWordSet.contains(uc)) {
980 // Maybe. See if it's in the dictionary.
981 int32_t candidates = words[(wordsFound + 1) % KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd);
982 utext_setNativeIndex(text, current+cuWordLength+chars);
983 if (candidates > 0) {
984 break;
985 }
986 }
987 }
988
989 // Bump the word count if there wasn't already one
990 if (cuWordLength <= 0) {
991 wordsFound += 1;
992 }
993
994 // Update the length with the passed-over characters
995 cuWordLength += chars;
996 }
997 else {
998 // Back up to where we were for next iteration
999 utext_setNativeIndex(text, current+cuWordLength);
1000 }
1001 }
1002
1003 // Never stop before a combining mark.
1004 int32_t currPos;
1005 while ((currPos = (int32_t)utext_getNativeIndex(text)) < rangeEnd && fMarkSet.contains(utext_current32(text))) {
1006 utext_next32(text);
1007 cuWordLength += (int32_t)utext_getNativeIndex(text) - currPos;
1008 }
1009
1010 // Look ahead for possible suffixes if a dictionary word does not follow.
1011 // We do this in code rather than using a rule so that the heuristic
1012 // resynch continues to function. For example, one of the suffix characters
1013 // could be a typo in the middle of a word.
1014 // if ((int32_t)utext_getNativeIndex(text) < rangeEnd && wordLength > 0) {
1015 // if (words[wordsFound%KHMER_LOOKAHEAD].candidates(text, fDictionary, rangeEnd) <= 0
1016 // && fSuffixSet.contains(uc = utext_current32(text))) {
1017 // if (uc == KHMER_PAIYANNOI) {
1018 // if (!fSuffixSet.contains(utext_previous32(text))) {
1019 // // Skip over previous end and PAIYANNOI
1020 // utext_next32(text);
1021 // utext_next32(text);
1022 // wordLength += 1; // Add PAIYANNOI to word
1023 // uc = utext_current32(text); // Fetch next character
1024 // }
1025 // else {
1026 // // Restore prior position
1027 // utext_next32(text);
1028 // }
1029 // }
1030 // if (uc == KHMER_MAIYAMOK) {
1031 // if (utext_previous32(text) != KHMER_MAIYAMOK) {
1032 // // Skip over previous end and MAIYAMOK
1033 // utext_next32(text);
1034 // utext_next32(text);
1035 // wordLength += 1; // Add MAIYAMOK to word
1036 // }
1037 // else {
1038 // // Restore prior position
1039 // utext_next32(text);
1040 // }
1041 // }
1042 // }
1043 // else {
1044 // utext_setNativeIndex(text, current+wordLength);
1045 // }
1046 // }
1047
1048 // Did we find a word on this iteration? If so, push it on the break stack
1049 if (cuWordLength > 0) {
1050 foundBreaks.push((current+cuWordLength), status);
1051 }
1052 }
1053
1054 // Don't return a break for the end of the dictionary range if there is one there.
1055 if (foundBreaks.peeki() >= rangeEnd) {
1056 (void) foundBreaks.popi();
1057 wordsFound -= 1;
1058 }
1059
1060 return wordsFound;
1061 }
1062
1063 #if !UCONFIG_NO_NORMALIZATION
1064 /*
1065 ******************************************************************
1066 * CjkBreakEngine
1067 */
1068 static const uint32_t kuint32max = 0xFFFFFFFF;
1069 CjkBreakEngine::CjkBreakEngine(DictionaryMatcher *adoptDictionary, LanguageType type, UErrorCode &status)
1070 : DictionaryBreakEngine(1 << UBRK_WORD), fDictionary(adoptDictionary) {
1071 // Korean dictionary only includes Hangul syllables
1072 fHangulWordSet.applyPattern(UNICODE_STRING_SIMPLE("[\\uac00-\\ud7a3]"), status);
1073 fHanWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Han:]"), status);
1074 fKatakanaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[[:Katakana:]\\uff9e\\uff9f]"), status);
1075 fHiraganaWordSet.applyPattern(UNICODE_STRING_SIMPLE("[:Hiragana:]"), status);
1076 nfkcNorm2 = Normalizer2::getNFKCInstance(status);
1077
1078 if (U_SUCCESS(status)) {
1079 // handle Korean and Japanese/Chinese using different dictionaries
1080 if (type == kKorean) {
1081 setCharacters(fHangulWordSet);
1082 } else { //Chinese and Japanese
1083 UnicodeSet cjSet;
1084 cjSet.addAll(fHanWordSet);
1085 cjSet.addAll(fKatakanaWordSet);
1086 cjSet.addAll(fHiraganaWordSet);
1087 cjSet.add(0xFF70); // HALFWIDTH KATAKANA-HIRAGANA PROLONGED SOUND MARK
1088 cjSet.add(0x30FC); // KATAKANA-HIRAGANA PROLONGED SOUND MARK
1089 setCharacters(cjSet);
1090 }
1091 }
1092 }
1093
1094 CjkBreakEngine::~CjkBreakEngine(){
1095 delete fDictionary;
1096 }
1097
1098 // The katakanaCost values below are based on the length frequencies of all
1099 // katakana phrases in the dictionary
1100 static const int32_t kMaxKatakanaLength = 8;
1101 static const int32_t kMaxKatakanaGroupLength = 20;
1102 static const uint32_t maxSnlp = 255;
1103
1104 static inline uint32_t getKatakanaCost(int32_t wordLength){
1105 //TODO: fill array with actual values from dictionary!
1106 static const uint32_t katakanaCost[kMaxKatakanaLength + 1]
1107 = {8192, 984, 408, 240, 204, 252, 300, 372, 480};
1108 return (wordLength > kMaxKatakanaLength) ? 8192 : katakanaCost[wordLength];
1109 }
1110
1111 static inline bool isKatakana(uint16_t value) {
1112 return (value >= 0x30A1u && value <= 0x30FEu && value != 0x30FBu) ||
1113 (value >= 0xFF66u && value <= 0xFF9fu);
1114 }
1115
1116
1117 // Function for accessing internal utext flags.
1118 // Replicates an internal UText function.
1119
1120 static inline int32_t utext_i32_flag(int32_t bitIndex) {
1121 return (int32_t)1 << bitIndex;
1122 }
1123
1124
1125 /*
1126 * @param text A UText representing the text
1127 * @param rangeStart The start of the range of dictionary characters
1128 * @param rangeEnd The end of the range of dictionary characters
1129 * @param foundBreaks Output of C array of int32_t break positions, or 0
1130 * @return The number of breaks found
1131 */
1132 int32_t
1133 CjkBreakEngine::divideUpDictionaryRange( UText *inText,
1134 int32_t rangeStart,
1135 int32_t rangeEnd,
1136 UStack &foundBreaks ) const {
1137 if (rangeStart >= rangeEnd) {
1138 return 0;
1139 }
1140
1141 // UnicodeString version of input UText, NFKC normalized if necessary.
1142 UnicodeString inString;
1143
1144 // inputMap[inStringIndex] = corresponding native index from UText inText.
1145 // If NULL then mapping is 1:1
1146 LocalPointer<UVector32> inputMap;
1147
1148 UErrorCode status = U_ZERO_ERROR;
1149
1150
1151 // if UText has the input string as one contiguous UTF-16 chunk
1152 if ((inText->providerProperties & utext_i32_flag(UTEXT_PROVIDER_STABLE_CHUNKS)) &&
1153 inText->chunkNativeStart <= rangeStart &&
1154 inText->chunkNativeLimit >= rangeEnd &&
1155 inText->nativeIndexingLimit >= rangeEnd - inText->chunkNativeStart) {
1156
1157 // Input UText is in one contiguous UTF-16 chunk.
1158 // Use Read-only aliasing UnicodeString.
1159 inString.setTo(FALSE,
1160 inText->chunkContents + rangeStart - inText->chunkNativeStart,
1161 rangeEnd - rangeStart);
1162 } else {
1163 // Copy the text from the original inText (UText) to inString (UnicodeString).
1164 // Create a map from UnicodeString indices -> UText offsets.
1165 utext_setNativeIndex(inText, rangeStart);
1166 int32_t limit = rangeEnd;
1167 U_ASSERT(limit <= utext_nativeLength(inText));
1168 if (limit > utext_nativeLength(inText)) {
1169 limit = (int32_t)utext_nativeLength(inText);
1170 }
1171 inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status);
1172 if (U_FAILURE(status)) {
1173 return 0;
1174 }
1175 while (utext_getNativeIndex(inText) < limit) {
1176 int32_t nativePosition = (int32_t)utext_getNativeIndex(inText);
1177 UChar32 c = utext_next32(inText);
1178 U_ASSERT(c != U_SENTINEL);
1179 inString.append(c);
1180 while (inputMap->size() < inString.length()) {
1181 inputMap->addElement(nativePosition, status);
1182 }
1183 }
1184 inputMap->addElement(limit, status);
1185 }
1186
1187
1188 if (!nfkcNorm2->isNormalized(inString, status)) {
1189 UnicodeString normalizedInput;
1190 // normalizedMap[normalizedInput position] == original UText position.
1191 LocalPointer<UVector32> normalizedMap(new UVector32(status), status);
1192 if (U_FAILURE(status)) {
1193 return 0;
1194 }
1195
1196 UnicodeString fragment;
1197 UnicodeString normalizedFragment;
1198 for (int32_t srcI = 0; srcI < inString.length();) { // Once per normalization chunk
1199 fragment.remove();
1200 int32_t fragmentStartI = srcI;
1201 UChar32 c = inString.char32At(srcI);
1202 for (;;) {
1203 fragment.append(c);
1204 srcI = inString.moveIndex32(srcI, 1);
1205 if (srcI == inString.length()) {
1206 break;
1207 }
1208 c = inString.char32At(srcI);
1209 if (nfkcNorm2->hasBoundaryBefore(c)) {
1210 break;
1211 }
1212 }
1213 nfkcNorm2->normalize(fragment, normalizedFragment, status);
1214 normalizedInput.append(normalizedFragment);
1215
1216 // Map every position in the normalized chunk to the start of the chunk
1217 // in the original input.
1218 int32_t fragmentOriginalStart = inputMap.isValid() ?
1219 inputMap->elementAti(fragmentStartI) : fragmentStartI+rangeStart;
1220 while (normalizedMap->size() < normalizedInput.length()) {
1221 normalizedMap->addElement(fragmentOriginalStart, status);
1222 if (U_FAILURE(status)) {
1223 break;
1224 }
1225 }
1226 }
1227 U_ASSERT(normalizedMap->size() == normalizedInput.length());
1228 int32_t nativeEnd = inputMap.isValid() ?
1229 inputMap->elementAti(inString.length()) : inString.length()+rangeStart;
1230 normalizedMap->addElement(nativeEnd, status);
1231
1232 inputMap.moveFrom(normalizedMap);
1233 inString.moveFrom(normalizedInput);
1234 }
1235
1236 int32_t numCodePts = inString.countChar32();
1237 if (numCodePts != inString.length()) {
1238 // There are supplementary characters in the input.
1239 // The dictionary will produce boundary positions in terms of code point indexes,
1240 // not in terms of code unit string indexes.
1241 // Use the inputMap mechanism to take care of this in addition to indexing differences
1242 // from normalization and/or UTF-8 input.
1243 UBool hadExistingMap = inputMap.isValid();
1244 if (!hadExistingMap) {
1245 inputMap.adoptInsteadAndCheckErrorCode(new UVector32(status), status);
1246 if (U_FAILURE(status)) {
1247 return 0;
1248 }
1249 }
1250 int32_t cpIdx = 0;
1251 for (int32_t cuIdx = 0; ; cuIdx = inString.moveIndex32(cuIdx, 1)) {
1252 U_ASSERT(cuIdx >= cpIdx);
1253 if (hadExistingMap) {
1254 inputMap->setElementAt(inputMap->elementAti(cuIdx), cpIdx);
1255 } else {
1256 inputMap->addElement(cuIdx+rangeStart, status);
1257 }
1258 cpIdx++;
1259 if (cuIdx == inString.length()) {
1260 break;
1261 }
1262 }
1263 }
1264
1265 // bestSnlp[i] is the snlp of the best segmentation of the first i
1266 // code points in the range to be matched.
1267 UVector32 bestSnlp(numCodePts + 1, status);
1268 bestSnlp.addElement(0, status);
1269 for(int32_t i = 1; i <= numCodePts; i++) {
1270 bestSnlp.addElement(kuint32max, status);
1271 }
1272
1273
1274 // prev[i] is the index of the last CJK code point in the previous word in
1275 // the best segmentation of the first i characters.
1276 UVector32 prev(numCodePts + 1, status);
1277 for(int32_t i = 0; i <= numCodePts; i++){
1278 prev.addElement(-1, status);
1279 }
1280
1281 const int32_t maxWordSize = 20;
1282 UVector32 values(numCodePts, status);
1283 values.setSize(numCodePts);
1284 UVector32 lengths(numCodePts, status);
1285 lengths.setSize(numCodePts);
1286
1287 UText fu = UTEXT_INITIALIZER;
1288 utext_openUnicodeString(&fu, &inString, &status);
1289
1290 // Dynamic programming to find the best segmentation.
1291
1292 // In outer loop, i is the code point index,
1293 // ix is the corresponding string (code unit) index.
1294 // They differ when the string contains supplementary characters.
1295 int32_t ix = 0;
1296 for (int32_t i = 0; i < numCodePts; ++i, ix = inString.moveIndex32(ix, 1)) {
1297 if ((uint32_t)bestSnlp.elementAti(i) == kuint32max) {
1298 continue;
1299 }
1300
1301 int32_t count;
1302 utext_setNativeIndex(&fu, ix);
1303 count = fDictionary->matches(&fu, maxWordSize, numCodePts,
1304 NULL, lengths.getBuffer(), values.getBuffer(), NULL);
1305 // Note: lengths is filled with code point lengths
1306 // The NULL parameter is the ignored code unit lengths.
1307
1308 // if there are no single character matches found in the dictionary
1309 // starting with this charcter, treat character as a 1-character word
1310 // with the highest value possible, i.e. the least likely to occur.
1311 // Exclude Korean characters from this treatment, as they should be left
1312 // together by default.
1313 if ((count == 0 || lengths.elementAti(0) != 1) &&
1314 !fHangulWordSet.contains(inString.char32At(ix))) {
1315 values.setElementAt(maxSnlp, count); // 255
1316 lengths.setElementAt(1, count++);
1317 }
1318
1319 for (int32_t j = 0; j < count; j++) {
1320 uint32_t newSnlp = (uint32_t)bestSnlp.elementAti(i) + (uint32_t)values.elementAti(j);
1321 int32_t ln_j_i = lengths.elementAti(j) + i;
1322 if (newSnlp < (uint32_t)bestSnlp.elementAti(ln_j_i)) {
1323 bestSnlp.setElementAt(newSnlp, ln_j_i);
1324 prev.setElementAt(i, ln_j_i);
1325 }
1326 }
1327
1328 // In Japanese,
1329 // Katakana word in single character is pretty rare. So we apply
1330 // the following heuristic to Katakana: any continuous run of Katakana
1331 // characters is considered a candidate word with a default cost
1332 // specified in the katakanaCost table according to its length.
1333
1334 bool is_prev_katakana = false;
1335 bool is_katakana = isKatakana(inString.char32At(ix));
1336 int32_t katakanaRunLength = 1;
1337 if (!is_prev_katakana && is_katakana) {
1338 int32_t j = inString.moveIndex32(ix, 1);
1339 // Find the end of the continuous run of Katakana characters
1340 while (j < inString.length() && katakanaRunLength < kMaxKatakanaGroupLength &&
1341 isKatakana(inString.char32At(j))) {
1342 j = inString.moveIndex32(j, 1);
1343 katakanaRunLength++;
1344 }
1345 if (katakanaRunLength < kMaxKatakanaGroupLength) {
1346 uint32_t newSnlp = bestSnlp.elementAti(i) + getKatakanaCost(katakanaRunLength);
1347 if (newSnlp < (uint32_t)bestSnlp.elementAti(j)) {
1348 bestSnlp.setElementAt(newSnlp, j);
1349 prev.setElementAt(i, i+katakanaRunLength); // prev[j] = i;
1350 }
1351 }
1352 }
1353 is_prev_katakana = is_katakana;
1354 }
1355 utext_close(&fu);
1356
1357 // Start pushing the optimal offset index into t_boundary (t for tentative).
1358 // prev[numCodePts] is guaranteed to be meaningful.
1359 // We'll first push in the reverse order, i.e.,
1360 // t_boundary[0] = numCodePts, and afterwards do a swap.
1361 UVector32 t_boundary(numCodePts+1, status);
1362
1363 int32_t numBreaks = 0;
1364 // No segmentation found, set boundary to end of range
1365 if ((uint32_t)bestSnlp.elementAti(numCodePts) == kuint32max) {
1366 t_boundary.addElement(numCodePts, status);
1367 numBreaks++;
1368 } else {
1369 for (int32_t i = numCodePts; i > 0; i = prev.elementAti(i)) {
1370 t_boundary.addElement(i, status);
1371 numBreaks++;
1372 }
1373 U_ASSERT(prev.elementAti(t_boundary.elementAti(numBreaks - 1)) == 0);
1374 }
1375
1376 // Add a break for the start of the dictionary range if there is not one
1377 // there already.
1378 if (foundBreaks.size() == 0 || foundBreaks.peeki() < rangeStart) {
1379 t_boundary.addElement(0, status);
1380 numBreaks++;
1381 }
1382
1383 // Now that we're done, convert positions in t_boundary[] (indices in
1384 // the normalized input string) back to indices in the original input UText
1385 // while reversing t_boundary and pushing values to foundBreaks.
1386 for (int32_t i = numBreaks-1; i >= 0; i--) {
1387 int32_t cpPos = t_boundary.elementAti(i);
1388 int32_t utextPos = inputMap.isValid() ? inputMap->elementAti(cpPos) : cpPos + rangeStart;
1389 // Boundaries are added to foundBreaks output in ascending order.
1390 U_ASSERT(foundBreaks.size() == 0 ||foundBreaks.peeki() < utextPos);
1391 foundBreaks.push(utextPos, status);
1392 }
1393
1394 // inString goes out of scope
1395 // inputMap goes out of scope
1396 return numBreaks;
1397 }
1398 #endif
1399
1400 U_NAMESPACE_END
1401
1402 #endif /* #if !UCONFIG_NO_BREAK_ITERATION */
1403