2 *******************************************************************************
4 * Copyright (C) 2009-2014, International Business Machines
5 * Corporation and others. All Rights Reserved.
7 *******************************************************************************
8 * file name: normalizer2impl.cpp
10 * tab size: 8 (not used)
13 * created on: 2009nov22
14 * created by: Markus W. Scherer
17 #include "unicode/utypes.h"
19 #if !UCONFIG_NO_NORMALIZATION
21 #include "unicode/normalizer2.h"
22 #include "unicode/udata.h"
23 #include "unicode/ustring.h"
24 #include "unicode/utf16.h"
27 #include "normalizer2impl.h"
36 // ReorderingBuffer -------------------------------------------------------- ***
38 UBool
ReorderingBuffer::init(int32_t destCapacity
, UErrorCode
&errorCode
) {
39 int32_t length
=str
.length();
40 start
=str
.getBuffer(destCapacity
);
42 // getBuffer() already did str.setToBogus()
43 errorCode
=U_MEMORY_ALLOCATION_ERROR
;
47 remainingCapacity
=str
.getCapacity()-length
;
54 // Set reorderStart after the last code point with cc<=1 if there is one.
56 while(previousCC()>1) {}
58 reorderStart
=codePointLimit
;
63 UBool
ReorderingBuffer::equals(const UChar
*otherStart
, const UChar
*otherLimit
) const {
64 int32_t length
=(int32_t)(limit
-start
);
66 length
==(int32_t)(otherLimit
-otherStart
) &&
67 0==u_memcmp(start
, otherStart
, length
);
70 UBool
ReorderingBuffer::appendSupplementary(UChar32 c
, uint8_t cc
, UErrorCode
&errorCode
) {
71 if(remainingCapacity
<2 && !resize(2, errorCode
)) {
74 if(lastCC
<=cc
|| cc
==0) {
76 limit
[1]=U16_TRAIL(c
);
89 UBool
ReorderingBuffer::append(const UChar
*s
, int32_t length
,
90 uint8_t leadCC
, uint8_t trailCC
,
91 UErrorCode
&errorCode
) {
95 if(remainingCapacity
<length
&& !resize(length
, errorCode
)) {
98 remainingCapacity
-=length
;
99 if(lastCC
<=leadCC
|| leadCC
==0) {
101 reorderStart
=limit
+length
;
102 } else if(leadCC
<=1) {
103 reorderStart
=limit
+1; // Ok if not a code point boundary.
105 const UChar
*sLimit
=s
+length
;
106 do { *limit
++=*s
++; } while(s
!=sLimit
);
111 U16_NEXT(s
, i
, length
, c
);
112 insert(c
, leadCC
); // insert first code point
114 U16_NEXT(s
, i
, length
, c
);
116 // s must be in NFD, otherwise we need to use getCC().
117 leadCC
=Normalizer2Impl::getCCFromYesOrMaybe(impl
.getNorm16(c
));
121 append(c
, leadCC
, errorCode
);
127 UBool
ReorderingBuffer::appendZeroCC(UChar32 c
, UErrorCode
&errorCode
) {
128 int32_t cpLength
=U16_LENGTH(c
);
129 if(remainingCapacity
<cpLength
&& !resize(cpLength
, errorCode
)) {
132 remainingCapacity
-=cpLength
;
136 limit
[0]=U16_LEAD(c
);
137 limit
[1]=U16_TRAIL(c
);
145 UBool
ReorderingBuffer::appendZeroCC(const UChar
*s
, const UChar
*sLimit
, UErrorCode
&errorCode
) {
149 int32_t length
=(int32_t)(sLimit
-s
);
150 if(remainingCapacity
<length
&& !resize(length
, errorCode
)) {
153 u_memcpy(limit
, s
, length
);
155 remainingCapacity
-=length
;
161 void ReorderingBuffer::remove() {
162 reorderStart
=limit
=start
;
163 remainingCapacity
=str
.getCapacity();
167 void ReorderingBuffer::removeSuffix(int32_t suffixLength
) {
168 if(suffixLength
<(limit
-start
)) {
170 remainingCapacity
+=suffixLength
;
173 remainingCapacity
=str
.getCapacity();
179 UBool
ReorderingBuffer::resize(int32_t appendLength
, UErrorCode
&errorCode
) {
180 int32_t reorderStartIndex
=(int32_t)(reorderStart
-start
);
181 int32_t length
=(int32_t)(limit
-start
);
182 str
.releaseBuffer(length
);
183 int32_t newCapacity
=length
+appendLength
;
184 int32_t doubleCapacity
=2*str
.getCapacity();
185 if(newCapacity
<doubleCapacity
) {
186 newCapacity
=doubleCapacity
;
188 if(newCapacity
<256) {
191 start
=str
.getBuffer(newCapacity
);
193 // getBuffer() already did str.setToBogus()
194 errorCode
=U_MEMORY_ALLOCATION_ERROR
;
197 reorderStart
=start
+reorderStartIndex
;
199 remainingCapacity
=str
.getCapacity()-length
;
203 void ReorderingBuffer::skipPrevious() {
204 codePointLimit
=codePointStart
;
205 UChar c
=*--codePointStart
;
206 if(U16_IS_TRAIL(c
) && start
<codePointStart
&& U16_IS_LEAD(*(codePointStart
-1))) {
211 uint8_t ReorderingBuffer::previousCC() {
212 codePointLimit
=codePointStart
;
213 if(reorderStart
>=codePointStart
) {
216 UChar32 c
=*--codePointStart
;
217 if(c
<Normalizer2Impl::MIN_CCC_LCCC_CP
) {
222 if(U16_IS_TRAIL(c
) && start
<codePointStart
&& U16_IS_LEAD(c2
=*(codePointStart
-1))) {
224 c
=U16_GET_SUPPLEMENTARY(c2
, c
);
226 return Normalizer2Impl::getCCFromYesOrMaybe(impl
.getNorm16(c
));
229 // Inserts c somewhere before the last character.
230 // Requires 0<cc<lastCC which implies reorderStart<limit.
231 void ReorderingBuffer::insert(UChar32 c
, uint8_t cc
) {
232 for(setIterator(), skipPrevious(); previousCC()>cc
;) {}
233 // insert c at codePointLimit, after the character with prevCC<=cc
235 UChar
*r
=limit
+=U16_LENGTH(c
);
238 } while(codePointLimit
!=q
);
239 writeCodePoint(q
, c
);
245 // Normalizer2Impl --------------------------------------------------------- ***
247 struct CanonIterData
: public UMemory
{
248 CanonIterData(UErrorCode
&errorCode
);
250 void addToStartSet(UChar32 origin
, UChar32 decompLead
, UErrorCode
&errorCode
);
252 UVector canonStartSets
; // contains UnicodeSet *
255 Normalizer2Impl::~Normalizer2Impl() {
257 utrie2_close(normTrie
);
258 delete fCanonIterData
;
262 Normalizer2Impl::isAcceptable(void *context
,
263 const char * /* type */, const char * /*name*/,
264 const UDataInfo
*pInfo
) {
267 pInfo
->isBigEndian
==U_IS_BIG_ENDIAN
&&
268 pInfo
->charsetFamily
==U_CHARSET_FAMILY
&&
269 pInfo
->dataFormat
[0]==0x4e && /* dataFormat="Nrm2" */
270 pInfo
->dataFormat
[1]==0x72 &&
271 pInfo
->dataFormat
[2]==0x6d &&
272 pInfo
->dataFormat
[3]==0x32 &&
273 pInfo
->formatVersion
[0]==2
275 Normalizer2Impl
*me
=(Normalizer2Impl
*)context
;
276 uprv_memcpy(me
->dataVersion
, pInfo
->dataVersion
, 4);
284 Normalizer2Impl::load(const char *packageName
, const char *name
, UErrorCode
&errorCode
) {
285 if(U_FAILURE(errorCode
)) {
288 memory
=udata_openChoice(packageName
, "nrm", name
, isAcceptable
, this, &errorCode
);
289 if(U_FAILURE(errorCode
)) {
292 const uint8_t *inBytes
=(const uint8_t *)udata_getMemory(memory
);
293 const int32_t *inIndexes
=(const int32_t *)inBytes
;
294 int32_t indexesLength
=inIndexes
[IX_NORM_TRIE_OFFSET
]/4;
295 if(indexesLength
<=IX_MIN_MAYBE_YES
) {
296 errorCode
=U_INVALID_FORMAT_ERROR
; // Not enough indexes.
300 minDecompNoCP
=inIndexes
[IX_MIN_DECOMP_NO_CP
];
301 minCompNoMaybeCP
=inIndexes
[IX_MIN_COMP_NO_MAYBE_CP
];
303 minYesNo
=inIndexes
[IX_MIN_YES_NO
];
304 minYesNoMappingsOnly
=inIndexes
[IX_MIN_YES_NO_MAPPINGS_ONLY
];
305 minNoNo
=inIndexes
[IX_MIN_NO_NO
];
306 limitNoNo
=inIndexes
[IX_LIMIT_NO_NO
];
307 minMaybeYes
=inIndexes
[IX_MIN_MAYBE_YES
];
309 int32_t offset
=inIndexes
[IX_NORM_TRIE_OFFSET
];
310 int32_t nextOffset
=inIndexes
[IX_EXTRA_DATA_OFFSET
];
311 normTrie
=utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS
,
312 inBytes
+offset
, nextOffset
-offset
, NULL
,
314 if(U_FAILURE(errorCode
)) {
319 nextOffset
=inIndexes
[IX_SMALL_FCD_OFFSET
];
320 maybeYesCompositions
=(const uint16_t *)(inBytes
+offset
);
321 extraData
=maybeYesCompositions
+(MIN_NORMAL_MAYBE_YES
-minMaybeYes
);
323 // smallFCD: new in formatVersion 2
325 smallFCD
=inBytes
+offset
;
328 // gennorm2 enforces lccc=0 for c<MIN_CCC_LCCC_CP=U+0300.
330 for(UChar c
=0; c
<0x180; bits
>>=1) {
332 bits
=smallFCD
[c
>>8]; // one byte per 0x100 code points
335 for(int i
=0; i
<0x20; ++i
, ++c
) {
336 tccc180
[c
]=(uint8_t)getFCD16FromNormData(c
);
339 uprv_memset(tccc180
+c
, 0, 0x20);
345 uint8_t Normalizer2Impl::getTrailCCFromCompYesAndZeroCC(const UChar
*cpStart
, const UChar
*cpLimit
) const {
347 if(cpStart
==(cpLimit
-1)) {
350 c
=U16_GET_SUPPLEMENTARY(cpStart
[0], cpStart
[1]);
352 uint16_t prevNorm16
=getNorm16(c
);
353 if(prevNorm16
<=minYesNo
) {
354 return 0; // yesYes and Hangul LV/LVT have ccc=tccc=0
356 return (uint8_t)(*getMapping(prevNorm16
)>>8); // tccc from yesNo
364 LcccContext(const Normalizer2Impl
&ni
, UnicodeSet
&s
) : impl(ni
), set(s
) {}
366 void handleRange(UChar32 start
, UChar32 end
, uint16_t norm16
) {
367 if(impl
.isAlgorithmicNoNo(norm16
)) {
368 // Range of code points with same-norm16-value algorithmic decompositions.
369 // They might have different non-zero FCD16 values.
371 uint16_t fcd16
=impl
.getFCD16(start
);
372 if(fcd16
>0xff) { set
.add(start
); }
373 } while(++start
<=end
);
375 uint16_t fcd16
=impl
.getFCD16(start
);
376 if(fcd16
>0xff) { set
.add(start
, end
); }
381 const Normalizer2Impl
&impl
;
385 struct PropertyStartsContext
{
386 PropertyStartsContext(const Normalizer2Impl
&ni
, const USetAdder
*adder
)
387 : impl(ni
), sa(adder
) {}
389 const Normalizer2Impl
&impl
;
397 static UBool U_CALLCONV
398 enumLcccRange(const void *context
, UChar32 start
, UChar32 end
, uint32_t value
) {
399 ((LcccContext
*)context
)->handleRange(start
, end
, (uint16_t)value
);
403 static UBool U_CALLCONV
404 enumNorm16PropertyStartsRange(const void *context
, UChar32 start
, UChar32 end
, uint32_t value
) {
405 /* add the start code point to the USet */
406 const PropertyStartsContext
*ctx
=(const PropertyStartsContext
*)context
;
407 const USetAdder
*sa
=ctx
->sa
;
408 sa
->add(sa
->set
, start
);
409 if(start
!=end
&& ctx
->impl
.isAlgorithmicNoNo((uint16_t)value
)) {
410 // Range of code points with same-norm16-value algorithmic decompositions.
411 // They might have different non-zero FCD16 values.
412 uint16_t prevFCD16
=ctx
->impl
.getFCD16(start
);
413 while(++start
<=end
) {
414 uint16_t fcd16
=ctx
->impl
.getFCD16(start
);
415 if(fcd16
!=prevFCD16
) {
416 sa
->add(sa
->set
, start
);
424 static UBool U_CALLCONV
425 enumPropertyStartsRange(const void *context
, UChar32 start
, UChar32
/*end*/, uint32_t /*value*/) {
426 /* add the start code point to the USet */
427 const USetAdder
*sa
=(const USetAdder
*)context
;
428 sa
->add(sa
->set
, start
);
432 static uint32_t U_CALLCONV
433 segmentStarterMapper(const void * /*context*/, uint32_t value
) {
434 return value
&CANON_NOT_SEGMENT_STARTER
;
440 Normalizer2Impl::addLcccChars(UnicodeSet
&set
) const {
441 /* add the start code point of each same-value range of each trie */
442 LcccContext
context(*this, set
);
443 utrie2_enum(normTrie
, NULL
, enumLcccRange
, &context
);
447 Normalizer2Impl::addPropertyStarts(const USetAdder
*sa
, UErrorCode
& /*errorCode*/) const {
448 /* add the start code point of each same-value range of each trie */
449 PropertyStartsContext
context(*this, sa
);
450 utrie2_enum(normTrie
, NULL
, enumNorm16PropertyStartsRange
, &context
);
452 /* add Hangul LV syllables and LV+1 because of skippables */
453 for(UChar c
=Hangul::HANGUL_BASE
; c
<Hangul::HANGUL_LIMIT
; c
+=Hangul::JAMO_T_COUNT
) {
455 sa
->add(sa
->set
, c
+1);
457 sa
->add(sa
->set
, Hangul::HANGUL_LIMIT
); /* add Hangul+1 to continue with other properties */
461 Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder
*sa
, UErrorCode
&errorCode
) const {
462 /* add the start code point of each same-value range of the canonical iterator data trie */
463 if(ensureCanonIterData(errorCode
)) {
464 // currently only used for the SEGMENT_STARTER property
465 utrie2_enum(fCanonIterData
->trie
, segmentStarterMapper
, enumPropertyStartsRange
, sa
);
470 Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar
*src
,
471 UChar32 minNeedDataCP
,
472 ReorderingBuffer
*buffer
,
473 UErrorCode
&errorCode
) const {
474 // Make some effort to support NUL-terminated strings reasonably.
475 // Take the part of the fast quick check loop that does not look up
476 // data and check the first part of the string.
477 // After this prefix, determine the string length to simplify the rest
479 const UChar
*prevSrc
=src
;
481 while((c
=*src
++)<minNeedDataCP
&& c
!=0) {}
482 // Back out the last character for full processing.
486 buffer
->appendZeroCC(prevSrc
, src
, errorCode
);
493 Normalizer2Impl::decompose(const UnicodeString
&src
, UnicodeString
&dest
,
494 UErrorCode
&errorCode
) const {
495 if(U_FAILURE(errorCode
)) {
499 const UChar
*sArray
=src
.getBuffer();
500 if(&dest
==&src
|| sArray
==NULL
) {
501 errorCode
=U_ILLEGAL_ARGUMENT_ERROR
;
505 decompose(sArray
, sArray
+src
.length(), dest
, src
.length(), errorCode
);
510 Normalizer2Impl::decompose(const UChar
*src
, const UChar
*limit
,
512 int32_t destLengthEstimate
,
513 UErrorCode
&errorCode
) const {
514 if(destLengthEstimate
<0 && limit
!=NULL
) {
515 destLengthEstimate
=(int32_t)(limit
-src
);
518 ReorderingBuffer
buffer(*this, dest
);
519 if(buffer
.init(destLengthEstimate
, errorCode
)) {
520 decompose(src
, limit
, &buffer
, errorCode
);
524 // Dual functionality:
525 // buffer!=NULL: normalize
526 // buffer==NULL: isNormalized/spanQuickCheckYes
528 Normalizer2Impl::decompose(const UChar
*src
, const UChar
*limit
,
529 ReorderingBuffer
*buffer
,
530 UErrorCode
&errorCode
) const {
531 UChar32 minNoCP
=minDecompNoCP
;
533 src
=copyLowPrefixFromNulTerminated(src
, minNoCP
, buffer
, errorCode
);
534 if(U_FAILURE(errorCode
)) {
537 limit
=u_strchr(src
, 0);
540 const UChar
*prevSrc
;
544 // only for quick check
545 const UChar
*prevBoundary
=src
;
549 // count code units below the minimum or with irrelevant data for the quick check
550 for(prevSrc
=src
; src
!=limit
;) {
551 if( (c
=*src
)<minNoCP
||
552 isMostDecompYesAndZeroCC(norm16
=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie
, c
))
555 } else if(!U16_IS_SURROGATE(c
)) {
559 if(U16_IS_SURROGATE_LEAD(c
)) {
560 if((src
+1)!=limit
&& U16_IS_TRAIL(c2
=src
[1])) {
561 c
=U16_GET_SUPPLEMENTARY(c
, c2
);
563 } else /* trail surrogate */ {
564 if(prevSrc
<src
&& U16_IS_LEAD(c2
=*(src
-1))) {
566 c
=U16_GET_SUPPLEMENTARY(c2
, c
);
569 if(isMostDecompYesAndZeroCC(norm16
=getNorm16(c
))) {
576 // copy these code units all at once
579 if(!buffer
->appendZeroCC(prevSrc
, src
, errorCode
)) {
591 // Check one above-minimum, relevant code point.
594 if(!decompose(c
, norm16
, *buffer
, errorCode
)) {
598 if(isDecompYes(norm16
)) {
599 uint8_t cc
=getCCFromYesOrMaybe(norm16
);
600 if(prevCC
<=cc
|| cc
==0) {
608 return prevBoundary
; // "no" or cc out of order
614 // Decompose a short piece of text which is likely to contain characters that
615 // fail the quick check loop and/or where the quick check loop's overhead
616 // is unlikely to be amortized.
617 // Called by the compose() and makeFCD() implementations.
618 UBool
Normalizer2Impl::decomposeShort(const UChar
*src
, const UChar
*limit
,
619 ReorderingBuffer
&buffer
,
620 UErrorCode
&errorCode
) const {
624 UTRIE2_U16_NEXT16(normTrie
, src
, limit
, c
, norm16
);
625 if(!decompose(c
, norm16
, buffer
, errorCode
)) {
632 UBool
Normalizer2Impl::decompose(UChar32 c
, uint16_t norm16
,
633 ReorderingBuffer
&buffer
,
634 UErrorCode
&errorCode
) const {
635 // Only loops for 1:1 algorithmic mappings.
637 // get the decomposition and the lead and trail cc's
638 if(isDecompYes(norm16
)) {
639 // c does not decompose
640 return buffer
.append(c
, getCCFromYesOrMaybe(norm16
), errorCode
);
641 } else if(isHangul(norm16
)) {
642 // Hangul syllable: decompose algorithmically
644 return buffer
.appendZeroCC(jamos
, jamos
+Hangul::decompose(c
, jamos
), errorCode
);
645 } else if(isDecompNoAlgorithmic(norm16
)) {
646 c
=mapAlgorithmic(c
, norm16
);
649 // c decomposes, get everything from the variable-length extra data
650 const uint16_t *mapping
=getMapping(norm16
);
651 uint16_t firstUnit
=*mapping
;
652 int32_t length
=firstUnit
&MAPPING_LENGTH_MASK
;
653 uint8_t leadCC
, trailCC
;
654 trailCC
=(uint8_t)(firstUnit
>>8);
655 if(firstUnit
&MAPPING_HAS_CCC_LCCC_WORD
) {
656 leadCC
=(uint8_t)(*(mapping
-1)>>8);
660 return buffer
.append((const UChar
*)mapping
+1, length
, leadCC
, trailCC
, errorCode
);
666 Normalizer2Impl::getDecomposition(UChar32 c
, UChar buffer
[4], int32_t &length
) const {
667 const UChar
*decomp
=NULL
;
670 if(c
<minDecompNoCP
|| isDecompYes(norm16
=getNorm16(c
))) {
671 // c does not decompose
673 } else if(isHangul(norm16
)) {
674 // Hangul syllable: decompose algorithmically
675 length
=Hangul::decompose(c
, buffer
);
677 } else if(isDecompNoAlgorithmic(norm16
)) {
678 c
=mapAlgorithmic(c
, norm16
);
681 U16_APPEND_UNSAFE(buffer
, length
, c
);
683 // c decomposes, get everything from the variable-length extra data
684 const uint16_t *mapping
=getMapping(norm16
);
685 length
=*mapping
&MAPPING_LENGTH_MASK
;
686 return (const UChar
*)mapping
+1;
691 // The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1
692 // so that a raw mapping fits that consists of one unit ("rm0")
693 // plus all but the first two code units of the normal mapping.
694 // The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK.
696 Normalizer2Impl::getRawDecomposition(UChar32 c
, UChar buffer
[30], int32_t &length
) const {
697 // We do not loop in this method because an algorithmic mapping itself
698 // becomes a final result rather than having to be decomposed recursively.
700 if(c
<minDecompNoCP
|| isDecompYes(norm16
=getNorm16(c
))) {
701 // c does not decompose
703 } else if(isHangul(norm16
)) {
704 // Hangul syllable: decompose algorithmically
705 Hangul::getRawDecomposition(c
, buffer
);
708 } else if(isDecompNoAlgorithmic(norm16
)) {
709 c
=mapAlgorithmic(c
, norm16
);
711 U16_APPEND_UNSAFE(buffer
, length
, c
);
714 // c decomposes, get everything from the variable-length extra data
715 const uint16_t *mapping
=getMapping(norm16
);
716 uint16_t firstUnit
=*mapping
;
717 int32_t mLength
=firstUnit
&MAPPING_LENGTH_MASK
; // length of normal mapping
718 if(firstUnit
&MAPPING_HAS_RAW_MAPPING
) {
719 // Read the raw mapping from before the firstUnit and before the optional ccc/lccc word.
720 // Bit 7=MAPPING_HAS_CCC_LCCC_WORD
721 const uint16_t *rawMapping
=mapping
-((firstUnit
>>7)&1)-1;
722 uint16_t rm0
=*rawMapping
;
723 if(rm0
<=MAPPING_LENGTH_MASK
) {
725 return (const UChar
*)rawMapping
-rm0
;
727 // Copy the normal mapping and replace its first two code units with rm0.
728 buffer
[0]=(UChar
)rm0
;
729 u_memcpy(buffer
+1, (const UChar
*)mapping
+1+2, mLength
-2);
735 return (const UChar
*)mapping
+1;
740 void Normalizer2Impl::decomposeAndAppend(const UChar
*src
, const UChar
*limit
,
742 UnicodeString
&safeMiddle
,
743 ReorderingBuffer
&buffer
,
744 UErrorCode
&errorCode
) const {
745 buffer
.copyReorderableSuffixTo(safeMiddle
);
747 decompose(src
, limit
, &buffer
, errorCode
);
750 // Just merge the strings at the boundary.
751 ForwardUTrie2StringIterator
iter(normTrie
, src
, limit
);
752 uint8_t firstCC
, prevCC
, cc
;
753 firstCC
=prevCC
=cc
=getCC(iter
.next16());
756 cc
=getCC(iter
.next16());
758 if(limit
==NULL
) { // appendZeroCC() needs limit!=NULL
759 limit
=u_strchr(iter
.codePointStart
, 0);
762 if (buffer
.append(src
, (int32_t)(iter
.codePointStart
-src
), firstCC
, prevCC
, errorCode
)) {
763 buffer
.appendZeroCC(iter
.codePointStart
, limit
, errorCode
);
767 // Note: hasDecompBoundary() could be implemented as aliases to
768 // hasFCDBoundaryBefore() and hasFCDBoundaryAfter()
769 // at the cost of building the FCD trie for a decomposition normalizer.
770 UBool
Normalizer2Impl::hasDecompBoundary(UChar32 c
, UBool before
) const {
772 if(c
<minDecompNoCP
) {
775 uint16_t norm16
=getNorm16(c
);
776 if(isHangul(norm16
) || isDecompYesAndZeroCC(norm16
)) {
778 } else if(norm16
>MIN_NORMAL_MAYBE_YES
) {
779 return FALSE
; // ccc!=0
780 } else if(isDecompNoAlgorithmic(norm16
)) {
781 c
=mapAlgorithmic(c
, norm16
);
783 // c decomposes, get everything from the variable-length extra data
784 const uint16_t *mapping
=getMapping(norm16
);
785 uint16_t firstUnit
=*mapping
;
786 if((firstUnit
&MAPPING_LENGTH_MASK
)==0) {
790 // decomp after-boundary: same as hasFCDBoundaryAfter(),
791 // fcd16<=1 || trailCC==0
792 if(firstUnit
>0x1ff) {
793 return FALSE
; // trailCC>1
795 if(firstUnit
<=0xff) {
796 return TRUE
; // trailCC==0
798 // if(trailCC==1) test leadCC==0, same as checking for before-boundary
800 // TRUE if leadCC==0 (hasFCDBoundaryBefore())
801 return (firstUnit
&MAPPING_HAS_CCC_LCCC_WORD
)==0 || (*(mapping
-1)&0xff00)==0;
807 * Finds the recomposition result for
808 * a forward-combining "lead" character,
809 * specified with a pointer to its compositions list,
810 * and a backward-combining "trail" character.
812 * If the lead and trail characters combine, then this function returns
813 * the following "compositeAndFwd" value:
814 * Bits 21..1 composite character
815 * Bit 0 set if the composite is a forward-combining starter
816 * otherwise it returns -1.
818 * The compositions list has (trail, compositeAndFwd) pair entries,
819 * encoded as either pairs or triples of 16-bit units.
820 * The last entry has the high bit of its first unit set.
822 * The list is sorted by ascending trail characters (there are no duplicates).
823 * A linear search is used.
825 * See normalizer2impl.h for a more detailed description
826 * of the compositions list format.
828 int32_t Normalizer2Impl::combine(const uint16_t *list
, UChar32 trail
) {
829 uint16_t key1
, firstUnit
;
830 if(trail
<COMP_1_TRAIL_LIMIT
) {
831 // trail character is 0..33FF
832 // result entry may have 2 or 3 units
833 key1
=(uint16_t)(trail
<<1);
834 while(key1
>(firstUnit
=*list
)) {
835 list
+=2+(firstUnit
&COMP_1_TRIPLE
);
837 if(key1
==(firstUnit
&COMP_1_TRAIL_MASK
)) {
838 if(firstUnit
&COMP_1_TRIPLE
) {
839 return ((int32_t)list
[1]<<16)|list
[2];
845 // trail character is 3400..10FFFF
846 // result entry has 3 units
847 key1
=(uint16_t)(COMP_1_TRAIL_LIMIT
+
848 (((trail
>>COMP_1_TRAIL_SHIFT
))&
850 uint16_t key2
=(uint16_t)(trail
<<COMP_2_TRAIL_SHIFT
);
853 if(key1
>(firstUnit
=*list
)) {
854 list
+=2+(firstUnit
&COMP_1_TRIPLE
);
855 } else if(key1
==(firstUnit
&COMP_1_TRAIL_MASK
)) {
856 if(key2
>(secondUnit
=list
[1])) {
857 if(firstUnit
&COMP_1_LAST_TUPLE
) {
862 } else if(key2
==(secondUnit
&COMP_2_TRAIL_MASK
)) {
863 return ((int32_t)(secondUnit
&~COMP_2_TRAIL_MASK
)<<16)|list
[2];
876 * @param list some character's compositions list
877 * @param set recursively receives the composites from these compositions
879 void Normalizer2Impl::addComposites(const uint16_t *list
, UnicodeSet
&set
) const {
881 int32_t compositeAndFwd
;
884 if((firstUnit
&COMP_1_TRIPLE
)==0) {
885 compositeAndFwd
=list
[1];
888 compositeAndFwd
=(((int32_t)list
[1]&~COMP_2_TRAIL_MASK
)<<16)|list
[2];
891 UChar32 composite
=compositeAndFwd
>>1;
892 if((compositeAndFwd
&1)!=0) {
893 addComposites(getCompositionsListForComposite(getNorm16(composite
)), set
);
896 } while((firstUnit
&COMP_1_LAST_TUPLE
)==0);
900 * Recomposes the buffer text starting at recomposeStartIndex
901 * (which is in NFD - decomposed and canonically ordered),
902 * and truncates the buffer contents.
904 * Note that recomposition never lengthens the text:
905 * Any character consists of either one or two code units;
906 * a composition may contain at most one more code unit than the original starter,
907 * while the combining mark that is removed has at least one code unit.
909 void Normalizer2Impl::recompose(ReorderingBuffer
&buffer
, int32_t recomposeStartIndex
,
910 UBool onlyContiguous
) const {
911 UChar
*p
=buffer
.getStart()+recomposeStartIndex
;
912 UChar
*limit
=buffer
.getLimit();
917 UChar
*starter
, *pRemove
, *q
, *r
;
918 const uint16_t *compositionsList
;
919 UChar32 c
, compositeAndFwd
;
922 UBool starterIsSupplementary
;
924 // Some of the following variables are not used until we have a forward-combining starter
925 // and are only initialized now to avoid compiler warnings.
926 compositionsList
=NULL
; // used as indicator for whether we have a forward-combining starter
928 starterIsSupplementary
=FALSE
;
932 UTRIE2_U16_NEXT16(normTrie
, p
, limit
, c
, norm16
);
933 cc
=getCCFromYesOrMaybe(norm16
);
934 if( // this character combines backward and
936 // we have seen a starter that combines forward and
937 compositionsList
!=NULL
&&
938 // the backward-combining character is not blocked
939 (prevCC
<cc
|| prevCC
==0)
941 if(isJamoVT(norm16
)) {
942 // c is a Jamo V/T, see if we can compose it with the previous character.
943 if(c
<Hangul::JAMO_T_BASE
) {
944 // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
945 UChar prev
=(UChar
)(*starter
-Hangul::JAMO_L_BASE
);
946 if(prev
<Hangul::JAMO_L_COUNT
) {
948 UChar syllable
=(UChar
)
949 (Hangul::HANGUL_BASE
+
950 (prev
*Hangul::JAMO_V_COUNT
+(c
-Hangul::JAMO_V_BASE
))*
951 Hangul::JAMO_T_COUNT
);
953 if(p
!=limit
&& (t
=(UChar
)(*p
-Hangul::JAMO_T_BASE
))<Hangul::JAMO_T_COUNT
) {
955 syllable
+=t
; // The next character was a Jamo T.
958 // remove the Jamo V/T
969 * No "else" for Jamo T:
970 * Since the input is in NFD, there are no Hangul LV syllables that
971 * a Jamo T could combine with.
972 * All Jamo Ts are combined above when handling Jamo Vs.
977 compositionsList
=NULL
;
979 } else if((compositeAndFwd
=combine(compositionsList
, c
))>=0) {
980 // The starter and the combining mark (c) do combine.
981 UChar32 composite
=compositeAndFwd
>>1;
983 // Replace the starter with the composite, remove the combining mark.
984 pRemove
=p
-U16_LENGTH(c
); // pRemove & p: start & limit of the combining mark
985 if(starterIsSupplementary
) {
986 if(U_IS_SUPPLEMENTARY(composite
)) {
987 // both are supplementary
988 starter
[0]=U16_LEAD(composite
);
989 starter
[1]=U16_TRAIL(composite
);
991 *starter
=(UChar
)composite
;
992 // The composite is shorter than the starter,
993 // move the intermediate characters forward one.
994 starterIsSupplementary
=FALSE
;
1002 } else if(U_IS_SUPPLEMENTARY(composite
)) {
1003 // The composite is longer than the starter,
1004 // move the intermediate characters back one.
1005 starterIsSupplementary
=TRUE
;
1006 ++starter
; // temporarily increment for the loop boundary
1012 *starter
=U16_TRAIL(composite
);
1013 *--starter
=U16_LEAD(composite
); // undo the temporary increment
1015 // both are on the BMP
1016 *starter
=(UChar
)composite
;
1019 /* remove the combining mark by moving the following text over it */
1029 // Keep prevCC because we removed the combining mark.
1034 // Is the composite a starter that combines forward?
1035 if(compositeAndFwd
&1) {
1037 getCompositionsListForComposite(getNorm16(composite
));
1039 compositionsList
=NULL
;
1042 // We combined; continue with looking for compositions.
1047 // no combination this time
1053 // If c did not combine, then check if it is a starter.
1055 // Found a new starter.
1056 if((compositionsList
=getCompositionsListForDecompYes(norm16
))!=NULL
) {
1057 // It may combine with something, prepare for it.
1059 starterIsSupplementary
=FALSE
;
1062 starterIsSupplementary
=TRUE
;
1066 } else if(onlyContiguous
) {
1067 // FCC: no discontiguous compositions; any intervening character blocks.
1068 compositionsList
=NULL
;
1071 buffer
.setReorderingLimit(limit
);
1075 Normalizer2Impl::composePair(UChar32 a
, UChar32 b
) const {
1076 uint16_t norm16
=getNorm16(a
); // maps an out-of-range 'a' to inert norm16=0
1077 const uint16_t *list
;
1078 if(isInert(norm16
)) {
1080 } else if(norm16
<minYesNoMappingsOnly
) {
1081 if(isJamoL(norm16
)) {
1082 b
-=Hangul::JAMO_V_BASE
;
1083 if(0<=b
&& b
<Hangul::JAMO_V_COUNT
) {
1085 (Hangul::HANGUL_BASE
+
1086 ((a
-Hangul::JAMO_L_BASE
)*Hangul::JAMO_V_COUNT
+b
)*
1087 Hangul::JAMO_T_COUNT
);
1091 } else if(isHangul(norm16
)) {
1092 b
-=Hangul::JAMO_T_BASE
;
1093 if(Hangul::isHangulWithoutJamoT(a
) && 0<b
&& b
<Hangul::JAMO_T_COUNT
) { // not b==0!
1099 // 'a' has a compositions list in extraData
1100 list
=extraData
+norm16
;
1101 if(norm16
>minYesNo
) { // composite 'a' has both mapping & compositions list
1102 list
+= // mapping pointer
1103 1+ // +1 to skip the first unit with the mapping lenth
1104 (*list
&MAPPING_LENGTH_MASK
); // + mapping length
1107 } else if(norm16
<minMaybeYes
|| MIN_NORMAL_MAYBE_YES
<=norm16
) {
1110 list
=maybeYesCompositions
+norm16
-minMaybeYes
;
1112 if(b
<0 || 0x10ffff<b
) { // combine(list, b) requires a valid code point b
1115 #if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC
1116 return combine(list
, b
)>>1;
1118 int32_t compositeAndFwd
=combine(list
, b
);
1119 return compositeAndFwd
>=0 ? compositeAndFwd
>>1 : U_SENTINEL
;
1123 // Very similar to composeQuickCheck(): Make the same changes in both places if relevant.
1124 // doCompose: normalize
1125 // !doCompose: isNormalized (buffer must be empty and initialized)
1127 Normalizer2Impl::compose(const UChar
*src
, const UChar
*limit
,
1128 UBool onlyContiguous
,
1130 ReorderingBuffer
&buffer
,
1131 UErrorCode
&errorCode
) const {
1133 * prevBoundary points to the last character before the current one
1134 * that has a composition boundary before it with ccc==0 and quick check "yes".
1135 * Keeping track of prevBoundary saves us looking for a composition boundary
1136 * when we find a "no" or "maybe".
1138 * When we back out from prevSrc back to prevBoundary,
1139 * then we also remove those same characters (which had been simply copied
1140 * or canonically-order-inserted) from the ReorderingBuffer.
1141 * Therefore, at all times, the [prevBoundary..prevSrc[ source units
1142 * must correspond 1:1 to destination units at the end of the destination buffer.
1144 const UChar
*prevBoundary
=src
;
1145 UChar32 minNoMaybeCP
=minCompNoMaybeCP
;
1147 src
=copyLowPrefixFromNulTerminated(src
, minNoMaybeCP
,
1148 doCompose
? &buffer
: NULL
,
1150 if(U_FAILURE(errorCode
)) {
1153 if(prevBoundary
<src
) {
1154 // Set prevBoundary to the last character in the prefix.
1157 limit
=u_strchr(src
, 0);
1160 const UChar
*prevSrc
;
1164 // only for isNormalized
1168 // count code units below the minimum or with irrelevant data for the quick check
1169 for(prevSrc
=src
; src
!=limit
;) {
1170 if( (c
=*src
)<minNoMaybeCP
||
1171 isCompYesAndZeroCC(norm16
=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie
, c
))
1174 } else if(!U16_IS_SURROGATE(c
)) {
1178 if(U16_IS_SURROGATE_LEAD(c
)) {
1179 if((src
+1)!=limit
&& U16_IS_TRAIL(c2
=src
[1])) {
1180 c
=U16_GET_SUPPLEMENTARY(c
, c2
);
1182 } else /* trail surrogate */ {
1183 if(prevSrc
<src
&& U16_IS_LEAD(c2
=*(src
-1))) {
1185 c
=U16_GET_SUPPLEMENTARY(c2
, c
);
1188 if(isCompYesAndZeroCC(norm16
=getNorm16(c
))) {
1195 // copy these code units all at once
1198 if(!buffer
.appendZeroCC(prevSrc
, src
, errorCode
)) {
1207 // Set prevBoundary to the last character in the quick check loop.
1209 if( U16_IS_TRAIL(*prevBoundary
) && prevSrc
<prevBoundary
&&
1210 U16_IS_LEAD(*(prevBoundary
-1))
1214 // The start of the current character (c).
1216 } else if(src
==limit
) {
1222 * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
1223 * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward)
1225 * Check for Jamo V/T, then for regular characters.
1226 * c is not a Hangul syllable or Jamo L because those have "yes" properties.
1228 if(isJamoVT(norm16
) && prevBoundary
!=prevSrc
) {
1229 UChar prev
=*(prevSrc
-1);
1230 UBool needToDecompose
=FALSE
;
1231 if(c
<Hangul::JAMO_T_BASE
) {
1232 // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T.
1233 prev
=(UChar
)(prev
-Hangul::JAMO_L_BASE
);
1234 if(prev
<Hangul::JAMO_L_COUNT
) {
1238 UChar syllable
=(UChar
)
1239 (Hangul::HANGUL_BASE
+
1240 (prev
*Hangul::JAMO_V_COUNT
+(c
-Hangul::JAMO_V_BASE
))*
1241 Hangul::JAMO_T_COUNT
);
1243 if(src
!=limit
&& (t
=(UChar
)(*src
-Hangul::JAMO_T_BASE
))<Hangul::JAMO_T_COUNT
) {
1245 syllable
+=t
; // The next character was a Jamo T.
1247 buffer
.setLastChar(syllable
);
1250 // If we see L+V+x where x!=T then we drop to the slow path,
1251 // decompose and recompose.
1252 // This is to deal with NFKC finding normal L and V but a
1253 // compatibility variant of a T. We need to either fully compose that
1254 // combination here (which would complicate the code and may not work
1255 // with strange custom data) or use the slow path -- or else our replacing
1256 // two input characters (L+V) with one output character (LV syllable)
1257 // would violate the invariant that [prevBoundary..prevSrc[ has the same
1258 // length as what we appended to the buffer since prevBoundary.
1259 needToDecompose
=TRUE
;
1261 } else if(Hangul::isHangulWithoutJamoT(prev
)) {
1262 // c is a Jamo Trailing consonant,
1263 // compose with previous Hangul LV that does not contain a Jamo T.
1267 buffer
.setLastChar((UChar
)(prev
+c
-Hangul::JAMO_T_BASE
));
1271 if(!needToDecompose
) {
1272 // The Jamo V/T did not compose into a Hangul syllable.
1274 if(!buffer
.appendBMP((UChar
)c
, 0, errorCode
)) {
1284 * Source buffer pointers:
1286 * all done quick check current char not yet
1287 * "yes" but (c) processed
1290 * [-------------[-------------[-------------[-------------[
1292 * orig. src prevBoundary prevSrc src limit
1295 * Destination buffer pointers inside the ReorderingBuffer:
1297 * all done might take not filled yet
1300 * [-------------[-------------[-------------[
1302 * start reorderStart limit |
1305 if(norm16
>=MIN_YES_YES_WITH_CC
) {
1306 uint8_t cc
=(uint8_t)norm16
; // cc!=0
1307 if( onlyContiguous
&& // FCC
1308 (doCompose
? buffer
.getLastCC() : prevCC
)==0 &&
1309 prevBoundary
<prevSrc
&&
1310 // buffer.getLastCC()==0 && prevBoundary<prevSrc tell us that
1311 // [prevBoundary..prevSrc[ (which is exactly one character under these conditions)
1312 // passed the quick check "yes && ccc==0" test.
1313 // Check whether the last character was a "yesYes" or a "yesNo".
1314 // If a "yesNo", then we get its trailing ccc from its
1315 // mapping and check for canonical order.
1316 // All other cases are ok.
1317 getTrailCCFromCompYesAndZeroCC(prevBoundary
, prevSrc
)>cc
1319 // Fails FCD test, need to decompose and contiguously recompose.
1323 } else if(doCompose
) {
1324 if(!buffer
.append(c
, cc
, errorCode
)) {
1328 } else if(prevCC
<=cc
) {
1334 } else if(!doCompose
&& !isMaybeOrNonZeroCC(norm16
)) {
1339 * Find appropriate boundaries around this character,
1340 * decompose the source text from between the boundaries,
1343 * We may need to remove the last few characters from the ReorderingBuffer
1344 * to account for source text that was copied or appended
1345 * but needs to take part in the recomposition.
1349 * Find the last composition boundary in [prevBoundary..src[.
1350 * It is either the decomposition of the current character (at prevSrc),
1353 if(hasCompBoundaryBefore(c
, norm16
)) {
1354 prevBoundary
=prevSrc
;
1355 } else if(doCompose
) {
1356 buffer
.removeSuffix((int32_t)(prevSrc
-prevBoundary
));
1359 // Find the next composition boundary in [src..limit[ -
1360 // modifies src to point to the next starter.
1361 src
=(UChar
*)findNextCompBoundary(src
, limit
);
1363 // Decompose [prevBoundary..src[ into the buffer and then recompose that part of it.
1364 int32_t recomposeStartIndex
=buffer
.length();
1365 if(!decomposeShort(prevBoundary
, src
, buffer
, errorCode
)) {
1368 recompose(buffer
, recomposeStartIndex
, onlyContiguous
);
1370 if(!buffer
.equals(prevBoundary
, src
)) {
1377 // Move to the next starter. We never need to look back before this point again.
1383 // Very similar to compose(): Make the same changes in both places if relevant.
1384 // pQCResult==NULL: spanQuickCheckYes
1385 // pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES)
1387 Normalizer2Impl::composeQuickCheck(const UChar
*src
, const UChar
*limit
,
1388 UBool onlyContiguous
,
1389 UNormalizationCheckResult
*pQCResult
) const {
1391 * prevBoundary points to the last character before the current one
1392 * that has a composition boundary before it with ccc==0 and quick check "yes".
1394 const UChar
*prevBoundary
=src
;
1395 UChar32 minNoMaybeCP
=minCompNoMaybeCP
;
1397 UErrorCode errorCode
=U_ZERO_ERROR
;
1398 src
=copyLowPrefixFromNulTerminated(src
, minNoMaybeCP
, NULL
, errorCode
);
1399 if(prevBoundary
<src
) {
1400 // Set prevBoundary to the last character in the prefix.
1403 limit
=u_strchr(src
, 0);
1406 const UChar
*prevSrc
;
1412 // count code units below the minimum or with irrelevant data for the quick check
1413 for(prevSrc
=src
;;) {
1417 if( (c
=*src
)<minNoMaybeCP
||
1418 isCompYesAndZeroCC(norm16
=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie
, c
))
1421 } else if(!U16_IS_SURROGATE(c
)) {
1425 if(U16_IS_SURROGATE_LEAD(c
)) {
1426 if((src
+1)!=limit
&& U16_IS_TRAIL(c2
=src
[1])) {
1427 c
=U16_GET_SUPPLEMENTARY(c
, c2
);
1429 } else /* trail surrogate */ {
1430 if(prevSrc
<src
&& U16_IS_LEAD(c2
=*(src
-1))) {
1432 c
=U16_GET_SUPPLEMENTARY(c2
, c
);
1435 if(isCompYesAndZeroCC(norm16
=getNorm16(c
))) {
1443 // Set prevBoundary to the last character in the quick check loop.
1445 if( U16_IS_TRAIL(*prevBoundary
) && prevSrc
<prevBoundary
&&
1446 U16_IS_LEAD(*(prevBoundary
-1))
1451 // The start of the current character (c).
1457 * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo.
1458 * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward)
1461 if(isMaybeOrNonZeroCC(norm16
)) {
1462 uint8_t cc
=getCCFromYesOrMaybe(norm16
);
1463 if( onlyContiguous
&& // FCC
1466 prevBoundary
<prevSrc
&&
1467 // prevCC==0 && prevBoundary<prevSrc tell us that
1468 // [prevBoundary..prevSrc[ (which is exactly one character under these conditions)
1469 // passed the quick check "yes && ccc==0" test.
1470 // Check whether the last character was a "yesYes" or a "yesNo".
1471 // If a "yesNo", then we get its trailing ccc from its
1472 // mapping and check for canonical order.
1473 // All other cases are ok.
1474 getTrailCCFromCompYesAndZeroCC(prevBoundary
, prevSrc
)>cc
1477 } else if(prevCC
<=cc
|| cc
==0) {
1479 if(norm16
<MIN_YES_YES_WITH_CC
) {
1480 if(pQCResult
!=NULL
) {
1481 *pQCResult
=UNORM_MAYBE
;
1483 return prevBoundary
;
1489 if(pQCResult
!=NULL
) {
1490 *pQCResult
=UNORM_NO
;
1492 return prevBoundary
;
1496 void Normalizer2Impl::composeAndAppend(const UChar
*src
, const UChar
*limit
,
1498 UBool onlyContiguous
,
1499 UnicodeString
&safeMiddle
,
1500 ReorderingBuffer
&buffer
,
1501 UErrorCode
&errorCode
) const {
1502 if(!buffer
.isEmpty()) {
1503 const UChar
*firstStarterInSrc
=findNextCompBoundary(src
, limit
);
1504 if(src
!=firstStarterInSrc
) {
1505 const UChar
*lastStarterInDest
=findPreviousCompBoundary(buffer
.getStart(),
1507 int32_t destSuffixLength
=(int32_t)(buffer
.getLimit()-lastStarterInDest
);
1508 UnicodeString
middle(lastStarterInDest
, destSuffixLength
);
1509 buffer
.removeSuffix(destSuffixLength
);
1511 middle
.append(src
, (int32_t)(firstStarterInSrc
-src
));
1512 const UChar
*middleStart
=middle
.getBuffer();
1513 compose(middleStart
, middleStart
+middle
.length(), onlyContiguous
,
1514 TRUE
, buffer
, errorCode
);
1515 if(U_FAILURE(errorCode
)) {
1518 src
=firstStarterInSrc
;
1522 compose(src
, limit
, onlyContiguous
, TRUE
, buffer
, errorCode
);
1524 if(limit
==NULL
) { // appendZeroCC() needs limit!=NULL
1525 limit
=u_strchr(src
, 0);
1527 buffer
.appendZeroCC(src
, limit
, errorCode
);
1532 * Does c have a composition boundary before it?
1533 * True if its decomposition begins with a character that has
1534 * ccc=0 && NFC_QC=Yes (isCompYesAndZeroCC()).
1535 * As a shortcut, this is true if c itself has ccc=0 && NFC_QC=Yes
1536 * (isCompYesAndZeroCC()) so we need not decompose.
1538 UBool
Normalizer2Impl::hasCompBoundaryBefore(UChar32 c
, uint16_t norm16
) const {
1540 if(isCompYesAndZeroCC(norm16
)) {
1542 } else if(isMaybeOrNonZeroCC(norm16
)) {
1544 } else if(isDecompNoAlgorithmic(norm16
)) {
1545 c
=mapAlgorithmic(c
, norm16
);
1546 norm16
=getNorm16(c
);
1548 // c decomposes, get everything from the variable-length extra data
1549 const uint16_t *mapping
=getMapping(norm16
);
1550 uint16_t firstUnit
=*mapping
;
1551 if((firstUnit
&MAPPING_LENGTH_MASK
)==0) {
1554 if((firstUnit
&MAPPING_HAS_CCC_LCCC_WORD
) && (*(mapping
-1)&0xff00)) {
1555 return FALSE
; // non-zero leadCC
1557 int32_t i
=1; // skip over the firstUnit
1559 U16_NEXT_UNSAFE(mapping
, i
, c
);
1560 return isCompYesAndZeroCC(getNorm16(c
));
1565 UBool
Normalizer2Impl::hasCompBoundaryAfter(UChar32 c
, UBool onlyContiguous
, UBool testInert
) const {
1567 uint16_t norm16
=getNorm16(c
);
1568 if(isInert(norm16
)) {
1570 } else if(norm16
<=minYesNo
) {
1571 // Hangul: norm16==minYesNo
1572 // Hangul LVT has a boundary after it.
1573 // Hangul LV and non-inert yesYes characters combine forward.
1574 return isHangul(norm16
) && !Hangul::isHangulWithoutJamoT((UChar
)c
);
1575 } else if(norm16
>= (testInert
? minNoNo
: minMaybeYes
)) {
1577 } else if(isDecompNoAlgorithmic(norm16
)) {
1578 c
=mapAlgorithmic(c
, norm16
);
1580 // c decomposes, get everything from the variable-length extra data.
1581 // If testInert, then c must be a yesNo character which has lccc=0,
1582 // otherwise it could be a noNo.
1583 const uint16_t *mapping
=getMapping(norm16
);
1584 uint16_t firstUnit
=*mapping
;
1586 // not MAPPING_NO_COMP_BOUNDARY_AFTER
1588 // c is not deleted, and
1589 // it and its decomposition do not combine forward, and it has a starter)
1590 // and if FCC then trailCC<=1
1592 (firstUnit
&MAPPING_NO_COMP_BOUNDARY_AFTER
)==0 &&
1593 (!onlyContiguous
|| firstUnit
<=0x1ff);
1598 const UChar
*Normalizer2Impl::findPreviousCompBoundary(const UChar
*start
, const UChar
*p
) const {
1599 BackwardUTrie2StringIterator
iter(normTrie
, start
, p
);
1602 norm16
=iter
.previous16();
1603 } while(!hasCompBoundaryBefore(iter
.codePoint
, norm16
));
1604 // We could also test hasCompBoundaryAfter() and return iter.codePointLimit,
1605 // but that's probably not worth the extra cost.
1606 return iter
.codePointStart
;
1609 const UChar
*Normalizer2Impl::findNextCompBoundary(const UChar
*p
, const UChar
*limit
) const {
1610 ForwardUTrie2StringIterator
iter(normTrie
, p
, limit
);
1613 norm16
=iter
.next16();
1614 } while(!hasCompBoundaryBefore(iter
.codePoint
, norm16
));
1615 return iter
.codePointStart
;
1618 // Note: normalizer2impl.cpp r30982 (2011-nov-27)
1619 // still had getFCDTrie() which built and cached an FCD trie.
1620 // That provided faster access to FCD data than getFCD16FromNormData()
1621 // but required synchronization and consumed some 10kB of heap memory
1622 // in any process that uses FCD (e.g., via collation).
1623 // tccc180[] and smallFCD[] are intended to help with any loss of performance,
1624 // at least for Latin & CJK.
1626 // Gets the FCD value from the regular normalization data.
1627 uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c
) const {
1628 // Only loops for 1:1 algorithmic mappings.
1630 uint16_t norm16
=getNorm16(c
);
1631 if(norm16
<=minYesNo
) {
1632 // no decomposition or Hangul syllable, all zeros
1634 } else if(norm16
>=MIN_NORMAL_MAYBE_YES
) {
1637 return norm16
|(norm16
<<8);
1638 } else if(norm16
>=minMaybeYes
) {
1640 } else if(isDecompNoAlgorithmic(norm16
)) {
1641 c
=mapAlgorithmic(c
, norm16
);
1643 // c decomposes, get everything from the variable-length extra data
1644 const uint16_t *mapping
=getMapping(norm16
);
1645 uint16_t firstUnit
=*mapping
;
1646 if((firstUnit
&MAPPING_LENGTH_MASK
)==0) {
1647 // A character that is deleted (maps to an empty string) must
1648 // get the worst-case lccc and tccc values because arbitrary
1649 // characters on both sides will become adjacent.
1652 norm16
=firstUnit
>>8; // tccc
1653 if(firstUnit
&MAPPING_HAS_CCC_LCCC_WORD
) {
1654 norm16
|=*(mapping
-1)&0xff00; // lccc
1662 // Dual functionality:
1663 // buffer!=NULL: normalize
1664 // buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes
1666 Normalizer2Impl::makeFCD(const UChar
*src
, const UChar
*limit
,
1667 ReorderingBuffer
*buffer
,
1668 UErrorCode
&errorCode
) const {
1669 // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1.
1670 // Similar to the prevBoundary in the compose() implementation.
1671 const UChar
*prevBoundary
=src
;
1672 int32_t prevFCD16
=0;
1674 src
=copyLowPrefixFromNulTerminated(src
, MIN_CCC_LCCC_CP
, buffer
, errorCode
);
1675 if(U_FAILURE(errorCode
)) {
1678 if(prevBoundary
<src
) {
1680 // We know that the previous character's lccc==0.
1681 // Fetching the fcd16 value was deferred for this below-U+0300 code point.
1682 prevFCD16
=getFCD16(*(src
-1));
1687 limit
=u_strchr(src
, 0);
1690 // Note: In this function we use buffer->appendZeroCC() because we track
1691 // the lead and trail combining classes here, rather than leaving it to
1692 // the ReorderingBuffer.
1693 // The exception is the call to decomposeShort() which uses the buffer
1694 // in the normal way.
1696 const UChar
*prevSrc
;
1701 // count code units with lccc==0
1702 for(prevSrc
=src
; src
!=limit
;) {
1703 if((c
=*src
)<MIN_CCC_LCCC_CP
) {
1706 } else if(!singleLeadMightHaveNonZeroFCD16(c
)) {
1710 if(U16_IS_SURROGATE(c
)) {
1712 if(U16_IS_SURROGATE_LEAD(c
)) {
1713 if((src
+1)!=limit
&& U16_IS_TRAIL(c2
=src
[1])) {
1714 c
=U16_GET_SUPPLEMENTARY(c
, c2
);
1716 } else /* trail surrogate */ {
1717 if(prevSrc
<src
&& U16_IS_LEAD(c2
=*(src
-1))) {
1719 c
=U16_GET_SUPPLEMENTARY(c2
, c
);
1723 if((fcd16
=getFCD16FromNormData(c
))<=0xff) {
1731 // copy these code units all at once
1733 if(buffer
!=NULL
&& !buffer
->appendZeroCC(prevSrc
, src
, errorCode
)) {
1740 // We know that the previous character's lccc==0.
1742 // Fetching the fcd16 value was deferred for this below-U+0300 code point.
1743 UChar32 prev
=~prevFCD16
;
1744 prevFCD16
= prev
<0x180 ? tccc180
[prev
] : getFCD16FromNormData(prev
);
1749 const UChar
*p
=src
-1;
1750 if(U16_IS_TRAIL(*p
) && prevSrc
<p
&& U16_IS_LEAD(*(p
-1))) {
1752 // Need to fetch the previous character's FCD value because
1753 // prevFCD16 was just for the trail surrogate code point.
1754 prevFCD16
=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p
[0], p
[1]));
1755 // Still known to have lccc==0 because its lead surrogate unit had lccc==0.
1761 // The start of the current character (c).
1763 } else if(src
==limit
) {
1768 // The current character (c) at [prevSrc..src[ has a non-zero lead combining class.
1769 // Check for proper order, and decompose locally if necessary.
1770 if((prevFCD16
&0xff)<=(fcd16
>>8)) {
1771 // proper order: prev tccc <= current lccc
1772 if((fcd16
&0xff)<=1) {
1775 if(buffer
!=NULL
&& !buffer
->appendZeroCC(c
, errorCode
)) {
1780 } else if(buffer
==NULL
) {
1781 return prevBoundary
; // quick check "no"
1784 * Back out the part of the source that we copied or appended
1785 * already but is now going to be decomposed.
1786 * prevSrc is set to after what was copied/appended.
1788 buffer
->removeSuffix((int32_t)(prevSrc
-prevBoundary
));
1790 * Find the part of the source that needs to be decomposed,
1791 * up to the next safe boundary.
1793 src
=findNextFCDBoundary(src
, limit
);
1795 * The source text does not fulfill the conditions for FCD.
1796 * Decompose and reorder a limited piece of the text.
1798 if(!decomposeShort(prevBoundary
, src
, *buffer
, errorCode
)) {
1808 void Normalizer2Impl::makeFCDAndAppend(const UChar
*src
, const UChar
*limit
,
1810 UnicodeString
&safeMiddle
,
1811 ReorderingBuffer
&buffer
,
1812 UErrorCode
&errorCode
) const {
1813 if(!buffer
.isEmpty()) {
1814 const UChar
*firstBoundaryInSrc
=findNextFCDBoundary(src
, limit
);
1815 if(src
!=firstBoundaryInSrc
) {
1816 const UChar
*lastBoundaryInDest
=findPreviousFCDBoundary(buffer
.getStart(),
1818 int32_t destSuffixLength
=(int32_t)(buffer
.getLimit()-lastBoundaryInDest
);
1819 UnicodeString
middle(lastBoundaryInDest
, destSuffixLength
);
1820 buffer
.removeSuffix(destSuffixLength
);
1822 middle
.append(src
, (int32_t)(firstBoundaryInSrc
-src
));
1823 const UChar
*middleStart
=middle
.getBuffer();
1824 makeFCD(middleStart
, middleStart
+middle
.length(), &buffer
, errorCode
);
1825 if(U_FAILURE(errorCode
)) {
1828 src
=firstBoundaryInSrc
;
1832 makeFCD(src
, limit
, &buffer
, errorCode
);
1834 if(limit
==NULL
) { // appendZeroCC() needs limit!=NULL
1835 limit
=u_strchr(src
, 0);
1837 buffer
.appendZeroCC(src
, limit
, errorCode
);
1841 const UChar
*Normalizer2Impl::findPreviousFCDBoundary(const UChar
*start
, const UChar
*p
) const {
1842 while(start
<p
&& previousFCD16(start
, p
)>0xff) {}
1846 const UChar
*Normalizer2Impl::findNextFCDBoundary(const UChar
*p
, const UChar
*limit
) const {
1848 const UChar
*codePointStart
=p
;
1849 if(nextFCD16(p
, limit
)<=0xff) {
1850 return codePointStart
;
1856 // CanonicalIterator data -------------------------------------------------- ***
1858 CanonIterData::CanonIterData(UErrorCode
&errorCode
) :
1859 trie(utrie2_open(0, 0, &errorCode
)),
1860 canonStartSets(uprv_deleteUObject
, NULL
, errorCode
) {}
1862 CanonIterData::~CanonIterData() {
1866 void CanonIterData::addToStartSet(UChar32 origin
, UChar32 decompLead
, UErrorCode
&errorCode
) {
1867 uint32_t canonValue
=utrie2_get32(trie
, decompLead
);
1868 if((canonValue
&(CANON_HAS_SET
|CANON_VALUE_MASK
))==0 && origin
!=0) {
1869 // origin is the first character whose decomposition starts with
1870 // the character for which we are setting the value.
1871 utrie2_set32(trie
, decompLead
, canonValue
|origin
, &errorCode
);
1873 // origin is not the first character, or it is U+0000.
1875 if((canonValue
&CANON_HAS_SET
)==0) {
1878 errorCode
=U_MEMORY_ALLOCATION_ERROR
;
1881 UChar32 firstOrigin
=(UChar32
)(canonValue
&CANON_VALUE_MASK
);
1882 canonValue
=(canonValue
&~CANON_VALUE_MASK
)|CANON_HAS_SET
|(uint32_t)canonStartSets
.size();
1883 utrie2_set32(trie
, decompLead
, canonValue
, &errorCode
);
1884 canonStartSets
.addElement(set
, errorCode
);
1885 if(firstOrigin
!=0) {
1886 set
->add(firstOrigin
);
1889 set
=(UnicodeSet
*)canonStartSets
[(int32_t)(canonValue
&CANON_VALUE_MASK
)];
1897 // Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters.
1898 // context: the Normalizer2Impl
1899 static UBool U_CALLCONV
1900 enumCIDRangeHandler(const void *context
, UChar32 start
, UChar32 end
, uint32_t value
) {
1901 UErrorCode errorCode
= U_ZERO_ERROR
;
1903 Normalizer2Impl
*impl
= (Normalizer2Impl
*)context
;
1904 impl
->makeCanonIterDataFromNorm16(
1905 start
, end
, (uint16_t)value
, *impl
->fCanonIterData
, errorCode
);
1907 return U_SUCCESS(errorCode
);
1912 // UInitOnce instantiation function for CanonIterData
1914 static void U_CALLCONV
1915 initCanonIterData(Normalizer2Impl
*impl
, UErrorCode
&errorCode
) {
1916 U_ASSERT(impl
->fCanonIterData
== NULL
);
1917 impl
->fCanonIterData
= new CanonIterData(errorCode
);
1918 if (impl
->fCanonIterData
== NULL
) {
1919 errorCode
=U_MEMORY_ALLOCATION_ERROR
;
1921 if (U_SUCCESS(errorCode
)) {
1922 utrie2_enum(impl
->getNormTrie(), NULL
, enumCIDRangeHandler
, impl
);
1923 utrie2_freeze(impl
->fCanonIterData
->trie
, UTRIE2_32_VALUE_BITS
, &errorCode
);
1925 if (U_FAILURE(errorCode
)) {
1926 delete impl
->fCanonIterData
;
1927 impl
->fCanonIterData
= NULL
;
1933 void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start
, UChar32 end
, uint16_t norm16
,
1934 CanonIterData
&newData
,
1935 UErrorCode
&errorCode
) const {
1936 if(norm16
==0 || (minYesNo
<=norm16
&& norm16
<minNoNo
)) {
1937 // Inert, or 2-way mapping (including Hangul syllable).
1938 // We do not write a canonStartSet for any yesNo character.
1939 // Composites from 2-way mappings are added at runtime from the
1940 // starter's compositions list, and the other characters in
1941 // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are
1942 // "maybe" characters.
1945 for(UChar32 c
=start
; c
<=end
; ++c
) {
1946 uint32_t oldValue
=utrie2_get32(newData
.trie
, c
);
1947 uint32_t newValue
=oldValue
;
1948 if(norm16
>=minMaybeYes
) {
1949 // not a segment starter if it occurs in a decomposition or has cc!=0
1950 newValue
|=CANON_NOT_SEGMENT_STARTER
;
1951 if(norm16
<MIN_NORMAL_MAYBE_YES
) {
1952 newValue
|=CANON_HAS_COMPOSITIONS
;
1954 } else if(norm16
<minYesNo
) {
1955 newValue
|=CANON_HAS_COMPOSITIONS
;
1957 // c has a one-way decomposition
1959 uint16_t norm16_2
=norm16
;
1960 while(limitNoNo
<=norm16_2
&& norm16_2
<minMaybeYes
) {
1961 c2
=mapAlgorithmic(c2
, norm16_2
);
1962 norm16_2
=getNorm16(c2
);
1964 if(minYesNo
<=norm16_2
&& norm16_2
<limitNoNo
) {
1965 // c decomposes, get everything from the variable-length extra data
1966 const uint16_t *mapping
=getMapping(norm16_2
);
1967 uint16_t firstUnit
=*mapping
;
1968 int32_t length
=firstUnit
&MAPPING_LENGTH_MASK
;
1969 if((firstUnit
&MAPPING_HAS_CCC_LCCC_WORD
)!=0) {
1970 if(c
==c2
&& (*(mapping
-1)&0xff)!=0) {
1971 newValue
|=CANON_NOT_SEGMENT_STARTER
; // original c has cc!=0
1974 // Skip empty mappings (no characters in the decomposition).
1976 ++mapping
; // skip over the firstUnit
1977 // add c to first code point's start set
1979 U16_NEXT_UNSAFE(mapping
, i
, c2
);
1980 newData
.addToStartSet(c
, c2
, errorCode
);
1981 // Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a
1982 // one-way mapping. A 2-way mapping is possible here after
1983 // intermediate algorithmic mapping.
1984 if(norm16_2
>=minNoNo
) {
1986 U16_NEXT_UNSAFE(mapping
, i
, c2
);
1987 uint32_t c2Value
=utrie2_get32(newData
.trie
, c2
);
1988 if((c2Value
&CANON_NOT_SEGMENT_STARTER
)==0) {
1989 utrie2_set32(newData
.trie
, c2
, c2Value
|CANON_NOT_SEGMENT_STARTER
,
1996 // c decomposed to c2 algorithmically; c has cc==0
1997 newData
.addToStartSet(c
, c2
, errorCode
);
2000 if(newValue
!=oldValue
) {
2001 utrie2_set32(newData
.trie
, c
, newValue
, &errorCode
);
2006 UBool
Normalizer2Impl::ensureCanonIterData(UErrorCode
&errorCode
) const {
2007 // Logically const: Synchronized instantiation.
2008 Normalizer2Impl
*me
=const_cast<Normalizer2Impl
*>(this);
2009 umtx_initOnce(me
->fCanonIterDataInitOnce
, &initCanonIterData
, me
, errorCode
);
2010 return U_SUCCESS(errorCode
);
2013 int32_t Normalizer2Impl::getCanonValue(UChar32 c
) const {
2014 return (int32_t)utrie2_get32(fCanonIterData
->trie
, c
);
2017 const UnicodeSet
&Normalizer2Impl::getCanonStartSet(int32_t n
) const {
2018 return *(const UnicodeSet
*)fCanonIterData
->canonStartSets
[n
];
2021 UBool
Normalizer2Impl::isCanonSegmentStarter(UChar32 c
) const {
2022 return getCanonValue(c
)>=0;
2025 UBool
Normalizer2Impl::getCanonStartSet(UChar32 c
, UnicodeSet
&set
) const {
2026 int32_t canonValue
=getCanonValue(c
)&~CANON_NOT_SEGMENT_STARTER
;
2031 int32_t value
=canonValue
&CANON_VALUE_MASK
;
2032 if((canonValue
&CANON_HAS_SET
)!=0) {
2033 set
.addAll(getCanonStartSet(value
));
2034 } else if(value
!=0) {
2037 if((canonValue
&CANON_HAS_COMPOSITIONS
)!=0) {
2038 uint16_t norm16
=getNorm16(c
);
2039 if(norm16
==JAMO_L
) {
2041 (UChar32
)(Hangul::HANGUL_BASE
+(c
-Hangul::JAMO_L_BASE
)*Hangul::JAMO_VT_COUNT
);
2042 set
.add(syllable
, syllable
+Hangul::JAMO_VT_COUNT
-1);
2044 addComposites(getCompositionsList(norm16
), set
);
2052 // Normalizer2 data swapping ----------------------------------------------- ***
2056 U_CAPI
int32_t U_EXPORT2
2057 unorm2_swap(const UDataSwapper
*ds
,
2058 const void *inData
, int32_t length
, void *outData
,
2059 UErrorCode
*pErrorCode
) {
2060 const UDataInfo
*pInfo
;
2063 const uint8_t *inBytes
;
2066 const int32_t *inIndexes
;
2067 int32_t indexes
[Normalizer2Impl::IX_MIN_MAYBE_YES
+1];
2069 int32_t i
, offset
, nextOffset
, size
;
2071 /* udata_swapDataHeader checks the arguments */
2072 headerSize
=udata_swapDataHeader(ds
, inData
, length
, outData
, pErrorCode
);
2073 if(pErrorCode
==NULL
|| U_FAILURE(*pErrorCode
)) {
2077 /* check data format and format version */
2078 pInfo
=(const UDataInfo
*)((const char *)inData
+4);
2080 pInfo
->dataFormat
[0]==0x4e && /* dataFormat="Nrm2" */
2081 pInfo
->dataFormat
[1]==0x72 &&
2082 pInfo
->dataFormat
[2]==0x6d &&
2083 pInfo
->dataFormat
[3]==0x32 &&
2084 (pInfo
->formatVersion
[0]==1 || pInfo
->formatVersion
[0]==2)
2086 udata_printError(ds
, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n",
2087 pInfo
->dataFormat
[0], pInfo
->dataFormat
[1],
2088 pInfo
->dataFormat
[2], pInfo
->dataFormat
[3],
2089 pInfo
->formatVersion
[0]);
2090 *pErrorCode
=U_UNSUPPORTED_ERROR
;
2094 inBytes
=(const uint8_t *)inData
+headerSize
;
2095 outBytes
=(uint8_t *)outData
+headerSize
;
2097 inIndexes
=(const int32_t *)inBytes
;
2101 if(length
<(int32_t)sizeof(indexes
)) {
2102 udata_printError(ds
, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n",
2104 *pErrorCode
=U_INDEX_OUTOFBOUNDS_ERROR
;
2109 /* read the first few indexes */
2110 for(i
=0; i
<=Normalizer2Impl::IX_MIN_MAYBE_YES
; ++i
) {
2111 indexes
[i
]=udata_readInt32(ds
, inIndexes
[i
]);
2114 /* get the total length of the data */
2115 size
=indexes
[Normalizer2Impl::IX_TOTAL_SIZE
];
2119 udata_printError(ds
, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n",
2121 *pErrorCode
=U_INDEX_OUTOFBOUNDS_ERROR
;
2125 /* copy the data for inaccessible bytes */
2126 if(inBytes
!=outBytes
) {
2127 uprv_memcpy(outBytes
, inBytes
, size
);
2132 /* swap the int32_t indexes[] */
2133 nextOffset
=indexes
[Normalizer2Impl::IX_NORM_TRIE_OFFSET
];
2134 ds
->swapArray32(ds
, inBytes
, nextOffset
-offset
, outBytes
, pErrorCode
);
2137 /* swap the UTrie2 */
2138 nextOffset
=indexes
[Normalizer2Impl::IX_EXTRA_DATA_OFFSET
];
2139 utrie2_swap(ds
, inBytes
+offset
, nextOffset
-offset
, outBytes
+offset
, pErrorCode
);
2142 /* swap the uint16_t extraData[] */
2143 nextOffset
=indexes
[Normalizer2Impl::IX_SMALL_FCD_OFFSET
];
2144 ds
->swapArray16(ds
, inBytes
+offset
, nextOffset
-offset
, outBytes
+offset
, pErrorCode
);
2147 /* no need to swap the uint8_t smallFCD[] (new in formatVersion 2) */
2148 nextOffset
=indexes
[Normalizer2Impl::IX_SMALL_FCD_OFFSET
+1];
2151 U_ASSERT(offset
==size
);
2154 return headerSize
+size
;
2157 #endif // !UCONFIG_NO_NORMALIZATION