]>
git.saurik.com Git - apple/icu.git/blob - icuSources/test/intltest/astrotst.cpp
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /********************************************************************
5 * Copyright (c) 1996-2016, International Business Machines Corporation and
6 * others. All Rights Reserved.
7 ********************************************************************/
9 /* Test CalendarAstronomer for C++ */
11 #include "unicode/utypes.h"
13 #include "unicode/locid.h"
15 #if !UCONFIG_NO_FORMATTING
20 #include "gregoimp.h" // for Math
21 #include "unicode/simpletz.h"
24 #define CASE(id,test) case id: name = #test; if (exec) { logln(#test "---"); logln((UnicodeString)""); test(); } break
26 AstroTest::AstroTest(): astro(NULL
), gc(NULL
) {
29 void AstroTest::runIndexedTest( int32_t index
, UBool exec
, const char* &name
, char* /*par*/ )
31 if (exec
) logln("TestSuite AstroTest");
34 CASE(0,TestSolarLongitude
);
35 CASE(1,TestLunarPosition
);
36 CASE(2,TestCoordinates
);
38 CASE(4,TestSunriseTimes
);
41 default: name
= ""; break;
47 #define ASSERT_OK(x) if(U_FAILURE(x)) { dataerrln("%s:%d: %s\n", __FILE__, __LINE__, u_errorName(x)); return; }
50 void AstroTest::initAstro(UErrorCode
&status
) {
51 if(U_FAILURE(status
)) return;
53 if((astro
!= NULL
) || (gc
!= NULL
)) {
54 dataerrln("Err: initAstro() called twice!");
56 if(U_SUCCESS(status
)) {
57 status
= U_INTERNAL_PROGRAM_ERROR
;
61 if(U_FAILURE(status
)) return;
63 astro
= new CalendarAstronomer();
64 gc
= Calendar::createInstance(TimeZone::getGMT()->clone(), status
);
67 void AstroTest::closeAstro(UErrorCode
&/*status*/) {
78 void AstroTest::TestSolarLongitude(void) {
79 UErrorCode status
= U_ZERO_ERROR
;
84 int32_t d
[5]; double f
;
86 { { 1980, 7, 27, 0, 00 }, 124.114347 },
87 { { 1988, 7, 27, 00, 00 }, 124.187732 }
91 for (uint32_t i
= 0; i
< UPRV_LENGTHOF(tests
); i
++) {
93 gc
->set(tests
[i
].d
[0], tests
[i
].d
[1]-1, tests
[i
].d
[2], tests
[i
].d
[3], tests
[i
].d
[4]);
95 astro
->setDate(gc
->getTime(status
));
97 double longitude
= astro
->getSunLongitude();
99 CalendarAstronomer::Equatorial result
;
100 astro
->getSunPosition(result
);
101 logln((UnicodeString
)"Sun position is " + result
.toString() + (UnicodeString
)"; " /* + result.toHmsString()*/ + " Sun longitude is " + longitude
);
109 void AstroTest::TestLunarPosition(void) {
110 UErrorCode status
= U_ZERO_ERROR
;
114 static const double tests
[][7] = {
115 { 1979, 2, 26, 16, 00, 0, 0 }
119 for (int32_t i
= 0; i
< UPRV_LENGTHOF(tests
); i
++) {
121 gc
->set((int32_t)tests
[i
][0], (int32_t)tests
[i
][1]-1, (int32_t)tests
[i
][2], (int32_t)tests
[i
][3], (int32_t)tests
[i
][4]);
122 astro
->setDate(gc
->getTime(status
));
124 const CalendarAstronomer::Equatorial
& result
= astro
->getMoonPosition();
125 logln((UnicodeString
)"Moon position is " + result
.toString() + (UnicodeString
)"; " /* + result->toHmsString()*/);
134 void AstroTest::TestCoordinates(void) {
135 UErrorCode status
= U_ZERO_ERROR
;
139 CalendarAstronomer::Equatorial result
;
140 astro
->eclipticToEquatorial(result
, 139.686111 * CalendarAstronomer::PI
/ 180.0, 4.875278* CalendarAstronomer::PI
/ 180.0);
141 logln((UnicodeString
)"result is " + result
.toString() + (UnicodeString
)"; " /* + result.toHmsString()*/ );
148 void AstroTest::TestCoverage(void) {
149 UErrorCode status
= U_ZERO_ERROR
;
152 GregorianCalendar
*cal
= new GregorianCalendar(1958, UCAL_AUGUST
, 15,status
);
153 UDate then
= cal
->getTime(status
);
154 CalendarAstronomer
*myastro
= new CalendarAstronomer(then
);
157 //Latitude: 34 degrees 05' North
158 //Longitude: 118 degrees 22' West
159 double laLat
= 34 + 5./60, laLong
= 360 - (118 + 22./60);
160 CalendarAstronomer
*myastro2
= new CalendarAstronomer(laLong
, laLat
);
162 double eclLat
= laLat
* CalendarAstronomer::PI
/ 360;
163 double eclLong
= laLong
* CalendarAstronomer::PI
/ 360;
165 CalendarAstronomer::Ecliptic
ecl(eclLat
, eclLong
);
166 CalendarAstronomer::Equatorial eq
;
167 CalendarAstronomer::Horizon hor
;
169 logln("ecliptic: " + ecl
.toString());
170 CalendarAstronomer
*myastro3
= new CalendarAstronomer();
171 myastro3
->setJulianDay((4713 + 2000) * 365.25);
173 CalendarAstronomer
*astronomers
[] = {
174 myastro
, myastro2
, myastro3
, myastro2
// check cache
177 for (uint32_t i
= 0; i
< UPRV_LENGTHOF(astronomers
); ++i
) {
178 CalendarAstronomer
*anAstro
= astronomers
[i
];
180 //logln("astro: " + astro);
181 logln((UnicodeString
)" date: " + anAstro
->getTime());
182 logln((UnicodeString
)" cent: " + anAstro
->getJulianCentury());
183 logln((UnicodeString
)" gw sidereal: " + anAstro
->getGreenwichSidereal());
184 logln((UnicodeString
)" loc sidereal: " + anAstro
->getLocalSidereal());
185 logln((UnicodeString
)" equ ecl: " + (anAstro
->eclipticToEquatorial(eq
,ecl
)).toString());
186 logln((UnicodeString
)" equ long: " + (anAstro
->eclipticToEquatorial(eq
, eclLong
)).toString());
187 logln((UnicodeString
)" horiz: " + (anAstro
->eclipticToHorizon(hor
, eclLong
)).toString());
188 logln((UnicodeString
)" sunrise: " + (anAstro
->getSunRiseSet(TRUE
)));
189 logln((UnicodeString
)" sunset: " + (anAstro
->getSunRiseSet(FALSE
)));
190 logln((UnicodeString
)" moon phase: " + anAstro
->getMoonPhase());
191 logln((UnicodeString
)" moonrise: " + (anAstro
->getMoonRiseSet(TRUE
)));
192 logln((UnicodeString
)" moonset: " + (anAstro
->getMoonRiseSet(FALSE
)));
193 logln((UnicodeString
)" prev summer solstice: " + (anAstro
->getSunTime(CalendarAstronomer::SUMMER_SOLSTICE(), FALSE
)));
194 logln((UnicodeString
)" next summer solstice: " + (anAstro
->getSunTime(CalendarAstronomer::SUMMER_SOLSTICE(), TRUE
)));
195 logln((UnicodeString
)" prev full moon: " + (anAstro
->getMoonTime(CalendarAstronomer::FULL_MOON(), FALSE
)));
196 logln((UnicodeString
)" next full moon: " + (anAstro
->getMoonTime(CalendarAstronomer::FULL_MOON(), TRUE
)));
210 void AstroTest::TestSunriseTimes(void) {
211 UErrorCode status
= U_ZERO_ERROR
;
215 // logln("Sunrise/Sunset times for San Jose, California, USA");
216 // CalendarAstronomer *astro2 = new CalendarAstronomer(-121.55, 37.20);
217 // TimeZone *tz = TimeZone::createTimeZone("America/Los_Angeles");
219 // We'll use a table generated by the UNSO website as our reference
220 // From: http://aa.usno.navy.mil/
221 //-Location: W079 25, N43 40
222 //-Rise and Set for the Sun for 2001
223 //-Zone: 4h West of Greenwich
257 logln("Sunrise/Sunset times for Toronto, Canada");
258 // long = 79 25", lat = 43 40"
259 CalendarAstronomer
*astro3
= new CalendarAstronomer(-(79+25/60), 43+40/60);
261 // As of ICU4J 2.8 the ICU4J time zones implement pass-through
262 // to the underlying JDK. Because of variation in the
263 // underlying JDKs, we have to use a fixed-offset
264 // SimpleTimeZone to get consistent behavior between JDKs.
265 // The offset we want is [-18000000, 3600000] (raw, dst).
268 // TimeZone tz = TimeZone.getTimeZone("America/Montreal");
269 TimeZone
*tz
= new SimpleTimeZone(-18000000 + 3600000, "Montreal(FIXED)");
271 GregorianCalendar
*cal
= new GregorianCalendar(tz
->clone(), Locale::getUS(), status
);
272 GregorianCalendar
*cal2
= new GregorianCalendar(tz
->clone(), Locale::getUS(), status
);
274 cal
->set(UCAL_YEAR
, 2001);
275 cal
->set(UCAL_MONTH
, UCAL_APRIL
);
276 cal
->set(UCAL_DAY_OF_MONTH
, 1);
277 cal
->set(UCAL_HOUR_OF_DAY
, 12); // must be near local noon for getSunRiseSet to work
279 DateFormat
*df_t
= DateFormat::createTimeInstance(DateFormat::MEDIUM
,Locale::getUS());
280 DateFormat
*df_d
= DateFormat::createDateInstance(DateFormat::MEDIUM
,Locale::getUS());
281 DateFormat
*df_dt
= DateFormat::createDateTimeInstance(DateFormat::MEDIUM
, DateFormat::MEDIUM
, Locale::getUS());
282 if(!df_t
|| !df_d
|| !df_dt
) {
283 dataerrln("couldn't create dateformats.");
286 df_t
->adoptTimeZone(tz
->clone());
287 df_d
->adoptTimeZone(tz
->clone());
288 df_dt
->adoptTimeZone(tz
->clone());
290 for (int32_t i
=0; i
< 30; i
++) {
292 astro3
->setDate(cal
->getTime(status
));
293 logln("getRiseSet(TRUE)\n");
294 UDate sunrise
= astro3
->getSunRiseSet(TRUE
);
295 logln("getRiseSet(FALSE)\n");
296 UDate sunset
= astro3
->getSunRiseSet(FALSE
);
297 logln("end of getRiseSet\n");
299 cal2
->setTime(cal
->getTime(status
), status
);
300 cal2
->set(UCAL_SECOND
, 0);
301 cal2
->set(UCAL_MILLISECOND
, 0);
303 cal2
->set(UCAL_HOUR_OF_DAY
, USNO
[4*i
+0]);
304 cal2
->set(UCAL_MINUTE
, USNO
[4*i
+1]);
305 UDate exprise
= cal2
->getTime(status
);
306 cal2
->set(UCAL_HOUR_OF_DAY
, USNO
[4*i
+2]);
307 cal2
->set(UCAL_MINUTE
, USNO
[4*i
+3]);
308 UDate expset
= cal2
->getTime(status
);
309 // Compute delta of what we got to the USNO data, in seconds
310 int32_t deltarise
= (int32_t)uprv_fabs((sunrise
- exprise
) / 1000);
311 int32_t deltaset
= (int32_t)uprv_fabs((sunset
- expset
) / 1000);
313 // Allow a deviation of 0..MAX_DEV seconds
314 // It would be nice to get down to 60 seconds, but at this
315 // point that appears to be impossible without a redo of the
316 // algorithm using something more advanced than Duffett-Smith.
317 int32_t MAX_DEV
= 180;
318 UnicodeString s1
, s2
, s3
, s4
, s5
;
319 if (deltarise
> MAX_DEV
|| deltaset
> MAX_DEV
) {
320 if (deltarise
> MAX_DEV
) {
321 errln("FAIL: (rise) " + df_d
->format(cal
->getTime(status
),s1
) +
322 ", Sunrise: " + df_dt
->format(sunrise
, s2
) +
323 " (USNO " + df_t
->format(exprise
,s3
) +
324 " d=" + deltarise
+ "s)");
326 logln(df_d
->format(cal
->getTime(status
),s1
) +
327 ", Sunrise: " + df_dt
->format(sunrise
,s2
) +
328 " (USNO " + df_t
->format(exprise
,s3
) + ")");
330 s1
.remove(); s2
.remove(); s3
.remove(); s4
.remove(); s5
.remove();
331 if (deltaset
> MAX_DEV
) {
332 errln("FAIL: (set) " + df_d
->format(cal
->getTime(status
),s1
) +
333 ", Sunset: " + df_dt
->format(sunset
,s2
) +
334 " (USNO " + df_t
->format(expset
,s3
) +
335 " d=" + deltaset
+ "s)");
337 logln(df_d
->format(cal
->getTime(status
),s1
) +
338 ", Sunset: " + df_dt
->format(sunset
,s2
) +
339 " (USNO " + df_t
->format(expset
,s3
) + ")");
342 logln(df_d
->format(cal
->getTime(status
),s1
) +
343 ", Sunrise: " + df_dt
->format(sunrise
,s2
) +
344 " (USNO " + df_t
->format(exprise
,s3
) + ")" +
345 ", Sunset: " + df_dt
->format(sunset
,s4
) +
346 " (USNO " + df_t
->format(expset
,s5
) + ")");
348 cal
->add(UCAL_DATE
, 1, status
);
351 // CalendarAstronomer a = new CalendarAstronomer(-(71+5/60), 42+37/60);
353 // cal.set(cal.YEAR, 1986);
354 // cal.set(cal.MONTH, cal.MARCH);
355 // cal.set(cal.DATE, 10);
356 // cal.set(cal.YEAR, 1988);
357 // cal.set(cal.MONTH, cal.JULY);
358 // cal.set(cal.DATE, 27);
359 // a.setDate(cal.getTime());
360 // long r = a.getSunRiseSet2(true);
374 void AstroTest::TestBasics(void) {
375 UErrorCode status
= U_ZERO_ERROR
;
377 if (U_FAILURE(status
)) {
378 dataerrln("Got error: %s", u_errorName(status
));
382 // Check that our JD computation is the same as the book's (p. 88)
383 GregorianCalendar
*cal3
= new GregorianCalendar(TimeZone::getGMT()->clone(), Locale::getUS(), status
);
384 DateFormat
*d3
= DateFormat::createDateTimeInstance(DateFormat::MEDIUM
,DateFormat::MEDIUM
,Locale::getUS());
385 d3
->setTimeZone(*TimeZone::getGMT());
387 cal3
->set(UCAL_YEAR
, 1980);
388 cal3
->set(UCAL_MONTH
, UCAL_JULY
);
389 cal3
->set(UCAL_DATE
, 2);
390 logln("cal3[a]=%.1lf, d=%d\n", cal3
->getTime(status
), cal3
->get(UCAL_JULIAN_DAY
,status
));
393 logln(UnicodeString("cal3[a] = ") + d3
->format(cal3
->getTime(status
),s
));
396 cal3
->set(UCAL_YEAR
, 1980);
397 cal3
->set(UCAL_MONTH
, UCAL_JULY
);
398 cal3
->set(UCAL_DATE
, 27);
399 logln("cal3=%.1lf, d=%d\n", cal3
->getTime(status
), cal3
->get(UCAL_JULIAN_DAY
,status
));
404 logln(UnicodeString("cal3 = ") + d3
->format(cal3
->getTime(status
),s
));
406 astro
->setTime(cal3
->getTime(status
));
407 double jd
= astro
->getJulianDay() - 2447891.5;
411 logln(d3
->format(cal3
->getTime(status
),s
) + " => " + jd
);
414 errln("FAIL: " + d3
->format(cal3
->getTime(status
), s
) + " => " + jd
+
415 ", expected " + exp
);
419 // cal3.set(cal3.YEAR, 1990);
420 // cal3.set(cal3.MONTH, Calendar.JANUARY);
421 // cal3.set(cal3.DATE, 1);
422 // cal3.add(cal3.DATE, -1);
423 // astro.setDate(cal3.getTime());
434 void AstroTest::TestMoonAge(void){
435 UErrorCode status
= U_ZERO_ERROR
;
439 // more testcases are around the date 05/20/2012
440 //ticket#3785 UDate ud0 = 1337557623000.0;
441 static const double testcase
[][10] = {{2012, 5, 20 , 16 , 48, 59},
442 {2012, 5, 20 , 16 , 47, 34},
443 {2012, 5, 21, 00, 00, 00},
444 {2012, 5, 20, 14, 55, 59},
445 {2012, 5, 21, 7, 40, 40},
446 {2023, 9, 25, 10,00, 00},
447 {2008, 7, 7, 15, 00, 33},
448 {1832, 9, 24, 2, 33, 41 },
449 {2016, 1, 31, 23, 59, 59},
450 {2099, 5, 20, 14, 55, 59}
452 // Moon phase angle - Got from http://www.moonsystem.to/checkupe.htm
453 static const double angle
[] = {356.8493418421329, 356.8386760059673, 0.09625415252237701, 355.9986960782416, 3.5714026601303317, 124.26906744384183, 53.50364630964228,
454 357.54163205513123, 268.41779281511094, 4.82340276581624};
455 static const double precision
= CalendarAstronomer::PI
/32;
456 for (int32_t i
= 0; i
< UPRV_LENGTHOF(testcase
); i
++) {
458 logln((UnicodeString
)"CASE["+i
+"]: Year "+(int32_t)testcase
[i
][0]+" Month "+(int32_t)testcase
[i
][1]+" Day "+
459 (int32_t)testcase
[i
][2]+" Hour "+(int32_t)testcase
[i
][3]+" Minutes "+(int32_t)testcase
[i
][4]+
460 " Seconds "+(int32_t)testcase
[i
][5]);
461 gc
->set((int32_t)testcase
[i
][0], (int32_t)testcase
[i
][1]-1, (int32_t)testcase
[i
][2], (int32_t)testcase
[i
][3], (int32_t)testcase
[i
][4], (int32_t)testcase
[i
][5]);
462 astro
->setDate(gc
->getTime(status
));
463 double expectedAge
= (angle
[i
]*CalendarAstronomer::PI
)/180;
464 double got
= astro
->getMoonAge();
466 if(!(got
>expectedAge
-precision
&& got
<expectedAge
+precision
)){
467 errln((UnicodeString
)"FAIL: expected " + expectedAge
+
470 logln((UnicodeString
)"PASS: expected " + expectedAge
+
479 // TODO: try finding next new moon after 07/28/1984 16:00 GMT