1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
4 **********************************************************************
5 * Copyright (C) 1999-2016, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 **********************************************************************
8 * Date Name Description
9 * 11/17/99 aliu Creation.
10 **********************************************************************
13 #include "unicode/utypes.h"
15 #if !UCONFIG_NO_TRANSLITERATION
17 #include "unicode/uobject.h"
18 #include "unicode/parseerr.h"
19 #include "unicode/parsepos.h"
20 #include "unicode/putil.h"
21 #include "unicode/uchar.h"
22 #include "unicode/ustring.h"
23 #include "unicode/uniset.h"
24 #include "unicode/utf16.h"
35 #include "unicode/symtable.h"
39 #include "patternprops.h"
46 #define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/
47 #define FORWARD_RULE_OP ((UChar)0x003E) /*>*/
48 #define REVERSE_RULE_OP ((UChar)0x003C) /*<*/
49 #define FWDREV_RULE_OP ((UChar)0x007E) /*~*/ // internal rep of <> op
51 // Other special characters
52 #define QUOTE ((UChar)0x0027) /*'*/
53 #define ESCAPE ((UChar)0x005C) /*\*/
54 #define END_OF_RULE ((UChar)0x003B) /*;*/
55 #define RULE_COMMENT_CHAR ((UChar)0x0023) /*#*/
57 #define SEGMENT_OPEN ((UChar)0x0028) /*(*/
58 #define SEGMENT_CLOSE ((UChar)0x0029) /*)*/
59 #define CONTEXT_ANTE ((UChar)0x007B) /*{*/
60 #define CONTEXT_POST ((UChar)0x007D) /*}*/
61 #define CURSOR_POS ((UChar)0x007C) /*|*/
62 #define CURSOR_OFFSET ((UChar)0x0040) /*@*/
63 #define ANCHOR_START ((UChar)0x005E) /*^*/
64 #define KLEENE_STAR ((UChar)0x002A) /***/
65 #define ONE_OR_MORE ((UChar)0x002B) /*+*/
66 #define ZERO_OR_ONE ((UChar)0x003F) /*?*/
68 #define DOT ((UChar)46) /*.*/
70 static const UChar DOT_SET
[] = { // "[^[:Zp:][:Zl:]\r\n$]";
71 91, 94, 91, 58, 90, 112, 58, 93, 91, 58, 90,
72 108, 58, 93, 92, 114, 92, 110, 36, 93, 0
75 // A function is denoted &Source-Target/Variant(text)
76 #define FUNCTION ((UChar)38) /*&*/
78 // Aliases for some of the syntax characters. These are provided so
79 // transliteration rules can be expressed in XML without clashing with
80 // XML syntax characters '<', '>', and '&'.
81 #define ALT_REVERSE_RULE_OP ((UChar)0x2190) // Left Arrow
82 #define ALT_FORWARD_RULE_OP ((UChar)0x2192) // Right Arrow
83 #define ALT_FWDREV_RULE_OP ((UChar)0x2194) // Left Right Arrow
84 #define ALT_FUNCTION ((UChar)0x2206) // Increment (~Greek Capital Delta)
86 // Special characters disallowed at the top level
87 static const UChar ILLEGAL_TOP
[] = {41,0}; // ")"
89 // Special characters disallowed within a segment
90 static const UChar ILLEGAL_SEG
[] = {123,125,124,64,0}; // "{}|@"
92 // Special characters disallowed within a function argument
93 static const UChar ILLEGAL_FUNC
[] = {94,40,46,42,43,63,123,125,124,64,0}; // "^(.*+?{}|@"
95 // By definition, the ANCHOR_END special character is a
96 // trailing SymbolTable.SYMBOL_REF character.
97 // private static final char ANCHOR_END = '$';
99 static const UChar gOPERATORS
[] = { // "=><"
100 VARIABLE_DEF_OP
, FORWARD_RULE_OP
, REVERSE_RULE_OP
,
101 ALT_FORWARD_RULE_OP
, ALT_REVERSE_RULE_OP
, ALT_FWDREV_RULE_OP
,
105 static const UChar HALF_ENDERS
[] = { // "=><;"
106 VARIABLE_DEF_OP
, FORWARD_RULE_OP
, REVERSE_RULE_OP
,
107 ALT_FORWARD_RULE_OP
, ALT_REVERSE_RULE_OP
, ALT_FWDREV_RULE_OP
,
112 // These are also used in Transliterator::toRules()
113 static const int32_t ID_TOKEN_LEN
= 2;
114 static const UChar ID_TOKEN
[] = { 0x3A, 0x3A }; // ':', ':'
117 commented out until we do real ::BEGIN/::END functionality
118 static const int32_t BEGIN_TOKEN_LEN = 5;
119 static const UChar BEGIN_TOKEN[] = { 0x42, 0x45, 0x47, 0x49, 0x4e }; // 'BEGIN'
121 static const int32_t END_TOKEN_LEN = 3;
122 static const UChar END_TOKEN[] = { 0x45, 0x4e, 0x44 }; // 'END'
127 //----------------------------------------------------------------------
129 //----------------------------------------------------------------------
132 * This class implements the SymbolTable interface. It is used
133 * during parsing to give UnicodeSet access to variables that
134 * have been defined so far. Note that it uses variablesVector,
135 * _not_ data.setVariables.
137 class ParseData
: public UMemory
, public SymbolTable
{
139 const TransliterationRuleData
* data
; // alias
141 const UVector
* variablesVector
; // alias
143 const Hashtable
* variableNames
; // alias
145 ParseData(const TransliterationRuleData
* data
= 0,
146 const UVector
* variablesVector
= 0,
147 const Hashtable
* variableNames
= 0);
149 virtual ~ParseData();
151 virtual const UnicodeString
* lookup(const UnicodeString
& s
) const;
153 virtual const UnicodeFunctor
* lookupMatcher(UChar32 ch
) const;
155 virtual UnicodeString
parseReference(const UnicodeString
& text
,
156 ParsePosition
& pos
, int32_t limit
) const;
158 * Return true if the given character is a matcher standin or a plain
159 * character (non standin).
161 UBool
isMatcher(UChar32 ch
);
164 * Return true if the given character is a replacer standin or a plain
165 * character (non standin).
167 UBool
isReplacer(UChar32 ch
);
170 ParseData(const ParseData
&other
); // forbid copying of this class
171 ParseData
&operator=(const ParseData
&other
); // forbid copying of this class
174 ParseData::ParseData(const TransliterationRuleData
* d
,
176 const Hashtable
* vNames
) :
177 data(d
), variablesVector(sets
), variableNames(vNames
) {}
179 ParseData::~ParseData() {}
182 * Implement SymbolTable API.
184 const UnicodeString
* ParseData::lookup(const UnicodeString
& name
) const {
185 return (const UnicodeString
*) variableNames
->get(name
);
189 * Implement SymbolTable API.
191 const UnicodeFunctor
* ParseData::lookupMatcher(UChar32 ch
) const {
192 // Note that we cannot use data.lookupSet() because the
193 // set array has not been constructed yet.
194 const UnicodeFunctor
* set
= NULL
;
195 int32_t i
= ch
- data
->variablesBase
;
196 if (i
>= 0 && i
< variablesVector
->size()) {
197 int32_t i
= ch
- data
->variablesBase
;
198 set
= (i
< variablesVector
->size()) ?
199 (UnicodeFunctor
*) variablesVector
->elementAt(i
) : 0;
205 * Implement SymbolTable API. Parse out a symbol reference
208 UnicodeString
ParseData::parseReference(const UnicodeString
& text
,
209 ParsePosition
& pos
, int32_t limit
) const {
210 int32_t start
= pos
.getIndex();
212 UnicodeString result
;
214 UChar c
= text
.charAt(i
);
215 if ((i
==start
&& !u_isIDStart(c
)) || !u_isIDPart(c
)) {
220 if (i
== start
) { // No valid name chars
221 return result
; // Indicate failure with empty string
224 text
.extractBetween(start
, i
, result
);
228 UBool
ParseData::isMatcher(UChar32 ch
) {
229 // Note that we cannot use data.lookup() because the
230 // set array has not been constructed yet.
231 int32_t i
= ch
- data
->variablesBase
;
232 if (i
>= 0 && i
< variablesVector
->size()) {
233 UnicodeFunctor
*f
= (UnicodeFunctor
*) variablesVector
->elementAt(i
);
234 return f
!= NULL
&& f
->toMatcher() != NULL
;
240 * Return true if the given character is a replacer standin or a plain
241 * character (non standin).
243 UBool
ParseData::isReplacer(UChar32 ch
) {
244 // Note that we cannot use data.lookup() because the
245 // set array has not been constructed yet.
246 int i
= ch
- data
->variablesBase
;
247 if (i
>= 0 && i
< variablesVector
->size()) {
248 UnicodeFunctor
*f
= (UnicodeFunctor
*) variablesVector
->elementAt(i
);
249 return f
!= NULL
&& f
->toReplacer() != NULL
;
254 //----------------------------------------------------------------------
256 //----------------------------------------------------------------------
259 * A class representing one side of a rule. This class knows how to
260 * parse half of a rule. It is tightly coupled to the method
261 * RuleBasedTransliterator.Parser.parseRule().
263 class RuleHalf
: public UMemory
{
269 int32_t cursor
; // position of cursor in text
270 int32_t ante
; // position of ante context marker '{' in text
271 int32_t post
; // position of post context marker '}' in text
273 // Record the offset to the cursor either to the left or to the
274 // right of the key. This is indicated by characters on the output
275 // side that allow the cursor to be positioned arbitrarily within
276 // the matching text. For example, abc{def} > | @@@ xyz; changes
277 // def to xyz and moves the cursor to before abc. Offset characters
278 // must be at the start or end, and they cannot move the cursor past
279 // the ante- or postcontext text. Placeholders are only valid in
280 // output text. The length of the ante and post context is
281 // determined at runtime, because of supplementals and quantifiers.
282 int32_t cursorOffset
; // only nonzero on output side
284 // Position of first CURSOR_OFFSET on _right_. This will be -1
285 // for |@, -2 for |@@, etc., and 1 for @|, 2 for @@|, etc.
286 int32_t cursorOffsetPos
;
292 * The segment number from 1..n of the next '(' we see
293 * during parsing; 1-based.
295 int32_t nextSegmentNumber
;
297 TransliteratorParser
& parser
;
299 //--------------------------------------------------
302 RuleHalf(TransliteratorParser
& parser
);
305 int32_t parse(const UnicodeString
& rule
, int32_t pos
, int32_t limit
, UErrorCode
& status
);
307 int32_t parseSection(const UnicodeString
& rule
, int32_t pos
, int32_t limit
,
309 const UnicodeString
& illegal
,
316 void removeContext();
319 * Return true if this half looks like valid output, that is, does not
320 * contain quantifiers or other special input-only elements.
322 UBool
isValidOutput(TransliteratorParser
& parser
);
325 * Return true if this half looks like valid input, that is, does not
326 * contain functions or other special output-only elements.
328 UBool
isValidInput(TransliteratorParser
& parser
);
330 int syntaxError(UErrorCode code
,
331 const UnicodeString
& rule
,
333 UErrorCode
& status
) {
334 return parser
.syntaxError(code
, rule
, start
, status
);
338 // Disallowed methods; no impl.
339 RuleHalf(const RuleHalf
&);
340 RuleHalf
& operator=(const RuleHalf
&);
343 RuleHalf::RuleHalf(TransliteratorParser
& p
) :
351 anchorStart
= anchorEnd
= FALSE
;
352 nextSegmentNumber
= 1;
355 RuleHalf::~RuleHalf() {
359 * Parse one side of a rule, stopping at either the limit,
360 * the END_OF_RULE character, or an operator.
361 * @return the index after the terminating character, or
362 * if limit was reached, limit
364 int32_t RuleHalf::parse(const UnicodeString
& rule
, int32_t pos
, int32_t limit
, UErrorCode
& status
) {
367 pos
= parseSection(rule
, pos
, limit
, text
, UnicodeString(TRUE
, ILLEGAL_TOP
, -1), FALSE
, status
);
369 if (cursorOffset
> 0 && cursor
!= cursorOffsetPos
) {
370 return syntaxError(U_MISPLACED_CURSOR_OFFSET
, rule
, start
, status
);
377 * Parse a section of one side of a rule, stopping at either
378 * the limit, the END_OF_RULE character, an operator, or a
379 * segment close character. This method parses both a
380 * top-level rule half and a segment within such a rule half.
381 * It calls itself recursively to parse segments and nested
383 * @param buf buffer into which to accumulate the rule pattern
384 * characters, either literal characters from the rule or
385 * standins for UnicodeMatcher objects including segments.
386 * @param illegal the set of special characters that is illegal during
388 * @param isSegment if true, then we've already seen a '(' and
389 * pos on entry points right after it. Accumulate everything
390 * up to the closing ')', put it in a segment matcher object,
391 * generate a standin for it, and add the standin to buf. As
392 * a side effect, update the segments vector with a reference
393 * to the segment matcher. This works recursively for nested
394 * segments. If isSegment is false, just accumulate
395 * characters into buf.
396 * @return the index after the terminating character, or
397 * if limit was reached, limit
399 int32_t RuleHalf::parseSection(const UnicodeString
& rule
, int32_t pos
, int32_t limit
,
401 const UnicodeString
& illegal
,
402 UBool isSegment
, UErrorCode
& status
) {
405 UnicodeString scratch
;
407 int32_t quoteStart
= -1; // Most recent 'single quoted string'
408 int32_t quoteLimit
= -1;
409 int32_t varStart
= -1; // Most recent $variableReference
410 int32_t varLimit
= -1;
411 int32_t bufStart
= buf
.length();
413 while (pos
< limit
&& !done
) {
414 // Since all syntax characters are in the BMP, fetching
415 // 16-bit code units suffices here.
416 UChar c
= rule
.charAt(pos
++);
417 if (PatternProps::isWhiteSpace(c
)) {
418 // Ignore whitespace. Note that this is not Unicode
419 // spaces, but Java spaces -- a subset, representing
420 // whitespace likely to be seen in code.
423 if (u_strchr(HALF_ENDERS
, c
) != NULL
) {
426 return syntaxError(U_UNCLOSED_SEGMENT
, rule
, start
, status
);
431 // Text after a presumed end anchor is a syntax err
432 return syntaxError(U_MALFORMED_VARIABLE_REFERENCE
, rule
, start
, status
);
434 if (UnicodeSet::resemblesPattern(rule
, pos
-1)) {
435 pp
.setIndex(pos
-1); // Backup to opening '['
436 buf
.append(parser
.parseSet(rule
, pp
, status
));
437 if (U_FAILURE(status
)) {
438 return syntaxError(U_MALFORMED_SET
, rule
, start
, status
);
446 return syntaxError(U_TRAILING_BACKSLASH
, rule
, start
, status
);
448 UChar32 escaped
= rule
.unescapeAt(pos
); // pos is already past '\\'
449 if (escaped
== (UChar32
) -1) {
450 return syntaxError(U_MALFORMED_UNICODE_ESCAPE
, rule
, start
, status
);
452 if (!parser
.checkVariableRange(escaped
)) {
453 return syntaxError(U_VARIABLE_RANGE_OVERLAP
, rule
, start
, status
);
458 // Handle quoted matter
460 int32_t iq
= rule
.indexOf(QUOTE
, pos
);
462 buf
.append(c
); // Parse [''] outside quotes as [']
465 /* This loop picks up a run of quoted text of the
466 * form 'aaaa' each time through. If this run
467 * hasn't really ended ('aaaa''bbbb') then it keeps
468 * looping, each time adding on a new run. When it
469 * reaches the final quote it breaks.
471 quoteStart
= buf
.length();
474 return syntaxError(U_UNTERMINATED_QUOTE
, rule
, start
, status
);
477 rule
.extractBetween(pos
, iq
, scratch
);
480 if (pos
< limit
&& rule
.charAt(pos
) == QUOTE
) {
481 // Parse [''] inside quotes as [']
482 iq
= rule
.indexOf(QUOTE
, pos
+1);
488 quoteLimit
= buf
.length();
490 for (iq
=quoteStart
; iq
<quoteLimit
; ++iq
) {
491 if (!parser
.checkVariableRange(buf
.charAt(iq
))) {
492 return syntaxError(U_VARIABLE_RANGE_OVERLAP
, rule
, start
, status
);
499 if (!parser
.checkVariableRange(c
)) {
500 return syntaxError(U_VARIABLE_RANGE_OVERLAP
, rule
, start
, status
);
503 if (illegal
.indexOf(c
) >= 0) {
504 syntaxError(U_ILLEGAL_CHARACTER
, rule
, start
, status
);
509 //------------------------------------------------------
510 // Elements allowed within and out of segments
511 //------------------------------------------------------
513 if (buf
.length() == 0 && !anchorStart
) {
516 return syntaxError(U_MISPLACED_ANCHOR_START
,
517 rule
, start
, status
);
522 // bufSegStart is the offset in buf to the first
523 // character of the segment we are parsing.
524 int32_t bufSegStart
= buf
.length();
526 // Record segment number now, since nextSegmentNumber
527 // will be incremented during the call to parseSection
528 // if there are nested segments.
529 int32_t segmentNumber
= nextSegmentNumber
++; // 1-based
532 pos
= parseSection(rule
, pos
, limit
, buf
, UnicodeString(TRUE
, ILLEGAL_SEG
, -1), TRUE
, status
);
534 // After parsing a segment, the relevant characters are
535 // in buf, starting at offset bufSegStart. Extract them
536 // into a string matcher, and replace them with a
537 // standin for that matcher.
539 new StringMatcher(buf
, bufSegStart
, buf
.length(),
540 segmentNumber
, *parser
.curData
);
542 return syntaxError(U_MEMORY_ALLOCATION_ERROR
, rule
, start
, status
);
545 // Record and associate object and segment number
546 parser
.setSegmentObject(segmentNumber
, m
, status
);
547 buf
.truncate(bufSegStart
);
548 buf
.append(parser
.getSegmentStandin(segmentNumber
, status
));
555 TransliteratorIDParser::SingleID
* single
=
556 TransliteratorIDParser::parseFilterID(rule
, iref
);
557 // The next character MUST be a segment open
558 if (single
== NULL
||
559 !ICU_Utility::parseChar(rule
, iref
, SEGMENT_OPEN
)) {
560 return syntaxError(U_INVALID_FUNCTION
, rule
, start
, status
);
563 Transliterator
*t
= single
->createInstance();
566 return syntaxError(U_INVALID_FUNCTION
, rule
, start
, status
);
569 // bufSegStart is the offset in buf to the first
570 // character of the segment we are parsing.
571 int32_t bufSegStart
= buf
.length();
574 pos
= parseSection(rule
, iref
, limit
, buf
, UnicodeString(TRUE
, ILLEGAL_FUNC
, -1), TRUE
, status
);
576 // After parsing a segment, the relevant characters are
577 // in buf, starting at offset bufSegStart.
578 UnicodeString output
;
579 buf
.extractBetween(bufSegStart
, buf
.length(), output
);
580 FunctionReplacer
*r
=
581 new FunctionReplacer(t
, new StringReplacer(output
, parser
.curData
));
583 return syntaxError(U_MEMORY_ALLOCATION_ERROR
, rule
, start
, status
);
586 // Replace the buffer contents with a stand-in
587 buf
.truncate(bufSegStart
);
588 buf
.append(parser
.generateStandInFor(r
, status
));
591 case SymbolTable::SYMBOL_REF
:
592 // Handle variable references and segment references "$1" .. "$9"
594 // A variable reference must be followed immediately
595 // by a Unicode identifier start and zero or more
596 // Unicode identifier part characters, or by a digit
597 // 1..9 if it is a segment reference.
599 // A variable ref character at the end acts as
600 // an anchor to the context limit, as in perl.
604 // Parse "$1" "$2" .. "$9" .. (no upper limit)
605 c
= rule
.charAt(pos
);
606 int32_t r
= u_digit(c
, 10);
607 if (r
>= 1 && r
<= 9) {
608 r
= ICU_Utility::parseNumber(rule
, pos
, 10);
610 return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE
,
611 rule
, start
, status
);
613 buf
.append(parser
.getSegmentStandin(r
, status
));
616 UnicodeString name
= parser
.parseData
->
617 parseReference(rule
, pp
, limit
);
618 if (name
.length() == 0) {
619 // This means the '$' was not followed by a
620 // valid name. Try to interpret it as an
621 // end anchor then. If this also doesn't work
622 // (if we see a following character) then signal
628 // If this is a variable definition statement,
629 // then the LHS variable will be undefined. In
630 // that case appendVariableDef() will append the
631 // special placeholder char variableLimit-1.
632 varStart
= buf
.length();
633 parser
.appendVariableDef(name
, buf
, status
);
634 varLimit
= buf
.length();
639 buf
.append(parser
.getDotStandIn(status
));
644 // Quantifiers. We handle single characters, quoted strings,
645 // variable references, and segments.
647 // 'foo'+ matches foofoofoo
648 // $v+ matches xyxyxy if $v == xy
649 // (seg)+ matches segsegseg
651 if (isSegment
&& buf
.length() == bufStart
) {
652 // The */+ immediately follows '('
653 return syntaxError(U_MISPLACED_QUANTIFIER
, rule
, start
, status
);
656 int32_t qstart
, qlimit
;
657 // The */+ follows an isolated character or quote
658 // or variable reference
659 if (buf
.length() == quoteLimit
) {
660 // The */+ follows a 'quoted string'
663 } else if (buf
.length() == varLimit
) {
664 // The */+ follows a $variableReference
668 // The */+ follows a single character, possibly
670 qstart
= buf
.length() - 1;
675 new StringMatcher(buf
, qstart
, qlimit
, 0, *parser
.curData
);
677 return syntaxError(U_MEMORY_ALLOCATION_ERROR
, rule
, start
, status
);
680 int32_t max
= Quantifier::MAX
;
690 // do nothing -- min, max already set
692 m
= new Quantifier(m
, min
, max
);
694 return syntaxError(U_MEMORY_ALLOCATION_ERROR
, rule
, start
, status
);
696 buf
.truncate(qstart
);
697 buf
.append(parser
.generateStandInFor(m
, status
));
701 //------------------------------------------------------
702 // Elements allowed ONLY WITHIN segments
703 //------------------------------------------------------
705 // assert(isSegment);
706 // We're done parsing a segment.
710 //------------------------------------------------------
711 // Elements allowed ONLY OUTSIDE segments
712 //------------------------------------------------------
715 return syntaxError(U_MULTIPLE_ANTE_CONTEXTS
, rule
, start
, status
);
721 return syntaxError(U_MULTIPLE_POST_CONTEXTS
, rule
, start
, status
);
727 return syntaxError(U_MULTIPLE_CURSORS
, rule
, start
, status
);
729 cursor
= buf
.length();
732 if (cursorOffset
< 0) {
733 if (buf
.length() > 0) {
734 return syntaxError(U_MISPLACED_CURSOR_OFFSET
, rule
, start
, status
);
737 } else if (cursorOffset
> 0) {
738 if (buf
.length() != cursorOffsetPos
|| cursor
>= 0) {
739 return syntaxError(U_MISPLACED_CURSOR_OFFSET
, rule
, start
, status
);
743 if (cursor
== 0 && buf
.length() == 0) {
745 } else if (cursor
< 0) {
746 cursorOffsetPos
= buf
.length();
749 return syntaxError(U_MISPLACED_CURSOR_OFFSET
, rule
, start
, status
);
755 //------------------------------------------------------
756 // Non-special characters
757 //------------------------------------------------------
759 // Disallow unquoted characters other than [0-9A-Za-z]
760 // in the printable ASCII range. These characters are
761 // reserved for possible future use.
762 if (c
>= 0x0021 && c
<= 0x007E &&
763 !((c
>= 0x0030/*'0'*/ && c
<= 0x0039/*'9'*/) ||
764 (c
>= 0x0041/*'A'*/ && c
<= 0x005A/*'Z'*/) ||
765 (c
>= 0x0061/*'a'*/ && c
<= 0x007A/*'z'*/))) {
766 return syntaxError(U_UNQUOTED_SPECIAL
, rule
, start
, status
);
779 void RuleHalf::removeContext() {
780 //text = text.substring(ante < 0 ? 0 : ante,
781 // post < 0 ? text.length() : post);
786 text
.removeBetween(0, ante
);
789 anchorStart
= anchorEnd
= FALSE
;
793 * Return true if this half looks like valid output, that is, does not
794 * contain quantifiers or other special input-only elements.
796 UBool
RuleHalf::isValidOutput(TransliteratorParser
& transParser
) {
797 for (int32_t i
=0; i
<text
.length(); ) {
798 UChar32 c
= text
.char32At(i
);
800 if (!transParser
.parseData
->isReplacer(c
)) {
808 * Return true if this half looks like valid input, that is, does not
809 * contain functions or other special output-only elements.
811 UBool
RuleHalf::isValidInput(TransliteratorParser
& transParser
) {
812 for (int32_t i
=0; i
<text
.length(); ) {
813 UChar32 c
= text
.char32At(i
);
815 if (!transParser
.parseData
->isMatcher(c
)) {
822 //----------------------------------------------------------------------
824 //----------------------------------------------------------------------
829 TransliteratorParser::TransliteratorParser(UErrorCode
&statusReturn
) :
830 dataVector(statusReturn
),
831 idBlockVector(statusReturn
),
832 variablesVector(statusReturn
),
833 segmentObjects(statusReturn
)
835 idBlockVector
.setDeleter(uprv_deleteUObject
);
837 compoundFilter
= NULL
;
839 variableNames
.setValueDeleter(uprv_deleteUObject
);
845 TransliteratorParser::~TransliteratorParser() {
846 while (!dataVector
.isEmpty())
847 delete (TransliterationRuleData
*)(dataVector
.orphanElementAt(0));
848 delete compoundFilter
;
850 while (!variablesVector
.isEmpty())
851 delete (UnicodeFunctor
*)variablesVector
.orphanElementAt(0);
855 TransliteratorParser::parse(const UnicodeString
& rules
,
856 UTransDirection transDirection
,
860 parseRules(rules
, transDirection
, ec
);
866 * Return the compound filter parsed by parse(). Caller owns result.
868 UnicodeSet
* TransliteratorParser::orphanCompoundFilter() {
869 UnicodeSet
* f
= compoundFilter
;
870 compoundFilter
= NULL
;
874 //----------------------------------------------------------------------
875 // Private implementation
876 //----------------------------------------------------------------------
879 * Parse the given string as a sequence of rules, separated by newline
880 * characters ('\n'), and cause this object to implement those rules. Any
881 * previous rules are discarded. Typically this method is called exactly
882 * once, during construction.
883 * @exception IllegalArgumentException if there is a syntax error in the
886 void TransliteratorParser::parseRules(const UnicodeString
& rule
,
887 UTransDirection theDirection
,
890 // Clear error struct
891 uprv_memset(&parseError
, 0, sizeof(parseError
));
892 parseError
.line
= parseError
.offset
= -1;
894 UBool parsingIDs
= TRUE
;
895 int32_t ruleCount
= 0;
897 while (!dataVector
.isEmpty()) {
898 delete (TransliterationRuleData
*)(dataVector
.orphanElementAt(0));
900 if (U_FAILURE(status
)) {
904 idBlockVector
.removeAllElements();
906 direction
= theDirection
;
909 delete compoundFilter
;
910 compoundFilter
= NULL
;
912 while (!variablesVector
.isEmpty()) {
913 delete (UnicodeFunctor
*)variablesVector
.orphanElementAt(0);
915 variableNames
.removeAll();
916 parseData
= new ParseData(0, &variablesVector
, &variableNames
);
917 if (parseData
== NULL
) {
918 status
= U_MEMORY_ALLOCATION_ERROR
;
922 dotStandIn
= (UChar
) -1;
924 UnicodeString
*tempstr
= NULL
; // used for memory allocation error checking
925 UnicodeString str
; // scratch
926 UnicodeString idBlockResult
;
928 int32_t limit
= rule
.length();
930 // The compound filter offset is an index into idBlockResult.
931 // If it is 0, then the compound filter occurred at the start,
932 // and it is the offset to the _start_ of the compound filter
933 // pattern. Otherwise it is the offset to the _limit_ of the
934 // compound filter pattern within idBlockResult.
935 compoundFilter
= NULL
;
936 int32_t compoundFilterOffset
= -1;
938 while (pos
< limit
&& U_SUCCESS(status
)) {
939 UChar c
= rule
.charAt(pos
++);
940 if (PatternProps::isWhiteSpace(c
)) {
941 // Ignore leading whitespace.
944 // Skip lines starting with the comment character
945 if (c
== RULE_COMMENT_CHAR
) {
946 pos
= rule
.indexOf((UChar
)0x000A /*\n*/, pos
) + 1;
948 break; // No "\n" found; rest of rule is a commnet
950 continue; // Either fall out or restart with next line
954 if (c
== END_OF_RULE
)
957 // keep track of how many rules we've seen
960 // We've found the start of a rule or ID. c is its first
961 // character, and pos points past c.
963 // Look for an ID token. Must have at least ID_TOKEN_LEN + 1
965 if ((pos
+ ID_TOKEN_LEN
+ 1) <= limit
&&
966 rule
.compare(pos
, ID_TOKEN_LEN
, ID_TOKEN
) == 0) {
968 c
= rule
.charAt(pos
);
969 while (PatternProps::isWhiteSpace(c
) && pos
< limit
) {
971 c
= rule
.charAt(pos
);
977 if (curData
!= NULL
) {
978 if (direction
== UTRANS_FORWARD
)
979 dataVector
.addElement(curData
, status
);
981 dataVector
.insertElementAt(curData
, 0, status
);
987 TransliteratorIDParser::SingleID
* id
=
988 TransliteratorIDParser::parseSingleID(rule
, p
, direction
, status
);
989 if (p
!= pos
&& ICU_Utility::parseChar(rule
, p
, END_OF_RULE
)) {
990 // Successful ::ID parse.
992 if (direction
== UTRANS_FORWARD
) {
993 idBlockResult
.append(id
->canonID
).append(END_OF_RULE
);
995 idBlockResult
.insert(0, END_OF_RULE
);
996 idBlockResult
.insert(0, id
->canonID
);
1000 // Couldn't parse an ID. Try to parse a global filter
1001 int32_t withParens
= -1;
1002 UnicodeSet
* f
= TransliteratorIDParser::parseGlobalFilter(rule
, p
, direction
, withParens
, NULL
);
1004 if (ICU_Utility::parseChar(rule
, p
, END_OF_RULE
)
1005 && (direction
== UTRANS_FORWARD
) == (withParens
== 0))
1007 if (compoundFilter
!= NULL
) {
1008 // Multiple compound filters
1009 syntaxError(U_MULTIPLE_COMPOUND_FILTERS
, rule
, pos
, status
);
1013 compoundFilterOffset
= ruleCount
;
1020 // Can be parsed as neither an ID nor a global filter
1021 syntaxError(U_INVALID_ID
, rule
, pos
, status
);
1028 tempstr
= new UnicodeString(idBlockResult
);
1029 // NULL pointer check
1030 if (tempstr
== NULL
) {
1031 status
= U_MEMORY_ALLOCATION_ERROR
;
1034 if (direction
== UTRANS_FORWARD
)
1035 idBlockVector
.addElement(tempstr
, status
);
1037 idBlockVector
.insertElementAt(tempstr
, 0, status
);
1038 idBlockResult
.remove();
1040 curData
= new TransliterationRuleData(status
);
1041 // NULL pointer check
1042 if (curData
== NULL
) {
1043 status
= U_MEMORY_ALLOCATION_ERROR
;
1046 parseData
->data
= curData
;
1048 // By default, rules use part of the private use area
1049 // E000..F8FF for variables and other stand-ins. Currently
1050 // the range F000..F8FF is typically sufficient. The 'use
1051 // variable range' pragma allows rule sets to modify this.
1052 setVariableRange(0xF000, 0xF8FF, status
);
1055 if (resemblesPragma(rule
, pos
, limit
)) {
1056 int32_t ppp
= parsePragma(rule
, pos
, limit
, status
);
1058 syntaxError(U_MALFORMED_PRAGMA
, rule
, pos
, status
);
1063 pos
= parseRule(rule
, pos
, limit
, status
);
1068 if (parsingIDs
&& idBlockResult
.length() > 0) {
1069 tempstr
= new UnicodeString(idBlockResult
);
1070 // NULL pointer check
1071 if (tempstr
== NULL
) {
1072 status
= U_MEMORY_ALLOCATION_ERROR
;
1075 if (direction
== UTRANS_FORWARD
)
1076 idBlockVector
.addElement(tempstr
, status
);
1078 idBlockVector
.insertElementAt(tempstr
, 0, status
);
1080 else if (!parsingIDs
&& curData
!= NULL
) {
1081 if (direction
== UTRANS_FORWARD
)
1082 dataVector
.addElement(curData
, status
);
1084 dataVector
.insertElementAt(curData
, 0, status
);
1087 if (U_SUCCESS(status
)) {
1088 // Convert the set vector to an array
1089 int32_t i
, dataVectorSize
= dataVector
.size();
1090 for (i
= 0; i
< dataVectorSize
; i
++) {
1091 TransliterationRuleData
* data
= (TransliterationRuleData
*)dataVector
.elementAt(i
);
1092 data
->variablesLength
= variablesVector
.size();
1093 if (data
->variablesLength
== 0) {
1094 data
->variables
= 0;
1096 data
->variables
= (UnicodeFunctor
**)uprv_malloc(data
->variablesLength
* sizeof(UnicodeFunctor
*));
1097 // NULL pointer check
1098 if (data
->variables
== NULL
) {
1099 status
= U_MEMORY_ALLOCATION_ERROR
;
1102 data
->variablesAreOwned
= (i
== 0);
1105 for (int32_t j
= 0; j
< data
->variablesLength
; j
++) {
1106 data
->variables
[j
] =
1107 static_cast<UnicodeFunctor
*>(variablesVector
.elementAt(j
));
1110 data
->variableNames
.removeAll();
1111 int32_t pos
= UHASH_FIRST
;
1112 const UHashElement
* he
= variableNames
.nextElement(pos
);
1113 while (he
!= NULL
) {
1114 UnicodeString
* tempus
= (UnicodeString
*)(((UnicodeString
*)(he
->value
.pointer
))->clone());
1115 if (tempus
== NULL
) {
1116 status
= U_MEMORY_ALLOCATION_ERROR
;
1119 data
->variableNames
.put(*((UnicodeString
*)(he
->key
.pointer
)),
1121 he
= variableNames
.nextElement(pos
);
1124 variablesVector
.removeAllElements(); // keeps them from getting deleted when we succeed
1127 if (compoundFilter
!= NULL
) {
1128 if ((direction
== UTRANS_FORWARD
&& compoundFilterOffset
!= 1) ||
1129 (direction
== UTRANS_REVERSE
&& compoundFilterOffset
!= ruleCount
)) {
1130 status
= U_MISPLACED_COMPOUND_FILTER
;
1134 for (i
= 0; i
< dataVectorSize
; i
++) {
1135 TransliterationRuleData
* data
= (TransliterationRuleData
*)dataVector
.elementAt(i
);
1136 data
->ruleSet
.freeze(parseError
, status
);
1138 if (idBlockVector
.size() == 1 && ((UnicodeString
*)idBlockVector
.elementAt(0))->isEmpty()) {
1139 idBlockVector
.removeElementAt(0);
1145 * Set the variable range to [start, end] (inclusive).
1147 void TransliteratorParser::setVariableRange(int32_t start
, int32_t end
, UErrorCode
& status
) {
1148 if (start
> end
|| start
< 0 || end
> 0xFFFF) {
1149 status
= U_MALFORMED_PRAGMA
;
1153 curData
->variablesBase
= (UChar
) start
;
1154 if (dataVector
.size() == 0) {
1155 variableNext
= (UChar
) start
;
1156 variableLimit
= (UChar
) (end
+ 1);
1161 * Assert that the given character is NOT within the variable range.
1162 * If it is, return FALSE. This is neccesary to ensure that the
1163 * variable range does not overlap characters used in a rule.
1165 UBool
TransliteratorParser::checkVariableRange(UChar32 ch
) const {
1166 return !(ch
>= curData
->variablesBase
&& ch
< variableLimit
);
1170 * Set the maximum backup to 'backup', in response to a pragma
1173 void TransliteratorParser::pragmaMaximumBackup(int32_t /*backup*/) {
1178 * Begin normalizing all rules using the given mode, in response
1179 * to a pragma statement.
1181 void TransliteratorParser::pragmaNormalizeRules(UNormalizationMode
/*mode*/) {
1185 static const UChar PRAGMA_USE
[] = {0x75,0x73,0x65,0x20,0}; // "use "
1187 static const UChar PRAGMA_VARIABLE_RANGE
[] = {0x7E,0x76,0x61,0x72,0x69,0x61,0x62,0x6C,0x65,0x20,0x72,0x61,0x6E,0x67,0x65,0x20,0x23,0x20,0x23,0x7E,0x3B,0}; // "~variable range # #~;"
1189 static const UChar PRAGMA_MAXIMUM_BACKUP
[] = {0x7E,0x6D,0x61,0x78,0x69,0x6D,0x75,0x6D,0x20,0x62,0x61,0x63,0x6B,0x75,0x70,0x20,0x23,0x7E,0x3B,0}; // "~maximum backup #~;"
1191 static const UChar PRAGMA_NFD_RULES
[] = {0x7E,0x6E,0x66,0x64,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfd rules~;"
1193 static const UChar PRAGMA_NFC_RULES
[] = {0x7E,0x6E,0x66,0x63,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfc rules~;"
1196 * Return true if the given rule looks like a pragma.
1197 * @param pos offset to the first non-whitespace character
1199 * @param limit pointer past the last character of the rule.
1201 UBool
TransliteratorParser::resemblesPragma(const UnicodeString
& rule
, int32_t pos
, int32_t limit
) {
1202 // Must start with /use\s/i
1203 return ICU_Utility::parsePattern(rule
, pos
, limit
, UnicodeString(TRUE
, PRAGMA_USE
, 4), NULL
) >= 0;
1207 * Parse a pragma. This method assumes resemblesPragma() has
1208 * already returned true.
1209 * @param pos offset to the first non-whitespace character
1211 * @param limit pointer past the last character of the rule.
1212 * @return the position index after the final ';' of the pragma,
1215 int32_t TransliteratorParser::parsePragma(const UnicodeString
& rule
, int32_t pos
, int32_t limit
, UErrorCode
& status
) {
1218 // resemblesPragma() has already returned true, so we
1219 // know that pos points to /use\s/i; we can skip 4 characters
1223 // Here are the pragmas we recognize:
1224 // use variable range 0xE000 0xEFFF;
1225 // use maximum backup 16;
1228 int p
= ICU_Utility::parsePattern(rule
, pos
, limit
, UnicodeString(TRUE
, PRAGMA_VARIABLE_RANGE
, -1), array
);
1230 setVariableRange(array
[0], array
[1], status
);
1234 p
= ICU_Utility::parsePattern(rule
, pos
, limit
, UnicodeString(TRUE
, PRAGMA_MAXIMUM_BACKUP
, -1), array
);
1236 pragmaMaximumBackup(array
[0]);
1240 p
= ICU_Utility::parsePattern(rule
, pos
, limit
, UnicodeString(TRUE
, PRAGMA_NFD_RULES
, -1), NULL
);
1242 pragmaNormalizeRules(UNORM_NFD
);
1246 p
= ICU_Utility::parsePattern(rule
, pos
, limit
, UnicodeString(TRUE
, PRAGMA_NFC_RULES
, -1), NULL
);
1248 pragmaNormalizeRules(UNORM_NFC
);
1252 // Syntax error: unable to parse pragma
1257 * MAIN PARSER. Parse the next rule in the given rule string, starting
1258 * at pos. Return the index after the last character parsed. Do not
1259 * parse characters at or after limit.
1261 * Important: The character at pos must be a non-whitespace character
1262 * that is not the comment character.
1264 * This method handles quoting, escaping, and whitespace removal. It
1265 * parses the end-of-rule character. It recognizes context and cursor
1266 * indicators. Once it does a lexical breakdown of the rule at pos, it
1267 * creates a rule object and adds it to our rule list.
1269 int32_t TransliteratorParser::parseRule(const UnicodeString
& rule
, int32_t pos
, int32_t limit
, UErrorCode
& status
) {
1270 // Locate the left side, operator, and right side
1271 int32_t start
= pos
;
1275 // Set up segments data
1276 segmentStandins
.truncate(0);
1277 segmentObjects
.removeAllElements();
1279 // Use pointers to automatics to make swapping possible.
1280 RuleHalf
_left(*this), _right(*this);
1281 RuleHalf
* left
= &_left
;
1282 RuleHalf
* right
= &_right
;
1284 undefinedVariableName
.remove();
1285 pos
= left
->parse(rule
, pos
, limit
, status
);
1286 if (U_FAILURE(status
)) {
1290 if (pos
== limit
|| u_strchr(gOPERATORS
, (op
= rule
.charAt(--pos
))) == NULL
) {
1291 return syntaxError(U_MISSING_OPERATOR
, rule
, start
, status
);
1295 // Found an operator char. Check for forward-reverse operator.
1296 if (op
== REVERSE_RULE_OP
&&
1297 (pos
< limit
&& rule
.charAt(pos
) == FORWARD_RULE_OP
)) {
1299 op
= FWDREV_RULE_OP
;
1302 // Translate alternate op characters.
1304 case ALT_FORWARD_RULE_OP
:
1305 op
= FORWARD_RULE_OP
;
1307 case ALT_REVERSE_RULE_OP
:
1308 op
= REVERSE_RULE_OP
;
1310 case ALT_FWDREV_RULE_OP
:
1311 op
= FWDREV_RULE_OP
;
1315 pos
= right
->parse(rule
, pos
, limit
, status
);
1316 if (U_FAILURE(status
)) {
1321 if (rule
.charAt(--pos
) == END_OF_RULE
) {
1324 // RuleHalf parser must have terminated at an operator
1325 return syntaxError(U_UNQUOTED_SPECIAL
, rule
, start
, status
);
1329 if (op
== VARIABLE_DEF_OP
) {
1330 // LHS is the name. RHS is a single character, either a literal
1331 // or a set (already parsed). If RHS is longer than one
1332 // character, it is either a multi-character string, or multiple
1333 // sets, or a mixture of chars and sets -- syntax error.
1335 // We expect to see a single undefined variable (the one being
1337 if (undefinedVariableName
.length() == 0) {
1338 // "Missing '$' or duplicate definition"
1339 return syntaxError(U_BAD_VARIABLE_DEFINITION
, rule
, start
, status
);
1341 if (left
->text
.length() != 1 || left
->text
.charAt(0) != variableLimit
) {
1343 return syntaxError(U_MALFORMED_VARIABLE_DEFINITION
, rule
, start
, status
);
1345 if (left
->anchorStart
|| left
->anchorEnd
||
1346 right
->anchorStart
|| right
->anchorEnd
) {
1347 return syntaxError(U_MALFORMED_VARIABLE_DEFINITION
, rule
, start
, status
);
1349 // We allow anything on the right, including an empty string.
1350 UnicodeString
* value
= new UnicodeString(right
->text
);
1351 // NULL pointer check
1352 if (value
== NULL
) {
1353 return syntaxError(U_MEMORY_ALLOCATION_ERROR
, rule
, start
, status
);
1355 variableNames
.put(undefinedVariableName
, value
, status
);
1360 // If this is not a variable definition rule, we shouldn't have
1361 // any undefined variable names.
1362 if (undefinedVariableName
.length() != 0) {
1363 return syntaxError(// "Undefined variable $" + undefinedVariableName,
1364 U_UNDEFINED_VARIABLE
,
1365 rule
, start
, status
);
1369 if (segmentStandins
.length() > segmentObjects
.size()) {
1370 syntaxError(U_UNDEFINED_SEGMENT_REFERENCE
, rule
, start
, status
);
1372 for (i
=0; i
<segmentStandins
.length(); ++i
) {
1373 if (segmentStandins
.charAt(i
) == 0) {
1374 syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR
, rule
, start
, status
); // will never happen
1377 for (i
=0; i
<segmentObjects
.size(); ++i
) {
1378 if (segmentObjects
.elementAt(i
) == NULL
) {
1379 syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR
, rule
, start
, status
); // will never happen
1383 // If the direction we want doesn't match the rule
1384 // direction, do nothing.
1385 if (op
!= FWDREV_RULE_OP
&&
1386 ((direction
== UTRANS_FORWARD
) != (op
== FORWARD_RULE_OP
))) {
1390 // Transform the rule into a forward rule by swapping the
1391 // sides if necessary.
1392 if (direction
== UTRANS_REVERSE
) {
1397 // Remove non-applicable elements in forward-reverse
1398 // rules. Bidirectional rules ignore elements that do not
1400 if (op
== FWDREV_RULE_OP
) {
1401 right
->removeContext();
1403 left
->cursorOffset
= 0;
1406 // Normalize context
1407 if (left
->ante
< 0) {
1410 if (left
->post
< 0) {
1411 left
->post
= left
->text
.length();
1414 // Context is only allowed on the input side. Cursors are only
1415 // allowed on the output side. Segment delimiters can only appear
1416 // on the left, and references on the right. Cursor offset
1417 // cannot appear without an explicit cursor. Cursor offset
1418 // cannot place the cursor outside the limits of the context.
1419 // Anchors are only allowed on the input side.
1420 if (right
->ante
>= 0 || right
->post
>= 0 || left
->cursor
>= 0 ||
1421 (right
->cursorOffset
!= 0 && right
->cursor
< 0) ||
1422 // - The following two checks were used to ensure that the
1423 // - the cursor offset stayed within the ante- or postcontext.
1424 // - However, with the addition of quantifiers, we have to
1425 // - allow arbitrary cursor offsets and do runtime checking.
1426 //(right->cursorOffset > (left->text.length() - left->post)) ||
1427 //(-right->cursorOffset > left->ante) ||
1428 right
->anchorStart
|| right
->anchorEnd
||
1429 !left
->isValidInput(*this) || !right
->isValidOutput(*this) ||
1430 left
->ante
> left
->post
) {
1432 return syntaxError(U_MALFORMED_RULE
, rule
, start
, status
);
1435 // Flatten segment objects vector to an array
1436 UnicodeFunctor
** segmentsArray
= NULL
;
1437 if (segmentObjects
.size() > 0) {
1438 segmentsArray
= (UnicodeFunctor
**)uprv_malloc(segmentObjects
.size() * sizeof(UnicodeFunctor
*));
1439 // Null pointer check
1440 if (segmentsArray
== NULL
) {
1441 return syntaxError(U_MEMORY_ALLOCATION_ERROR
, rule
, start
, status
);
1443 segmentObjects
.toArray((void**) segmentsArray
);
1445 TransliterationRule
* temptr
= new TransliterationRule(
1446 left
->text
, left
->ante
, left
->post
,
1447 right
->text
, right
->cursor
, right
->cursorOffset
,
1449 segmentObjects
.size(),
1450 left
->anchorStart
, left
->anchorEnd
,
1453 //Null pointer check
1454 if (temptr
== NULL
) {
1455 uprv_free(segmentsArray
);
1456 return syntaxError(U_MEMORY_ALLOCATION_ERROR
, rule
, start
, status
);
1459 curData
->ruleSet
.addRule(temptr
, status
);
1465 * Called by main parser upon syntax error. Search the rule string
1466 * for the probable end of the rule. Of course, if the error is that
1467 * the end of rule marker is missing, then the rule end will not be found.
1468 * In any case the rule start will be correctly reported.
1469 * @param msg error description
1470 * @param rule pattern string
1471 * @param start position of first character of current rule
1473 int32_t TransliteratorParser::syntaxError(UErrorCode parseErrorCode
,
1474 const UnicodeString
& rule
,
1478 parseError
.offset
= pos
;
1479 parseError
.line
= 0 ; /* we are not using line numbers */
1482 const int32_t LEN
= U_PARSE_CONTEXT_LEN
- 1;
1483 int32_t start
= uprv_max(pos
- LEN
, 0);
1486 rule
.extract(start
,stop
-start
,parseError
.preContext
);
1487 //null terminate the buffer
1488 parseError
.preContext
[stop
-start
] = 0;
1492 stop
= uprv_min(pos
+ LEN
, rule
.length());
1494 rule
.extract(start
,stop
-start
,parseError
.postContext
);
1495 //null terminate the buffer
1496 parseError
.postContext
[stop
-start
]= 0;
1498 status
= (UErrorCode
)parseErrorCode
;
1504 * Parse a UnicodeSet out, store it, and return the stand-in character
1505 * used to represent it.
1507 UChar
TransliteratorParser::parseSet(const UnicodeString
& rule
,
1509 UErrorCode
& status
) {
1510 UnicodeSet
* set
= new UnicodeSet(rule
, pos
, USET_IGNORE_SPACE
, parseData
, status
);
1511 // Null pointer check
1513 status
= U_MEMORY_ALLOCATION_ERROR
;
1514 return (UChar
)0x0000; // Return empty character with error.
1517 return generateStandInFor(set
, status
);
1521 * Generate and return a stand-in for a new UnicodeFunctor. Store
1522 * the matcher (adopt it).
1524 UChar
TransliteratorParser::generateStandInFor(UnicodeFunctor
* adopted
, UErrorCode
& status
) {
1525 // assert(obj != null);
1527 // Look up previous stand-in, if any. This is a short list
1528 // (typical n is 0, 1, or 2); linear search is optimal.
1529 for (int32_t i
=0; i
<variablesVector
.size(); ++i
) {
1530 if (variablesVector
.elementAt(i
) == adopted
) { // [sic] pointer comparison
1531 return (UChar
) (curData
->variablesBase
+ i
);
1535 if (variableNext
>= variableLimit
) {
1537 status
= U_VARIABLE_RANGE_EXHAUSTED
;
1540 variablesVector
.addElement(adopted
, status
);
1541 return variableNext
++;
1545 * Return the standin for segment seg (1-based).
1547 UChar
TransliteratorParser::getSegmentStandin(int32_t seg
, UErrorCode
& status
) {
1548 // Special character used to indicate an empty spot
1549 UChar empty
= curData
->variablesBase
- 1;
1550 while (segmentStandins
.length() < seg
) {
1551 segmentStandins
.append(empty
);
1553 UChar c
= segmentStandins
.charAt(seg
-1);
1555 if (variableNext
>= variableLimit
) {
1556 status
= U_VARIABLE_RANGE_EXHAUSTED
;
1560 // Set a placeholder in the master variables vector that will be
1561 // filled in later by setSegmentObject(). We know that we will get
1562 // called first because setSegmentObject() will call us.
1563 variablesVector
.addElement((void*) NULL
, status
);
1564 segmentStandins
.setCharAt(seg
-1, c
);
1570 * Set the object for segment seg (1-based).
1572 void TransliteratorParser::setSegmentObject(int32_t seg
, StringMatcher
* adopted
, UErrorCode
& status
) {
1573 // Since we call parseSection() recursively, nested
1574 // segments will result in segment i+1 getting parsed
1575 // and stored before segment i; be careful with the
1576 // vector handling here.
1577 if (segmentObjects
.size() < seg
) {
1578 segmentObjects
.setSize(seg
, status
);
1580 int32_t index
= getSegmentStandin(seg
, status
) - curData
->variablesBase
;
1581 if (segmentObjects
.elementAt(seg
-1) != NULL
||
1582 variablesVector
.elementAt(index
) != NULL
) {
1583 // should never happen
1584 status
= U_INTERNAL_TRANSLITERATOR_ERROR
;
1587 segmentObjects
.setElementAt(adopted
, seg
-1);
1588 variablesVector
.setElementAt(adopted
, index
);
1592 * Return the stand-in for the dot set. It is allocated the first
1593 * time and reused thereafter.
1595 UChar
TransliteratorParser::getDotStandIn(UErrorCode
& status
) {
1596 if (dotStandIn
== (UChar
) -1) {
1597 UnicodeSet
* tempus
= new UnicodeSet(UnicodeString(TRUE
, DOT_SET
, -1), status
);
1598 // Null pointer check.
1599 if (tempus
== NULL
) {
1600 status
= U_MEMORY_ALLOCATION_ERROR
;
1601 return (UChar
)0x0000;
1603 dotStandIn
= generateStandInFor(tempus
, status
);
1609 * Append the value of the given variable name to the given
1612 void TransliteratorParser::appendVariableDef(const UnicodeString
& name
,
1614 UErrorCode
& status
) {
1615 const UnicodeString
* s
= (const UnicodeString
*) variableNames
.get(name
);
1617 // We allow one undefined variable so that variable definition
1618 // statements work. For the first undefined variable we return
1619 // the special placeholder variableLimit-1, and save the variable
1621 if (undefinedVariableName
.length() == 0) {
1622 undefinedVariableName
= name
;
1623 if (variableNext
>= variableLimit
) {
1624 // throw new RuntimeException("Private use variables exhausted");
1625 status
= U_ILLEGAL_ARGUMENT_ERROR
;
1628 buf
.append((UChar
) --variableLimit
);
1630 //throw new IllegalArgumentException("Undefined variable $"
1632 status
= U_ILLEGAL_ARGUMENT_ERROR
;
1641 * Glue method to get around access restrictions in C++.
1643 /*Transliterator* TransliteratorParser::createBasicInstance(const UnicodeString& id, const UnicodeString* canonID) {
1644 return Transliterator::createBasicInstance(id, canonID);
1650 utrans_stripRules(const UChar
*source
, int32_t sourceLen
, UChar
*target
, UErrorCode
*status
) {
1653 //const UChar *sourceStart = source;
1654 const UChar
*targetStart
= target
;
1655 const UChar
*sourceLimit
= source
+sourceLen
;
1656 UChar
*targetLimit
= target
+sourceLen
;
1658 UBool quoted
= FALSE
;
1661 uprv_memset(target
, 0, sourceLen
*U_SIZEOF_UCHAR
);
1663 /* read the rules into the buffer */
1664 while (source
< sourceLimit
)
1667 U16_NEXT_UNSAFE(source
, index
, c
);
1670 quoted
= (UBool
)!quoted
;
1673 if (c
== RULE_COMMENT_CHAR
) {
1674 /* skip comments and all preceding spaces */
1675 while (targetStart
< target
&& *(target
- 1) == 0x0020) {
1679 if (source
== sourceLimit
) {
1685 while (c
!= CR
&& c
!= LF
);
1690 else if (c
== ESCAPE
&& source
< sourceLimit
) {
1691 UChar32 c2
= *source
;
1692 if (c2
== CR
|| c2
== LF
) {
1693 /* A backslash at the end of a line. */
1694 /* Since we're stripping lines, ignore the backslash. */
1698 if (c2
== 0x0075 && source
+5 < sourceLimit
) { /* \u seen. \U isn't unescaped. */
1699 int32_t escapeOffset
= 0;
1700 UnicodeString
escapedStr(source
, 5);
1701 c2
= escapedStr
.unescapeAt(escapeOffset
);
1703 if (c2
== (UChar32
)0xFFFFFFFF || escapeOffset
== 0)
1705 *status
= U_PARSE_ERROR
;
1708 if (!PatternProps::isWhiteSpace(c2
) && !u_iscntrl(c2
) && !u_ispunct(c2
)) {
1709 /* It was escaped for a reason. Write what it was suppose to be. */
1714 else if (c2
== QUOTE
) {
1715 /* \' seen. Make sure we don't do anything when we see it again. */
1716 quoted
= (UBool
)!quoted
;
1720 if (c
== CR
|| c
== LF
)
1722 /* ignore spaces carriage returns, and all leading spaces on the next line.
1723 * and line feed unless in the form \uXXXX
1726 while (source
< sourceLimit
) {
1728 if (c
!= CR
&& c
!= LF
&& c
!= 0x0020) {
1736 /* Append UChar * after dissembling if c > 0xffff*/
1738 U16_APPEND_UNSAFE(target
, index
, c
);
1741 if (target
< targetLimit
) {
1744 return (int32_t)(target
-targetStart
);
1747 #endif /* #if !UCONFIG_NO_TRANSLITERATION */