]> git.saurik.com Git - apple/icu.git/blob - icuSources/i18n/rbt_pars.cpp
ICU-62123.0.1.tar.gz
[apple/icu.git] / icuSources / i18n / rbt_pars.cpp
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 **********************************************************************
5 * Copyright (C) 1999-2016, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 **********************************************************************
8 * Date Name Description
9 * 11/17/99 aliu Creation.
10 **********************************************************************
11 */
12
13 #include "unicode/utypes.h"
14
15 #if !UCONFIG_NO_TRANSLITERATION
16
17 #include "unicode/uobject.h"
18 #include "unicode/parseerr.h"
19 #include "unicode/parsepos.h"
20 #include "unicode/putil.h"
21 #include "unicode/uchar.h"
22 #include "unicode/ustring.h"
23 #include "unicode/uniset.h"
24 #include "unicode/utf16.h"
25 #include "cstring.h"
26 #include "funcrepl.h"
27 #include "hash.h"
28 #include "quant.h"
29 #include "rbt.h"
30 #include "rbt_data.h"
31 #include "rbt_pars.h"
32 #include "rbt_rule.h"
33 #include "strmatch.h"
34 #include "strrepl.h"
35 #include "unicode/symtable.h"
36 #include "tridpars.h"
37 #include "uvector.h"
38 #include "hash.h"
39 #include "patternprops.h"
40 #include "util.h"
41 #include "cmemory.h"
42 #include "uprops.h"
43 #include "putilimp.h"
44
45 // Operators
46 #define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/
47 #define FORWARD_RULE_OP ((UChar)0x003E) /*>*/
48 #define REVERSE_RULE_OP ((UChar)0x003C) /*<*/
49 #define FWDREV_RULE_OP ((UChar)0x007E) /*~*/ // internal rep of <> op
50
51 // Other special characters
52 #define QUOTE ((UChar)0x0027) /*'*/
53 #define ESCAPE ((UChar)0x005C) /*\*/
54 #define END_OF_RULE ((UChar)0x003B) /*;*/
55 #define RULE_COMMENT_CHAR ((UChar)0x0023) /*#*/
56
57 #define SEGMENT_OPEN ((UChar)0x0028) /*(*/
58 #define SEGMENT_CLOSE ((UChar)0x0029) /*)*/
59 #define CONTEXT_ANTE ((UChar)0x007B) /*{*/
60 #define CONTEXT_POST ((UChar)0x007D) /*}*/
61 #define CURSOR_POS ((UChar)0x007C) /*|*/
62 #define CURSOR_OFFSET ((UChar)0x0040) /*@*/
63 #define ANCHOR_START ((UChar)0x005E) /*^*/
64 #define KLEENE_STAR ((UChar)0x002A) /***/
65 #define ONE_OR_MORE ((UChar)0x002B) /*+*/
66 #define ZERO_OR_ONE ((UChar)0x003F) /*?*/
67
68 #define DOT ((UChar)46) /*.*/
69
70 static const UChar DOT_SET[] = { // "[^[:Zp:][:Zl:]\r\n$]";
71 91, 94, 91, 58, 90, 112, 58, 93, 91, 58, 90,
72 108, 58, 93, 92, 114, 92, 110, 36, 93, 0
73 };
74
75 // A function is denoted &Source-Target/Variant(text)
76 #define FUNCTION ((UChar)38) /*&*/
77
78 // Aliases for some of the syntax characters. These are provided so
79 // transliteration rules can be expressed in XML without clashing with
80 // XML syntax characters '<', '>', and '&'.
81 #define ALT_REVERSE_RULE_OP ((UChar)0x2190) // Left Arrow
82 #define ALT_FORWARD_RULE_OP ((UChar)0x2192) // Right Arrow
83 #define ALT_FWDREV_RULE_OP ((UChar)0x2194) // Left Right Arrow
84 #define ALT_FUNCTION ((UChar)0x2206) // Increment (~Greek Capital Delta)
85
86 // Special characters disallowed at the top level
87 static const UChar ILLEGAL_TOP[] = {41,0}; // ")"
88
89 // Special characters disallowed within a segment
90 static const UChar ILLEGAL_SEG[] = {123,125,124,64,0}; // "{}|@"
91
92 // Special characters disallowed within a function argument
93 static const UChar ILLEGAL_FUNC[] = {94,40,46,42,43,63,123,125,124,64,0}; // "^(.*+?{}|@"
94
95 // By definition, the ANCHOR_END special character is a
96 // trailing SymbolTable.SYMBOL_REF character.
97 // private static final char ANCHOR_END = '$';
98
99 static const UChar gOPERATORS[] = { // "=><"
100 VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP,
101 ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP,
102 0
103 };
104
105 static const UChar HALF_ENDERS[] = { // "=><;"
106 VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP,
107 ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP,
108 END_OF_RULE,
109 0
110 };
111
112 // These are also used in Transliterator::toRules()
113 static const int32_t ID_TOKEN_LEN = 2;
114 static const UChar ID_TOKEN[] = { 0x3A, 0x3A }; // ':', ':'
115
116 /*
117 commented out until we do real ::BEGIN/::END functionality
118 static const int32_t BEGIN_TOKEN_LEN = 5;
119 static const UChar BEGIN_TOKEN[] = { 0x42, 0x45, 0x47, 0x49, 0x4e }; // 'BEGIN'
120
121 static const int32_t END_TOKEN_LEN = 3;
122 static const UChar END_TOKEN[] = { 0x45, 0x4e, 0x44 }; // 'END'
123 */
124
125 U_NAMESPACE_BEGIN
126
127 //----------------------------------------------------------------------
128 // BEGIN ParseData
129 //----------------------------------------------------------------------
130
131 /**
132 * This class implements the SymbolTable interface. It is used
133 * during parsing to give UnicodeSet access to variables that
134 * have been defined so far. Note that it uses variablesVector,
135 * _not_ data.setVariables.
136 */
137 class ParseData : public UMemory, public SymbolTable {
138 public:
139 const TransliterationRuleData* data; // alias
140
141 const UVector* variablesVector; // alias
142
143 const Hashtable* variableNames; // alias
144
145 ParseData(const TransliterationRuleData* data = 0,
146 const UVector* variablesVector = 0,
147 const Hashtable* variableNames = 0);
148
149 virtual ~ParseData();
150
151 virtual const UnicodeString* lookup(const UnicodeString& s) const;
152
153 virtual const UnicodeFunctor* lookupMatcher(UChar32 ch) const;
154
155 virtual UnicodeString parseReference(const UnicodeString& text,
156 ParsePosition& pos, int32_t limit) const;
157 /**
158 * Return true if the given character is a matcher standin or a plain
159 * character (non standin).
160 */
161 UBool isMatcher(UChar32 ch);
162
163 /**
164 * Return true if the given character is a replacer standin or a plain
165 * character (non standin).
166 */
167 UBool isReplacer(UChar32 ch);
168
169 private:
170 ParseData(const ParseData &other); // forbid copying of this class
171 ParseData &operator=(const ParseData &other); // forbid copying of this class
172 };
173
174 ParseData::ParseData(const TransliterationRuleData* d,
175 const UVector* sets,
176 const Hashtable* vNames) :
177 data(d), variablesVector(sets), variableNames(vNames) {}
178
179 ParseData::~ParseData() {}
180
181 /**
182 * Implement SymbolTable API.
183 */
184 const UnicodeString* ParseData::lookup(const UnicodeString& name) const {
185 return (const UnicodeString*) variableNames->get(name);
186 }
187
188 /**
189 * Implement SymbolTable API.
190 */
191 const UnicodeFunctor* ParseData::lookupMatcher(UChar32 ch) const {
192 // Note that we cannot use data.lookupSet() because the
193 // set array has not been constructed yet.
194 const UnicodeFunctor* set = NULL;
195 int32_t i = ch - data->variablesBase;
196 if (i >= 0 && i < variablesVector->size()) {
197 int32_t i = ch - data->variablesBase;
198 set = (i < variablesVector->size()) ?
199 (UnicodeFunctor*) variablesVector->elementAt(i) : 0;
200 }
201 return set;
202 }
203
204 /**
205 * Implement SymbolTable API. Parse out a symbol reference
206 * name.
207 */
208 UnicodeString ParseData::parseReference(const UnicodeString& text,
209 ParsePosition& pos, int32_t limit) const {
210 int32_t start = pos.getIndex();
211 int32_t i = start;
212 UnicodeString result;
213 while (i < limit) {
214 UChar c = text.charAt(i);
215 if ((i==start && !u_isIDStart(c)) || !u_isIDPart(c)) {
216 break;
217 }
218 ++i;
219 }
220 if (i == start) { // No valid name chars
221 return result; // Indicate failure with empty string
222 }
223 pos.setIndex(i);
224 text.extractBetween(start, i, result);
225 return result;
226 }
227
228 UBool ParseData::isMatcher(UChar32 ch) {
229 // Note that we cannot use data.lookup() because the
230 // set array has not been constructed yet.
231 int32_t i = ch - data->variablesBase;
232 if (i >= 0 && i < variablesVector->size()) {
233 UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i);
234 return f != NULL && f->toMatcher() != NULL;
235 }
236 return TRUE;
237 }
238
239 /**
240 * Return true if the given character is a replacer standin or a plain
241 * character (non standin).
242 */
243 UBool ParseData::isReplacer(UChar32 ch) {
244 // Note that we cannot use data.lookup() because the
245 // set array has not been constructed yet.
246 int i = ch - data->variablesBase;
247 if (i >= 0 && i < variablesVector->size()) {
248 UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i);
249 return f != NULL && f->toReplacer() != NULL;
250 }
251 return TRUE;
252 }
253
254 //----------------------------------------------------------------------
255 // BEGIN RuleHalf
256 //----------------------------------------------------------------------
257
258 /**
259 * A class representing one side of a rule. This class knows how to
260 * parse half of a rule. It is tightly coupled to the method
261 * RuleBasedTransliterator.Parser.parseRule().
262 */
263 class RuleHalf : public UMemory {
264
265 public:
266
267 UnicodeString text;
268
269 int32_t cursor; // position of cursor in text
270 int32_t ante; // position of ante context marker '{' in text
271 int32_t post; // position of post context marker '}' in text
272
273 // Record the offset to the cursor either to the left or to the
274 // right of the key. This is indicated by characters on the output
275 // side that allow the cursor to be positioned arbitrarily within
276 // the matching text. For example, abc{def} > | @@@ xyz; changes
277 // def to xyz and moves the cursor to before abc. Offset characters
278 // must be at the start or end, and they cannot move the cursor past
279 // the ante- or postcontext text. Placeholders are only valid in
280 // output text. The length of the ante and post context is
281 // determined at runtime, because of supplementals and quantifiers.
282 int32_t cursorOffset; // only nonzero on output side
283
284 // Position of first CURSOR_OFFSET on _right_. This will be -1
285 // for |@, -2 for |@@, etc., and 1 for @|, 2 for @@|, etc.
286 int32_t cursorOffsetPos;
287
288 UBool anchorStart;
289 UBool anchorEnd;
290
291 /**
292 * The segment number from 1..n of the next '(' we see
293 * during parsing; 1-based.
294 */
295 int32_t nextSegmentNumber;
296
297 TransliteratorParser& parser;
298
299 //--------------------------------------------------
300 // Methods
301
302 RuleHalf(TransliteratorParser& parser);
303 ~RuleHalf();
304
305 int32_t parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status);
306
307 int32_t parseSection(const UnicodeString& rule, int32_t pos, int32_t limit,
308 UnicodeString& buf,
309 const UnicodeString& illegal,
310 UBool isSegment,
311 UErrorCode& status);
312
313 /**
314 * Remove context.
315 */
316 void removeContext();
317
318 /**
319 * Return true if this half looks like valid output, that is, does not
320 * contain quantifiers or other special input-only elements.
321 */
322 UBool isValidOutput(TransliteratorParser& parser);
323
324 /**
325 * Return true if this half looks like valid input, that is, does not
326 * contain functions or other special output-only elements.
327 */
328 UBool isValidInput(TransliteratorParser& parser);
329
330 int syntaxError(UErrorCode code,
331 const UnicodeString& rule,
332 int32_t start,
333 UErrorCode& status) {
334 return parser.syntaxError(code, rule, start, status);
335 }
336
337 private:
338 // Disallowed methods; no impl.
339 RuleHalf(const RuleHalf&);
340 RuleHalf& operator=(const RuleHalf&);
341 };
342
343 RuleHalf::RuleHalf(TransliteratorParser& p) :
344 parser(p)
345 {
346 cursor = -1;
347 ante = -1;
348 post = -1;
349 cursorOffset = 0;
350 cursorOffsetPos = 0;
351 anchorStart = anchorEnd = FALSE;
352 nextSegmentNumber = 1;
353 }
354
355 RuleHalf::~RuleHalf() {
356 }
357
358 /**
359 * Parse one side of a rule, stopping at either the limit,
360 * the END_OF_RULE character, or an operator.
361 * @return the index after the terminating character, or
362 * if limit was reached, limit
363 */
364 int32_t RuleHalf::parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) {
365 int32_t start = pos;
366 text.truncate(0);
367 pos = parseSection(rule, pos, limit, text, UnicodeString(TRUE, ILLEGAL_TOP, -1), FALSE, status);
368
369 if (cursorOffset > 0 && cursor != cursorOffsetPos) {
370 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
371 }
372
373 return pos;
374 }
375
376 /**
377 * Parse a section of one side of a rule, stopping at either
378 * the limit, the END_OF_RULE character, an operator, or a
379 * segment close character. This method parses both a
380 * top-level rule half and a segment within such a rule half.
381 * It calls itself recursively to parse segments and nested
382 * segments.
383 * @param buf buffer into which to accumulate the rule pattern
384 * characters, either literal characters from the rule or
385 * standins for UnicodeMatcher objects including segments.
386 * @param illegal the set of special characters that is illegal during
387 * this parse.
388 * @param isSegment if true, then we've already seen a '(' and
389 * pos on entry points right after it. Accumulate everything
390 * up to the closing ')', put it in a segment matcher object,
391 * generate a standin for it, and add the standin to buf. As
392 * a side effect, update the segments vector with a reference
393 * to the segment matcher. This works recursively for nested
394 * segments. If isSegment is false, just accumulate
395 * characters into buf.
396 * @return the index after the terminating character, or
397 * if limit was reached, limit
398 */
399 int32_t RuleHalf::parseSection(const UnicodeString& rule, int32_t pos, int32_t limit,
400 UnicodeString& buf,
401 const UnicodeString& illegal,
402 UBool isSegment, UErrorCode& status) {
403 int32_t start = pos;
404 ParsePosition pp;
405 UnicodeString scratch;
406 UBool done = FALSE;
407 int32_t quoteStart = -1; // Most recent 'single quoted string'
408 int32_t quoteLimit = -1;
409 int32_t varStart = -1; // Most recent $variableReference
410 int32_t varLimit = -1;
411 int32_t bufStart = buf.length();
412
413 while (pos < limit && !done) {
414 // Since all syntax characters are in the BMP, fetching
415 // 16-bit code units suffices here.
416 UChar c = rule.charAt(pos++);
417 if (PatternProps::isWhiteSpace(c)) {
418 // Ignore whitespace. Note that this is not Unicode
419 // spaces, but Java spaces -- a subset, representing
420 // whitespace likely to be seen in code.
421 continue;
422 }
423 if (u_strchr(HALF_ENDERS, c) != NULL) {
424 if (isSegment) {
425 // Unclosed segment
426 return syntaxError(U_UNCLOSED_SEGMENT, rule, start, status);
427 }
428 break;
429 }
430 if (anchorEnd) {
431 // Text after a presumed end anchor is a syntax err
432 return syntaxError(U_MALFORMED_VARIABLE_REFERENCE, rule, start, status);
433 }
434 if (UnicodeSet::resemblesPattern(rule, pos-1)) {
435 pp.setIndex(pos-1); // Backup to opening '['
436 buf.append(parser.parseSet(rule, pp, status));
437 if (U_FAILURE(status)) {
438 return syntaxError(U_MALFORMED_SET, rule, start, status);
439 }
440 pos = pp.getIndex();
441 continue;
442 }
443 // Handle escapes
444 if (c == ESCAPE) {
445 if (pos == limit) {
446 return syntaxError(U_TRAILING_BACKSLASH, rule, start, status);
447 }
448 UChar32 escaped = rule.unescapeAt(pos); // pos is already past '\\'
449 if (escaped == (UChar32) -1) {
450 return syntaxError(U_MALFORMED_UNICODE_ESCAPE, rule, start, status);
451 }
452 if (!parser.checkVariableRange(escaped)) {
453 return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status);
454 }
455 buf.append(escaped);
456 continue;
457 }
458 // Handle quoted matter
459 if (c == QUOTE) {
460 int32_t iq = rule.indexOf(QUOTE, pos);
461 if (iq == pos) {
462 buf.append(c); // Parse [''] outside quotes as [']
463 ++pos;
464 } else {
465 /* This loop picks up a run of quoted text of the
466 * form 'aaaa' each time through. If this run
467 * hasn't really ended ('aaaa''bbbb') then it keeps
468 * looping, each time adding on a new run. When it
469 * reaches the final quote it breaks.
470 */
471 quoteStart = buf.length();
472 for (;;) {
473 if (iq < 0) {
474 return syntaxError(U_UNTERMINATED_QUOTE, rule, start, status);
475 }
476 scratch.truncate(0);
477 rule.extractBetween(pos, iq, scratch);
478 buf.append(scratch);
479 pos = iq+1;
480 if (pos < limit && rule.charAt(pos) == QUOTE) {
481 // Parse [''] inside quotes as [']
482 iq = rule.indexOf(QUOTE, pos+1);
483 // Continue looping
484 } else {
485 break;
486 }
487 }
488 quoteLimit = buf.length();
489
490 for (iq=quoteStart; iq<quoteLimit; ++iq) {
491 if (!parser.checkVariableRange(buf.charAt(iq))) {
492 return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status);
493 }
494 }
495 }
496 continue;
497 }
498
499 if (!parser.checkVariableRange(c)) {
500 return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status);
501 }
502
503 if (illegal.indexOf(c) >= 0) {
504 syntaxError(U_ILLEGAL_CHARACTER, rule, start, status);
505 }
506
507 switch (c) {
508
509 //------------------------------------------------------
510 // Elements allowed within and out of segments
511 //------------------------------------------------------
512 case ANCHOR_START:
513 if (buf.length() == 0 && !anchorStart) {
514 anchorStart = TRUE;
515 } else {
516 return syntaxError(U_MISPLACED_ANCHOR_START,
517 rule, start, status);
518 }
519 break;
520 case SEGMENT_OPEN:
521 {
522 // bufSegStart is the offset in buf to the first
523 // character of the segment we are parsing.
524 int32_t bufSegStart = buf.length();
525
526 // Record segment number now, since nextSegmentNumber
527 // will be incremented during the call to parseSection
528 // if there are nested segments.
529 int32_t segmentNumber = nextSegmentNumber++; // 1-based
530
531 // Parse the segment
532 pos = parseSection(rule, pos, limit, buf, UnicodeString(TRUE, ILLEGAL_SEG, -1), TRUE, status);
533
534 // After parsing a segment, the relevant characters are
535 // in buf, starting at offset bufSegStart. Extract them
536 // into a string matcher, and replace them with a
537 // standin for that matcher.
538 StringMatcher* m =
539 new StringMatcher(buf, bufSegStart, buf.length(),
540 segmentNumber, *parser.curData);
541 if (m == NULL) {
542 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
543 }
544
545 // Record and associate object and segment number
546 parser.setSegmentObject(segmentNumber, m, status);
547 buf.truncate(bufSegStart);
548 buf.append(parser.getSegmentStandin(segmentNumber, status));
549 }
550 break;
551 case FUNCTION:
552 case ALT_FUNCTION:
553 {
554 int32_t iref = pos;
555 TransliteratorIDParser::SingleID* single =
556 TransliteratorIDParser::parseFilterID(rule, iref);
557 // The next character MUST be a segment open
558 if (single == NULL ||
559 !ICU_Utility::parseChar(rule, iref, SEGMENT_OPEN)) {
560 return syntaxError(U_INVALID_FUNCTION, rule, start, status);
561 }
562
563 Transliterator *t = single->createInstance();
564 delete single;
565 if (t == NULL) {
566 return syntaxError(U_INVALID_FUNCTION, rule, start, status);
567 }
568
569 // bufSegStart is the offset in buf to the first
570 // character of the segment we are parsing.
571 int32_t bufSegStart = buf.length();
572
573 // Parse the segment
574 pos = parseSection(rule, iref, limit, buf, UnicodeString(TRUE, ILLEGAL_FUNC, -1), TRUE, status);
575
576 // After parsing a segment, the relevant characters are
577 // in buf, starting at offset bufSegStart.
578 UnicodeString output;
579 buf.extractBetween(bufSegStart, buf.length(), output);
580 FunctionReplacer *r =
581 new FunctionReplacer(t, new StringReplacer(output, parser.curData));
582 if (r == NULL) {
583 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
584 }
585
586 // Replace the buffer contents with a stand-in
587 buf.truncate(bufSegStart);
588 buf.append(parser.generateStandInFor(r, status));
589 }
590 break;
591 case SymbolTable::SYMBOL_REF:
592 // Handle variable references and segment references "$1" .. "$9"
593 {
594 // A variable reference must be followed immediately
595 // by a Unicode identifier start and zero or more
596 // Unicode identifier part characters, or by a digit
597 // 1..9 if it is a segment reference.
598 if (pos == limit) {
599 // A variable ref character at the end acts as
600 // an anchor to the context limit, as in perl.
601 anchorEnd = TRUE;
602 break;
603 }
604 // Parse "$1" "$2" .. "$9" .. (no upper limit)
605 c = rule.charAt(pos);
606 int32_t r = u_digit(c, 10);
607 if (r >= 1 && r <= 9) {
608 r = ICU_Utility::parseNumber(rule, pos, 10);
609 if (r < 0) {
610 return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE,
611 rule, start, status);
612 }
613 buf.append(parser.getSegmentStandin(r, status));
614 } else {
615 pp.setIndex(pos);
616 UnicodeString name = parser.parseData->
617 parseReference(rule, pp, limit);
618 if (name.length() == 0) {
619 // This means the '$' was not followed by a
620 // valid name. Try to interpret it as an
621 // end anchor then. If this also doesn't work
622 // (if we see a following character) then signal
623 // an error.
624 anchorEnd = TRUE;
625 break;
626 }
627 pos = pp.getIndex();
628 // If this is a variable definition statement,
629 // then the LHS variable will be undefined. In
630 // that case appendVariableDef() will append the
631 // special placeholder char variableLimit-1.
632 varStart = buf.length();
633 parser.appendVariableDef(name, buf, status);
634 varLimit = buf.length();
635 }
636 }
637 break;
638 case DOT:
639 buf.append(parser.getDotStandIn(status));
640 break;
641 case KLEENE_STAR:
642 case ONE_OR_MORE:
643 case ZERO_OR_ONE:
644 // Quantifiers. We handle single characters, quoted strings,
645 // variable references, and segments.
646 // a+ matches aaa
647 // 'foo'+ matches foofoofoo
648 // $v+ matches xyxyxy if $v == xy
649 // (seg)+ matches segsegseg
650 {
651 if (isSegment && buf.length() == bufStart) {
652 // The */+ immediately follows '('
653 return syntaxError(U_MISPLACED_QUANTIFIER, rule, start, status);
654 }
655
656 int32_t qstart, qlimit;
657 // The */+ follows an isolated character or quote
658 // or variable reference
659 if (buf.length() == quoteLimit) {
660 // The */+ follows a 'quoted string'
661 qstart = quoteStart;
662 qlimit = quoteLimit;
663 } else if (buf.length() == varLimit) {
664 // The */+ follows a $variableReference
665 qstart = varStart;
666 qlimit = varLimit;
667 } else {
668 // The */+ follows a single character, possibly
669 // a segment standin
670 qstart = buf.length() - 1;
671 qlimit = qstart + 1;
672 }
673
674 UnicodeFunctor *m =
675 new StringMatcher(buf, qstart, qlimit, 0, *parser.curData);
676 if (m == NULL) {
677 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
678 }
679 int32_t min = 0;
680 int32_t max = Quantifier::MAX;
681 switch (c) {
682 case ONE_OR_MORE:
683 min = 1;
684 break;
685 case ZERO_OR_ONE:
686 min = 0;
687 max = 1;
688 break;
689 // case KLEENE_STAR:
690 // do nothing -- min, max already set
691 }
692 m = new Quantifier(m, min, max);
693 if (m == NULL) {
694 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
695 }
696 buf.truncate(qstart);
697 buf.append(parser.generateStandInFor(m, status));
698 }
699 break;
700
701 //------------------------------------------------------
702 // Elements allowed ONLY WITHIN segments
703 //------------------------------------------------------
704 case SEGMENT_CLOSE:
705 // assert(isSegment);
706 // We're done parsing a segment.
707 done = TRUE;
708 break;
709
710 //------------------------------------------------------
711 // Elements allowed ONLY OUTSIDE segments
712 //------------------------------------------------------
713 case CONTEXT_ANTE:
714 if (ante >= 0) {
715 return syntaxError(U_MULTIPLE_ANTE_CONTEXTS, rule, start, status);
716 }
717 ante = buf.length();
718 break;
719 case CONTEXT_POST:
720 if (post >= 0) {
721 return syntaxError(U_MULTIPLE_POST_CONTEXTS, rule, start, status);
722 }
723 post = buf.length();
724 break;
725 case CURSOR_POS:
726 if (cursor >= 0) {
727 return syntaxError(U_MULTIPLE_CURSORS, rule, start, status);
728 }
729 cursor = buf.length();
730 break;
731 case CURSOR_OFFSET:
732 if (cursorOffset < 0) {
733 if (buf.length() > 0) {
734 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
735 }
736 --cursorOffset;
737 } else if (cursorOffset > 0) {
738 if (buf.length() != cursorOffsetPos || cursor >= 0) {
739 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
740 }
741 ++cursorOffset;
742 } else {
743 if (cursor == 0 && buf.length() == 0) {
744 cursorOffset = -1;
745 } else if (cursor < 0) {
746 cursorOffsetPos = buf.length();
747 cursorOffset = 1;
748 } else {
749 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
750 }
751 }
752 break;
753
754
755 //------------------------------------------------------
756 // Non-special characters
757 //------------------------------------------------------
758 default:
759 // Disallow unquoted characters other than [0-9A-Za-z]
760 // in the printable ASCII range. These characters are
761 // reserved for possible future use.
762 if (c >= 0x0021 && c <= 0x007E &&
763 !((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) ||
764 (c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) ||
765 (c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) {
766 return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status);
767 }
768 buf.append(c);
769 break;
770 }
771 }
772
773 return pos;
774 }
775
776 /**
777 * Remove context.
778 */
779 void RuleHalf::removeContext() {
780 //text = text.substring(ante < 0 ? 0 : ante,
781 // post < 0 ? text.length() : post);
782 if (post >= 0) {
783 text.remove(post);
784 }
785 if (ante >= 0) {
786 text.removeBetween(0, ante);
787 }
788 ante = post = -1;
789 anchorStart = anchorEnd = FALSE;
790 }
791
792 /**
793 * Return true if this half looks like valid output, that is, does not
794 * contain quantifiers or other special input-only elements.
795 */
796 UBool RuleHalf::isValidOutput(TransliteratorParser& transParser) {
797 for (int32_t i=0; i<text.length(); ) {
798 UChar32 c = text.char32At(i);
799 i += U16_LENGTH(c);
800 if (!transParser.parseData->isReplacer(c)) {
801 return FALSE;
802 }
803 }
804 return TRUE;
805 }
806
807 /**
808 * Return true if this half looks like valid input, that is, does not
809 * contain functions or other special output-only elements.
810 */
811 UBool RuleHalf::isValidInput(TransliteratorParser& transParser) {
812 for (int32_t i=0; i<text.length(); ) {
813 UChar32 c = text.char32At(i);
814 i += U16_LENGTH(c);
815 if (!transParser.parseData->isMatcher(c)) {
816 return FALSE;
817 }
818 }
819 return TRUE;
820 }
821
822 //----------------------------------------------------------------------
823 // PUBLIC API
824 //----------------------------------------------------------------------
825
826 /**
827 * Constructor.
828 */
829 TransliteratorParser::TransliteratorParser(UErrorCode &statusReturn) :
830 dataVector(statusReturn),
831 idBlockVector(statusReturn),
832 variablesVector(statusReturn),
833 segmentObjects(statusReturn)
834 {
835 idBlockVector.setDeleter(uprv_deleteUObject);
836 curData = NULL;
837 compoundFilter = NULL;
838 parseData = NULL;
839 variableNames.setValueDeleter(uprv_deleteUObject);
840 }
841
842 /**
843 * Destructor.
844 */
845 TransliteratorParser::~TransliteratorParser() {
846 while (!dataVector.isEmpty())
847 delete (TransliterationRuleData*)(dataVector.orphanElementAt(0));
848 delete compoundFilter;
849 delete parseData;
850 while (!variablesVector.isEmpty())
851 delete (UnicodeFunctor*)variablesVector.orphanElementAt(0);
852 }
853
854 void
855 TransliteratorParser::parse(const UnicodeString& rules,
856 UTransDirection transDirection,
857 UParseError& pe,
858 UErrorCode& ec) {
859 if (U_SUCCESS(ec)) {
860 parseRules(rules, transDirection, ec);
861 pe = parseError;
862 }
863 }
864
865 /**
866 * Return the compound filter parsed by parse(). Caller owns result.
867 */
868 UnicodeSet* TransliteratorParser::orphanCompoundFilter() {
869 UnicodeSet* f = compoundFilter;
870 compoundFilter = NULL;
871 return f;
872 }
873
874 //----------------------------------------------------------------------
875 // Private implementation
876 //----------------------------------------------------------------------
877
878 /**
879 * Parse the given string as a sequence of rules, separated by newline
880 * characters ('\n'), and cause this object to implement those rules. Any
881 * previous rules are discarded. Typically this method is called exactly
882 * once, during construction.
883 * @exception IllegalArgumentException if there is a syntax error in the
884 * rules
885 */
886 void TransliteratorParser::parseRules(const UnicodeString& rule,
887 UTransDirection theDirection,
888 UErrorCode& status)
889 {
890 // Clear error struct
891 uprv_memset(&parseError, 0, sizeof(parseError));
892 parseError.line = parseError.offset = -1;
893
894 UBool parsingIDs = TRUE;
895 int32_t ruleCount = 0;
896
897 while (!dataVector.isEmpty()) {
898 delete (TransliterationRuleData*)(dataVector.orphanElementAt(0));
899 }
900 if (U_FAILURE(status)) {
901 return;
902 }
903
904 idBlockVector.removeAllElements();
905 curData = NULL;
906 direction = theDirection;
907 ruleCount = 0;
908
909 delete compoundFilter;
910 compoundFilter = NULL;
911
912 while (!variablesVector.isEmpty()) {
913 delete (UnicodeFunctor*)variablesVector.orphanElementAt(0);
914 }
915 variableNames.removeAll();
916 parseData = new ParseData(0, &variablesVector, &variableNames);
917 if (parseData == NULL) {
918 status = U_MEMORY_ALLOCATION_ERROR;
919 return;
920 }
921
922 dotStandIn = (UChar) -1;
923
924 UnicodeString *tempstr = NULL; // used for memory allocation error checking
925 UnicodeString str; // scratch
926 UnicodeString idBlockResult;
927 int32_t pos = 0;
928 int32_t limit = rule.length();
929
930 // The compound filter offset is an index into idBlockResult.
931 // If it is 0, then the compound filter occurred at the start,
932 // and it is the offset to the _start_ of the compound filter
933 // pattern. Otherwise it is the offset to the _limit_ of the
934 // compound filter pattern within idBlockResult.
935 compoundFilter = NULL;
936 int32_t compoundFilterOffset = -1;
937
938 while (pos < limit && U_SUCCESS(status)) {
939 UChar c = rule.charAt(pos++);
940 if (PatternProps::isWhiteSpace(c)) {
941 // Ignore leading whitespace.
942 continue;
943 }
944 // Skip lines starting with the comment character
945 if (c == RULE_COMMENT_CHAR) {
946 pos = rule.indexOf((UChar)0x000A /*\n*/, pos) + 1;
947 if (pos == 0) {
948 break; // No "\n" found; rest of rule is a commnet
949 }
950 continue; // Either fall out or restart with next line
951 }
952
953 // skip empty rules
954 if (c == END_OF_RULE)
955 continue;
956
957 // keep track of how many rules we've seen
958 ++ruleCount;
959
960 // We've found the start of a rule or ID. c is its first
961 // character, and pos points past c.
962 --pos;
963 // Look for an ID token. Must have at least ID_TOKEN_LEN + 1
964 // chars left.
965 if ((pos + ID_TOKEN_LEN + 1) <= limit &&
966 rule.compare(pos, ID_TOKEN_LEN, ID_TOKEN) == 0) {
967 pos += ID_TOKEN_LEN;
968 c = rule.charAt(pos);
969 while (PatternProps::isWhiteSpace(c) && pos < limit) {
970 ++pos;
971 c = rule.charAt(pos);
972 }
973
974 int32_t p = pos;
975
976 if (!parsingIDs) {
977 if (curData != NULL) {
978 if (direction == UTRANS_FORWARD)
979 dataVector.addElement(curData, status);
980 else
981 dataVector.insertElementAt(curData, 0, status);
982 curData = NULL;
983 }
984 parsingIDs = TRUE;
985 }
986
987 TransliteratorIDParser::SingleID* id =
988 TransliteratorIDParser::parseSingleID(rule, p, direction, status);
989 if (p != pos && ICU_Utility::parseChar(rule, p, END_OF_RULE)) {
990 // Successful ::ID parse.
991
992 if (direction == UTRANS_FORWARD) {
993 idBlockResult.append(id->canonID).append(END_OF_RULE);
994 } else {
995 idBlockResult.insert(0, END_OF_RULE);
996 idBlockResult.insert(0, id->canonID);
997 }
998
999 } else {
1000 // Couldn't parse an ID. Try to parse a global filter
1001 int32_t withParens = -1;
1002 UnicodeSet* f = TransliteratorIDParser::parseGlobalFilter(rule, p, direction, withParens, NULL);
1003 if (f != NULL) {
1004 if (ICU_Utility::parseChar(rule, p, END_OF_RULE)
1005 && (direction == UTRANS_FORWARD) == (withParens == 0))
1006 {
1007 if (compoundFilter != NULL) {
1008 // Multiple compound filters
1009 syntaxError(U_MULTIPLE_COMPOUND_FILTERS, rule, pos, status);
1010 delete f;
1011 } else {
1012 compoundFilter = f;
1013 compoundFilterOffset = ruleCount;
1014 }
1015 } else {
1016 delete f;
1017 }
1018 } else {
1019 // Invalid ::id
1020 // Can be parsed as neither an ID nor a global filter
1021 syntaxError(U_INVALID_ID, rule, pos, status);
1022 }
1023 }
1024 delete id;
1025 pos = p;
1026 } else {
1027 if (parsingIDs) {
1028 tempstr = new UnicodeString(idBlockResult);
1029 // NULL pointer check
1030 if (tempstr == NULL) {
1031 status = U_MEMORY_ALLOCATION_ERROR;
1032 return;
1033 }
1034 if (direction == UTRANS_FORWARD)
1035 idBlockVector.addElement(tempstr, status);
1036 else
1037 idBlockVector.insertElementAt(tempstr, 0, status);
1038 idBlockResult.remove();
1039 parsingIDs = FALSE;
1040 curData = new TransliterationRuleData(status);
1041 // NULL pointer check
1042 if (curData == NULL) {
1043 status = U_MEMORY_ALLOCATION_ERROR;
1044 return;
1045 }
1046 parseData->data = curData;
1047
1048 // By default, rules use part of the private use area
1049 // E000..F8FF for variables and other stand-ins. Currently
1050 // the range F000..F8FF is typically sufficient. The 'use
1051 // variable range' pragma allows rule sets to modify this.
1052 setVariableRange(0xF000, 0xF8FF, status);
1053 }
1054
1055 if (resemblesPragma(rule, pos, limit)) {
1056 int32_t ppp = parsePragma(rule, pos, limit, status);
1057 if (ppp < 0) {
1058 syntaxError(U_MALFORMED_PRAGMA, rule, pos, status);
1059 }
1060 pos = ppp;
1061 // Parse a rule
1062 } else {
1063 pos = parseRule(rule, pos, limit, status);
1064 }
1065 }
1066 }
1067
1068 if (parsingIDs && idBlockResult.length() > 0) {
1069 tempstr = new UnicodeString(idBlockResult);
1070 // NULL pointer check
1071 if (tempstr == NULL) {
1072 status = U_MEMORY_ALLOCATION_ERROR;
1073 return;
1074 }
1075 if (direction == UTRANS_FORWARD)
1076 idBlockVector.addElement(tempstr, status);
1077 else
1078 idBlockVector.insertElementAt(tempstr, 0, status);
1079 }
1080 else if (!parsingIDs && curData != NULL) {
1081 if (direction == UTRANS_FORWARD)
1082 dataVector.addElement(curData, status);
1083 else
1084 dataVector.insertElementAt(curData, 0, status);
1085 }
1086
1087 if (U_SUCCESS(status)) {
1088 // Convert the set vector to an array
1089 int32_t i, dataVectorSize = dataVector.size();
1090 for (i = 0; i < dataVectorSize; i++) {
1091 TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i);
1092 data->variablesLength = variablesVector.size();
1093 if (data->variablesLength == 0) {
1094 data->variables = 0;
1095 } else {
1096 data->variables = (UnicodeFunctor**)uprv_malloc(data->variablesLength * sizeof(UnicodeFunctor*));
1097 // NULL pointer check
1098 if (data->variables == NULL) {
1099 status = U_MEMORY_ALLOCATION_ERROR;
1100 return;
1101 }
1102 data->variablesAreOwned = (i == 0);
1103 }
1104
1105 for (int32_t j = 0; j < data->variablesLength; j++) {
1106 data->variables[j] =
1107 static_cast<UnicodeFunctor *>(variablesVector.elementAt(j));
1108 }
1109
1110 data->variableNames.removeAll();
1111 int32_t pos = UHASH_FIRST;
1112 const UHashElement* he = variableNames.nextElement(pos);
1113 while (he != NULL) {
1114 UnicodeString* tempus = (UnicodeString*)(((UnicodeString*)(he->value.pointer))->clone());
1115 if (tempus == NULL) {
1116 status = U_MEMORY_ALLOCATION_ERROR;
1117 return;
1118 }
1119 data->variableNames.put(*((UnicodeString*)(he->key.pointer)),
1120 tempus, status);
1121 he = variableNames.nextElement(pos);
1122 }
1123 }
1124 variablesVector.removeAllElements(); // keeps them from getting deleted when we succeed
1125
1126 // Index the rules
1127 if (compoundFilter != NULL) {
1128 if ((direction == UTRANS_FORWARD && compoundFilterOffset != 1) ||
1129 (direction == UTRANS_REVERSE && compoundFilterOffset != ruleCount)) {
1130 status = U_MISPLACED_COMPOUND_FILTER;
1131 }
1132 }
1133
1134 for (i = 0; i < dataVectorSize; i++) {
1135 TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i);
1136 data->ruleSet.freeze(parseError, status);
1137 }
1138 if (idBlockVector.size() == 1 && ((UnicodeString*)idBlockVector.elementAt(0))->isEmpty()) {
1139 idBlockVector.removeElementAt(0);
1140 }
1141 }
1142 }
1143
1144 /**
1145 * Set the variable range to [start, end] (inclusive).
1146 */
1147 void TransliteratorParser::setVariableRange(int32_t start, int32_t end, UErrorCode& status) {
1148 if (start > end || start < 0 || end > 0xFFFF) {
1149 status = U_MALFORMED_PRAGMA;
1150 return;
1151 }
1152
1153 curData->variablesBase = (UChar) start;
1154 if (dataVector.size() == 0) {
1155 variableNext = (UChar) start;
1156 variableLimit = (UChar) (end + 1);
1157 }
1158 }
1159
1160 /**
1161 * Assert that the given character is NOT within the variable range.
1162 * If it is, return FALSE. This is neccesary to ensure that the
1163 * variable range does not overlap characters used in a rule.
1164 */
1165 UBool TransliteratorParser::checkVariableRange(UChar32 ch) const {
1166 return !(ch >= curData->variablesBase && ch < variableLimit);
1167 }
1168
1169 /**
1170 * Set the maximum backup to 'backup', in response to a pragma
1171 * statement.
1172 */
1173 void TransliteratorParser::pragmaMaximumBackup(int32_t /*backup*/) {
1174 //TODO Finish
1175 }
1176
1177 /**
1178 * Begin normalizing all rules using the given mode, in response
1179 * to a pragma statement.
1180 */
1181 void TransliteratorParser::pragmaNormalizeRules(UNormalizationMode /*mode*/) {
1182 //TODO Finish
1183 }
1184
1185 static const UChar PRAGMA_USE[] = {0x75,0x73,0x65,0x20,0}; // "use "
1186
1187 static const UChar PRAGMA_VARIABLE_RANGE[] = {0x7E,0x76,0x61,0x72,0x69,0x61,0x62,0x6C,0x65,0x20,0x72,0x61,0x6E,0x67,0x65,0x20,0x23,0x20,0x23,0x7E,0x3B,0}; // "~variable range # #~;"
1188
1189 static const UChar PRAGMA_MAXIMUM_BACKUP[] = {0x7E,0x6D,0x61,0x78,0x69,0x6D,0x75,0x6D,0x20,0x62,0x61,0x63,0x6B,0x75,0x70,0x20,0x23,0x7E,0x3B,0}; // "~maximum backup #~;"
1190
1191 static const UChar PRAGMA_NFD_RULES[] = {0x7E,0x6E,0x66,0x64,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfd rules~;"
1192
1193 static const UChar PRAGMA_NFC_RULES[] = {0x7E,0x6E,0x66,0x63,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfc rules~;"
1194
1195 /**
1196 * Return true if the given rule looks like a pragma.
1197 * @param pos offset to the first non-whitespace character
1198 * of the rule.
1199 * @param limit pointer past the last character of the rule.
1200 */
1201 UBool TransliteratorParser::resemblesPragma(const UnicodeString& rule, int32_t pos, int32_t limit) {
1202 // Must start with /use\s/i
1203 return ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_USE, 4), NULL) >= 0;
1204 }
1205
1206 /**
1207 * Parse a pragma. This method assumes resemblesPragma() has
1208 * already returned true.
1209 * @param pos offset to the first non-whitespace character
1210 * of the rule.
1211 * @param limit pointer past the last character of the rule.
1212 * @return the position index after the final ';' of the pragma,
1213 * or -1 on failure.
1214 */
1215 int32_t TransliteratorParser::parsePragma(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) {
1216 int32_t array[2];
1217
1218 // resemblesPragma() has already returned true, so we
1219 // know that pos points to /use\s/i; we can skip 4 characters
1220 // immediately
1221 pos += 4;
1222
1223 // Here are the pragmas we recognize:
1224 // use variable range 0xE000 0xEFFF;
1225 // use maximum backup 16;
1226 // use nfd rules;
1227 // use nfc rules;
1228 int p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_VARIABLE_RANGE, -1), array);
1229 if (p >= 0) {
1230 setVariableRange(array[0], array[1], status);
1231 return p;
1232 }
1233
1234 p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_MAXIMUM_BACKUP, -1), array);
1235 if (p >= 0) {
1236 pragmaMaximumBackup(array[0]);
1237 return p;
1238 }
1239
1240 p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_NFD_RULES, -1), NULL);
1241 if (p >= 0) {
1242 pragmaNormalizeRules(UNORM_NFD);
1243 return p;
1244 }
1245
1246 p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_NFC_RULES, -1), NULL);
1247 if (p >= 0) {
1248 pragmaNormalizeRules(UNORM_NFC);
1249 return p;
1250 }
1251
1252 // Syntax error: unable to parse pragma
1253 return -1;
1254 }
1255
1256 /**
1257 * MAIN PARSER. Parse the next rule in the given rule string, starting
1258 * at pos. Return the index after the last character parsed. Do not
1259 * parse characters at or after limit.
1260 *
1261 * Important: The character at pos must be a non-whitespace character
1262 * that is not the comment character.
1263 *
1264 * This method handles quoting, escaping, and whitespace removal. It
1265 * parses the end-of-rule character. It recognizes context and cursor
1266 * indicators. Once it does a lexical breakdown of the rule at pos, it
1267 * creates a rule object and adds it to our rule list.
1268 */
1269 int32_t TransliteratorParser::parseRule(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) {
1270 // Locate the left side, operator, and right side
1271 int32_t start = pos;
1272 UChar op = 0;
1273 int32_t i;
1274
1275 // Set up segments data
1276 segmentStandins.truncate(0);
1277 segmentObjects.removeAllElements();
1278
1279 // Use pointers to automatics to make swapping possible.
1280 RuleHalf _left(*this), _right(*this);
1281 RuleHalf* left = &_left;
1282 RuleHalf* right = &_right;
1283
1284 undefinedVariableName.remove();
1285 pos = left->parse(rule, pos, limit, status);
1286 if (U_FAILURE(status)) {
1287 return start;
1288 }
1289
1290 if (pos == limit || u_strchr(gOPERATORS, (op = rule.charAt(--pos))) == NULL) {
1291 return syntaxError(U_MISSING_OPERATOR, rule, start, status);
1292 }
1293 ++pos;
1294
1295 // Found an operator char. Check for forward-reverse operator.
1296 if (op == REVERSE_RULE_OP &&
1297 (pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) {
1298 ++pos;
1299 op = FWDREV_RULE_OP;
1300 }
1301
1302 // Translate alternate op characters.
1303 switch (op) {
1304 case ALT_FORWARD_RULE_OP:
1305 op = FORWARD_RULE_OP;
1306 break;
1307 case ALT_REVERSE_RULE_OP:
1308 op = REVERSE_RULE_OP;
1309 break;
1310 case ALT_FWDREV_RULE_OP:
1311 op = FWDREV_RULE_OP;
1312 break;
1313 }
1314
1315 pos = right->parse(rule, pos, limit, status);
1316 if (U_FAILURE(status)) {
1317 return start;
1318 }
1319
1320 if (pos < limit) {
1321 if (rule.charAt(--pos) == END_OF_RULE) {
1322 ++pos;
1323 } else {
1324 // RuleHalf parser must have terminated at an operator
1325 return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status);
1326 }
1327 }
1328
1329 if (op == VARIABLE_DEF_OP) {
1330 // LHS is the name. RHS is a single character, either a literal
1331 // or a set (already parsed). If RHS is longer than one
1332 // character, it is either a multi-character string, or multiple
1333 // sets, or a mixture of chars and sets -- syntax error.
1334
1335 // We expect to see a single undefined variable (the one being
1336 // defined).
1337 if (undefinedVariableName.length() == 0) {
1338 // "Missing '$' or duplicate definition"
1339 return syntaxError(U_BAD_VARIABLE_DEFINITION, rule, start, status);
1340 }
1341 if (left->text.length() != 1 || left->text.charAt(0) != variableLimit) {
1342 // "Malformed LHS"
1343 return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status);
1344 }
1345 if (left->anchorStart || left->anchorEnd ||
1346 right->anchorStart || right->anchorEnd) {
1347 return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status);
1348 }
1349 // We allow anything on the right, including an empty string.
1350 UnicodeString* value = new UnicodeString(right->text);
1351 // NULL pointer check
1352 if (value == NULL) {
1353 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
1354 }
1355 variableNames.put(undefinedVariableName, value, status);
1356 ++variableLimit;
1357 return pos;
1358 }
1359
1360 // If this is not a variable definition rule, we shouldn't have
1361 // any undefined variable names.
1362 if (undefinedVariableName.length() != 0) {
1363 return syntaxError(// "Undefined variable $" + undefinedVariableName,
1364 U_UNDEFINED_VARIABLE,
1365 rule, start, status);
1366 }
1367
1368 // Verify segments
1369 if (segmentStandins.length() > segmentObjects.size()) {
1370 syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, rule, start, status);
1371 }
1372 for (i=0; i<segmentStandins.length(); ++i) {
1373 if (segmentStandins.charAt(i) == 0) {
1374 syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen
1375 }
1376 }
1377 for (i=0; i<segmentObjects.size(); ++i) {
1378 if (segmentObjects.elementAt(i) == NULL) {
1379 syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen
1380 }
1381 }
1382
1383 // If the direction we want doesn't match the rule
1384 // direction, do nothing.
1385 if (op != FWDREV_RULE_OP &&
1386 ((direction == UTRANS_FORWARD) != (op == FORWARD_RULE_OP))) {
1387 return pos;
1388 }
1389
1390 // Transform the rule into a forward rule by swapping the
1391 // sides if necessary.
1392 if (direction == UTRANS_REVERSE) {
1393 left = &_right;
1394 right = &_left;
1395 }
1396
1397 // Remove non-applicable elements in forward-reverse
1398 // rules. Bidirectional rules ignore elements that do not
1399 // apply.
1400 if (op == FWDREV_RULE_OP) {
1401 right->removeContext();
1402 left->cursor = -1;
1403 left->cursorOffset = 0;
1404 }
1405
1406 // Normalize context
1407 if (left->ante < 0) {
1408 left->ante = 0;
1409 }
1410 if (left->post < 0) {
1411 left->post = left->text.length();
1412 }
1413
1414 // Context is only allowed on the input side. Cursors are only
1415 // allowed on the output side. Segment delimiters can only appear
1416 // on the left, and references on the right. Cursor offset
1417 // cannot appear without an explicit cursor. Cursor offset
1418 // cannot place the cursor outside the limits of the context.
1419 // Anchors are only allowed on the input side.
1420 if (right->ante >= 0 || right->post >= 0 || left->cursor >= 0 ||
1421 (right->cursorOffset != 0 && right->cursor < 0) ||
1422 // - The following two checks were used to ensure that the
1423 // - the cursor offset stayed within the ante- or postcontext.
1424 // - However, with the addition of quantifiers, we have to
1425 // - allow arbitrary cursor offsets and do runtime checking.
1426 //(right->cursorOffset > (left->text.length() - left->post)) ||
1427 //(-right->cursorOffset > left->ante) ||
1428 right->anchorStart || right->anchorEnd ||
1429 !left->isValidInput(*this) || !right->isValidOutput(*this) ||
1430 left->ante > left->post) {
1431
1432 return syntaxError(U_MALFORMED_RULE, rule, start, status);
1433 }
1434
1435 // Flatten segment objects vector to an array
1436 UnicodeFunctor** segmentsArray = NULL;
1437 if (segmentObjects.size() > 0) {
1438 segmentsArray = (UnicodeFunctor **)uprv_malloc(segmentObjects.size() * sizeof(UnicodeFunctor *));
1439 // Null pointer check
1440 if (segmentsArray == NULL) {
1441 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
1442 }
1443 segmentObjects.toArray((void**) segmentsArray);
1444 }
1445 TransliterationRule* temptr = new TransliterationRule(
1446 left->text, left->ante, left->post,
1447 right->text, right->cursor, right->cursorOffset,
1448 segmentsArray,
1449 segmentObjects.size(),
1450 left->anchorStart, left->anchorEnd,
1451 curData,
1452 status);
1453 //Null pointer check
1454 if (temptr == NULL) {
1455 uprv_free(segmentsArray);
1456 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
1457 }
1458
1459 curData->ruleSet.addRule(temptr, status);
1460
1461 return pos;
1462 }
1463
1464 /**
1465 * Called by main parser upon syntax error. Search the rule string
1466 * for the probable end of the rule. Of course, if the error is that
1467 * the end of rule marker is missing, then the rule end will not be found.
1468 * In any case the rule start will be correctly reported.
1469 * @param msg error description
1470 * @param rule pattern string
1471 * @param start position of first character of current rule
1472 */
1473 int32_t TransliteratorParser::syntaxError(UErrorCode parseErrorCode,
1474 const UnicodeString& rule,
1475 int32_t pos,
1476 UErrorCode& status)
1477 {
1478 parseError.offset = pos;
1479 parseError.line = 0 ; /* we are not using line numbers */
1480
1481 // for pre-context
1482 const int32_t LEN = U_PARSE_CONTEXT_LEN - 1;
1483 int32_t start = uprv_max(pos - LEN, 0);
1484 int32_t stop = pos;
1485
1486 rule.extract(start,stop-start,parseError.preContext);
1487 //null terminate the buffer
1488 parseError.preContext[stop-start] = 0;
1489
1490 //for post-context
1491 start = pos;
1492 stop = uprv_min(pos + LEN, rule.length());
1493
1494 rule.extract(start,stop-start,parseError.postContext);
1495 //null terminate the buffer
1496 parseError.postContext[stop-start]= 0;
1497
1498 status = (UErrorCode)parseErrorCode;
1499 return pos;
1500
1501 }
1502
1503 /**
1504 * Parse a UnicodeSet out, store it, and return the stand-in character
1505 * used to represent it.
1506 */
1507 UChar TransliteratorParser::parseSet(const UnicodeString& rule,
1508 ParsePosition& pos,
1509 UErrorCode& status) {
1510 UnicodeSet* set = new UnicodeSet(rule, pos, USET_IGNORE_SPACE, parseData, status);
1511 // Null pointer check
1512 if (set == NULL) {
1513 status = U_MEMORY_ALLOCATION_ERROR;
1514 return (UChar)0x0000; // Return empty character with error.
1515 }
1516 set->compact();
1517 return generateStandInFor(set, status);
1518 }
1519
1520 /**
1521 * Generate and return a stand-in for a new UnicodeFunctor. Store
1522 * the matcher (adopt it).
1523 */
1524 UChar TransliteratorParser::generateStandInFor(UnicodeFunctor* adopted, UErrorCode& status) {
1525 // assert(obj != null);
1526
1527 // Look up previous stand-in, if any. This is a short list
1528 // (typical n is 0, 1, or 2); linear search is optimal.
1529 for (int32_t i=0; i<variablesVector.size(); ++i) {
1530 if (variablesVector.elementAt(i) == adopted) { // [sic] pointer comparison
1531 return (UChar) (curData->variablesBase + i);
1532 }
1533 }
1534
1535 if (variableNext >= variableLimit) {
1536 delete adopted;
1537 status = U_VARIABLE_RANGE_EXHAUSTED;
1538 return 0;
1539 }
1540 variablesVector.addElement(adopted, status);
1541 return variableNext++;
1542 }
1543
1544 /**
1545 * Return the standin for segment seg (1-based).
1546 */
1547 UChar TransliteratorParser::getSegmentStandin(int32_t seg, UErrorCode& status) {
1548 // Special character used to indicate an empty spot
1549 UChar empty = curData->variablesBase - 1;
1550 while (segmentStandins.length() < seg) {
1551 segmentStandins.append(empty);
1552 }
1553 UChar c = segmentStandins.charAt(seg-1);
1554 if (c == empty) {
1555 if (variableNext >= variableLimit) {
1556 status = U_VARIABLE_RANGE_EXHAUSTED;
1557 return 0;
1558 }
1559 c = variableNext++;
1560 // Set a placeholder in the master variables vector that will be
1561 // filled in later by setSegmentObject(). We know that we will get
1562 // called first because setSegmentObject() will call us.
1563 variablesVector.addElement((void*) NULL, status);
1564 segmentStandins.setCharAt(seg-1, c);
1565 }
1566 return c;
1567 }
1568
1569 /**
1570 * Set the object for segment seg (1-based).
1571 */
1572 void TransliteratorParser::setSegmentObject(int32_t seg, StringMatcher* adopted, UErrorCode& status) {
1573 // Since we call parseSection() recursively, nested
1574 // segments will result in segment i+1 getting parsed
1575 // and stored before segment i; be careful with the
1576 // vector handling here.
1577 if (segmentObjects.size() < seg) {
1578 segmentObjects.setSize(seg, status);
1579 }
1580 int32_t index = getSegmentStandin(seg, status) - curData->variablesBase;
1581 if (segmentObjects.elementAt(seg-1) != NULL ||
1582 variablesVector.elementAt(index) != NULL) {
1583 // should never happen
1584 status = U_INTERNAL_TRANSLITERATOR_ERROR;
1585 return;
1586 }
1587 segmentObjects.setElementAt(adopted, seg-1);
1588 variablesVector.setElementAt(adopted, index);
1589 }
1590
1591 /**
1592 * Return the stand-in for the dot set. It is allocated the first
1593 * time and reused thereafter.
1594 */
1595 UChar TransliteratorParser::getDotStandIn(UErrorCode& status) {
1596 if (dotStandIn == (UChar) -1) {
1597 UnicodeSet* tempus = new UnicodeSet(UnicodeString(TRUE, DOT_SET, -1), status);
1598 // Null pointer check.
1599 if (tempus == NULL) {
1600 status = U_MEMORY_ALLOCATION_ERROR;
1601 return (UChar)0x0000;
1602 }
1603 dotStandIn = generateStandInFor(tempus, status);
1604 }
1605 return dotStandIn;
1606 }
1607
1608 /**
1609 * Append the value of the given variable name to the given
1610 * UnicodeString.
1611 */
1612 void TransliteratorParser::appendVariableDef(const UnicodeString& name,
1613 UnicodeString& buf,
1614 UErrorCode& status) {
1615 const UnicodeString* s = (const UnicodeString*) variableNames.get(name);
1616 if (s == NULL) {
1617 // We allow one undefined variable so that variable definition
1618 // statements work. For the first undefined variable we return
1619 // the special placeholder variableLimit-1, and save the variable
1620 // name.
1621 if (undefinedVariableName.length() == 0) {
1622 undefinedVariableName = name;
1623 if (variableNext >= variableLimit) {
1624 // throw new RuntimeException("Private use variables exhausted");
1625 status = U_ILLEGAL_ARGUMENT_ERROR;
1626 return;
1627 }
1628 buf.append((UChar) --variableLimit);
1629 } else {
1630 //throw new IllegalArgumentException("Undefined variable $"
1631 // + name);
1632 status = U_ILLEGAL_ARGUMENT_ERROR;
1633 return;
1634 }
1635 } else {
1636 buf.append(*s);
1637 }
1638 }
1639
1640 /**
1641 * Glue method to get around access restrictions in C++.
1642 */
1643 /*Transliterator* TransliteratorParser::createBasicInstance(const UnicodeString& id, const UnicodeString* canonID) {
1644 return Transliterator::createBasicInstance(id, canonID);
1645 }*/
1646
1647 U_NAMESPACE_END
1648
1649 U_CAPI int32_t
1650 utrans_stripRules(const UChar *source, int32_t sourceLen, UChar *target, UErrorCode *status) {
1651 U_NAMESPACE_USE
1652
1653 //const UChar *sourceStart = source;
1654 const UChar *targetStart = target;
1655 const UChar *sourceLimit = source+sourceLen;
1656 UChar *targetLimit = target+sourceLen;
1657 UChar32 c = 0;
1658 UBool quoted = FALSE;
1659 int32_t index;
1660
1661 uprv_memset(target, 0, sourceLen*U_SIZEOF_UCHAR);
1662
1663 /* read the rules into the buffer */
1664 while (source < sourceLimit)
1665 {
1666 index=0;
1667 U16_NEXT_UNSAFE(source, index, c);
1668 source+=index;
1669 if(c == QUOTE) {
1670 quoted = (UBool)!quoted;
1671 }
1672 else if (!quoted) {
1673 if (c == RULE_COMMENT_CHAR) {
1674 /* skip comments and all preceding spaces */
1675 while (targetStart < target && *(target - 1) == 0x0020) {
1676 target--;
1677 }
1678 do {
1679 if (source == sourceLimit) {
1680 c = U_SENTINEL;
1681 break;
1682 }
1683 c = *(source++);
1684 }
1685 while (c != CR && c != LF);
1686 if (c < 0) {
1687 break;
1688 }
1689 }
1690 else if (c == ESCAPE && source < sourceLimit) {
1691 UChar32 c2 = *source;
1692 if (c2 == CR || c2 == LF) {
1693 /* A backslash at the end of a line. */
1694 /* Since we're stripping lines, ignore the backslash. */
1695 source++;
1696 continue;
1697 }
1698 if (c2 == 0x0075 && source+5 < sourceLimit) { /* \u seen. \U isn't unescaped. */
1699 int32_t escapeOffset = 0;
1700 UnicodeString escapedStr(source, 5);
1701 c2 = escapedStr.unescapeAt(escapeOffset);
1702
1703 if (c2 == (UChar32)0xFFFFFFFF || escapeOffset == 0)
1704 {
1705 *status = U_PARSE_ERROR;
1706 return 0;
1707 }
1708 if (!PatternProps::isWhiteSpace(c2) && !u_iscntrl(c2) && !u_ispunct(c2)) {
1709 /* It was escaped for a reason. Write what it was suppose to be. */
1710 source+=5;
1711 c = c2;
1712 }
1713 }
1714 else if (c2 == QUOTE) {
1715 /* \' seen. Make sure we don't do anything when we see it again. */
1716 quoted = (UBool)!quoted;
1717 }
1718 }
1719 }
1720 if (c == CR || c == LF)
1721 {
1722 /* ignore spaces carriage returns, and all leading spaces on the next line.
1723 * and line feed unless in the form \uXXXX
1724 */
1725 quoted = FALSE;
1726 while (source < sourceLimit) {
1727 c = *(source);
1728 if (c != CR && c != LF && c != 0x0020) {
1729 break;
1730 }
1731 source++;
1732 }
1733 continue;
1734 }
1735
1736 /* Append UChar * after dissembling if c > 0xffff*/
1737 index=0;
1738 U16_APPEND_UNSAFE(target, index, c);
1739 target+=index;
1740 }
1741 if (target < targetLimit) {
1742 *target = 0;
1743 }
1744 return (int32_t)(target-targetStart);
1745 }
1746
1747 #endif /* #if !UCONFIG_NO_TRANSLITERATION */