]> git.saurik.com Git - apple/icu.git/blob - icuSources/i18n/gregocal.cpp
ICU-62123.0.1.tar.gz
[apple/icu.git] / icuSources / i18n / gregocal.cpp
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 * Copyright (C) 1997-2016, International Business Machines Corporation and
6 * others. All Rights Reserved.
7 *******************************************************************************
8 *
9 * File GREGOCAL.CPP
10 *
11 * Modification History:
12 *
13 * Date Name Description
14 * 02/05/97 clhuang Creation.
15 * 03/28/97 aliu Made highly questionable fix to computeFields to
16 * handle DST correctly.
17 * 04/22/97 aliu Cleaned up code drastically. Added monthLength().
18 * Finished unimplemented parts of computeTime() for
19 * week-based date determination. Removed quetionable
20 * fix and wrote correct fix for computeFields() and
21 * daylight time handling. Rewrote inDaylightTime()
22 * and computeFields() to handle sensitive Daylight to
23 * Standard time transitions correctly.
24 * 05/08/97 aliu Added code review changes. Fixed isLeapYear() to
25 * not cutover.
26 * 08/12/97 aliu Added equivalentTo. Misc other fixes. Updated
27 * add() from Java source.
28 * 07/28/98 stephen Sync up with JDK 1.2
29 * 09/14/98 stephen Changed type of kOneDay, kOneWeek to double.
30 * Fixed bug in roll()
31 * 10/15/99 aliu Fixed j31, incorrect WEEK_OF_YEAR computation.
32 * 10/15/99 aliu Fixed j32, cannot set date to Feb 29 2000 AD.
33 * {JDK bug 4210209 4209272}
34 * 11/15/99 weiv Added YEAR_WOY and DOW_LOCAL computation
35 * to timeToFields method, updated kMinValues, kMaxValues & kLeastMaxValues
36 * 12/09/99 aliu Fixed j81, calculation errors and roll bugs
37 * in year of cutover.
38 * 01/24/2000 aliu Revised computeJulianDay for YEAR YEAR_WOY WOY.
39 ********************************************************************************
40 */
41
42 #include "unicode/utypes.h"
43 #include <float.h>
44
45 #if !UCONFIG_NO_FORMATTING
46
47 #include "unicode/gregocal.h"
48 #include "gregoimp.h"
49 #include "umutex.h"
50 #include "uassert.h"
51
52 // *****************************************************************************
53 // class GregorianCalendar
54 // *****************************************************************************
55
56 /**
57 * Note that the Julian date used here is not a true Julian date, since
58 * it is measured from midnight, not noon. This value is the Julian
59 * day number of January 1, 1970 (Gregorian calendar) at noon UTC. [LIU]
60 */
61
62 static const int16_t kNumDays[]
63 = {0,31,59,90,120,151,181,212,243,273,304,334}; // 0-based, for day-in-year
64 static const int16_t kLeapNumDays[]
65 = {0,31,60,91,121,152,182,213,244,274,305,335}; // 0-based, for day-in-year
66 static const int8_t kMonthLength[]
67 = {31,28,31,30,31,30,31,31,30,31,30,31}; // 0-based
68 static const int8_t kLeapMonthLength[]
69 = {31,29,31,30,31,30,31,31,30,31,30,31}; // 0-based
70
71 // setTimeInMillis() limits the Julian day range to +/-7F000000.
72 // This would seem to limit the year range to:
73 // ms=+183882168921600000 jd=7f000000 December 20, 5828963 AD
74 // ms=-184303902528000000 jd=81000000 September 20, 5838270 BC
75 // HOWEVER, CalendarRegressionTest/Test4167060 shows that the actual
76 // range limit on the year field is smaller (~ +/-140000). [alan 3.0]
77
78 static const int32_t kGregorianCalendarLimits[UCAL_FIELD_COUNT][4] = {
79 // Minimum Greatest Least Maximum
80 // Minimum Maximum
81 { 0, 0, 1, 1}, // ERA
82 { 1, 1, 140742, 144683}, // YEAR
83 { 0, 0, 11, 11}, // MONTH
84 { 1, 1, 52, 53}, // WEEK_OF_YEAR
85 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH
86 { 1, 1, 28, 31}, // DAY_OF_MONTH
87 { 1, 1, 365, 366}, // DAY_OF_YEAR
88 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK
89 { -1, -1, 4, 5}, // DAY_OF_WEEK_IN_MONTH
90 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM
91 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR
92 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY
93 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE
94 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND
95 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND
96 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET
97 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET
98 { -140742, -140742, 140742, 144683}, // YEAR_WOY
99 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL
100 { -140742, -140742, 140742, 144683}, // EXTENDED_YEAR
101 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY
102 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY
103 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // IS_LEAP_MONTH
104 };
105
106 /*
107 * <pre>
108 * Greatest Least
109 * Field name Minimum Minimum Maximum Maximum
110 * ---------- ------- ------- ------- -------
111 * ERA 0 0 1 1
112 * YEAR 1 1 140742 144683
113 * MONTH 0 0 11 11
114 * WEEK_OF_YEAR 1 1 52 53
115 * WEEK_OF_MONTH 0 0 4 6
116 * DAY_OF_MONTH 1 1 28 31
117 * DAY_OF_YEAR 1 1 365 366
118 * DAY_OF_WEEK 1 1 7 7
119 * DAY_OF_WEEK_IN_MONTH -1 -1 4 5
120 * AM_PM 0 0 1 1
121 * HOUR 0 0 11 11
122 * HOUR_OF_DAY 0 0 23 23
123 * MINUTE 0 0 59 59
124 * SECOND 0 0 59 59
125 * MILLISECOND 0 0 999 999
126 * ZONE_OFFSET -12* -12* 12* 12*
127 * DST_OFFSET 0 0 1* 1*
128 * YEAR_WOY 1 1 140742 144683
129 * DOW_LOCAL 1 1 7 7
130 * </pre>
131 * (*) In units of one-hour
132 */
133
134 #if defined( U_DEBUG_CALSVC ) || defined (U_DEBUG_CAL)
135 #include <stdio.h>
136 #endif
137
138 U_NAMESPACE_BEGIN
139
140 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(GregorianCalendar)
141
142 // 00:00:00 UTC, October 15, 1582, expressed in ms from the epoch.
143 // Note that only Italy and other Catholic countries actually
144 // observed this cutover. Most other countries followed in
145 // the next few centuries, some as late as 1928. [LIU]
146 // in Java, -12219292800000L
147 //const UDate GregorianCalendar::kPapalCutover = -12219292800000L;
148 static const uint32_t kCutoverJulianDay = 2299161;
149 static const UDate kPapalCutover = (2299161.0 - kEpochStartAsJulianDay) * U_MILLIS_PER_DAY;
150 //static const UDate kPapalCutoverJulian = (2299161.0 - kEpochStartAsJulianDay);
151
152 // -------------------------------------
153
154 GregorianCalendar::GregorianCalendar(UErrorCode& status)
155 : Calendar(status),
156 fGregorianCutover(kPapalCutover),
157 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
158 fIsGregorian(TRUE), fInvertGregorian(FALSE)
159 {
160 setTimeInMillis(getNow(), status);
161 }
162
163 // -------------------------------------
164
165 GregorianCalendar::GregorianCalendar(TimeZone* zone, UErrorCode& status)
166 : Calendar(zone, Locale::getDefault(), status),
167 fGregorianCutover(kPapalCutover),
168 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
169 fIsGregorian(TRUE), fInvertGregorian(FALSE)
170 {
171 setTimeInMillis(getNow(), status);
172 }
173
174 // -------------------------------------
175
176 GregorianCalendar::GregorianCalendar(const TimeZone& zone, UErrorCode& status)
177 : Calendar(zone, Locale::getDefault(), status),
178 fGregorianCutover(kPapalCutover),
179 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
180 fIsGregorian(TRUE), fInvertGregorian(FALSE)
181 {
182 setTimeInMillis(getNow(), status);
183 }
184
185 // -------------------------------------
186
187 GregorianCalendar::GregorianCalendar(const Locale& aLocale, UErrorCode& status)
188 : Calendar(TimeZone::createDefault(), aLocale, status),
189 fGregorianCutover(kPapalCutover),
190 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
191 fIsGregorian(TRUE), fInvertGregorian(FALSE)
192 {
193 setTimeInMillis(getNow(), status);
194 }
195
196 // -------------------------------------
197
198 GregorianCalendar::GregorianCalendar(TimeZone* zone, const Locale& aLocale,
199 UErrorCode& status)
200 : Calendar(zone, aLocale, status),
201 fGregorianCutover(kPapalCutover),
202 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
203 fIsGregorian(TRUE), fInvertGregorian(FALSE)
204 {
205 setTimeInMillis(getNow(), status);
206 }
207
208 // -------------------------------------
209
210 GregorianCalendar::GregorianCalendar(const TimeZone& zone, const Locale& aLocale,
211 UErrorCode& status)
212 : Calendar(zone, aLocale, status),
213 fGregorianCutover(kPapalCutover),
214 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
215 fIsGregorian(TRUE), fInvertGregorian(FALSE)
216 {
217 setTimeInMillis(getNow(), status);
218 }
219
220 // -------------------------------------
221
222 GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date,
223 UErrorCode& status)
224 : Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
225 fGregorianCutover(kPapalCutover),
226 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
227 fIsGregorian(TRUE), fInvertGregorian(FALSE)
228 {
229 set(UCAL_ERA, AD);
230 set(UCAL_YEAR, year);
231 set(UCAL_MONTH, month);
232 set(UCAL_DATE, date);
233 }
234
235 // -------------------------------------
236
237 GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date,
238 int32_t hour, int32_t minute, UErrorCode& status)
239 : Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
240 fGregorianCutover(kPapalCutover),
241 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
242 fIsGregorian(TRUE), fInvertGregorian(FALSE)
243 {
244 set(UCAL_ERA, AD);
245 set(UCAL_YEAR, year);
246 set(UCAL_MONTH, month);
247 set(UCAL_DATE, date);
248 set(UCAL_HOUR_OF_DAY, hour);
249 set(UCAL_MINUTE, minute);
250 }
251
252 // -------------------------------------
253
254 GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date,
255 int32_t hour, int32_t minute, int32_t second,
256 UErrorCode& status)
257 : Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
258 fGregorianCutover(kPapalCutover),
259 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582),
260 fIsGregorian(TRUE), fInvertGregorian(FALSE)
261 {
262 set(UCAL_ERA, AD);
263 set(UCAL_YEAR, year);
264 set(UCAL_MONTH, month);
265 set(UCAL_DATE, date);
266 set(UCAL_HOUR_OF_DAY, hour);
267 set(UCAL_MINUTE, minute);
268 set(UCAL_SECOND, second);
269 }
270
271 // -------------------------------------
272
273 GregorianCalendar::~GregorianCalendar()
274 {
275 }
276
277 // -------------------------------------
278
279 GregorianCalendar::GregorianCalendar(const GregorianCalendar &source)
280 : Calendar(source),
281 fGregorianCutover(source.fGregorianCutover),
282 fCutoverJulianDay(source.fCutoverJulianDay), fNormalizedGregorianCutover(source.fNormalizedGregorianCutover), fGregorianCutoverYear(source.fGregorianCutoverYear),
283 fIsGregorian(source.fIsGregorian), fInvertGregorian(source.fInvertGregorian)
284 {
285 }
286
287 // -------------------------------------
288
289 Calendar* GregorianCalendar::clone() const
290 {
291 return new GregorianCalendar(*this);
292 }
293
294 // -------------------------------------
295
296 GregorianCalendar &
297 GregorianCalendar::operator=(const GregorianCalendar &right)
298 {
299 if (this != &right)
300 {
301 Calendar::operator=(right);
302 fGregorianCutover = right.fGregorianCutover;
303 fNormalizedGregorianCutover = right.fNormalizedGregorianCutover;
304 fGregorianCutoverYear = right.fGregorianCutoverYear;
305 fCutoverJulianDay = right.fCutoverJulianDay;
306 }
307 return *this;
308 }
309
310 // -------------------------------------
311
312 UBool GregorianCalendar::isEquivalentTo(const Calendar& other) const
313 {
314 // Calendar override.
315 return Calendar::isEquivalentTo(other) &&
316 fGregorianCutover == ((GregorianCalendar*)&other)->fGregorianCutover;
317 }
318
319 // -------------------------------------
320
321 void
322 GregorianCalendar::setGregorianChange(UDate date, UErrorCode& status)
323 {
324 if (U_FAILURE(status))
325 return;
326
327 if (date == fGregorianCutover)
328 return;
329
330 fGregorianCutover = date;
331
332 // Precompute two internal variables which we use to do the actual
333 // cutover computations. These are the normalized cutover, which is the
334 // midnight at or before the cutover, and the cutover year. The
335 // normalized cutover is in pure date milliseconds; it contains no time
336 // of day or timezone component, and it used to compare against other
337 // pure date values.
338 int32_t cutoverDay = (int32_t)ClockMath::floorDivide(fGregorianCutover, (double)kOneDay);
339 fNormalizedGregorianCutover = cutoverDay * kOneDay;
340
341 // Handle the rare case of numeric overflow. If the user specifies a
342 // change of UDate(Long.MIN_VALUE), in order to get a pure Gregorian
343 // calendar, then the epoch day is -106751991168, which when multiplied
344 // by ONE_DAY gives 9223372036794351616 -- the negative value is too
345 // large for 64 bits, and overflows into a positive value. We correct
346 // this by using the next day, which for all intents is semantically
347 // equivalent.
348 if (cutoverDay < 0 && fNormalizedGregorianCutover > 0) {
349 fNormalizedGregorianCutover = (cutoverDay + 1) * kOneDay;
350 }
351
352 // Normalize the year so BC values are represented as 0 and negative
353 // values.
354 GregorianCalendar *cal = new GregorianCalendar(getTimeZone(), status);
355 /* test for NULL */
356 if (cal == 0) {
357 status = U_MEMORY_ALLOCATION_ERROR;
358 return;
359 }
360 if(U_FAILURE(status))
361 return;
362 cal->setTime(date, status);
363 fGregorianCutoverYear = cal->get(UCAL_YEAR, status);
364 if (cal->get(UCAL_ERA, status) == BC)
365 fGregorianCutoverYear = 1 - fGregorianCutoverYear;
366 fCutoverJulianDay = cutoverDay;
367 delete cal;
368 }
369
370
371 void GregorianCalendar::handleComputeFields(int32_t julianDay, UErrorCode& status) {
372 int32_t eyear, month, dayOfMonth, dayOfYear, unusedRemainder;
373
374
375 if(U_FAILURE(status)) {
376 return;
377 }
378
379 #if defined (U_DEBUG_CAL)
380 fprintf(stderr, "%s:%d: jd%d- (greg's %d)- [cut=%d]\n",
381 __FILE__, __LINE__, julianDay, getGregorianDayOfYear(), fCutoverJulianDay);
382 #endif
383
384
385 if (julianDay >= fCutoverJulianDay) {
386 month = getGregorianMonth();
387 dayOfMonth = getGregorianDayOfMonth();
388 dayOfYear = getGregorianDayOfYear();
389 eyear = getGregorianYear();
390 } else {
391 // The Julian epoch day (not the same as Julian Day)
392 // is zero on Saturday December 30, 0 (Gregorian).
393 int32_t julianEpochDay = julianDay - (kJan1_1JulianDay - 2);
394 eyear = (int32_t) ClockMath::floorDivide((4.0*julianEpochDay) + 1464.0, (int32_t) 1461, unusedRemainder);
395
396 // Compute the Julian calendar day number for January 1, eyear
397 int32_t january1 = 365*(eyear-1) + ClockMath::floorDivide(eyear-1, (int32_t)4);
398 dayOfYear = (julianEpochDay - january1); // 0-based
399
400 // Julian leap years occurred historically every 4 years starting
401 // with 8 AD. Before 8 AD the spacing is irregular; every 3 years
402 // from 45 BC to 9 BC, and then none until 8 AD. However, we don't
403 // implement this historical detail; instead, we implement the
404 // computatinally cleaner proleptic calendar, which assumes
405 // consistent 4-year cycles throughout time.
406 UBool isLeap = ((eyear&0x3) == 0); // equiv. to (eyear%4 == 0)
407
408 // Common Julian/Gregorian calculation
409 int32_t correction = 0;
410 int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1
411 if (dayOfYear >= march1) {
412 correction = isLeap ? 1 : 2;
413 }
414 month = (12 * (dayOfYear + correction) + 6) / 367; // zero-based month
415 dayOfMonth = dayOfYear - (isLeap?kLeapNumDays[month]:kNumDays[month]) + 1; // one-based DOM
416 ++dayOfYear;
417 #if defined (U_DEBUG_CAL)
418 // fprintf(stderr, "%d - %d[%d] + 1\n", dayOfYear, isLeap?kLeapNumDays[month]:kNumDays[month], month );
419 // fprintf(stderr, "%s:%d: greg's HCF %d -> %d/%d/%d not %d/%d/%d\n",
420 // __FILE__, __LINE__,julianDay,
421 // eyear,month,dayOfMonth,
422 // getGregorianYear(), getGregorianMonth(), getGregorianDayOfMonth() );
423 fprintf(stderr, "%s:%d: doy %d (greg's %d)- [cut=%d]\n",
424 __FILE__, __LINE__, dayOfYear, getGregorianDayOfYear(), fCutoverJulianDay);
425 #endif
426
427 }
428
429 // [j81] if we are after the cutover in its year, shift the day of the year
430 if((eyear == fGregorianCutoverYear) && (julianDay >= fCutoverJulianDay)) {
431 //from handleComputeMonthStart
432 int32_t gregShift = Grego::gregorianShift(eyear);
433 #if defined (U_DEBUG_CAL)
434 fprintf(stderr, "%s:%d: gregorian shift %d ::: doy%d => %d [cut=%d]\n",
435 __FILE__, __LINE__,gregShift, dayOfYear, dayOfYear+gregShift, fCutoverJulianDay);
436 #endif
437 dayOfYear += gregShift;
438 }
439
440 internalSet(UCAL_MONTH, month);
441 internalSet(UCAL_DAY_OF_MONTH, dayOfMonth);
442 internalSet(UCAL_DAY_OF_YEAR, dayOfYear);
443 internalSet(UCAL_EXTENDED_YEAR, eyear);
444 int32_t era = AD;
445 if (eyear < 1) {
446 era = BC;
447 eyear = 1 - eyear;
448 }
449 internalSet(UCAL_ERA, era);
450 internalSet(UCAL_YEAR, eyear);
451 }
452
453
454 // -------------------------------------
455
456 UDate
457 GregorianCalendar::getGregorianChange() const
458 {
459 return fGregorianCutover;
460 }
461
462 // -------------------------------------
463
464 UBool
465 GregorianCalendar::isLeapYear(int32_t year) const
466 {
467 // MSVC complains bitterly if we try to use Grego::isLeapYear here
468 // NOTE: year&0x3 == year%4
469 return (year >= fGregorianCutoverYear ?
470 (((year&0x3) == 0) && ((year%100 != 0) || (year%400 == 0))) : // Gregorian
471 ((year&0x3) == 0)); // Julian
472 }
473
474 // -------------------------------------
475
476 int32_t GregorianCalendar::handleComputeJulianDay(UCalendarDateFields bestField)
477 {
478 fInvertGregorian = FALSE;
479
480 int32_t jd = Calendar::handleComputeJulianDay(bestField);
481
482 if((bestField == UCAL_WEEK_OF_YEAR) && // if we are doing WOY calculations, we are counting relative to Jan 1 *julian*
483 (internalGet(UCAL_EXTENDED_YEAR)==fGregorianCutoverYear) &&
484 jd >= fCutoverJulianDay) {
485 fInvertGregorian = TRUE; // So that the Julian Jan 1 will be used in handleComputeMonthStart
486 return Calendar::handleComputeJulianDay(bestField);
487 }
488
489
490 // The following check handles portions of the cutover year BEFORE the
491 // cutover itself happens.
492 //if ((fIsGregorian==TRUE) != (jd >= fCutoverJulianDay)) { /* cutoverJulianDay)) { */
493 if ((fIsGregorian==TRUE) != (jd >= fCutoverJulianDay)) { /* cutoverJulianDay)) { */
494 #if defined (U_DEBUG_CAL)
495 fprintf(stderr, "%s:%d: jd [invert] %d\n",
496 __FILE__, __LINE__, jd);
497 #endif
498 fInvertGregorian = TRUE;
499 jd = Calendar::handleComputeJulianDay(bestField);
500 #if defined (U_DEBUG_CAL)
501 fprintf(stderr, "%s:%d: fIsGregorian %s, fInvertGregorian %s - ",
502 __FILE__, __LINE__,fIsGregorian?"T":"F", fInvertGregorian?"T":"F");
503 fprintf(stderr, " jd NOW %d\n",
504 jd);
505 #endif
506 } else {
507 #if defined (U_DEBUG_CAL)
508 fprintf(stderr, "%s:%d: jd [==] %d - %sfIsGregorian %sfInvertGregorian, %d\n",
509 __FILE__, __LINE__, jd, fIsGregorian?"T":"F", fInvertGregorian?"T":"F", bestField);
510 #endif
511 }
512
513 if(fIsGregorian && (internalGet(UCAL_EXTENDED_YEAR) == fGregorianCutoverYear)) {
514 int32_t gregShift = Grego::gregorianShift(internalGet(UCAL_EXTENDED_YEAR));
515 if (bestField == UCAL_DAY_OF_YEAR) {
516 #if defined (U_DEBUG_CAL)
517 fprintf(stderr, "%s:%d: [DOY%d] gregorian shift of JD %d += %d\n",
518 __FILE__, __LINE__, fFields[bestField],jd, gregShift);
519 #endif
520 jd -= gregShift;
521 } else if ( bestField == UCAL_WEEK_OF_MONTH ) {
522 int32_t weekShift = 14;
523 #if defined (U_DEBUG_CAL)
524 fprintf(stderr, "%s:%d: [WOY/WOM] gregorian week shift of %d += %d\n",
525 __FILE__, __LINE__, jd, weekShift);
526 #endif
527 jd += weekShift; // shift by weeks for week based fields.
528 }
529 }
530
531 return jd;
532 }
533
534 int32_t GregorianCalendar::handleComputeMonthStart(int32_t eyear, int32_t month,
535
536 UBool /* useMonth */) const
537 {
538 GregorianCalendar *nonConstThis = (GregorianCalendar*)this; // cast away const
539
540 // If the month is out of range, adjust it into range, and
541 // modify the extended year value accordingly.
542 if (month < 0 || month > 11) {
543 eyear += ClockMath::floorDivide(month, 12, month);
544 }
545
546 UBool isLeap = eyear%4 == 0;
547 int32_t y = eyear-1;
548 int32_t julianDay = 365*y + ClockMath::floorDivide(y, 4) + (kJan1_1JulianDay - 3);
549
550 nonConstThis->fIsGregorian = (eyear >= fGregorianCutoverYear);
551 #if defined (U_DEBUG_CAL)
552 fprintf(stderr, "%s:%d: (hcms%d/%d) fIsGregorian %s, fInvertGregorian %s\n",
553 __FILE__, __LINE__, eyear,month, fIsGregorian?"T":"F", fInvertGregorian?"T":"F");
554 #endif
555 if (fInvertGregorian) {
556 nonConstThis->fIsGregorian = !fIsGregorian;
557 }
558 if (fIsGregorian) {
559 isLeap = isLeap && ((eyear%100 != 0) || (eyear%400 == 0));
560 // Add 2 because Gregorian calendar starts 2 days after
561 // Julian calendar
562 int32_t gregShift = Grego::gregorianShift(eyear);
563 #if defined (U_DEBUG_CAL)
564 fprintf(stderr, "%s:%d: (hcms%d/%d) gregorian shift of %d += %d\n",
565 __FILE__, __LINE__, eyear, month, julianDay, gregShift);
566 #endif
567 julianDay += gregShift;
568 }
569
570 // At this point julianDay indicates the day BEFORE the first
571 // day of January 1, <eyear> of either the Julian or Gregorian
572 // calendar.
573
574 if (month != 0) {
575 julianDay += isLeap?kLeapNumDays[month]:kNumDays[month];
576 }
577
578 return julianDay;
579 }
580
581 int32_t GregorianCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month) const
582 {
583 // If the month is out of range, adjust it into range, and
584 // modify the extended year value accordingly.
585 if (month < 0 || month > 11) {
586 extendedYear += ClockMath::floorDivide(month, 12, month);
587 }
588
589 return isLeapYear(extendedYear) ? kLeapMonthLength[month] : kMonthLength[month];
590 }
591
592 int32_t GregorianCalendar::handleGetYearLength(int32_t eyear) const {
593 return isLeapYear(eyear) ? 366 : 365;
594 }
595
596
597 int32_t
598 GregorianCalendar::monthLength(int32_t month) const
599 {
600 int32_t year = internalGet(UCAL_EXTENDED_YEAR);
601 return handleGetMonthLength(year, month);
602 }
603
604 // -------------------------------------
605
606 int32_t
607 GregorianCalendar::monthLength(int32_t month, int32_t year) const
608 {
609 return isLeapYear(year) ? kLeapMonthLength[month] : kMonthLength[month];
610 }
611
612 // -------------------------------------
613
614 int32_t
615 GregorianCalendar::yearLength(int32_t year) const
616 {
617 return isLeapYear(year) ? 366 : 365;
618 }
619
620 // -------------------------------------
621
622 int32_t
623 GregorianCalendar::yearLength() const
624 {
625 return isLeapYear(internalGet(UCAL_YEAR)) ? 366 : 365;
626 }
627
628 // -------------------------------------
629
630 /**
631 * After adjustments such as add(MONTH), add(YEAR), we don't want the
632 * month to jump around. E.g., we don't want Jan 31 + 1 month to go to Mar
633 * 3, we want it to go to Feb 28. Adjustments which might run into this
634 * problem call this method to retain the proper month.
635 */
636 void
637 GregorianCalendar::pinDayOfMonth()
638 {
639 int32_t monthLen = monthLength(internalGet(UCAL_MONTH));
640 int32_t dom = internalGet(UCAL_DATE);
641 if(dom > monthLen)
642 set(UCAL_DATE, monthLen);
643 }
644
645 // -------------------------------------
646
647
648 UBool
649 GregorianCalendar::validateFields() const
650 {
651 for (int32_t field = 0; field < UCAL_FIELD_COUNT; field++) {
652 // Ignore DATE and DAY_OF_YEAR which are handled below
653 if (field != UCAL_DATE &&
654 field != UCAL_DAY_OF_YEAR &&
655 isSet((UCalendarDateFields)field) &&
656 ! boundsCheck(internalGet((UCalendarDateFields)field), (UCalendarDateFields)field))
657 return FALSE;
658 }
659
660 // Values differ in Least-Maximum and Maximum should be handled
661 // specially.
662 if (isSet(UCAL_DATE)) {
663 int32_t date = internalGet(UCAL_DATE);
664 if (date < getMinimum(UCAL_DATE) ||
665 date > monthLength(internalGet(UCAL_MONTH))) {
666 return FALSE;
667 }
668 }
669
670 if (isSet(UCAL_DAY_OF_YEAR)) {
671 int32_t days = internalGet(UCAL_DAY_OF_YEAR);
672 if (days < 1 || days > yearLength()) {
673 return FALSE;
674 }
675 }
676
677 // Handle DAY_OF_WEEK_IN_MONTH, which must not have the value zero.
678 // We've checked against minimum and maximum above already.
679 if (isSet(UCAL_DAY_OF_WEEK_IN_MONTH) &&
680 0 == internalGet(UCAL_DAY_OF_WEEK_IN_MONTH)) {
681 return FALSE;
682 }
683
684 return TRUE;
685 }
686
687 // -------------------------------------
688
689 UBool
690 GregorianCalendar::boundsCheck(int32_t value, UCalendarDateFields field) const
691 {
692 return value >= getMinimum(field) && value <= getMaximum(field);
693 }
694
695 // -------------------------------------
696
697 UDate
698 GregorianCalendar::getEpochDay(UErrorCode& status)
699 {
700 complete(status);
701 // Divide by 1000 (convert to seconds) in order to prevent overflow when
702 // dealing with UDate(Long.MIN_VALUE) and UDate(Long.MAX_VALUE).
703 double wallSec = internalGetTime()/1000 + (internalGet(UCAL_ZONE_OFFSET) + internalGet(UCAL_DST_OFFSET))/1000;
704
705 return ClockMath::floorDivide(wallSec, kOneDay/1000.0);
706 }
707
708 // -------------------------------------
709
710
711 // -------------------------------------
712
713 /**
714 * Compute the julian day number of the day BEFORE the first day of
715 * January 1, year 1 of the given calendar. If julianDay == 0, it
716 * specifies (Jan. 1, 1) - 1, in whatever calendar we are using (Julian
717 * or Gregorian).
718 */
719 double GregorianCalendar::computeJulianDayOfYear(UBool isGregorian,
720 int32_t year, UBool& isLeap)
721 {
722 isLeap = year%4 == 0;
723 int32_t y = year - 1;
724 double julianDay = 365.0*y + ClockMath::floorDivide(y, 4) + (kJan1_1JulianDay - 3);
725
726 if (isGregorian) {
727 isLeap = isLeap && ((year%100 != 0) || (year%400 == 0));
728 // Add 2 because Gregorian calendar starts 2 days after Julian calendar
729 julianDay += Grego::gregorianShift(year);
730 }
731
732 return julianDay;
733 }
734
735 // /**
736 // * Compute the day of week, relative to the first day of week, from
737 // * 0..6, of the current DOW_LOCAL or DAY_OF_WEEK fields. This is
738 // * equivalent to get(DOW_LOCAL) - 1.
739 // */
740 // int32_t GregorianCalendar::computeRelativeDOW() const {
741 // int32_t relDow = 0;
742 // if (fStamp[UCAL_DOW_LOCAL] > fStamp[UCAL_DAY_OF_WEEK]) {
743 // relDow = internalGet(UCAL_DOW_LOCAL) - 1; // 1-based
744 // } else if (fStamp[UCAL_DAY_OF_WEEK] != kUnset) {
745 // relDow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek();
746 // if (relDow < 0) relDow += 7;
747 // }
748 // return relDow;
749 // }
750
751 // /**
752 // * Compute the day of week, relative to the first day of week,
753 // * from 0..6 of the given julian day.
754 // */
755 // int32_t GregorianCalendar::computeRelativeDOW(double julianDay) const {
756 // int32_t relDow = julianDayToDayOfWeek(julianDay) - getFirstDayOfWeek();
757 // if (relDow < 0) {
758 // relDow += 7;
759 // }
760 // return relDow;
761 // }
762
763 // /**
764 // * Compute the DOY using the WEEK_OF_YEAR field and the julian day
765 // * of the day BEFORE January 1 of a year (a return value from
766 // * computeJulianDayOfYear).
767 // */
768 // int32_t GregorianCalendar::computeDOYfromWOY(double julianDayOfYear) const {
769 // // Compute DOY from day of week plus week of year
770
771 // // Find the day of the week for the first of this year. This
772 // // is zero-based, with 0 being the locale-specific first day of
773 // // the week. Add 1 to get first day of year.
774 // int32_t fdy = computeRelativeDOW(julianDayOfYear + 1);
775
776 // return
777 // // Compute doy of first (relative) DOW of WOY 1
778 // (((7 - fdy) < getMinimalDaysInFirstWeek())
779 // ? (8 - fdy) : (1 - fdy))
780
781 // // Adjust for the week number.
782 // + (7 * (internalGet(UCAL_WEEK_OF_YEAR) - 1))
783
784 // // Adjust for the DOW
785 // + computeRelativeDOW();
786 // }
787
788 // -------------------------------------
789
790 double
791 GregorianCalendar::millisToJulianDay(UDate millis)
792 {
793 return (double)kEpochStartAsJulianDay + ClockMath::floorDivide(millis, (double)kOneDay);
794 }
795
796 // -------------------------------------
797
798 UDate
799 GregorianCalendar::julianDayToMillis(double julian)
800 {
801 return (UDate) ((julian - kEpochStartAsJulianDay) * (double) kOneDay);
802 }
803
804 // -------------------------------------
805
806 int32_t
807 GregorianCalendar::aggregateStamp(int32_t stamp_a, int32_t stamp_b)
808 {
809 return (((stamp_a != kUnset && stamp_b != kUnset)
810 ? uprv_max(stamp_a, stamp_b)
811 : (int32_t)kUnset));
812 }
813
814 // -------------------------------------
815
816 /**
817 * Roll a field by a signed amount.
818 * Note: This will be made public later. [LIU]
819 */
820
821 void
822 GregorianCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) {
823 roll((UCalendarDateFields) field, amount, status);
824 }
825
826 void
827 GregorianCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status)
828 {
829 if((amount == 0) || U_FAILURE(status)) {
830 return;
831 }
832
833 // J81 processing. (gregorian cutover)
834 UBool inCutoverMonth = FALSE;
835 int32_t cMonthLen=0; // 'c' for cutover; in days
836 int32_t cDayOfMonth=0; // no discontinuity: [0, cMonthLen)
837 double cMonthStart=0.0; // in ms
838
839 // Common code - see if we're in the cutover month of the cutover year
840 if(get(UCAL_EXTENDED_YEAR, status) == fGregorianCutoverYear) {
841 switch (field) {
842 case UCAL_DAY_OF_MONTH:
843 case UCAL_WEEK_OF_MONTH:
844 {
845 int32_t max = monthLength(internalGet(UCAL_MONTH));
846 UDate t = internalGetTime();
847 // We subtract 1 from the DAY_OF_MONTH to make it zero-based, and an
848 // additional 10 if we are after the cutover. Thus the monthStart
849 // value will be correct iff we actually are in the cutover month.
850 cDayOfMonth = internalGet(UCAL_DAY_OF_MONTH) - ((t >= fGregorianCutover) ? 10 : 0);
851 cMonthStart = t - ((cDayOfMonth - 1) * kOneDay);
852 // A month containing the cutover is 10 days shorter.
853 if ((cMonthStart < fGregorianCutover) &&
854 (cMonthStart + (cMonthLen=(max-10))*kOneDay >= fGregorianCutover)) {
855 inCutoverMonth = TRUE;
856 }
857 }
858 break;
859 default:
860 ;
861 }
862 }
863
864 switch (field) {
865 case UCAL_WEEK_OF_YEAR: {
866 // Unlike WEEK_OF_MONTH, WEEK_OF_YEAR never shifts the day of the
867 // week. Also, rolling the week of the year can have seemingly
868 // strange effects simply because the year of the week of year
869 // may be different from the calendar year. For example, the
870 // date Dec 28, 1997 is the first day of week 1 of 1998 (if
871 // weeks start on Sunday and the minimal days in first week is
872 // <= 3).
873 int32_t woy = get(UCAL_WEEK_OF_YEAR, status);
874 // Get the ISO year, which matches the week of year. This
875 // may be one year before or after the calendar year.
876 int32_t isoYear = get(UCAL_YEAR_WOY, status);
877 int32_t isoDoy = internalGet(UCAL_DAY_OF_YEAR);
878 if (internalGet(UCAL_MONTH) == UCAL_JANUARY) {
879 if (woy >= 52) {
880 isoDoy += handleGetYearLength(isoYear);
881 }
882 } else {
883 if (woy == 1) {
884 isoDoy -= handleGetYearLength(isoYear - 1);
885 }
886 }
887 woy += amount;
888 // Do fast checks to avoid unnecessary computation:
889 if (woy < 1 || woy > 52) {
890 // Determine the last week of the ISO year.
891 // We do this using the standard formula we use
892 // everywhere in this file. If we can see that the
893 // days at the end of the year are going to fall into
894 // week 1 of the next year, we drop the last week by
895 // subtracting 7 from the last day of the year.
896 int32_t lastDoy = handleGetYearLength(isoYear);
897 int32_t lastRelDow = (lastDoy - isoDoy + internalGet(UCAL_DAY_OF_WEEK) -
898 getFirstDayOfWeek()) % 7;
899 if (lastRelDow < 0) lastRelDow += 7;
900 if ((6 - lastRelDow) >= getMinimalDaysInFirstWeek()) lastDoy -= 7;
901 int32_t lastWoy = weekNumber(lastDoy, lastRelDow + 1);
902 woy = ((woy + lastWoy - 1) % lastWoy) + 1;
903 }
904 set(UCAL_WEEK_OF_YEAR, woy);
905 set(UCAL_YEAR_WOY,isoYear);
906 return;
907 }
908
909 case UCAL_DAY_OF_MONTH:
910 if( !inCutoverMonth ) {
911 Calendar::roll(field, amount, status);
912 return;
913 } else {
914 // [j81] 1582 special case for DOM
915 // The default computation works except when the current month
916 // contains the Gregorian cutover. We handle this special case
917 // here. [j81 - aliu]
918 double monthLen = cMonthLen * kOneDay;
919 double msIntoMonth = uprv_fmod(internalGetTime() - cMonthStart +
920 amount * kOneDay, monthLen);
921 if (msIntoMonth < 0) {
922 msIntoMonth += monthLen;
923 }
924 #if defined (U_DEBUG_CAL)
925 fprintf(stderr, "%s:%d: roll DOM %d -> %.0lf ms \n",
926 __FILE__, __LINE__,amount, cMonthLen, cMonthStart+msIntoMonth);
927 #endif
928 setTimeInMillis(cMonthStart + msIntoMonth, status);
929 return;
930 }
931
932 case UCAL_WEEK_OF_MONTH:
933 if( !inCutoverMonth ) {
934 Calendar::roll(field, amount, status);
935 return;
936 } else {
937 #if defined (U_DEBUG_CAL)
938 fprintf(stderr, "%s:%d: roll WOM %d ??????????????????? \n",
939 __FILE__, __LINE__,amount);
940 #endif
941 // NOTE: following copied from the old
942 // GregorianCalendar::roll( WEEK_OF_MONTH ) code
943
944 // This is tricky, because during the roll we may have to shift
945 // to a different day of the week. For example:
946
947 // s m t w r f s
948 // 1 2 3 4 5
949 // 6 7 8 9 10 11 12
950
951 // When rolling from the 6th or 7th back one week, we go to the
952 // 1st (assuming that the first partial week counts). The same
953 // thing happens at the end of the month.
954
955 // The other tricky thing is that we have to figure out whether
956 // the first partial week actually counts or not, based on the
957 // minimal first days in the week. And we have to use the
958 // correct first day of the week to delineate the week
959 // boundaries.
960
961 // Here's our algorithm. First, we find the real boundaries of
962 // the month. Then we discard the first partial week if it
963 // doesn't count in this locale. Then we fill in the ends with
964 // phantom days, so that the first partial week and the last
965 // partial week are full weeks. We then have a nice square
966 // block of weeks. We do the usual rolling within this block,
967 // as is done elsewhere in this method. If we wind up on one of
968 // the phantom days that we added, we recognize this and pin to
969 // the first or the last day of the month. Easy, eh?
970
971 // Another wrinkle: To fix jitterbug 81, we have to make all this
972 // work in the oddball month containing the Gregorian cutover.
973 // This month is 10 days shorter than usual, and also contains
974 // a discontinuity in the days; e.g., the default cutover month
975 // is Oct 1582, and goes from day of month 4 to day of month 15.
976
977 // Normalize the DAY_OF_WEEK so that 0 is the first day of the week
978 // in this locale. We have dow in 0..6.
979 int32_t dow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek();
980 if (dow < 0)
981 dow += 7;
982
983 // Find the day of month, compensating for cutover discontinuity.
984 int32_t dom = cDayOfMonth;
985
986 // Find the day of the week (normalized for locale) for the first
987 // of the month.
988 int32_t fdm = (dow - dom + 1) % 7;
989 if (fdm < 0)
990 fdm += 7;
991
992 // Get the first day of the first full week of the month,
993 // including phantom days, if any. Figure out if the first week
994 // counts or not; if it counts, then fill in phantom days. If
995 // not, advance to the first real full week (skip the partial week).
996 int32_t start;
997 if ((7 - fdm) < getMinimalDaysInFirstWeek())
998 start = 8 - fdm; // Skip the first partial week
999 else
1000 start = 1 - fdm; // This may be zero or negative
1001
1002 // Get the day of the week (normalized for locale) for the last
1003 // day of the month.
1004 int32_t monthLen = cMonthLen;
1005 int32_t ldm = (monthLen - dom + dow) % 7;
1006 // We know monthLen >= DAY_OF_MONTH so we skip the += 7 step here.
1007
1008 // Get the limit day for the blocked-off rectangular month; that
1009 // is, the day which is one past the last day of the month,
1010 // after the month has already been filled in with phantom days
1011 // to fill out the last week. This day has a normalized DOW of 0.
1012 int32_t limit = monthLen + 7 - ldm;
1013
1014 // Now roll between start and (limit - 1).
1015 int32_t gap = limit - start;
1016 int32_t newDom = (dom + amount*7 - start) % gap;
1017 if (newDom < 0)
1018 newDom += gap;
1019 newDom += start;
1020
1021 // Finally, pin to the real start and end of the month.
1022 if (newDom < 1)
1023 newDom = 1;
1024 if (newDom > monthLen)
1025 newDom = monthLen;
1026
1027 // Set the DAY_OF_MONTH. We rely on the fact that this field
1028 // takes precedence over everything else (since all other fields
1029 // are also set at this point). If this fact changes (if the
1030 // disambiguation algorithm changes) then we will have to unset
1031 // the appropriate fields here so that DAY_OF_MONTH is attended
1032 // to.
1033
1034 // If we are in the cutover month, manipulate ms directly. Don't do
1035 // this in general because it doesn't work across DST boundaries
1036 // (details, details). This takes care of the discontinuity.
1037 setTimeInMillis(cMonthStart + (newDom-1)*kOneDay, status);
1038 return;
1039 }
1040
1041 default:
1042 Calendar::roll(field, amount, status);
1043 return;
1044 }
1045 }
1046
1047 // -------------------------------------
1048
1049
1050 /**
1051 * Return the minimum value that this field could have, given the current date.
1052 * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum().
1053 * @param field the time field.
1054 * @return the minimum value that this field could have, given the current date.
1055 * @deprecated ICU 2.6. Use getActualMinimum(UCalendarDateFields field) instead.
1056 */
1057 int32_t GregorianCalendar::getActualMinimum(EDateFields field) const
1058 {
1059 return getMinimum((UCalendarDateFields)field);
1060 }
1061
1062 int32_t GregorianCalendar::getActualMinimum(EDateFields field, UErrorCode& /* status */) const
1063 {
1064 return getMinimum((UCalendarDateFields)field);
1065 }
1066
1067 /**
1068 * Return the minimum value that this field could have, given the current date.
1069 * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum().
1070 * @param field the time field.
1071 * @return the minimum value that this field could have, given the current date.
1072 * @draft ICU 2.6.
1073 */
1074 int32_t GregorianCalendar::getActualMinimum(UCalendarDateFields field, UErrorCode& /* status */) const
1075 {
1076 return getMinimum(field);
1077 }
1078
1079
1080 // ------------------------------------
1081
1082 /**
1083 * Old year limits were least max 292269054, max 292278994.
1084 */
1085
1086 /**
1087 * @stable ICU 2.0
1088 */
1089 int32_t GregorianCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const {
1090 return kGregorianCalendarLimits[field][limitType];
1091 }
1092
1093 /**
1094 * Return the maximum value that this field could have, given the current date.
1095 * For example, with the date "Feb 3, 1997" and the DAY_OF_MONTH field, the actual
1096 * maximum would be 28; for "Feb 3, 1996" it s 29. Similarly for a Hebrew calendar,
1097 * for some years the actual maximum for MONTH is 12, and for others 13.
1098 * @stable ICU 2.0
1099 */
1100 int32_t GregorianCalendar::getActualMaximum(UCalendarDateFields field, UErrorCode& status) const
1101 {
1102 /* It is a known limitation that the code here (and in getActualMinimum)
1103 * won't behave properly at the extreme limits of GregorianCalendar's
1104 * representable range (except for the code that handles the YEAR
1105 * field). That's because the ends of the representable range are at
1106 * odd spots in the year. For calendars with the default Gregorian
1107 * cutover, these limits are Sun Dec 02 16:47:04 GMT 292269055 BC to Sun
1108 * Aug 17 07:12:55 GMT 292278994 AD, somewhat different for non-GMT
1109 * zones. As a result, if the calendar is set to Aug 1 292278994 AD,
1110 * the actual maximum of DAY_OF_MONTH is 17, not 30. If the date is Mar
1111 * 31 in that year, the actual maximum month might be Jul, whereas is
1112 * the date is Mar 15, the actual maximum might be Aug -- depending on
1113 * the precise semantics that are desired. Similar considerations
1114 * affect all fields. Nonetheless, this effect is sufficiently arcane
1115 * that we permit it, rather than complicating the code to handle such
1116 * intricacies. - liu 8/20/98
1117
1118 * UPDATE: No longer true, since we have pulled in the limit values on
1119 * the year. - Liu 11/6/00 */
1120
1121 switch (field) {
1122
1123 case UCAL_YEAR:
1124 /* The year computation is no different, in principle, from the
1125 * others, however, the range of possible maxima is large. In
1126 * addition, the way we know we've exceeded the range is different.
1127 * For these reasons, we use the special case code below to handle
1128 * this field.
1129 *
1130 * The actual maxima for YEAR depend on the type of calendar:
1131 *
1132 * Gregorian = May 17, 292275056 BC - Aug 17, 292278994 AD
1133 * Julian = Dec 2, 292269055 BC - Jan 3, 292272993 AD
1134 * Hybrid = Dec 2, 292269055 BC - Aug 17, 292278994 AD
1135 *
1136 * We know we've exceeded the maximum when either the month, date,
1137 * time, or era changes in response to setting the year. We don't
1138 * check for month, date, and time here because the year and era are
1139 * sufficient to detect an invalid year setting. NOTE: If code is
1140 * added to check the month and date in the future for some reason,
1141 * Feb 29 must be allowed to shift to Mar 1 when setting the year.
1142 */
1143 {
1144 if(U_FAILURE(status)) return 0;
1145 Calendar *cal = clone();
1146 if(!cal) {
1147 status = U_MEMORY_ALLOCATION_ERROR;
1148 return 0;
1149 }
1150
1151 cal->setLenient(TRUE);
1152
1153 int32_t era = cal->get(UCAL_ERA, status);
1154 UDate d = cal->getTime(status);
1155
1156 /* Perform a binary search, with the invariant that lowGood is a
1157 * valid year, and highBad is an out of range year.
1158 */
1159 int32_t lowGood = kGregorianCalendarLimits[UCAL_YEAR][1];
1160 int32_t highBad = kGregorianCalendarLimits[UCAL_YEAR][2]+1;
1161 while ((lowGood + 1) < highBad) {
1162 int32_t y = (lowGood + highBad) / 2;
1163 cal->set(UCAL_YEAR, y);
1164 if (cal->get(UCAL_YEAR, status) == y && cal->get(UCAL_ERA, status) == era) {
1165 lowGood = y;
1166 } else {
1167 highBad = y;
1168 cal->setTime(d, status); // Restore original fields
1169 }
1170 }
1171
1172 delete cal;
1173 return lowGood;
1174 }
1175
1176 default:
1177 return Calendar::getActualMaximum(field,status);
1178 }
1179 }
1180
1181
1182 int32_t GregorianCalendar::handleGetExtendedYear() {
1183 // the year to return
1184 int32_t year = kEpochYear;
1185
1186 // year field to use
1187 int32_t yearField = UCAL_EXTENDED_YEAR;
1188
1189 // There are three separate fields which could be used to
1190 // derive the proper year. Use the one most recently set.
1191 if (fStamp[yearField] < fStamp[UCAL_YEAR])
1192 yearField = UCAL_YEAR;
1193 if (fStamp[yearField] < fStamp[UCAL_YEAR_WOY])
1194 yearField = UCAL_YEAR_WOY;
1195
1196 // based on the "best" year field, get the year
1197 switch(yearField) {
1198 case UCAL_EXTENDED_YEAR:
1199 year = internalGet(UCAL_EXTENDED_YEAR, kEpochYear);
1200 break;
1201
1202 case UCAL_YEAR:
1203 {
1204 // The year defaults to the epoch start, the era to AD
1205 int32_t era = internalGet(UCAL_ERA, AD);
1206 if (era == BC) {
1207 year = 1 - internalGet(UCAL_YEAR, 1); // Convert to extended year
1208 } else {
1209 year = internalGet(UCAL_YEAR, kEpochYear);
1210 }
1211 }
1212 break;
1213
1214 case UCAL_YEAR_WOY:
1215 year = handleGetExtendedYearFromWeekFields(internalGet(UCAL_YEAR_WOY), internalGet(UCAL_WEEK_OF_YEAR));
1216 #if defined (U_DEBUG_CAL)
1217 // if(internalGet(UCAL_YEAR_WOY) != year) {
1218 fprintf(stderr, "%s:%d: hGEYFWF[%d,%d] -> %d\n",
1219 __FILE__, __LINE__,internalGet(UCAL_YEAR_WOY),internalGet(UCAL_WEEK_OF_YEAR),year);
1220 //}
1221 #endif
1222 break;
1223
1224 default:
1225 year = kEpochYear;
1226 }
1227 return year;
1228 }
1229
1230 int32_t GregorianCalendar::handleGetExtendedYearFromWeekFields(int32_t yearWoy, int32_t woy)
1231 {
1232 // convert year to extended form
1233 int32_t era = internalGet(UCAL_ERA, AD);
1234 if(era == BC) {
1235 yearWoy = 1 - yearWoy;
1236 }
1237 return Calendar::handleGetExtendedYearFromWeekFields(yearWoy, woy);
1238 }
1239
1240
1241 // -------------------------------------
1242
1243 UBool
1244 GregorianCalendar::inDaylightTime(UErrorCode& status) const
1245 {
1246 if (U_FAILURE(status) || !getTimeZone().useDaylightTime())
1247 return FALSE;
1248
1249 // Force an update of the state of the Calendar.
1250 ((GregorianCalendar*)this)->complete(status); // cast away const
1251
1252 return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE);
1253 }
1254
1255 // -------------------------------------
1256
1257 /**
1258 * Return the ERA. We need a special method for this because the
1259 * default ERA is AD, but a zero (unset) ERA is BC.
1260 */
1261 int32_t
1262 GregorianCalendar::internalGetEra() const {
1263 return isSet(UCAL_ERA) ? internalGet(UCAL_ERA) : (int32_t)AD;
1264 }
1265
1266 const char *
1267 GregorianCalendar::getType() const {
1268 //static const char kGregorianType = "gregorian";
1269
1270 return "gregorian";
1271 }
1272
1273 /**
1274 * The system maintains a static default century start date and Year. They are
1275 * initialized the first time they are used. Once the system default century date
1276 * and year are set, they do not change.
1277 */
1278 static UDate gSystemDefaultCenturyStart = DBL_MIN;
1279 static int32_t gSystemDefaultCenturyStartYear = -1;
1280 static icu::UInitOnce gSystemDefaultCenturyInit = U_INITONCE_INITIALIZER;
1281
1282
1283 UBool GregorianCalendar::haveDefaultCentury() const
1284 {
1285 return TRUE;
1286 }
1287
1288 static void U_CALLCONV
1289 initializeSystemDefaultCentury()
1290 {
1291 // initialize systemDefaultCentury and systemDefaultCenturyYear based
1292 // on the current time. They'll be set to 80 years before
1293 // the current time.
1294 UErrorCode status = U_ZERO_ERROR;
1295 GregorianCalendar calendar(status);
1296 if (U_SUCCESS(status)) {
1297 calendar.setTime(Calendar::getNow(), status);
1298 calendar.add(UCAL_YEAR, -80, status);
1299
1300 gSystemDefaultCenturyStart = calendar.getTime(status);
1301 gSystemDefaultCenturyStartYear = calendar.get(UCAL_YEAR, status);
1302 }
1303 // We have no recourse upon failure unless we want to propagate the failure
1304 // out.
1305 }
1306
1307 UDate GregorianCalendar::defaultCenturyStart() const {
1308 // lazy-evaluate systemDefaultCenturyStart
1309 umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury);
1310 return gSystemDefaultCenturyStart;
1311 }
1312
1313 int32_t GregorianCalendar::defaultCenturyStartYear() const {
1314 // lazy-evaluate systemDefaultCenturyStartYear
1315 umtx_initOnce(gSystemDefaultCenturyInit, &initializeSystemDefaultCentury);
1316 return gSystemDefaultCenturyStartYear;
1317 }
1318
1319 U_NAMESPACE_END
1320
1321 #endif /* #if !UCONFIG_NO_FORMATTING */
1322
1323 //eof