]> git.saurik.com Git - apple/icu.git/blob - icuSources/i18n/chnsecal.cpp
ICU-62123.0.1.tar.gz
[apple/icu.git] / icuSources / i18n / chnsecal.cpp
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 ******************************************************************************
5 * Copyright (C) 2007-2014, International Business Machines Corporation
6 * and others. All Rights Reserved.
7 ******************************************************************************
8 *
9 * File CHNSECAL.CPP
10 *
11 * Modification History:
12 *
13 * Date Name Description
14 * 9/18/2007 ajmacher ported from java ChineseCalendar
15 *****************************************************************************
16 */
17
18 #include "chnsecal.h"
19
20 #if !UCONFIG_NO_FORMATTING
21
22 #include "umutex.h"
23 #include <float.h>
24 #include "gregoimp.h" // Math
25 #include "astro.h" // CalendarAstronomer
26 #include "unicode/simpletz.h"
27 #include "uhash.h"
28 #include "ucln_in.h"
29
30 // Debugging
31 #ifdef U_DEBUG_CHNSECAL
32 # include <stdio.h>
33 # include <stdarg.h>
34 static void debug_chnsecal_loc(const char *f, int32_t l)
35 {
36 fprintf(stderr, "%s:%d: ", f, l);
37 }
38
39 static void debug_chnsecal_msg(const char *pat, ...)
40 {
41 va_list ap;
42 va_start(ap, pat);
43 vfprintf(stderr, pat, ap);
44 fflush(stderr);
45 }
46 // must use double parens, i.e.: U_DEBUG_CHNSECAL_MSG(("four is: %d",4));
47 #define U_DEBUG_CHNSECAL_MSG(x) {debug_chnsecal_loc(__FILE__,__LINE__);debug_chnsecal_msg x;}
48 #else
49 #define U_DEBUG_CHNSECAL_MSG(x)
50 #endif
51
52
53 // --- The cache --
54 static UMutex astroLock = U_MUTEX_INITIALIZER; // Protects access to gChineseCalendarAstro.
55 static icu::CalendarAstronomer *gChineseCalendarAstro = NULL;
56
57 // Lazy Creation & Access synchronized by class CalendarCache with a mutex.
58 static icu::CalendarCache *gChineseCalendarWinterSolsticeCache = NULL;
59 static icu::CalendarCache *gChineseCalendarNewYearCache = NULL;
60
61 static icu::TimeZone *gChineseCalendarZoneAstroCalc = NULL;
62 static icu::UInitOnce gChineseCalendarZoneAstroCalcInitOnce = U_INITONCE_INITIALIZER;
63
64 /**
65 * The start year of the Chinese calendar, the 61st year of the reign
66 * of Huang Di. Some sources use the first year of his reign,
67 * resulting in EXTENDED_YEAR values 60 years greater and ERA (cycle)
68 * values one greater.
69 */
70 static const int32_t CHINESE_EPOCH_YEAR = -2636; // Gregorian year
71
72 /**
73 * The offset from GMT in milliseconds at which we perform astronomical
74 * computations. Some sources use a different historically accurate
75 * offset of GMT+7:45:40 for years before 1929; we do not do this.
76 */
77 static const int32_t CHINA_OFFSET = 8 * kOneHour;
78
79 /**
80 * Value to be added or subtracted from the local days of a new moon to
81 * get close to the next or prior new moon, but not cross it. Must be
82 * >= 1 and < CalendarAstronomer.SYNODIC_MONTH.
83 */
84 static const int32_t SYNODIC_GAP = 25;
85
86
87 U_CDECL_BEGIN
88 static UBool calendar_chinese_cleanup(void) {
89 if (gChineseCalendarAstro) {
90 delete gChineseCalendarAstro;
91 gChineseCalendarAstro = NULL;
92 }
93 if (gChineseCalendarWinterSolsticeCache) {
94 delete gChineseCalendarWinterSolsticeCache;
95 gChineseCalendarWinterSolsticeCache = NULL;
96 }
97 if (gChineseCalendarNewYearCache) {
98 delete gChineseCalendarNewYearCache;
99 gChineseCalendarNewYearCache = NULL;
100 }
101 if (gChineseCalendarZoneAstroCalc) {
102 delete gChineseCalendarZoneAstroCalc;
103 gChineseCalendarZoneAstroCalc = NULL;
104 }
105 gChineseCalendarZoneAstroCalcInitOnce.reset();
106 return TRUE;
107 }
108 U_CDECL_END
109
110 U_NAMESPACE_BEGIN
111
112
113 // Implementation of the ChineseCalendar class
114
115
116 //-------------------------------------------------------------------------
117 // Constructors...
118 //-------------------------------------------------------------------------
119
120
121 Calendar* ChineseCalendar::clone() const {
122 return new ChineseCalendar(*this);
123 }
124
125 ChineseCalendar::ChineseCalendar(const Locale& aLocale, UErrorCode& success)
126 : Calendar(TimeZone::createDefault(), aLocale, success),
127 isLeapYear(FALSE),
128 fEpochYear(CHINESE_EPOCH_YEAR),
129 fZoneAstroCalc(getChineseCalZoneAstroCalc())
130 {
131 setTimeInMillis(getNow(), success); // Call this again now that the vtable is set up properly.
132 }
133
134 ChineseCalendar::ChineseCalendar(const Locale& aLocale, int32_t epochYear,
135 const TimeZone* zoneAstroCalc, UErrorCode &success)
136 : Calendar(TimeZone::createDefault(), aLocale, success),
137 isLeapYear(FALSE),
138 fEpochYear(epochYear),
139 fZoneAstroCalc(zoneAstroCalc)
140 {
141 setTimeInMillis(getNow(), success); // Call this again now that the vtable is set up properly.
142 }
143
144 ChineseCalendar::ChineseCalendar(const ChineseCalendar& other) : Calendar(other) {
145 isLeapYear = other.isLeapYear;
146 fEpochYear = other.fEpochYear;
147 fZoneAstroCalc = other.fZoneAstroCalc;
148 }
149
150 ChineseCalendar::~ChineseCalendar()
151 {
152 }
153
154 const char *ChineseCalendar::getType() const {
155 return "chinese";
156 }
157
158 static void U_CALLCONV initChineseCalZoneAstroCalc() {
159 gChineseCalendarZoneAstroCalc = new SimpleTimeZone(CHINA_OFFSET, UNICODE_STRING_SIMPLE("CHINA_ZONE") );
160 ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup);
161 }
162
163 const TimeZone* ChineseCalendar::getChineseCalZoneAstroCalc(void) const {
164 umtx_initOnce(gChineseCalendarZoneAstroCalcInitOnce, &initChineseCalZoneAstroCalc);
165 return gChineseCalendarZoneAstroCalc;
166 }
167
168 //-------------------------------------------------------------------------
169 // Minimum / Maximum access functions
170 //-------------------------------------------------------------------------
171
172
173 static const int32_t LIMITS[UCAL_FIELD_COUNT][4] = {
174 // Minimum Greatest Least Maximum
175 // Minimum Maximum
176 { 1, 1, 83333, 83333}, // ERA
177 { 1, 1, 60, 60}, // YEAR
178 { 0, 0, 11, 11}, // MONTH
179 { 1, 1, 50, 55}, // WEEK_OF_YEAR
180 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH
181 { 1, 1, 29, 30}, // DAY_OF_MONTH
182 { 1, 1, 353, 385}, // DAY_OF_YEAR
183 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK
184 { -1, -1, 5, 5}, // DAY_OF_WEEK_IN_MONTH
185 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM
186 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR
187 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY
188 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE
189 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND
190 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND
191 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET
192 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET
193 { -5000000, -5000000, 5000000, 5000000}, // YEAR_WOY
194 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL
195 { -5000000, -5000000, 5000000, 5000000}, // EXTENDED_YEAR
196 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY
197 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY
198 { 0, 0, 1, 1}, // IS_LEAP_MONTH
199 };
200
201
202 /**
203 * @draft ICU 2.4
204 */
205 int32_t ChineseCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const {
206 return LIMITS[field][limitType];
207 }
208
209
210 //----------------------------------------------------------------------
211 // Calendar framework
212 //----------------------------------------------------------------------
213
214 /**
215 * Implement abstract Calendar method to return the extended year
216 * defined by the current fields. This will use either the ERA and
217 * YEAR field as the cycle and year-of-cycle, or the EXTENDED_YEAR
218 * field as the continuous year count, depending on which is newer.
219 * @stable ICU 2.8
220 */
221 int32_t ChineseCalendar::handleGetExtendedYear() {
222 int32_t year;
223 if (newestStamp(UCAL_ERA, UCAL_YEAR, kUnset) <= fStamp[UCAL_EXTENDED_YEAR]) {
224 year = internalGet(UCAL_EXTENDED_YEAR, 1); // Default to year 1
225 } else {
226 int32_t cycle = internalGet(UCAL_ERA, 1) - 1; // 0-based cycle
227 // adjust to the instance specific epoch
228 year = cycle * 60 + internalGet(UCAL_YEAR, 1) - (fEpochYear - CHINESE_EPOCH_YEAR);
229 }
230 return year;
231 }
232
233 /**
234 * Override Calendar method to return the number of days in the given
235 * extended year and month.
236 *
237 * <p>Note: This method also reads the IS_LEAP_MONTH field to determine
238 * whether or not the given month is a leap month.
239 * @stable ICU 2.8
240 */
241 int32_t ChineseCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month) const {
242 int32_t thisStart = handleComputeMonthStart(extendedYear, month, TRUE) -
243 kEpochStartAsJulianDay + 1; // Julian day -> local days
244 int32_t nextStart = newMoonNear(thisStart + SYNODIC_GAP, TRUE);
245 return nextStart - thisStart;
246 }
247
248 /**
249 * Override Calendar to compute several fields specific to the Chinese
250 * calendar system. These are:
251 *
252 * <ul><li>ERA
253 * <li>YEAR
254 * <li>MONTH
255 * <li>DAY_OF_MONTH
256 * <li>DAY_OF_YEAR
257 * <li>EXTENDED_YEAR</ul>
258 *
259 * The DAY_OF_WEEK and DOW_LOCAL fields are already set when this
260 * method is called. The getGregorianXxx() methods return Gregorian
261 * calendar equivalents for the given Julian day.
262 *
263 * <p>Compute the ChineseCalendar-specific field IS_LEAP_MONTH.
264 * @stable ICU 2.8
265 */
266 void ChineseCalendar::handleComputeFields(int32_t julianDay, UErrorCode &/*status*/) {
267
268 computeChineseFields(julianDay - kEpochStartAsJulianDay, // local days
269 getGregorianYear(), getGregorianMonth(),
270 TRUE); // set all fields
271 }
272
273 /**
274 * Field resolution table that incorporates IS_LEAP_MONTH.
275 */
276 const UFieldResolutionTable ChineseCalendar::CHINESE_DATE_PRECEDENCE[] =
277 {
278 {
279 { UCAL_DAY_OF_MONTH, kResolveSTOP },
280 { UCAL_WEEK_OF_YEAR, UCAL_DAY_OF_WEEK, kResolveSTOP },
281 { UCAL_WEEK_OF_MONTH, UCAL_DAY_OF_WEEK, kResolveSTOP },
282 { UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DAY_OF_WEEK, kResolveSTOP },
283 { UCAL_WEEK_OF_YEAR, UCAL_DOW_LOCAL, kResolveSTOP },
284 { UCAL_WEEK_OF_MONTH, UCAL_DOW_LOCAL, kResolveSTOP },
285 { UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DOW_LOCAL, kResolveSTOP },
286 { UCAL_DAY_OF_YEAR, kResolveSTOP },
287 { kResolveRemap | UCAL_DAY_OF_MONTH, UCAL_IS_LEAP_MONTH, kResolveSTOP },
288 { kResolveSTOP }
289 },
290 {
291 { UCAL_WEEK_OF_YEAR, kResolveSTOP },
292 { UCAL_WEEK_OF_MONTH, kResolveSTOP },
293 { UCAL_DAY_OF_WEEK_IN_MONTH, kResolveSTOP },
294 { kResolveRemap | UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DAY_OF_WEEK, kResolveSTOP },
295 { kResolveRemap | UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DOW_LOCAL, kResolveSTOP },
296 { kResolveSTOP }
297 },
298 {{kResolveSTOP}}
299 };
300
301 /**
302 * Override Calendar to add IS_LEAP_MONTH to the field resolution
303 * table.
304 * @stable ICU 2.8
305 */
306 const UFieldResolutionTable* ChineseCalendar::getFieldResolutionTable() const {
307 return CHINESE_DATE_PRECEDENCE;
308 }
309
310 /**
311 * Return the Julian day number of day before the first day of the
312 * given month in the given extended year.
313 *
314 * <p>Note: This method reads the IS_LEAP_MONTH field to determine
315 * whether the given month is a leap month.
316 * @param eyear the extended year
317 * @param month the zero-based month. The month is also determined
318 * by reading the IS_LEAP_MONTH field.
319 * @return the Julian day number of the day before the first
320 * day of the given month and year
321 * @stable ICU 2.8
322 */
323 int32_t ChineseCalendar::handleComputeMonthStart(int32_t eyear, int32_t month, UBool useMonth) const {
324
325 ChineseCalendar *nonConstThis = (ChineseCalendar*)this; // cast away const
326
327 // If the month is out of range, adjust it into range, and
328 // modify the extended year value accordingly.
329 if (month < 0 || month > 11) {
330 double m = month;
331 eyear += (int32_t)ClockMath::floorDivide(m, 12.0, m);
332 month = (int32_t)m;
333 }
334
335 int32_t gyear = eyear + fEpochYear - 1; // Gregorian year
336 int32_t theNewYear = newYear(gyear);
337 int32_t newMoon = newMoonNear(theNewYear + month * 29, TRUE);
338
339 int32_t julianDay = newMoon + kEpochStartAsJulianDay;
340
341 // Save fields for later restoration
342 int32_t saveMonth = internalGet(UCAL_MONTH);
343 int32_t saveIsLeapMonth = internalGet(UCAL_IS_LEAP_MONTH);
344
345 // Ignore IS_LEAP_MONTH field if useMonth is false
346 int32_t isLeapMonth = useMonth ? saveIsLeapMonth : 0;
347
348 UErrorCode status = U_ZERO_ERROR;
349 nonConstThis->computeGregorianFields(julianDay, status);
350 if (U_FAILURE(status))
351 return 0;
352
353 // This will modify the MONTH and IS_LEAP_MONTH fields (only)
354 nonConstThis->computeChineseFields(newMoon, getGregorianYear(),
355 getGregorianMonth(), FALSE);
356
357 if (month != internalGet(UCAL_MONTH) ||
358 isLeapMonth != internalGet(UCAL_IS_LEAP_MONTH)) {
359 newMoon = newMoonNear(newMoon + SYNODIC_GAP, TRUE);
360 julianDay = newMoon + kEpochStartAsJulianDay;
361 }
362
363 nonConstThis->internalSet(UCAL_MONTH, saveMonth);
364 nonConstThis->internalSet(UCAL_IS_LEAP_MONTH, saveIsLeapMonth);
365
366 return julianDay - 1;
367 }
368
369
370 /**
371 * Override Calendar to handle leap months properly.
372 * @stable ICU 2.8
373 */
374 void ChineseCalendar::add(UCalendarDateFields field, int32_t amount, UErrorCode& status) {
375 switch (field) {
376 case UCAL_MONTH:
377 if (amount != 0) {
378 int32_t dom = get(UCAL_DAY_OF_MONTH, status);
379 if (U_FAILURE(status)) break;
380 int32_t day = get(UCAL_JULIAN_DAY, status) - kEpochStartAsJulianDay; // Get local day
381 if (U_FAILURE(status)) break;
382 int32_t moon = day - dom + 1; // New moon
383 offsetMonth(moon, dom, amount);
384 }
385 break;
386 default:
387 Calendar::add(field, amount, status);
388 break;
389 }
390 }
391
392 /**
393 * Override Calendar to handle leap months properly.
394 * @stable ICU 2.8
395 */
396 void ChineseCalendar::add(EDateFields field, int32_t amount, UErrorCode& status) {
397 add((UCalendarDateFields)field, amount, status);
398 }
399
400 /**
401 * Override Calendar to handle leap months properly.
402 * @stable ICU 2.8
403 */
404 void ChineseCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status) {
405 switch (field) {
406 case UCAL_MONTH:
407 if (amount != 0) {
408 int32_t dom = get(UCAL_DAY_OF_MONTH, status);
409 if (U_FAILURE(status)) break;
410 int32_t day = get(UCAL_JULIAN_DAY, status) - kEpochStartAsJulianDay; // Get local day
411 if (U_FAILURE(status)) break;
412 int32_t moon = day - dom + 1; // New moon (start of this month)
413
414 // Note throughout the following: Months 12 and 1 are never
415 // followed by a leap month (D&R p. 185).
416
417 // Compute the adjusted month number m. This is zero-based
418 // value from 0..11 in a non-leap year, and from 0..12 in a
419 // leap year.
420 int32_t m = get(UCAL_MONTH, status); // 0-based month
421 if (U_FAILURE(status)) break;
422 if (isLeapYear) { // (member variable)
423 if (get(UCAL_IS_LEAP_MONTH, status) == 1) {
424 ++m;
425 } else {
426 // Check for a prior leap month. (In the
427 // following, month 0 is the first month of the
428 // year.) Month 0 is never followed by a leap
429 // month, and we know month m is not a leap month.
430 // moon1 will be the start of month 0 if there is
431 // no leap month between month 0 and month m;
432 // otherwise it will be the start of month 1.
433 int moon1 = moon -
434 (int) (CalendarAstronomer::SYNODIC_MONTH * (m - 0.5));
435 moon1 = newMoonNear(moon1, TRUE);
436 if (isLeapMonthBetween(moon1, moon)) {
437 ++m;
438 }
439 }
440 if (U_FAILURE(status)) break;
441 }
442
443 // Now do the standard roll computation on m, with the
444 // allowed range of 0..n-1, where n is 12 or 13.
445 int32_t n = isLeapYear ? 13 : 12; // Months in this year
446 int32_t newM = (m + amount) % n;
447 if (newM < 0) {
448 newM += n;
449 }
450
451 if (newM != m) {
452 offsetMonth(moon, dom, newM - m);
453 }
454 }
455 break;
456 default:
457 Calendar::roll(field, amount, status);
458 break;
459 }
460 }
461
462 void ChineseCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) {
463 roll((UCalendarDateFields)field, amount, status);
464 }
465
466
467 //------------------------------------------------------------------
468 // Support methods and constants
469 //------------------------------------------------------------------
470
471 /**
472 * Convert local days to UTC epoch milliseconds.
473 * This is not an accurate conversion in that getTimezoneOffset
474 * takes the milliseconds in GMT (not local time). In theory, more
475 * accurate algorithm can be implemented but practically we do not need
476 * to go through that complication as long as the historical timezone
477 * changes did not happen around the 'tricky' new moon (new moon around
478 * midnight).
479 *
480 * @param days days after January 1, 1970 0:00 in the astronomical base zone
481 * @return milliseconds after January 1, 1970 0:00 GMT
482 */
483 double ChineseCalendar::daysToMillis(double days) const {
484 double millis = days * (double)kOneDay;
485 if (fZoneAstroCalc != NULL) {
486 int32_t rawOffset, dstOffset;
487 UErrorCode status = U_ZERO_ERROR;
488 fZoneAstroCalc->getOffset(millis, FALSE, rawOffset, dstOffset, status);
489 if (U_SUCCESS(status)) {
490 return millis - (double)(rawOffset + dstOffset);
491 }
492 }
493 return millis - (double)CHINA_OFFSET;
494 }
495
496 /**
497 * Convert UTC epoch milliseconds to local days.
498 * @param millis milliseconds after January 1, 1970 0:00 GMT
499 * @return days after January 1, 1970 0:00 in the astronomical base zone
500 */
501 double ChineseCalendar::millisToDays(double millis) const {
502 if (fZoneAstroCalc != NULL) {
503 int32_t rawOffset, dstOffset;
504 UErrorCode status = U_ZERO_ERROR;
505 fZoneAstroCalc->getOffset(millis, FALSE, rawOffset, dstOffset, status);
506 if (U_SUCCESS(status)) {
507 return ClockMath::floorDivide(millis + (double)(rawOffset + dstOffset), kOneDay);
508 }
509 }
510 return ClockMath::floorDivide(millis + (double)CHINA_OFFSET, kOneDay);
511 }
512
513 //------------------------------------------------------------------
514 // Astronomical computations
515 //------------------------------------------------------------------
516
517 // bit array for gregorian 1900-2100 indicating years in
518 // which the linear estimate needs to be adjusted by -1
519 static const uint16_t winterSolsticeAdj[] = {
520 0x0001, // 1900-1915, deltas for 1900
521 0x0444, // 1916-1931, deltas for 1918, 1922, 1926
522 0x0000, // 1932-1947
523 0x8880, // 1948-1963, deltas for 1955, 1959, 1963
524 0x0000, // 1964-1979
525 0x1100, // 1980-1995, deltas for 1988, 1992
526 0x0011, // 1996-2011, deltas for 1996, 2000
527 0x2200, // 2012-2027, deltas for 2021, 2025
528 0x0022, // 2028-2043, deltas for 2029, 2033
529 0x4000, // 2044-2059, deltas for 2058
530 0x0444, // 2060-2075, deltas for 2062, 2066, 2070
531 0x8000, // 2076-2091, deltas for 2091
532 0x0088, // 2092-2100, deltas for 2095, 2099
533 };
534
535 /**
536 * Return the major solar term on or after December 15 of the given
537 * Gregorian year, that is, the winter solstice of the given year.
538 * Computations are relative to Asia/Shanghai time zone.
539 * @param gyear a Gregorian year
540 * @return days after January 1, 1970 0:00 Asia/Shanghai of the
541 * winter solstice of the given year
542 */
543 int32_t ChineseCalendar::winterSolstice(int32_t gyear) const {
544 if (gyear >= 1900 && gyear <= 2100) {
545 // Don't use cache, just return linear estimate + table correction
546 int32_t gyearadj = gyear - 1900;
547 int32_t result = (int32_t)(365.243*((double)gyearadj) - 0.3) - 25211;
548 uint16_t bitmap = winterSolsticeAdj[gyearadj / 16];
549 if (bitmap != 0) {
550 uint16_t bitmask = 1 << (gyearadj % 16);
551 if ((bitmask & bitmap) != 0) {
552 result--;
553 }
554 }
555 return result;
556 }
557
558 UErrorCode status = U_ZERO_ERROR;
559 int32_t cacheValue = CalendarCache::get(&gChineseCalendarWinterSolsticeCache, gyear, status);
560
561 if (cacheValue == 0) {
562 // In books December 15 is used, but it fails for some years
563 // using our algorithms, e.g.: 1298 1391 1492 1553 1560. That
564 // is, winterSolstice(1298) starts search at Dec 14 08:00:00
565 // PST 1298 with a final result of Dec 14 10:31:59 PST 1299.
566 double ms = daysToMillis(Grego::fieldsToDay(gyear, UCAL_DECEMBER, 1));
567
568 umtx_lock(&astroLock);
569 if(gChineseCalendarAstro == NULL) {
570 gChineseCalendarAstro = new CalendarAstronomer();
571 ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup);
572 }
573 gChineseCalendarAstro->setTime(ms);
574 UDate solarLong = gChineseCalendarAstro->getSunTime(CalendarAstronomer::WINTER_SOLSTICE(), TRUE);
575 umtx_unlock(&astroLock);
576
577 // Winter solstice is 270 degrees solar longitude aka Dongzhi
578 cacheValue = (int32_t)millisToDays(solarLong);
579 CalendarCache::put(&gChineseCalendarWinterSolsticeCache, gyear, cacheValue, status);
580 }
581 if(U_FAILURE(status)) {
582 cacheValue = 0;
583 }
584 return cacheValue;
585 }
586
587 /**
588 * Return the closest new moon to the given date, searching either
589 * forward or backward in time.
590 * @param days days after January 1, 1970 0:00 Asia/Shanghai
591 * @param after if true, search for a new moon on or after the given
592 * date; otherwise, search for a new moon before it
593 * @return days after January 1, 1970 0:00 Asia/Shanghai of the nearest
594 * new moon after or before <code>days</code>
595 */
596 int32_t ChineseCalendar::newMoonNear(double days, UBool after) const {
597 double ms = daysToMillis(days);
598 // Try to get the new moon via static function directly from the table in
599 // CalendarAstronomer (for approx gregorian range 1900-2100) without having
600 // to use a CalendarAstronomer instance which requires a lock. This still
601 // involves extra conversion to/from millis. If static function returns 0
602 // we are out of its range and need to use the full machinery.
603 UDate newMoon = CalendarAstronomer::getNewMoonTimeInRange(ms, after);
604 if (newMoon == 0.0) {
605 umtx_lock(&astroLock);
606 if(gChineseCalendarAstro == NULL) {
607 gChineseCalendarAstro = new CalendarAstronomer();
608 ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup);
609 }
610 gChineseCalendarAstro->setTime(ms);
611 newMoon = gChineseCalendarAstro->getMoonTime(CalendarAstronomer::NEW_MOON(), after);
612 umtx_unlock(&astroLock);
613 }
614
615 return (int32_t) millisToDays(newMoon);
616 }
617
618 /**
619 * Return the nearest integer number of synodic months between
620 * two dates.
621 * @param day1 days after January 1, 1970 0:00 Asia/Shanghai
622 * @param day2 days after January 1, 1970 0:00 Asia/Shanghai
623 * @return the nearest integer number of months between day1 and day2
624 */
625 int32_t ChineseCalendar::synodicMonthsBetween(int32_t day1, int32_t day2) const {
626 double roundme = ((day2 - day1) / CalendarAstronomer::SYNODIC_MONTH);
627 return (int32_t) (roundme + (roundme >= 0 ? .5 : -.5));
628 }
629
630 /**
631 * Return the major solar term on or before a given date. This
632 * will be an integer from 1..12, with 1 corresponding to 330 degrees,
633 * 2 to 0 degrees, 3 to 30 degrees,..., and 12 to 300 degrees.
634 * @param days days after January 1, 1970 0:00 Asia/Shanghai
635 */
636 int32_t ChineseCalendar::majorSolarTerm(int32_t days) const {
637
638 double ms = daysToMillis(days);
639 UDate solarLongitude = CalendarAstronomer::getSunLongitudeForTime(ms);
640
641 // There was almost never any benefit to using the CalendarAstronomer instance;
642 // it could cache intermediate results, but we rarely used it multiple times in
643 // succession for the same setTime value, so the intermediate results got
644 // discarded anyway.
645 //
646 // Deleted call to gChineseCalendarAstro->getSunLongitude() now that
647 // we use CalendarAstronomer::getSunLongitudeForTime()
648
649 // Compute (floor(solarLongitude / (pi/6)) + 2) % 12
650 int32_t term = ( ((int32_t)(6 * solarLongitude / CalendarAstronomer::PI)) + 2 ) % 12;
651 if (term < 1) {
652 term += 12;
653 }
654 return term;
655 }
656
657 /**
658 * Return true if the given month lacks a major solar term.
659 * @param newMoon days after January 1, 1970 0:00 Asia/Shanghai of a new
660 * moon
661 */
662 UBool ChineseCalendar::hasNoMajorSolarTerm(int32_t newMoon) const {
663 return majorSolarTerm(newMoon) ==
664 majorSolarTerm(newMoonNear(newMoon + SYNODIC_GAP, TRUE));
665 }
666
667
668 //------------------------------------------------------------------
669 // Time to fields
670 //------------------------------------------------------------------
671
672 /**
673 * Return true if there is a leap month on or after month newMoon1 and
674 * at or before month newMoon2.
675 * @param newMoon1 days after January 1, 1970 0:00 astronomical base zone
676 * of a new moon
677 * @param newMoon2 days after January 1, 1970 0:00 astronomical base zone
678 * of a new moon
679 */
680 UBool ChineseCalendar::isLeapMonthBetween(int32_t newMoon1, int32_t newMoon2) const {
681
682 #ifdef U_DEBUG_CHNSECAL
683 // This is only needed to debug the timeOfAngle divergence bug.
684 // Remove this later. Liu 11/9/00
685 if (synodicMonthsBetween(newMoon1, newMoon2) >= 50) {
686 U_DEBUG_CHNSECAL_MSG((
687 "isLeapMonthBetween(%d, %d): Invalid parameters", newMoon1, newMoon2
688 ));
689 }
690 #endif
691
692 return (newMoon2 >= newMoon1) &&
693 (isLeapMonthBetween(newMoon1, newMoonNear(newMoon2 - SYNODIC_GAP, FALSE)) ||
694 hasNoMajorSolarTerm(newMoon2));
695 }
696
697 /**
698 * Compute fields for the Chinese calendar system. This method can
699 * either set all relevant fields, as required by
700 * <code>handleComputeFields()</code>, or it can just set the MONTH and
701 * IS_LEAP_MONTH fields, as required by
702 * <code>handleComputeMonthStart()</code>.
703 *
704 * <p>As a side effect, this method sets {@link #isLeapYear}.
705 * @param days days after January 1, 1970 0:00 astronomical base zone
706 * of the date to compute fields for
707 * @param gyear the Gregorian year of the given date
708 * @param gmonth the Gregorian month of the given date
709 * @param setAllFields if true, set the EXTENDED_YEAR, ERA, YEAR,
710 * DAY_OF_MONTH, and DAY_OF_YEAR fields. In either case set the MONTH
711 * and IS_LEAP_MONTH fields.
712 */
713 void ChineseCalendar::computeChineseFields(int32_t days, int32_t gyear, int32_t gmonth,
714 UBool setAllFields) {
715
716 // Find the winter solstices before and after the target date.
717 // These define the boundaries of this Chinese year, specifically,
718 // the position of month 11, which always contains the solstice.
719 // We want solsticeBefore <= date < solsticeAfter.
720 int32_t solsticeBefore;
721 int32_t solsticeAfter = winterSolstice(gyear);
722 if (days < solsticeAfter) {
723 solsticeBefore = winterSolstice(gyear - 1);
724 } else {
725 solsticeBefore = solsticeAfter;
726 solsticeAfter = winterSolstice(gyear + 1);
727 }
728
729 // Find the start of the month after month 11. This will be either
730 // the prior month 12 or leap month 11 (very rare). Also find the
731 // start of the following month 11.
732 int32_t firstMoon = newMoonNear(solsticeBefore + 1, TRUE);
733 int32_t lastMoon = newMoonNear(solsticeAfter + 1, FALSE);
734 int32_t thisMoon = newMoonNear(days + 1, FALSE); // Start of this month
735 // Note: isLeapYear is a member variable
736 isLeapYear = synodicMonthsBetween(firstMoon, lastMoon) == 12;
737
738 int32_t month = synodicMonthsBetween(firstMoon, thisMoon);
739 if (isLeapYear && isLeapMonthBetween(firstMoon, thisMoon)) {
740 month--;
741 }
742 if (month < 1) {
743 month += 12;
744 }
745
746 UBool isLeapMonth = isLeapYear &&
747 hasNoMajorSolarTerm(thisMoon) &&
748 !isLeapMonthBetween(firstMoon, newMoonNear(thisMoon - SYNODIC_GAP, FALSE));
749
750 internalSet(UCAL_MONTH, month-1); // Convert from 1-based to 0-based
751 internalSet(UCAL_IS_LEAP_MONTH, isLeapMonth?1:0);
752
753 if (setAllFields) {
754
755 // Extended year and cycle year is based on the epoch year
756
757 int32_t extended_year = gyear - fEpochYear;
758 int cycle_year = gyear - CHINESE_EPOCH_YEAR;
759 if (month < 11 ||
760 gmonth >= UCAL_JULY) {
761 extended_year++;
762 cycle_year++;
763 }
764 int32_t dayOfMonth = days - thisMoon + 1;
765
766 internalSet(UCAL_EXTENDED_YEAR, extended_year);
767
768 // 0->0,60 1->1,1 60->1,60 61->2,1 etc.
769 int32_t yearOfCycle;
770 int32_t cycle = ClockMath::floorDivide(cycle_year - 1, 60, yearOfCycle);
771 internalSet(UCAL_ERA, cycle + 1);
772 internalSet(UCAL_YEAR, yearOfCycle + 1);
773
774 internalSet(UCAL_DAY_OF_MONTH, dayOfMonth);
775
776 // Days will be before the first new year we compute if this
777 // date is in month 11, leap 11, 12. There is never a leap 12.
778 // New year computations are cached so this should be cheap in
779 // the long run.
780 int32_t theNewYear = newYear(gyear);
781 if (days < theNewYear) {
782 theNewYear = newYear(gyear-1);
783 }
784 internalSet(UCAL_DAY_OF_YEAR, days - theNewYear + 1);
785 }
786 }
787
788
789 //------------------------------------------------------------------
790 // Fields to time
791 //------------------------------------------------------------------
792
793 // for gyear 1900 through 2100, corrections to linear estimate of newYear
794 static const int8_t newYearAdj[] = {
795 -5, 14, 3, -7, 11, -1, -11, 8, -3, -14, 5, -6, 13, 1, -10, 9, -1, -13, 6, -4, // 1900-1919
796 15, 3, -8, 11, 0, -12, 8, -3, -13, 5, -6, 12, 1, -10, 9, -1, -12, 6, -5, 14, // 1920-1939
797 3, -9, 10, 0, -11, 9, -3, -14, 5, -6, 12, 1, -9, 10, -2, -12, 7, -4, 13, 3, // 1940-1959
798 -8, 11, 0, -11, 8, -2, -15, 4, -6, 13, 1, -9, 10, -1, -13, 6, -5, 14, 2, -8, // 1960-1979
799 11, 1, -11, 8, -3, 16, 5, -7, 12, 2, -8, 10, -1, -12, 6, -5, 14, 3, -7, 11, // 1980-1999
800 0, -11, 8, -4, -14, 5, -6, 13, 2, -9, 10, -2, -13, 6, -4, 14, 3, -7, 12, 0, // 2000-2019
801 -11, 8, -3, -14, 5, -6, 13, 2, -10, 9, -1, -12, 6, -4, 15, 4, -8, 11, 0, -11, // 2020-2039
802 7, -3, -13, 6, -6, 13, 2, -9, 9, -2, -12, 7, -4, 15, 4, -7, 10, 0, -11, 8, // 2040-2059
803 -3, -14, 5, -6, 12, 1, -9, 10, -1, -12, 7, -4, 15, 3, -8, 11, 1, -11, 8, -2, // 2060-2079
804 -13, 5, -6, 13, 2, -9, 10, -1, -11, 6, -5, 14, 3, -8, 11, 1, -10, 8, -3, -14, // 2080-2099
805 5 // 2100
806 };
807
808 /**
809 * Return the Chinese new year of the given Gregorian year.
810 * @param gyear a Gregorian year
811 * @return days after January 1, 1970 0:00 astronomical base zone of the
812 * Chinese new year of the given year (this will be a new moon)
813 */
814 int32_t ChineseCalendar::newYear(int32_t gyear) const {
815 if (gyear >= 1900 && gyear <= 2100) {
816 // Don't use cache, just return linear estimate + table correction
817 int32_t gyearadj = gyear - 1900;
818 return (int32_t)(365.244*((double)gyearadj)) - 25532 + newYearAdj[gyearadj];
819 }
820
821 UErrorCode status = U_ZERO_ERROR;
822 int32_t cacheValue = CalendarCache::get(&gChineseCalendarNewYearCache, gyear, status);
823
824 if (cacheValue == 0) {
825
826 int32_t solsticeBefore= winterSolstice(gyear - 1);
827 int32_t solsticeAfter = winterSolstice(gyear);
828 int32_t newMoon1 = newMoonNear(solsticeBefore + 1, TRUE);
829 int32_t newMoon2 = newMoonNear(newMoon1 + SYNODIC_GAP, TRUE);
830 int32_t newMoon11 = newMoonNear(solsticeAfter + 1, FALSE);
831
832 if (synodicMonthsBetween(newMoon1, newMoon11) == 12 &&
833 (hasNoMajorSolarTerm(newMoon1) || hasNoMajorSolarTerm(newMoon2))) {
834 cacheValue = newMoonNear(newMoon2 + SYNODIC_GAP, TRUE);
835 } else {
836 cacheValue = newMoon2;
837 }
838
839 CalendarCache::put(&gChineseCalendarNewYearCache, gyear, cacheValue, status);
840 }
841 if(U_FAILURE(status)) {
842 cacheValue = 0;
843 }
844 return cacheValue;
845 }
846
847 /**
848 * Adjust this calendar to be delta months before or after a given
849 * start position, pinning the day of month if necessary. The start
850 * position is given as a local days number for the start of the month
851 * and a day-of-month. Used by add() and roll().
852 * @param newMoon the local days of the first day of the month of the
853 * start position (days after January 1, 1970 0:00 Asia/Shanghai)
854 * @param dom the 1-based day-of-month of the start position
855 * @param delta the number of months to move forward or backward from
856 * the start position
857 */
858 void ChineseCalendar::offsetMonth(int32_t newMoon, int32_t dom, int32_t delta) {
859 UErrorCode status = U_ZERO_ERROR;
860
861 // Move to the middle of the month before our target month.
862 newMoon += (int32_t) (CalendarAstronomer::SYNODIC_MONTH * (delta - 0.5));
863
864 // Search forward to the target month's new moon
865 newMoon = newMoonNear(newMoon, TRUE);
866
867 // Find the target dom
868 int32_t jd = newMoon + kEpochStartAsJulianDay - 1 + dom;
869
870 // Pin the dom. In this calendar all months are 29 or 30 days
871 // so pinning just means handling dom 30.
872 if (dom > 29) {
873 set(UCAL_JULIAN_DAY, jd-1);
874 // TODO Fix this. We really shouldn't ever have to
875 // explicitly call complete(). This is either a bug in
876 // this method, in ChineseCalendar, or in
877 // Calendar.getActualMaximum(). I suspect the last.
878 complete(status);
879 if (U_FAILURE(status)) return;
880 if (getActualMaximum(UCAL_DAY_OF_MONTH, status) >= dom) {
881 if (U_FAILURE(status)) return;
882 set(UCAL_JULIAN_DAY, jd);
883 }
884 } else {
885 set(UCAL_JULIAN_DAY, jd);
886 }
887 }
888
889
890 UBool
891 ChineseCalendar::inDaylightTime(UErrorCode& status) const
892 {
893 // copied from GregorianCalendar
894 if (U_FAILURE(status) || !getTimeZone().useDaylightTime())
895 return FALSE;
896
897 // Force an update of the state of the Calendar.
898 ((ChineseCalendar*)this)->complete(status); // cast away const
899
900 return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE);
901 }
902
903 // default century
904
905 static UDate gSystemDefaultCenturyStart = DBL_MIN;
906 static int32_t gSystemDefaultCenturyStartYear = -1;
907 static icu::UInitOnce gSystemDefaultCenturyInitOnce = U_INITONCE_INITIALIZER;
908
909
910 UBool ChineseCalendar::haveDefaultCentury() const
911 {
912 return TRUE;
913 }
914
915 UDate ChineseCalendar::defaultCenturyStart() const
916 {
917 return internalGetDefaultCenturyStart();
918 }
919
920 int32_t ChineseCalendar::defaultCenturyStartYear() const
921 {
922 return internalGetDefaultCenturyStartYear();
923 }
924
925 static void U_CALLCONV initializeSystemDefaultCentury()
926 {
927 // initialize systemDefaultCentury and systemDefaultCenturyYear based
928 // on the current time. They'll be set to 80 years before
929 // the current time.
930 UErrorCode status = U_ZERO_ERROR;
931 ChineseCalendar calendar(Locale("@calendar=chinese"),status);
932 if (U_SUCCESS(status)) {
933 calendar.setTime(Calendar::getNow(), status);
934 calendar.add(UCAL_YEAR, -80, status);
935 gSystemDefaultCenturyStart = calendar.getTime(status);
936 gSystemDefaultCenturyStartYear = calendar.get(UCAL_YEAR, status);
937 }
938 // We have no recourse upon failure unless we want to propagate the failure
939 // out.
940 }
941
942 UDate
943 ChineseCalendar::internalGetDefaultCenturyStart() const
944 {
945 // lazy-evaluate systemDefaultCenturyStart
946 umtx_initOnce(gSystemDefaultCenturyInitOnce, &initializeSystemDefaultCentury);
947 return gSystemDefaultCenturyStart;
948 }
949
950 int32_t
951 ChineseCalendar::internalGetDefaultCenturyStartYear() const
952 {
953 // lazy-evaluate systemDefaultCenturyStartYear
954 umtx_initOnce(gSystemDefaultCenturyInitOnce, &initializeSystemDefaultCentury);
955 return gSystemDefaultCenturyStartYear;
956 }
957
958 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(ChineseCalendar)
959
960 U_NAMESPACE_END
961
962 #endif
963