]> git.saurik.com Git - apple/icu.git/blob - icuSources/tools/makeconv/genmbcs.c
ICU-400.42.tar.gz
[apple/icu.git] / icuSources / tools / makeconv / genmbcs.c
1 /*
2 *******************************************************************************
3 *
4 * Copyright (C) 2000-2008, International Business Machines
5 * Corporation and others. All Rights Reserved.
6 *
7 *******************************************************************************
8 * file name: genmbcs.c
9 * encoding: US-ASCII
10 * tab size: 8 (not used)
11 * indentation:4
12 *
13 * created on: 2000jul06
14 * created by: Markus W. Scherer
15 */
16
17 #include <stdio.h>
18 #include "unicode/utypes.h"
19 #include "cstring.h"
20 #include "cmemory.h"
21 #include "unewdata.h"
22 #include "ucnv_cnv.h"
23 #include "ucnvmbcs.h"
24 #include "ucm.h"
25 #include "makeconv.h"
26 #include "genmbcs.h"
27
28 /*
29 * TODO: Split this file into toUnicode, SBCSFromUnicode and MBCSFromUnicode files.
30 * Reduce tests for maxCharLength.
31 */
32
33 struct MBCSData {
34 NewConverter newConverter;
35
36 UCMFile *ucm;
37
38 /* toUnicode (state table in ucm->states) */
39 _MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT];
40 int32_t countToUFallbacks;
41 uint16_t *unicodeCodeUnits;
42
43 /* fromUnicode */
44 uint16_t stage1[MBCS_STAGE_1_SIZE];
45 uint16_t stage2Single[MBCS_STAGE_2_SIZE]; /* stage 2 for single-byte codepages */
46 uint32_t stage2[MBCS_STAGE_2_SIZE]; /* stage 2 for MBCS */
47 uint8_t *fromUBytes;
48 uint32_t stage2Top, stage3Top;
49
50 /* fromUTF8 */
51 uint16_t stageUTF8[0x10000>>MBCS_UTF8_STAGE_SHIFT]; /* allow for utf8Max=0xffff */
52
53 /*
54 * Maximum UTF-8-friendly code point.
55 * 0 if !utf8Friendly, otherwise 0x01ff..0xffff in steps of 0x100.
56 * If utf8Friendly, utf8Max is normally either MBCS_UTF8_MAX or 0xffff.
57 */
58 uint16_t utf8Max;
59
60 UBool utf8Friendly;
61 UBool omitFromU;
62 };
63
64 /* prototypes */
65 static void
66 MBCSClose(NewConverter *cnvData);
67
68 static UBool
69 MBCSStartMappings(MBCSData *mbcsData);
70
71 static UBool
72 MBCSAddToUnicode(MBCSData *mbcsData,
73 const uint8_t *bytes, int32_t length,
74 UChar32 c,
75 int8_t flag);
76
77 static UBool
78 MBCSIsValid(NewConverter *cnvData,
79 const uint8_t *bytes, int32_t length);
80
81 static UBool
82 MBCSSingleAddFromUnicode(MBCSData *mbcsData,
83 const uint8_t *bytes, int32_t length,
84 UChar32 c,
85 int8_t flag);
86
87 static UBool
88 MBCSAddFromUnicode(MBCSData *mbcsData,
89 const uint8_t *bytes, int32_t length,
90 UChar32 c,
91 int8_t flag);
92
93 static void
94 MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData);
95
96 static UBool
97 MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData);
98
99 static uint32_t
100 MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
101 UNewDataMemory *pData, int32_t tableType);
102
103 /* helper ------------------------------------------------------------------- */
104
105 static U_INLINE char
106 hexDigit(uint8_t digit) {
107 return digit<=9 ? (char)('0'+digit) : (char)('a'-10+digit);
108 }
109
110 static U_INLINE char *
111 printBytes(char *buffer, const uint8_t *bytes, int32_t length) {
112 char *s=buffer;
113 while(length>0) {
114 *s++=hexDigit((uint8_t)(*bytes>>4));
115 *s++=hexDigit((uint8_t)(*bytes&0xf));
116 ++bytes;
117 --length;
118 }
119
120 *s=0;
121 return buffer;
122 }
123
124 /* implementation ----------------------------------------------------------- */
125
126 static MBCSData gDummy;
127
128 U_CFUNC const MBCSData *
129 MBCSGetDummy() {
130 uprv_memset(&gDummy, 0, sizeof(MBCSData));
131
132 /*
133 * Set "pessimistic" values which may sometimes move too many
134 * mappings to the extension table (but never too few).
135 * These values cause MBCSOkForBaseFromUnicode() to return FALSE for the
136 * largest set of mappings.
137 * Assume maxCharLength>1.
138 */
139 gDummy.utf8Friendly=TRUE;
140 if(SMALL) {
141 gDummy.utf8Max=0xffff;
142 gDummy.omitFromU=TRUE;
143 } else {
144 gDummy.utf8Max=MBCS_UTF8_MAX;
145 }
146 return &gDummy;
147 }
148
149 static void
150 MBCSInit(MBCSData *mbcsData, UCMFile *ucm) {
151 uprv_memset(mbcsData, 0, sizeof(MBCSData));
152
153 mbcsData->ucm=ucm; /* aliased, not owned */
154
155 mbcsData->newConverter.close=MBCSClose;
156 mbcsData->newConverter.isValid=MBCSIsValid;
157 mbcsData->newConverter.addTable=MBCSAddTable;
158 mbcsData->newConverter.write=MBCSWrite;
159 }
160
161 NewConverter *
162 MBCSOpen(UCMFile *ucm) {
163 MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData));
164 if(mbcsData==NULL) {
165 printf("out of memory\n");
166 exit(U_MEMORY_ALLOCATION_ERROR);
167 }
168
169 MBCSInit(mbcsData, ucm);
170 return &mbcsData->newConverter;
171 }
172
173 static void
174 MBCSDestruct(MBCSData *mbcsData) {
175 uprv_free(mbcsData->unicodeCodeUnits);
176 uprv_free(mbcsData->fromUBytes);
177 }
178
179 static void
180 MBCSClose(NewConverter *cnvData) {
181 MBCSData *mbcsData=(MBCSData *)cnvData;
182 if(mbcsData!=NULL) {
183 MBCSDestruct(mbcsData);
184 uprv_free(mbcsData);
185 }
186 }
187
188 static UBool
189 MBCSStartMappings(MBCSData *mbcsData) {
190 int32_t i, sum, maxCharLength,
191 stage2NullLength, stage2AllocLength,
192 stage3NullLength, stage3AllocLength;
193
194 /* toUnicode */
195
196 /* allocate the code unit array and prefill it with "unassigned" values */
197 sum=mbcsData->ucm->states.countToUCodeUnits;
198 if(VERBOSE) {
199 printf("the total number of offsets is 0x%lx=%ld\n", (long)sum, (long)sum);
200 }
201
202 if(sum>0) {
203 mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t));
204 if(mbcsData->unicodeCodeUnits==NULL) {
205 fprintf(stderr, "error: out of memory allocating %ld 16-bit code units\n",
206 (long)sum);
207 return FALSE;
208 }
209 for(i=0; i<sum; ++i) {
210 mbcsData->unicodeCodeUnits[i]=0xfffe;
211 }
212 }
213
214 /* fromUnicode */
215 maxCharLength=mbcsData->ucm->states.maxCharLength;
216
217 /* allocate the codepage mappings and preset the first 16 characters to 0 */
218 if(maxCharLength==1) {
219 /* allocate 64k 16-bit results for single-byte codepages */
220 sum=0x20000;
221 } else {
222 /* allocate 1M * maxCharLength bytes for at most 1M mappings */
223 sum=0x100000*maxCharLength;
224 }
225 mbcsData->fromUBytes=(uint8_t *)uprv_malloc(sum);
226 if(mbcsData->fromUBytes==NULL) {
227 fprintf(stderr, "error: out of memory allocating %ld B for target mappings\n", (long)sum);
228 return FALSE;
229 }
230 uprv_memset(mbcsData->fromUBytes, 0, sum);
231
232 /*
233 * UTF-8-friendly fromUnicode tries: allocate multiple blocks at a time.
234 * See ucnvmbcs.h for details.
235 *
236 * There is code, for example in ucnv_MBCSGetUnicodeSetForUnicode(), which
237 * assumes that the initial stage 2/3 blocks are the all-unassigned ones.
238 * Therefore, we refine the data structure while maintaining this placement
239 * even though it would be convenient to allocate the ASCII block at the
240 * beginning of stage 3, for example.
241 *
242 * UTF-8-friendly fromUnicode tries work from sorted tables and are built
243 * pre-compacted, overlapping adjacent stage 2/3 blocks.
244 * This is necessary because the block allocation and compaction changes
245 * at SBCS_UTF8_MAX or MBCS_UTF8_MAX, and for MBCS tables the additional
246 * stage table uses direct indexes into stage 3, without a multiplier and
247 * thus with a smaller reach.
248 *
249 * Non-UTF-8-friendly fromUnicode tries work from unsorted tables
250 * (because implicit precision is used), and are compacted
251 * in post-processing.
252 *
253 * Preallocation for UTF-8-friendly fromUnicode tries:
254 *
255 * Stage 3:
256 * 64-entry all-unassigned first block followed by ASCII (128 entries).
257 *
258 * Stage 2:
259 * 64-entry all-unassigned first block followed by preallocated
260 * 64-block for ASCII.
261 */
262
263 /* Preallocate ASCII as a linear 128-entry stage 3 block. */
264 stage2NullLength=MBCS_STAGE_2_BLOCK_SIZE;
265 stage2AllocLength=MBCS_STAGE_2_BLOCK_SIZE;
266
267 stage3NullLength=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
268 stage3AllocLength=128; /* ASCII U+0000..U+007f */
269
270 /* Initialize stage 1 for the preallocated blocks. */
271 sum=stage2NullLength;
272 for(i=0; i<(stage2AllocLength>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT); ++i) {
273 mbcsData->stage1[i]=sum;
274 sum+=MBCS_STAGE_2_BLOCK_SIZE;
275 }
276 mbcsData->stage2Top=stage2NullLength+stage2AllocLength; /* ==sum */
277
278 /*
279 * Stage 2 indexes count 16-blocks in stage 3 as follows:
280 * SBCS: directly, indexes increment by 16
281 * MBCS: indexes need to be multiplied by 16*maxCharLength, indexes increment by 1
282 * MBCS UTF-8: directly, indexes increment by 16
283 */
284 if(maxCharLength==1) {
285 sum=stage3NullLength;
286 for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) {
287 mbcsData->stage2Single[mbcsData->stage1[0]+i]=sum;
288 sum+=MBCS_STAGE_3_BLOCK_SIZE;
289 }
290 } else {
291 sum=stage3NullLength/MBCS_STAGE_3_GRANULARITY;
292 for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) {
293 mbcsData->stage2[mbcsData->stage1[0]+i]=sum;
294 sum+=MBCS_STAGE_3_BLOCK_SIZE/MBCS_STAGE_3_GRANULARITY;
295 }
296 }
297
298 sum=stage3NullLength;
299 for(i=0; i<(stage3AllocLength/MBCS_UTF8_STAGE_3_BLOCK_SIZE); ++i) {
300 mbcsData->stageUTF8[i]=sum;
301 sum+=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
302 }
303
304 /*
305 * Allocate a 64-entry all-unassigned first stage 3 block,
306 * for UTF-8-friendly lookup with a trail byte,
307 * plus 128 entries for ASCII.
308 */
309 mbcsData->stage3Top=(stage3NullLength+stage3AllocLength)*maxCharLength; /* ==sum*maxCharLength */
310
311 return TRUE;
312 }
313
314 /* return TRUE for success */
315 static UBool
316 setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) {
317 int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset);
318 if(i>=0) {
319 /* if there is already a fallback for this offset, then overwrite it */
320 mbcsData->toUFallbacks[i].codePoint=c;
321 return TRUE;
322 } else {
323 /* if there is no fallback for this offset, then add one */
324 i=mbcsData->countToUFallbacks;
325 if(i>=MBCS_MAX_FALLBACK_COUNT) {
326 fprintf(stderr, "error: too many toUnicode fallbacks, currently at: U+%x\n", (int)c);
327 return FALSE;
328 } else {
329 mbcsData->toUFallbacks[i].offset=offset;
330 mbcsData->toUFallbacks[i].codePoint=c;
331 mbcsData->countToUFallbacks=i+1;
332 return TRUE;
333 }
334 }
335 }
336
337 /* remove fallback if there is one with this offset; return the code point if there was such a fallback, otherwise -1 */
338 static int32_t
339 removeFallback(MBCSData *mbcsData, uint32_t offset) {
340 int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset);
341 if(i>=0) {
342 _MBCSToUFallback *toUFallbacks;
343 int32_t limit, old;
344
345 toUFallbacks=mbcsData->toUFallbacks;
346 limit=mbcsData->countToUFallbacks;
347 old=(int32_t)toUFallbacks[i].codePoint;
348
349 /* copy the last fallback entry here to keep the list contiguous */
350 toUFallbacks[i].offset=toUFallbacks[limit-1].offset;
351 toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint;
352 mbcsData->countToUFallbacks=limit-1;
353 return old;
354 } else {
355 return -1;
356 }
357 }
358
359 /*
360 * isFallback is almost a boolean:
361 * 1 (TRUE) this is a fallback mapping
362 * 0 (FALSE) this is a precise mapping
363 * -1 the precision of this mapping is not specified
364 */
365 static UBool
366 MBCSAddToUnicode(MBCSData *mbcsData,
367 const uint8_t *bytes, int32_t length,
368 UChar32 c,
369 int8_t flag) {
370 char buffer[10];
371 uint32_t offset=0;
372 int32_t i=0, entry, old;
373 uint8_t state=0;
374
375 if(mbcsData->ucm->states.countStates==0) {
376 fprintf(stderr, "error: there is no state information!\n");
377 return FALSE;
378 }
379
380 /* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */
381 if(length==2 && mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO) {
382 state=1;
383 }
384
385 /*
386 * Walk down the state table like in conversion,
387 * much like getNextUChar().
388 * We assume that c<=0x10ffff.
389 */
390 for(i=0;;) {
391 entry=mbcsData->ucm->states.stateTable[state][bytes[i++]];
392 if(MBCS_ENTRY_IS_TRANSITION(entry)) {
393 if(i==length) {
394 fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%s (U+%x)\n",
395 (short)state, printBytes(buffer, bytes, length), (int)c);
396 return FALSE;
397 }
398 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry);
399 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry);
400 } else {
401 if(i<length) {
402 fprintf(stderr, "error: byte sequence too long by %d bytes, final state %hu: 0x%s (U+%x)\n",
403 (int)(length-i), state, printBytes(buffer, bytes, length), (int)c);
404 return FALSE;
405 }
406 switch(MBCS_ENTRY_FINAL_ACTION(entry)) {
407 case MBCS_STATE_ILLEGAL:
408 fprintf(stderr, "error: byte sequence ends in illegal state at U+%04x<->0x%s\n",
409 (int)c, printBytes(buffer, bytes, length));
410 return FALSE;
411 case MBCS_STATE_CHANGE_ONLY:
412 fprintf(stderr, "error: byte sequence ends in state-change-only at U+%04x<->0x%s\n",
413 (int)c, printBytes(buffer, bytes, length));
414 return FALSE;
415 case MBCS_STATE_UNASSIGNED:
416 fprintf(stderr, "error: byte sequence ends in unassigned state at U+%04x<->0x%s\n",
417 (int)c, printBytes(buffer, bytes, length));
418 return FALSE;
419 case MBCS_STATE_FALLBACK_DIRECT_16:
420 case MBCS_STATE_VALID_DIRECT_16:
421 case MBCS_STATE_FALLBACK_DIRECT_20:
422 case MBCS_STATE_VALID_DIRECT_20:
423 if(MBCS_ENTRY_SET_STATE(entry, 0)!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) {
424 /* the "direct" action's value is not "valid-direct-16-unassigned" any more */
425 if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_DIRECT_16 || MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_FALLBACK_DIRECT_16) {
426 old=MBCS_ENTRY_FINAL_VALUE(entry);
427 } else {
428 old=0x10000+MBCS_ENTRY_FINAL_VALUE(entry);
429 }
430 if(flag>=0) {
431 fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
432 (int)c, printBytes(buffer, bytes, length), (int)old);
433 return FALSE;
434 } else if(VERBOSE) {
435 fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
436 (int)c, printBytes(buffer, bytes, length), (int)old);
437 }
438 /*
439 * Continue after the above warning
440 * if the precision of the mapping is unspecified.
441 */
442 }
443 /* reassign the correct action code */
444 entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, (MBCS_STATE_VALID_DIRECT_16+(flag==3 ? 2 : 0)+(c>=0x10000 ? 1 : 0)));
445
446 /* put the code point into bits 22..7 for BMP, c-0x10000 into 26..7 for others */
447 if(c<=0xffff) {
448 entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c);
449 } else {
450 entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c-0x10000);
451 }
452 mbcsData->ucm->states.stateTable[state][bytes[i-1]]=entry;
453 break;
454 case MBCS_STATE_VALID_16:
455 /* bits 26..16 are not used, 0 */
456 /* bits 15..7 contain the final offset delta to one 16-bit code unit */
457 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
458 /* check that this byte sequence is still unassigned */
459 if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=removeFallback(mbcsData, offset))!=-1) {
460 if(flag>=0) {
461 fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
462 (int)c, printBytes(buffer, bytes, length), (int)old);
463 return FALSE;
464 } else if(VERBOSE) {
465 fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
466 (int)c, printBytes(buffer, bytes, length), (int)old);
467 }
468 }
469 if(c>=0x10000) {
470 fprintf(stderr, "error: code point does not fit into valid-16-bit state at U+%04x<->0x%s\n",
471 (int)c, printBytes(buffer, bytes, length));
472 return FALSE;
473 }
474 if(flag>0) {
475 /* assign only if there is no precise mapping */
476 if(mbcsData->unicodeCodeUnits[offset]==0xfffe) {
477 return setFallback(mbcsData, offset, c);
478 }
479 } else {
480 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
481 }
482 break;
483 case MBCS_STATE_VALID_16_PAIR:
484 /* bits 26..16 are not used, 0 */
485 /* bits 15..7 contain the final offset delta to two 16-bit code units */
486 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry);
487 /* check that this byte sequence is still unassigned */
488 old=mbcsData->unicodeCodeUnits[offset];
489 if(old<0xfffe) {
490 int32_t real;
491 if(old<0xd800) {
492 real=old;
493 } else if(old<=0xdfff) {
494 real=0x10000+((old&0x3ff)<<10)+((mbcsData->unicodeCodeUnits[offset+1])&0x3ff);
495 } else /* old<=0xe001 */ {
496 real=mbcsData->unicodeCodeUnits[offset+1];
497 }
498 if(flag>=0) {
499 fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
500 (int)c, printBytes(buffer, bytes, length), (int)real);
501 return FALSE;
502 } else if(VERBOSE) {
503 fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n",
504 (int)c, printBytes(buffer, bytes, length), (int)real);
505 }
506 }
507 if(flag>0) {
508 /* assign only if there is no precise mapping */
509 if(old<=0xdbff || old==0xe000) {
510 /* do nothing */
511 } else if(c<=0xffff) {
512 /* set a BMP fallback code point as a pair with 0xe001 */
513 mbcsData->unicodeCodeUnits[offset++]=0xe001;
514 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
515 } else {
516 /* set a fallback surrogate pair with two second surrogates */
517 mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xdbc0+(c>>10));
518 mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
519 }
520 } else {
521 if(c<0xd800) {
522 /* set a BMP code point */
523 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
524 } else if(c<=0xffff) {
525 /* set a BMP code point above 0xd800 as a pair with 0xe000 */
526 mbcsData->unicodeCodeUnits[offset++]=0xe000;
527 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c;
528 } else {
529 /* set a surrogate pair */
530 mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(c>>10));
531 mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff));
532 }
533 }
534 break;
535 default:
536 /* reserved, must never occur */
537 fprintf(stderr, "internal error: byte sequence reached reserved action code, entry 0x%02x: 0x%s (U+%x)\n",
538 (int)entry, printBytes(buffer, bytes, length), (int)c);
539 return FALSE;
540 }
541
542 return TRUE;
543 }
544 }
545 }
546
547 /* is this byte sequence valid? (this is almost the same as MBCSAddToUnicode()) */
548 static UBool
549 MBCSIsValid(NewConverter *cnvData,
550 const uint8_t *bytes, int32_t length) {
551 MBCSData *mbcsData=(MBCSData *)cnvData;
552
553 return (UBool)(1==ucm_countChars(&mbcsData->ucm->states, bytes, length));
554 }
555
556 static UBool
557 MBCSSingleAddFromUnicode(MBCSData *mbcsData,
558 const uint8_t *bytes, int32_t length,
559 UChar32 c,
560 int8_t flag) {
561 uint16_t *stage3, *p;
562 uint32_t index;
563 uint16_t old;
564 uint8_t b;
565
566 uint32_t blockSize, newTop, i, nextOffset, newBlock, min;
567
568 /* ignore |2 SUB mappings */
569 if(flag==2) {
570 return TRUE;
571 }
572
573 /*
574 * Walk down the triple-stage compact array ("trie") and
575 * allocate parts as necessary.
576 * Note that the first stage 2 and 3 blocks are reserved for all-unassigned mappings.
577 * We assume that length<=maxCharLength and that c<=0x10ffff.
578 */
579 stage3=(uint16_t *)mbcsData->fromUBytes;
580 b=*bytes;
581
582 /* inspect stage 1 */
583 index=c>>MBCS_STAGE_1_SHIFT;
584 if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) {
585 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1);
586 } else {
587 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK;
588 }
589 if(mbcsData->stage1[index]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
590 /* allocate another block in stage 2 */
591 newBlock=mbcsData->stage2Top;
592 if(mbcsData->utf8Friendly) {
593 min=newBlock-nextOffset; /* minimum block start with overlap */
594 while(min<newBlock && mbcsData->stage2Single[newBlock-1]==0) {
595 --newBlock;
596 }
597 }
598 newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
599
600 if(newTop>MBCS_MAX_STAGE_2_TOP) {
601 fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%02x\n", (int)c, b);
602 return FALSE;
603 }
604
605 /*
606 * each stage 2 block contains 64 16-bit words:
607 * 6 code point bits 9..4 with 1 stage 3 index
608 */
609 mbcsData->stage1[index]=(uint16_t)newBlock;
610 mbcsData->stage2Top=newTop;
611 }
612
613 /* inspect stage 2 */
614 index=mbcsData->stage1[index]+nextOffset;
615 if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) {
616 /* allocate 64-entry blocks for UTF-8-friendly lookup */
617 blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE;
618 nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK;
619 } else {
620 blockSize=MBCS_STAGE_3_BLOCK_SIZE;
621 nextOffset=c&MBCS_STAGE_3_BLOCK_MASK;
622 }
623 if(mbcsData->stage2Single[index]==0) {
624 /* allocate another block in stage 3 */
625 newBlock=mbcsData->stage3Top;
626 if(mbcsData->utf8Friendly) {
627 min=newBlock-nextOffset; /* minimum block start with overlap */
628 while(min<newBlock && stage3[newBlock-1]==0) {
629 --newBlock;
630 }
631 }
632 newTop=newBlock+blockSize;
633
634 if(newTop>MBCS_STAGE_3_SBCS_SIZE) {
635 fprintf(stderr, "error: too many code points at U+%04x<->0x%02x\n", (int)c, b);
636 return FALSE;
637 }
638 /* each block has 16 uint16_t entries */
639 i=index;
640 while(newBlock<newTop) {
641 mbcsData->stage2Single[i++]=(uint16_t)newBlock;
642 newBlock+=MBCS_STAGE_3_BLOCK_SIZE;
643 }
644 mbcsData->stage3Top=newTop; /* ==newBlock */
645 }
646
647 /* write the codepage entry into stage 3 and get the previous entry */
648 p=stage3+mbcsData->stage2Single[index]+nextOffset;
649 old=*p;
650 if(flag<=0) {
651 *p=(uint16_t)(0xf00|b);
652 } else if(IS_PRIVATE_USE(c)) {
653 *p=(uint16_t)(0xc00|b);
654 } else {
655 *p=(uint16_t)(0x800|b);
656 }
657
658 /* check that this Unicode code point was still unassigned */
659 if(old>=0x100) {
660 if(flag>=0) {
661 fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n",
662 (int)c, b, old&0xff);
663 return FALSE;
664 } else if(VERBOSE) {
665 fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n",
666 (int)c, b, old&0xff);
667 }
668 /* continue after the above warning if the precision of the mapping is unspecified */
669 }
670
671 return TRUE;
672 }
673
674 static UBool
675 MBCSAddFromUnicode(MBCSData *mbcsData,
676 const uint8_t *bytes, int32_t length,
677 UChar32 c,
678 int8_t flag) {
679 char buffer[10];
680 const uint8_t *pb;
681 uint8_t *stage3, *p;
682 uint32_t index, b, old, stage3Index;
683 int32_t maxCharLength;
684
685 uint32_t blockSize, newTop, i, nextOffset, newBlock, min, overlap, maxOverlap;
686
687 maxCharLength=mbcsData->ucm->states.maxCharLength;
688
689 if( mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO &&
690 (*bytes==0xe || *bytes==0xf)
691 ) {
692 fprintf(stderr, "error: illegal mapping to SI or SO for SI/SO codepage: U+%04x<->0x%s\n",
693 (int)c, printBytes(buffer, bytes, length));
694 return FALSE;
695 }
696
697 if(flag==1 && length==1 && *bytes==0) {
698 fprintf(stderr, "error: unable to encode a |1 fallback from U+%04x to 0x%02x\n",
699 (int)c, *bytes);
700 return FALSE;
701 }
702
703 /*
704 * Walk down the triple-stage compact array ("trie") and
705 * allocate parts as necessary.
706 * Note that the first stage 2 and 3 blocks are reserved for
707 * all-unassigned mappings.
708 * We assume that length<=maxCharLength and that c<=0x10ffff.
709 */
710 stage3=mbcsData->fromUBytes;
711
712 /* inspect stage 1 */
713 index=c>>MBCS_STAGE_1_SHIFT;
714 if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
715 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1);
716 } else {
717 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK;
718 }
719 if(mbcsData->stage1[index]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) {
720 /* allocate another block in stage 2 */
721 newBlock=mbcsData->stage2Top;
722 if(mbcsData->utf8Friendly) {
723 min=newBlock-nextOffset; /* minimum block start with overlap */
724 while(min<newBlock && mbcsData->stage2[newBlock-1]==0) {
725 --newBlock;
726 }
727 }
728 newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE;
729
730 if(newTop>MBCS_MAX_STAGE_2_TOP) {
731 fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%s\n",
732 (int)c, printBytes(buffer, bytes, length));
733 return FALSE;
734 }
735
736 /*
737 * each stage 2 block contains 64 32-bit words:
738 * 6 code point bits 9..4 with value with bits 31..16 "assigned" flags and bits 15..0 stage 3 index
739 */
740 i=index;
741 while(newBlock<newTop) {
742 mbcsData->stage1[i++]=(uint16_t)newBlock;
743 newBlock+=MBCS_STAGE_2_BLOCK_SIZE;
744 }
745 mbcsData->stage2Top=newTop; /* ==newBlock */
746 }
747
748 /* inspect stage 2 */
749 index=mbcsData->stage1[index]+nextOffset;
750 if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
751 /* allocate 64-entry blocks for UTF-8-friendly lookup */
752 blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE*maxCharLength;
753 nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK;
754 } else {
755 blockSize=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength;
756 nextOffset=c&MBCS_STAGE_3_BLOCK_MASK;
757 }
758 if(mbcsData->stage2[index]==0) {
759 /* allocate another block in stage 3 */
760 newBlock=mbcsData->stage3Top;
761 if(mbcsData->utf8Friendly && nextOffset>=MBCS_STAGE_3_GRANULARITY) {
762 /*
763 * Overlap stage 3 blocks only in multiples of 16-entry blocks
764 * because of the indexing granularity in stage 2.
765 */
766 maxOverlap=(nextOffset&~(MBCS_STAGE_3_GRANULARITY-1))*maxCharLength;
767 for(overlap=0;
768 overlap<maxOverlap && stage3[newBlock-overlap-1]==0;
769 ++overlap) {}
770
771 overlap=(overlap/MBCS_STAGE_3_GRANULARITY)/maxCharLength;
772 overlap=(overlap*MBCS_STAGE_3_GRANULARITY)*maxCharLength;
773
774 newBlock-=overlap;
775 }
776 newTop=newBlock+blockSize;
777
778 if(newTop>MBCS_STAGE_3_MBCS_SIZE*(uint32_t)maxCharLength) {
779 fprintf(stderr, "error: too many code points at U+%04x<->0x%s\n",
780 (int)c, printBytes(buffer, bytes, length));
781 return FALSE;
782 }
783 /* each block has 16*maxCharLength bytes */
784 i=index;
785 while(newBlock<newTop) {
786 mbcsData->stage2[i++]=(newBlock/MBCS_STAGE_3_GRANULARITY)/maxCharLength;
787 newBlock+=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength;
788 }
789 mbcsData->stage3Top=newTop; /* ==newBlock */
790 }
791
792 stage3Index=MBCS_STAGE_3_GRANULARITY*(uint32_t)(uint16_t)mbcsData->stage2[index];
793
794 /* Build an alternate, UTF-8-friendly stage table as well. */
795 if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) {
796 /* Overflow for uint16_t entries in stageUTF8? */
797 if(stage3Index>0xffff) {
798 /*
799 * This can occur only if the mapping table is nearly perfectly filled and if
800 * utf8Max==0xffff.
801 * (There is no known charset like this. GB 18030 does not map
802 * surrogate code points and LMBCS does not map 256 PUA code points.)
803 *
804 * Otherwise, stage3Index<=MBCS_UTF8_LIMIT<0xffff
805 * (stage3Index can at most reach exactly MBCS_UTF8_LIMIT)
806 * because we have a sorted table and there are at most MBCS_UTF8_LIMIT
807 * mappings with 0<=c<MBCS_UTF8_LIMIT, and there is only also
808 * the initial all-unassigned block in stage3.
809 *
810 * Solution for the overflow: Reduce utf8Max to the next lower value, 0xfeff.
811 *
812 * (See svn revision 20866 of the markus/ucnvutf8 feature branch for
813 * code that causes MBCSAddTable() to rebuild the table not utf8Friendly
814 * in case of overflow. That code was not tested.)
815 */
816 mbcsData->utf8Max=0xfeff;
817 } else {
818 /*
819 * The stage 3 block has been assigned for the regular trie.
820 * Just copy its index into stageUTF8[], without the granularity.
821 */
822 mbcsData->stageUTF8[c>>MBCS_UTF8_STAGE_SHIFT]=(uint16_t)stage3Index;
823 }
824 }
825
826 /* write the codepage bytes into stage 3 and get the previous bytes */
827
828 /* assemble the bytes into a single integer */
829 pb=bytes;
830 b=0;
831 switch(length) {
832 case 4:
833 b=*pb++;
834 case 3:
835 b=(b<<8)|*pb++;
836 case 2:
837 b=(b<<8)|*pb++;
838 case 1:
839 default:
840 b=(b<<8)|*pb++;
841 break;
842 }
843
844 old=0;
845 p=stage3+(stage3Index+nextOffset)*maxCharLength;
846 switch(maxCharLength) {
847 case 2:
848 old=*(uint16_t *)p;
849 *(uint16_t *)p=(uint16_t)b;
850 break;
851 case 3:
852 old=(uint32_t)*p<<16;
853 *p++=(uint8_t)(b>>16);
854 old|=(uint32_t)*p<<8;
855 *p++=(uint8_t)(b>>8);
856 old|=*p;
857 *p=(uint8_t)b;
858 break;
859 case 4:
860 old=*(uint32_t *)p;
861 *(uint32_t *)p=b;
862 break;
863 default:
864 /* will never occur */
865 break;
866 }
867
868 /* check that this Unicode code point was still unassigned */
869 if((mbcsData->stage2[index+(nextOffset>>MBCS_STAGE_2_SHIFT)]&(1UL<<(16+(c&0xf))))!=0 || old!=0) {
870 if(flag>=0) {
871 fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n",
872 (int)c, printBytes(buffer, bytes, length), (int)old);
873 return FALSE;
874 } else if(VERBOSE) {
875 fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n",
876 (int)c, printBytes(buffer, bytes, length), (int)old);
877 }
878 /* continue after the above warning if the precision of the mapping is
879 unspecified */
880 }
881 if(flag<=0) {
882 /* set the roundtrip flag */
883 mbcsData->stage2[index+(nextOffset>>4)]|=(1UL<<(16+(c&0xf)));
884 }
885
886 return TRUE;
887 }
888
889 U_CFUNC UBool
890 MBCSOkForBaseFromUnicode(const MBCSData *mbcsData,
891 const uint8_t *bytes, int32_t length,
892 UChar32 c, int8_t flag) {
893 /*
894 * A 1:1 mapping does not fit into the MBCS base table's fromUnicode table under
895 * the following conditions:
896 *
897 * - a |2 SUB mapping for <subchar1> (no base table data structure for them)
898 * - a |1 fallback to 0x00 (result value 0, indistinguishable from unmappable entry)
899 * - a multi-byte mapping with leading 0x00 bytes (no explicit length field)
900 *
901 * Some of these tests are redundant with ucm_mappingType().
902 */
903 if( (flag==2 && length==1) ||
904 (flag==1 && bytes[0]==0) || /* testing length==1 would be redundant with the next test */
905 (flag<=1 && length>1 && bytes[0]==0)
906 ) {
907 return FALSE;
908 }
909
910 /*
911 * Additional restrictions for UTF-8-friendly fromUnicode tables,
912 * for code points up to the maximum optimized one:
913 *
914 * - any mapping to 0x00 (result value 0, indistinguishable from unmappable entry)
915 * - any |1 fallback (no roundtrip flags in the optimized table)
916 */
917 if(mbcsData->utf8Friendly && flag<=1 && c<=mbcsData->utf8Max && (bytes[0]==0 || flag==1)) {
918 return FALSE;
919 }
920
921 /*
922 * If we omit the fromUnicode data, we can only store roundtrips there
923 * because only they are recoverable from the toUnicode data.
924 * Fallbacks must go into the extension table.
925 */
926 if(mbcsData->omitFromU && flag!=0) {
927 return FALSE;
928 }
929
930 /* All other mappings do fit into the base table. */
931 return TRUE;
932 }
933
934 /* we can assume that the table only contains 1:1 mappings with <=4 bytes each */
935 static UBool
936 MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) {
937 MBCSData *mbcsData;
938 UCMapping *m;
939 UChar32 c;
940 int32_t i, maxCharLength;
941 int8_t f;
942 UBool isOK, utf8Friendly;
943
944 staticData->unicodeMask=table->unicodeMask;
945 if(staticData->unicodeMask==3) {
946 fprintf(stderr, "error: contains mappings for both supplementary and surrogate code points\n");
947 return FALSE;
948 }
949
950 staticData->conversionType=UCNV_MBCS;
951
952 mbcsData=(MBCSData *)cnvData;
953 maxCharLength=mbcsData->ucm->states.maxCharLength;
954
955 /*
956 * Generation of UTF-8-friendly data requires
957 * a sorted table, which makeconv generates when explicit precision
958 * indicators are used.
959 */
960 mbcsData->utf8Friendly=utf8Friendly=(UBool)((table->flagsType&UCM_FLAGS_EXPLICIT)!=0);
961 if(utf8Friendly) {
962 mbcsData->utf8Max=MBCS_UTF8_MAX;
963 if(SMALL && maxCharLength>1) {
964 mbcsData->omitFromU=TRUE;
965 }
966 } else {
967 mbcsData->utf8Max=0;
968 if(SMALL && maxCharLength>1) {
969 fprintf(stderr,
970 "makeconv warning: --small not available for .ucm files without |0 etc.\n");
971 }
972 }
973
974 if(!MBCSStartMappings(mbcsData)) {
975 return FALSE;
976 }
977
978 staticData->hasFromUnicodeFallback=FALSE;
979 staticData->hasToUnicodeFallback=FALSE;
980
981 isOK=TRUE;
982
983 m=table->mappings;
984 for(i=0; i<table->mappingsLength; ++m, ++i) {
985 c=m->u;
986 f=m->f;
987
988 /*
989 * Small optimization for --small .cnv files:
990 *
991 * If there are fromUnicode mappings above MBCS_UTF8_MAX,
992 * then the file size will be smaller if we make utf8Max larger
993 * because the size increase in stageUTF8 will be more than balanced by
994 * how much less of stage2 needs to be stored.
995 *
996 * There is no point in doing this incrementally because stageUTF8
997 * uses so much less space per block than stage2,
998 * so we immediately increase utf8Max to 0xffff.
999 *
1000 * Do not increase utf8Max if it is already at 0xfeff because MBCSAddFromUnicode()
1001 * sets it to that value when stageUTF8 overflows.
1002 */
1003 if( mbcsData->omitFromU && f<=1 &&
1004 mbcsData->utf8Max<c && c<=0xffff &&
1005 mbcsData->utf8Max<0xfeff
1006 ) {
1007 mbcsData->utf8Max=0xffff;
1008 }
1009
1010 switch(f) {
1011 case -1:
1012 /* there was no precision/fallback indicator */
1013 /* fall through to set the mappings */
1014 case 0:
1015 /* set roundtrip mappings */
1016 isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
1017
1018 if(maxCharLength==1) {
1019 isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
1020 } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) {
1021 isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
1022 } else {
1023 m->f|=MBCS_FROM_U_EXT_FLAG;
1024 m->moveFlag=UCM_MOVE_TO_EXT;
1025 }
1026 break;
1027 case 1:
1028 /* set only a fallback mapping from Unicode to codepage */
1029 if(maxCharLength==1) {
1030 staticData->hasFromUnicodeFallback=TRUE;
1031 isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
1032 } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) {
1033 staticData->hasFromUnicodeFallback=TRUE;
1034 isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
1035 } else {
1036 m->f|=MBCS_FROM_U_EXT_FLAG;
1037 m->moveFlag=UCM_MOVE_TO_EXT;
1038 }
1039 break;
1040 case 2:
1041 /* ignore |2 SUB mappings, except to move <subchar1> mappings to the extension table */
1042 if(maxCharLength>1 && m->bLen==1) {
1043 m->f|=MBCS_FROM_U_EXT_FLAG;
1044 m->moveFlag=UCM_MOVE_TO_EXT;
1045 }
1046 break;
1047 case 3:
1048 /* set only a fallback mapping from codepage to Unicode */
1049 staticData->hasToUnicodeFallback=TRUE;
1050 isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f);
1051 break;
1052 default:
1053 /* will not occur because the parser checked it already */
1054 fprintf(stderr, "error: illegal fallback indicator %d\n", f);
1055 return FALSE;
1056 }
1057 }
1058
1059 MBCSPostprocess(mbcsData, staticData);
1060
1061 return isOK;
1062 }
1063
1064 static UBool
1065 transformEUC(MBCSData *mbcsData) {
1066 uint8_t *p8;
1067 uint32_t i, value, oldLength, old3Top, new3Top;
1068 uint8_t b;
1069
1070 oldLength=mbcsData->ucm->states.maxCharLength;
1071 if(oldLength<3) {
1072 return FALSE;
1073 }
1074
1075 old3Top=mbcsData->stage3Top;
1076
1077 /* careful: 2-byte and 4-byte codes are stored in platform endianness! */
1078
1079 /* test if all first bytes are in {0, 0x8e, 0x8f} */
1080 p8=mbcsData->fromUBytes;
1081
1082 #if !U_IS_BIG_ENDIAN
1083 if(oldLength==4) {
1084 p8+=3;
1085 }
1086 #endif
1087
1088 for(i=0; i<old3Top; i+=oldLength) {
1089 b=p8[i];
1090 if(b!=0 && b!=0x8e && b!=0x8f) {
1091 /* some first byte does not fit the EUC pattern, nothing to be done */
1092 return FALSE;
1093 }
1094 }
1095 /* restore p if it was modified above */
1096 p8=mbcsData->fromUBytes;
1097
1098 /* modify outputType and adjust stage3Top */
1099 mbcsData->ucm->states.outputType=(int8_t)(MBCS_OUTPUT_3_EUC+oldLength-3);
1100 mbcsData->stage3Top=new3Top=(old3Top*(oldLength-1))/oldLength;
1101
1102 /*
1103 * EUC-encode all byte sequences;
1104 * see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly,
1105 * p. 161 in chapter 4 "Encoding Methods"
1106 *
1107 * This also must reverse the byte order if the platform is little-endian!
1108 */
1109 if(oldLength==3) {
1110 uint16_t *q=(uint16_t *)p8;
1111 for(i=0; i<old3Top; i+=oldLength) {
1112 b=*p8;
1113 if(b==0) {
1114 /* short sequences are stored directly */
1115 /* code set 0 or 1 */
1116 (*q++)=(uint16_t)((p8[1]<<8)|p8[2]);
1117 } else if(b==0x8e) {
1118 /* code set 2 */
1119 (*q++)=(uint16_t)(((p8[1]&0x7f)<<8)|p8[2]);
1120 } else /* b==0x8f */ {
1121 /* code set 3 */
1122 (*q++)=(uint16_t)((p8[1]<<8)|(p8[2]&0x7f));
1123 }
1124 p8+=3;
1125 }
1126 } else /* oldLength==4 */ {
1127 uint8_t *q=p8;
1128 uint32_t *p32=(uint32_t *)p8;
1129 for(i=0; i<old3Top; i+=4) {
1130 value=(*p32++);
1131 if(value<=0xffffff) {
1132 /* short sequences are stored directly */
1133 /* code set 0 or 1 */
1134 (*q++)=(uint8_t)(value>>16);
1135 (*q++)=(uint8_t)(value>>8);
1136 (*q++)=(uint8_t)value;
1137 } else if(value<=0x8effffff) {
1138 /* code set 2 */
1139 (*q++)=(uint8_t)((value>>16)&0x7f);
1140 (*q++)=(uint8_t)(value>>8);
1141 (*q++)=(uint8_t)value;
1142 } else /* first byte is 0x8f */ {
1143 /* code set 3 */
1144 (*q++)=(uint8_t)(value>>16);
1145 (*q++)=(uint8_t)((value>>8)&0x7f);
1146 (*q++)=(uint8_t)value;
1147 }
1148 }
1149 }
1150
1151 return TRUE;
1152 }
1153
1154 /*
1155 * Compact stage 2 for SBCS by overlapping adjacent stage 2 blocks as far
1156 * as possible. Overlapping is done on unassigned head and tail
1157 * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
1158 * Stage 1 indexes need to be adjusted accordingly.
1159 * This function is very similar to genprops/store.c/compactStage().
1160 */
1161 static void
1162 singleCompactStage2(MBCSData *mbcsData) {
1163 /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
1164 uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
1165 uint16_t i, start, prevEnd, newStart;
1166
1167 /* enter the all-unassigned first stage 2 block into the map */
1168 map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
1169
1170 /* begin with the first block after the all-unassigned one */
1171 start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
1172 while(start<mbcsData->stage2Top) {
1173 prevEnd=(uint16_t)(newStart-1);
1174
1175 /* find the size of the overlap */
1176 for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2Single[start+i]==0 && mbcsData->stage2Single[prevEnd-i]==0; ++i) {}
1177
1178 if(i>0) {
1179 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
1180
1181 /* move the non-overlapping indexes to their new positions */
1182 start+=i;
1183 for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
1184 mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
1185 }
1186 } else if(newStart<start) {
1187 /* move the indexes to their new positions */
1188 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
1189 for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
1190 mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++];
1191 }
1192 } else /* no overlap && newStart==start */ {
1193 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
1194 start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
1195 }
1196 }
1197
1198 /* adjust stage2Top */
1199 if(VERBOSE && newStart<mbcsData->stage2Top) {
1200 printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
1201 (unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
1202 (long)(mbcsData->stage2Top-newStart)*2);
1203 }
1204 mbcsData->stage2Top=newStart;
1205
1206 /* now adjust stage 1 */
1207 for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
1208 mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
1209 }
1210 }
1211
1212 /* Compact stage 3 for SBCS - same algorithm as above. */
1213 static void
1214 singleCompactStage3(MBCSData *mbcsData) {
1215 uint16_t *stage3=(uint16_t *)mbcsData->fromUBytes;
1216
1217 /* this array maps the ordinal number of a stage 3 block to its new stage 2 index */
1218 uint16_t map[0x1000];
1219 uint16_t i, start, prevEnd, newStart;
1220
1221 /* enter the all-unassigned first stage 3 block into the map */
1222 map[0]=0;
1223
1224 /* begin with the first block after the all-unassigned one */
1225 start=newStart=16;
1226 while(start<mbcsData->stage3Top) {
1227 prevEnd=(uint16_t)(newStart-1);
1228
1229 /* find the size of the overlap */
1230 for(i=0; i<16 && stage3[start+i]==0 && stage3[prevEnd-i]==0; ++i) {}
1231
1232 if(i>0) {
1233 map[start>>4]=(uint16_t)(newStart-i);
1234
1235 /* move the non-overlapping indexes to their new positions */
1236 start+=i;
1237 for(i=(uint16_t)(16-i); i>0; --i) {
1238 stage3[newStart++]=stage3[start++];
1239 }
1240 } else if(newStart<start) {
1241 /* move the indexes to their new positions */
1242 map[start>>4]=newStart;
1243 for(i=16; i>0; --i) {
1244 stage3[newStart++]=stage3[start++];
1245 }
1246 } else /* no overlap && newStart==start */ {
1247 map[start>>4]=start;
1248 start=newStart+=16;
1249 }
1250 }
1251
1252 /* adjust stage3Top */
1253 if(VERBOSE && newStart<mbcsData->stage3Top) {
1254 printf("compacting stage 3 from stage3Top=0x%lx to 0x%lx, saving %ld bytes\n",
1255 (unsigned long)mbcsData->stage3Top, (unsigned long)newStart,
1256 (long)(mbcsData->stage3Top-newStart)*2);
1257 }
1258 mbcsData->stage3Top=newStart;
1259
1260 /* now adjust stage 2 */
1261 for(i=0; i<mbcsData->stage2Top; ++i) {
1262 mbcsData->stage2Single[i]=map[mbcsData->stage2Single[i]>>4];
1263 }
1264 }
1265
1266 /*
1267 * Compact stage 2 by overlapping adjacent stage 2 blocks as far
1268 * as possible. Overlapping is done on unassigned head and tail
1269 * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER.
1270 * Stage 1 indexes need to be adjusted accordingly.
1271 * This function is very similar to genprops/store.c/compactStage().
1272 */
1273 static void
1274 compactStage2(MBCSData *mbcsData) {
1275 /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */
1276 uint16_t map[MBCS_STAGE_2_MAX_BLOCKS];
1277 uint16_t i, start, prevEnd, newStart;
1278
1279 /* enter the all-unassigned first stage 2 block into the map */
1280 map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX;
1281
1282 /* begin with the first block after the all-unassigned one */
1283 start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED;
1284 while(start<mbcsData->stage2Top) {
1285 prevEnd=(uint16_t)(newStart-1);
1286
1287 /* find the size of the overlap */
1288 for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2[start+i]==0 && mbcsData->stage2[prevEnd-i]==0; ++i) {}
1289
1290 if(i>0) {
1291 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i);
1292
1293 /* move the non-overlapping indexes to their new positions */
1294 start+=i;
1295 for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) {
1296 mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
1297 }
1298 } else if(newStart<start) {
1299 /* move the indexes to their new positions */
1300 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart;
1301 for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) {
1302 mbcsData->stage2[newStart++]=mbcsData->stage2[start++];
1303 }
1304 } else /* no overlap && newStart==start */ {
1305 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start;
1306 start=newStart+=MBCS_STAGE_2_BLOCK_SIZE;
1307 }
1308 }
1309
1310 /* adjust stage2Top */
1311 if(VERBOSE && newStart<mbcsData->stage2Top) {
1312 printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n",
1313 (unsigned long)mbcsData->stage2Top, (unsigned long)newStart,
1314 (long)(mbcsData->stage2Top-newStart)*4);
1315 }
1316 mbcsData->stage2Top=newStart;
1317
1318 /* now adjust stage 1 */
1319 for(i=0; i<MBCS_STAGE_1_SIZE; ++i) {
1320 mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT];
1321 }
1322 }
1323
1324 static void
1325 MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData) {
1326 UCMStates *states;
1327 int32_t maxCharLength, stage3Width;
1328
1329 states=&mbcsData->ucm->states;
1330 stage3Width=maxCharLength=states->maxCharLength;
1331
1332 ucm_optimizeStates(states,
1333 &mbcsData->unicodeCodeUnits,
1334 mbcsData->toUFallbacks, mbcsData->countToUFallbacks,
1335 VERBOSE);
1336
1337 /* try to compact the fromUnicode tables */
1338 if(transformEUC(mbcsData)) {
1339 --stage3Width;
1340 }
1341
1342 /*
1343 * UTF-8-friendly tries are built precompacted, to cope with variable
1344 * stage 3 allocation block sizes.
1345 *
1346 * Tables without precision indicators cannot be built that way,
1347 * because if a block was overlapped with a previous one, then a smaller
1348 * code point for the same block would not fit.
1349 * Therefore, such tables are not marked UTF-8-friendly and must be
1350 * compacted after all mappings are entered.
1351 */
1352 if(!mbcsData->utf8Friendly) {
1353 if(maxCharLength==1) {
1354 singleCompactStage3(mbcsData);
1355 singleCompactStage2(mbcsData);
1356 } else {
1357 compactStage2(mbcsData);
1358 }
1359 }
1360
1361 if(VERBOSE) {
1362 /*uint32_t c, i1, i2, i2Limit, i3;*/
1363
1364 printf("fromUnicode number of uint%s_t in stage 2: 0x%lx=%lu\n",
1365 maxCharLength==1 ? "16" : "32",
1366 (unsigned long)mbcsData->stage2Top,
1367 (unsigned long)mbcsData->stage2Top);
1368 printf("fromUnicode number of %d-byte stage 3 mapping entries: 0x%lx=%lu\n",
1369 (int)stage3Width,
1370 (unsigned long)mbcsData->stage3Top/stage3Width,
1371 (unsigned long)mbcsData->stage3Top/stage3Width);
1372 #if 0
1373 c=0;
1374 for(i1=0; i1<MBCS_STAGE_1_SIZE; ++i1) {
1375 i2=mbcsData->stage1[i1];
1376 if(i2==0) {
1377 c+=MBCS_STAGE_2_BLOCK_SIZE*MBCS_STAGE_3_BLOCK_SIZE;
1378 continue;
1379 }
1380 for(i2Limit=i2+MBCS_STAGE_2_BLOCK_SIZE; i2<i2Limit; ++i2) {
1381 if(maxCharLength==1) {
1382 i3=mbcsData->stage2Single[i2];
1383 } else {
1384 i3=(uint16_t)mbcsData->stage2[i2];
1385 }
1386 if(i3==0) {
1387 c+=MBCS_STAGE_3_BLOCK_SIZE;
1388 continue;
1389 }
1390 printf("U+%04lx i1=0x%02lx i2=0x%04lx i3=0x%04lx\n",
1391 (unsigned long)c,
1392 (unsigned long)i1,
1393 (unsigned long)i2,
1394 (unsigned long)i3);
1395 c+=MBCS_STAGE_3_BLOCK_SIZE;
1396 }
1397 }
1398 #endif
1399 }
1400 }
1401
1402 static uint32_t
1403 MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData,
1404 UNewDataMemory *pData, int32_t tableType) {
1405 MBCSData *mbcsData=(MBCSData *)cnvData;
1406 uint32_t stage2Start, stage2Length;
1407 uint32_t top, stageUTF8Length=0;
1408 int32_t i, stage1Top;
1409 uint32_t headerLength;
1410
1411 _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 };
1412
1413 stage2Length=mbcsData->stage2Top;
1414 if(mbcsData->omitFromU) {
1415 /* find how much of stage2 can be omitted */
1416 int32_t utf8Limit=(int32_t)mbcsData->utf8Max+1;
1417 uint32_t st2=0; /*initialized it to avoid compiler warnings */
1418
1419 i=utf8Limit>>MBCS_STAGE_1_SHIFT;
1420 if((utf8Limit&((1<<MBCS_STAGE_1_SHIFT)-1))!=0 && (st2=mbcsData->stage1[i])!=0) {
1421 /* utf8Limit is in the middle of an existing stage 2 block */
1422 stage2Start=st2+((utf8Limit>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK);
1423 } else {
1424 /* find the last stage2 block with mappings before utf8Limit */
1425 while(i>0 && (st2=mbcsData->stage1[--i])==0) {}
1426 /* stage2 up to the end of this block corresponds to stageUTF8 */
1427 stage2Start=st2+MBCS_STAGE_2_BLOCK_SIZE;
1428 }
1429 header.options|=MBCS_OPT_NO_FROM_U;
1430 header.fullStage2Length=stage2Length;
1431 stage2Length-=stage2Start;
1432 if(VERBOSE) {
1433 printf("+ omitting %lu out of %lu stage2 entries and %lu fromUBytes\n",
1434 (unsigned long)stage2Start,
1435 (unsigned long)mbcsData->stage2Top,
1436 (unsigned long)mbcsData->stage3Top);
1437 printf("+ total size savings: %lu bytes\n", (unsigned long)stage2Start*4+mbcsData->stage3Top);
1438 }
1439 } else {
1440 stage2Start=0;
1441 }
1442
1443 if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) {
1444 stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */
1445 } else {
1446 stage1Top=0x40; /* 0x40==64 */
1447 }
1448
1449 /* adjust stage 1 entries to include the size of stage 1 in the offsets to stage 2 */
1450 if(mbcsData->ucm->states.maxCharLength==1) {
1451 for(i=0; i<stage1Top; ++i) {
1452 mbcsData->stage1[i]+=(uint16_t)stage1Top;
1453 }
1454
1455 /* stage2Top/Length have counted 16-bit results, now we need to count bytes */
1456 /* also round up to a multiple of 4 bytes */
1457 stage2Length=(stage2Length*2+1)&~1;
1458
1459 /* stage3Top has counted 16-bit results, now we need to count bytes */
1460 mbcsData->stage3Top*=2;
1461
1462 if(mbcsData->utf8Friendly) {
1463 header.version[2]=(uint8_t)(SBCS_UTF8_MAX>>8); /* store 0x1f for max==0x1fff */
1464 }
1465 } else {
1466 for(i=0; i<stage1Top; ++i) {
1467 mbcsData->stage1[i]+=(uint16_t)stage1Top/2; /* stage 2 contains 32-bit entries, stage 1 16-bit entries */
1468 }
1469
1470 /* stage2Top/Length have counted 32-bit results, now we need to count bytes */
1471 stage2Length*=4;
1472 /* leave stage2Start counting 32-bit units */
1473
1474 if(mbcsData->utf8Friendly) {
1475 stageUTF8Length=(mbcsData->utf8Max+1)>>MBCS_UTF8_STAGE_SHIFT;
1476 header.version[2]=(uint8_t)(mbcsData->utf8Max>>8); /* store 0xd7 for max==0xd7ff */
1477 }
1478
1479 /* stage3Top has already counted bytes */
1480 }
1481
1482 /* round up stage3Top so that the sizes of all data blocks are multiples of 4 */
1483 mbcsData->stage3Top=(mbcsData->stage3Top+3)&~3;
1484
1485 /* fill the header */
1486 if(header.options&MBCS_OPT_INCOMPATIBLE_MASK) {
1487 header.version[0]=5;
1488 if(header.options&MBCS_OPT_NO_FROM_U) {
1489 headerLength=10; /* include fullStage2Length */
1490 } else {
1491 headerLength=MBCS_HEADER_V5_MIN_LENGTH; /* 9 */
1492 }
1493 } else {
1494 header.version[0]=4;
1495 headerLength=MBCS_HEADER_V4_LENGTH; /* 8 */
1496 }
1497 header.version[1]=3;
1498 /* header.version[2] set above for utf8Friendly data */
1499
1500 header.options|=(uint32_t)headerLength;
1501
1502 header.countStates=mbcsData->ucm->states.countStates;
1503 header.countToUFallbacks=mbcsData->countToUFallbacks;
1504
1505 header.offsetToUCodeUnits=
1506 headerLength*4+
1507 mbcsData->ucm->states.countStates*1024+
1508 mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback);
1509 header.offsetFromUTable=
1510 header.offsetToUCodeUnits+
1511 mbcsData->ucm->states.countToUCodeUnits*2;
1512 header.offsetFromUBytes=
1513 header.offsetFromUTable+
1514 stage1Top*2+
1515 stage2Length;
1516 header.fromUBytesLength=mbcsData->stage3Top;
1517
1518 top=header.offsetFromUBytes+stageUTF8Length*2;
1519 if(!(header.options&MBCS_OPT_NO_FROM_U)) {
1520 top+=header.fromUBytesLength;
1521 }
1522
1523 header.flags=(uint8_t)(mbcsData->ucm->states.outputType);
1524
1525 if(tableType&TABLE_EXT) {
1526 if(top>0xffffff) {
1527 fprintf(stderr, "error: offset 0x%lx to extension table exceeds 0xffffff\n", (long)top);
1528 return 0;
1529 }
1530
1531 header.flags|=top<<8;
1532 }
1533
1534 /* write the MBCS data */
1535 udata_writeBlock(pData, &header, headerLength*4);
1536 udata_writeBlock(pData, mbcsData->ucm->states.stateTable, header.countStates*1024);
1537 udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback));
1538 udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->ucm->states.countToUCodeUnits*2);
1539 udata_writeBlock(pData, mbcsData->stage1, stage1Top*2);
1540 if(mbcsData->ucm->states.maxCharLength==1) {
1541 udata_writeBlock(pData, mbcsData->stage2Single+stage2Start, stage2Length);
1542 } else {
1543 udata_writeBlock(pData, mbcsData->stage2+stage2Start, stage2Length);
1544 }
1545 if(!(header.options&MBCS_OPT_NO_FROM_U)) {
1546 udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top);
1547 }
1548
1549 if(stageUTF8Length>0) {
1550 udata_writeBlock(pData, mbcsData->stageUTF8, stageUTF8Length*2);
1551 }
1552
1553 /* return the number of bytes that should have been written */
1554 return top;
1555 }