]> git.saurik.com Git - apple/icu.git/blob - icuSources/i18n/nfrule.cpp
ICU-400.37.tar.gz
[apple/icu.git] / icuSources / i18n / nfrule.cpp
1 /*
2 ******************************************************************************
3 * Copyright (C) 1997-2008, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 ******************************************************************************
6 * file name: nfrule.cpp
7 * encoding: US-ASCII
8 * tab size: 8 (not used)
9 * indentation:4
10 *
11 * Modification history
12 * Date Name Comments
13 * 10/11/2001 Doug Ported from ICU4J
14 */
15
16 #include "nfrule.h"
17
18 #if U_HAVE_RBNF
19
20 #include "unicode/rbnf.h"
21 #include "unicode/tblcoll.h"
22 #include "unicode/coleitr.h"
23 #include "unicode/uchar.h"
24 #include "nfrs.h"
25 #include "nfrlist.h"
26 #include "nfsubs.h"
27
28 #include "util.h"
29
30 U_NAMESPACE_BEGIN
31
32 NFRule::NFRule(const RuleBasedNumberFormat* _rbnf)
33 : baseValue((int32_t)0)
34 , radix(0)
35 , exponent(0)
36 , ruleText()
37 , sub1(NULL)
38 , sub2(NULL)
39 , formatter(_rbnf)
40 {
41 }
42
43 NFRule::~NFRule()
44 {
45 delete sub1;
46 delete sub2;
47 }
48
49 static const UChar gLeftBracket = 0x005b;
50 static const UChar gRightBracket = 0x005d;
51 static const UChar gColon = 0x003a;
52 static const UChar gZero = 0x0030;
53 static const UChar gNine = 0x0039;
54 static const UChar gSpace = 0x0020;
55 static const UChar gSlash = 0x002f;
56 static const UChar gGreaterThan = 0x003e;
57 static const UChar gLessThan = 0x003c;
58 static const UChar gComma = 0x002c;
59 static const UChar gDot = 0x002e;
60 static const UChar gTick = 0x0027;
61 //static const UChar gMinus = 0x002d;
62 static const UChar gSemicolon = 0x003b;
63
64 static const UChar gMinusX[] = {0x2D, 0x78, 0}; /* "-x" */
65 static const UChar gXDotX[] = {0x78, 0x2E, 0x78, 0}; /* "x.x" */
66 static const UChar gXDotZero[] = {0x78, 0x2E, 0x30, 0}; /* "x.0" */
67 static const UChar gZeroDotX[] = {0x30, 0x2E, 0x78, 0}; /* "0.x" */
68
69 static const UChar gLessLess[] = {0x3C, 0x3C, 0}; /* "<<" */
70 static const UChar gLessPercent[] = {0x3C, 0x25, 0}; /* "<%" */
71 static const UChar gLessHash[] = {0x3C, 0x23, 0}; /* "<#" */
72 static const UChar gLessZero[] = {0x3C, 0x30, 0}; /* "<0" */
73 static const UChar gGreaterGreater[] = {0x3E, 0x3E, 0}; /* ">>" */
74 static const UChar gGreaterPercent[] = {0x3E, 0x25, 0}; /* ">%" */
75 static const UChar gGreaterHash[] = {0x3E, 0x23, 0}; /* ">#" */
76 static const UChar gGreaterZero[] = {0x3E, 0x30, 0}; /* ">0" */
77 static const UChar gEqualPercent[] = {0x3D, 0x25, 0}; /* "=%" */
78 static const UChar gEqualHash[] = {0x3D, 0x23, 0}; /* "=#" */
79 static const UChar gEqualZero[] = {0x3D, 0x30, 0}; /* "=0" */
80 static const UChar gEmptyString[] = {0}; /* "" */
81 static const UChar gGreaterGreaterGreater[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
82
83 static const UChar * const tokenStrings[] = {
84 gLessLess, gLessPercent, gLessHash, gLessZero,
85 gGreaterGreater, gGreaterPercent,gGreaterHash, gGreaterZero,
86 gEqualPercent, gEqualHash, gEqualZero, NULL
87 };
88
89 void
90 NFRule::makeRules(UnicodeString& description,
91 const NFRuleSet *ruleSet,
92 const NFRule *predecessor,
93 const RuleBasedNumberFormat *rbnf,
94 NFRuleList& rules,
95 UErrorCode& status)
96 {
97 // we know we're making at least one rule, so go ahead and
98 // new it up and initialize its basevalue and divisor
99 // (this also strips the rule descriptor, if any, off the
100 // descripton string)
101 NFRule* rule1 = new NFRule(rbnf);
102 /* test for NULL */
103 if (rule1 == 0) {
104 status = U_MEMORY_ALLOCATION_ERROR;
105 return;
106 }
107 rule1->parseRuleDescriptor(description, status);
108
109 // check the description to see whether there's text enclosed
110 // in brackets
111 int32_t brack1 = description.indexOf(gLeftBracket);
112 int32_t brack2 = description.indexOf(gRightBracket);
113
114 // if the description doesn't contain a matched pair of brackets,
115 // or if it's of a type that doesn't recognize bracketed text,
116 // then leave the description alone, initialize the rule's
117 // rule text and substitutions, and return that rule
118 if (brack1 == -1 || brack2 == -1 || brack1 > brack2
119 || rule1->getType() == kProperFractionRule
120 || rule1->getType() == kNegativeNumberRule) {
121 rule1->ruleText = description;
122 rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
123 rules.add(rule1);
124 } else {
125 // if the description does contain a matched pair of brackets,
126 // then it's really shorthand for two rules (with one exception)
127 NFRule* rule2 = NULL;
128 UnicodeString sbuf;
129
130 // we'll actually only split the rule into two rules if its
131 // base value is an even multiple of its divisor (or it's one
132 // of the special rules)
133 if ((rule1->baseValue > 0
134 && (rule1->baseValue % util64_pow(rule1->radix, rule1->exponent)) == 0)
135 || rule1->getType() == kImproperFractionRule
136 || rule1->getType() == kMasterRule) {
137
138 // if it passes that test, new up the second rule. If the
139 // rule set both rules will belong to is a fraction rule
140 // set, they both have the same base value; otherwise,
141 // increment the original rule's base value ("rule1" actually
142 // goes SECOND in the rule set's rule list)
143 rule2 = new NFRule(rbnf);
144 /* test for NULL */
145 if (rule2 == 0) {
146 status = U_MEMORY_ALLOCATION_ERROR;
147 return;
148 }
149 if (rule1->baseValue >= 0) {
150 rule2->baseValue = rule1->baseValue;
151 if (!ruleSet->isFractionRuleSet()) {
152 ++rule1->baseValue;
153 }
154 }
155
156 // if the description began with "x.x" and contains bracketed
157 // text, it describes both the improper fraction rule and
158 // the proper fraction rule
159 else if (rule1->getType() == kImproperFractionRule) {
160 rule2->setType(kProperFractionRule);
161 }
162
163 // if the description began with "x.0" and contains bracketed
164 // text, it describes both the master rule and the
165 // improper fraction rule
166 else if (rule1->getType() == kMasterRule) {
167 rule2->baseValue = rule1->baseValue;
168 rule1->setType(kImproperFractionRule);
169 }
170
171 // both rules have the same radix and exponent (i.e., the
172 // same divisor)
173 rule2->radix = rule1->radix;
174 rule2->exponent = rule1->exponent;
175
176 // rule2's rule text omits the stuff in brackets: initalize
177 // its rule text and substitutions accordingly
178 sbuf.append(description, 0, brack1);
179 if (brack2 + 1 < description.length()) {
180 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
181 }
182 rule2->ruleText.setTo(sbuf);
183 rule2->extractSubstitutions(ruleSet, predecessor, rbnf, status);
184 }
185
186 // rule1's text includes the text in the brackets but omits
187 // the brackets themselves: initialize _its_ rule text and
188 // substitutions accordingly
189 sbuf.setTo(description, 0, brack1);
190 sbuf.append(description, brack1 + 1, brack2 - brack1 - 1);
191 if (brack2 + 1 < description.length()) {
192 sbuf.append(description, brack2 + 1, description.length() - brack2 - 1);
193 }
194 rule1->ruleText.setTo(sbuf);
195 rule1->extractSubstitutions(ruleSet, predecessor, rbnf, status);
196
197 // if we only have one rule, return it; if we have two, return
198 // a two-element array containing them (notice that rule2 goes
199 // BEFORE rule1 in the list: in all cases, rule2 OMITS the
200 // material in the brackets and rule1 INCLUDES the material
201 // in the brackets)
202 if (rule2 != NULL) {
203 rules.add(rule2);
204 }
205 rules.add(rule1);
206 }
207 }
208
209 /**
210 * This function parses the rule's rule descriptor (i.e., the base
211 * value and/or other tokens that precede the rule's rule text
212 * in the description) and sets the rule's base value, radix, and
213 * exponent according to the descriptor. (If the description doesn't
214 * include a rule descriptor, then this function sets everything to
215 * default values and the rule set sets the rule's real base value).
216 * @param description The rule's description
217 * @return If "description" included a rule descriptor, this is
218 * "description" with the descriptor and any trailing whitespace
219 * stripped off. Otherwise; it's "descriptor" unchangd.
220 */
221 void
222 NFRule::parseRuleDescriptor(UnicodeString& description, UErrorCode& status)
223 {
224 // the description consists of a rule descriptor and a rule body,
225 // separated by a colon. The rule descriptor is optional. If
226 // it's omitted, just set the base value to 0.
227 int32_t p = description.indexOf(gColon);
228 if (p == -1) {
229 setBaseValue((int32_t)0, status);
230 } else {
231 // copy the descriptor out into its own string and strip it,
232 // along with any trailing whitespace, out of the original
233 // description
234 UnicodeString descriptor;
235 descriptor.setTo(description, 0, p);
236
237 ++p;
238 while (p < description.length() && uprv_isRuleWhiteSpace(description.charAt(p))) {
239 ++p;
240 }
241 description.removeBetween(0, p);
242
243 // check first to see if the rule descriptor matches the token
244 // for one of the special rules. If it does, set the base
245 // value to the correct identfier value
246 if (descriptor == gMinusX) {
247 setType(kNegativeNumberRule);
248 }
249 else if (descriptor == gXDotX) {
250 setType(kImproperFractionRule);
251 }
252 else if (descriptor == gZeroDotX) {
253 setType(kProperFractionRule);
254 }
255 else if (descriptor == gXDotZero) {
256 setType(kMasterRule);
257 }
258
259 // if the rule descriptor begins with a digit, it's a descriptor
260 // for a normal rule
261 // since we don't have Long.parseLong, and this isn't much work anyway,
262 // just build up the value as we encounter the digits.
263 else if (descriptor.charAt(0) >= gZero && descriptor.charAt(0) <= gNine) {
264 int64_t val = 0;
265 p = 0;
266 UChar c = gSpace;
267
268 // begin parsing the descriptor: copy digits
269 // into "tempValue", skip periods, commas, and spaces,
270 // stop on a slash or > sign (or at the end of the string),
271 // and throw an exception on any other character
272 int64_t ll_10 = 10;
273 while (p < descriptor.length()) {
274 c = descriptor.charAt(p);
275 if (c >= gZero && c <= gNine) {
276 val = val * ll_10 + (int32_t)(c - gZero);
277 }
278 else if (c == gSlash || c == gGreaterThan) {
279 break;
280 }
281 else if (uprv_isRuleWhiteSpace(c) || c == gComma || c == gDot) {
282 }
283 else {
284 // throw new IllegalArgumentException("Illegal character in rule descriptor");
285 status = U_PARSE_ERROR;
286 return;
287 }
288 ++p;
289 }
290
291 // we have the base value, so set it
292 setBaseValue(val, status);
293
294 // if we stopped the previous loop on a slash, we're
295 // now parsing the rule's radix. Again, accumulate digits
296 // in tempValue, skip punctuation, stop on a > mark, and
297 // throw an exception on anything else
298 if (c == gSlash) {
299 val = 0;
300 ++p;
301 int64_t ll_10 = 10;
302 while (p < descriptor.length()) {
303 c = descriptor.charAt(p);
304 if (c >= gZero && c <= gNine) {
305 val = val * ll_10 + (int32_t)(c - gZero);
306 }
307 else if (c == gGreaterThan) {
308 break;
309 }
310 else if (uprv_isRuleWhiteSpace(c) || c == gComma || c == gDot) {
311 }
312 else {
313 // throw new IllegalArgumentException("Illegal character is rule descriptor");
314 status = U_PARSE_ERROR;
315 return;
316 }
317 ++p;
318 }
319
320 // tempValue now contain's the rule's radix. Set it
321 // accordingly, and recalculate the rule's exponent
322 radix = (int32_t)val;
323 if (radix == 0) {
324 // throw new IllegalArgumentException("Rule can't have radix of 0");
325 status = U_PARSE_ERROR;
326 }
327
328 exponent = expectedExponent();
329 }
330
331 // if we stopped the previous loop on a > sign, then continue
332 // for as long as we still see > signs. For each one,
333 // decrement the exponent (unless the exponent is already 0).
334 // If we see another character before reaching the end of
335 // the descriptor, that's also a syntax error.
336 if (c == gGreaterThan) {
337 while (p < descriptor.length()) {
338 c = descriptor.charAt(p);
339 if (c == gGreaterThan && exponent > 0) {
340 --exponent;
341 } else {
342 // throw new IllegalArgumentException("Illegal character in rule descriptor");
343 status = U_PARSE_ERROR;
344 return;
345 }
346 ++p;
347 }
348 }
349 }
350 }
351
352 // finally, if the rule body begins with an apostrophe, strip it off
353 // (this is generally used to put whitespace at the beginning of
354 // a rule's rule text)
355 if (description.length() > 0 && description.charAt(0) == gTick) {
356 description.removeBetween(0, 1);
357 }
358
359 // return the description with all the stuff we've just waded through
360 // stripped off the front. It now contains just the rule body.
361 // return description;
362 }
363
364 /**
365 * Searches the rule's rule text for the substitution tokens,
366 * creates the substitutions, and removes the substitution tokens
367 * from the rule's rule text.
368 * @param owner The rule set containing this rule
369 * @param predecessor The rule preseding this one in "owners" rule list
370 * @param ownersOwner The RuleBasedFormat that owns this rule
371 */
372 void
373 NFRule::extractSubstitutions(const NFRuleSet* ruleSet,
374 const NFRule* predecessor,
375 const RuleBasedNumberFormat* rbnf,
376 UErrorCode& status)
377 {
378 if (U_SUCCESS(status)) {
379 sub1 = extractSubstitution(ruleSet, predecessor, rbnf, status);
380 sub2 = extractSubstitution(ruleSet, predecessor, rbnf, status);
381 }
382 }
383
384 /**
385 * Searches the rule's rule text for the first substitution token,
386 * creates a substitution based on it, and removes the token from
387 * the rule's rule text.
388 * @param owner The rule set containing this rule
389 * @param predecessor The rule preceding this one in the rule set's
390 * rule list
391 * @param ownersOwner The RuleBasedNumberFormat that owns this rule
392 * @return The newly-created substitution. This is never null; if
393 * the rule text doesn't contain any substitution tokens, this will
394 * be a NullSubstitution.
395 */
396 NFSubstitution *
397 NFRule::extractSubstitution(const NFRuleSet* ruleSet,
398 const NFRule* predecessor,
399 const RuleBasedNumberFormat* rbnf,
400 UErrorCode& status)
401 {
402 NFSubstitution* result = NULL;
403
404 // search the rule's rule text for the first two characters of
405 // a substitution token
406 int32_t subStart = indexOfAny(tokenStrings);
407 int32_t subEnd = subStart;
408
409 // if we didn't find one, create a null substitution positioned
410 // at the end of the rule text
411 if (subStart == -1) {
412 return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
413 ruleSet, rbnf, gEmptyString, status);
414 }
415
416 // special-case the ">>>" token, since searching for the > at the
417 // end will actually find the > in the middle
418 if (ruleText.indexOf(gGreaterGreaterGreater) == subStart) {
419 subEnd = subStart + 2;
420
421 // otherwise the substitution token ends with the same character
422 // it began with
423 } else {
424 UChar c = ruleText.charAt(subStart);
425 subEnd = ruleText.indexOf(c, subStart + 1);
426 // special case for '<%foo<<'
427 if (c == gLessThan && subEnd != -1 && subEnd < ruleText.length() - 1 && ruleText.charAt(subEnd+1) == c) {
428 // ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle
429 // occurs because of the juxtaposition of two different rules. The check for '<' is a hack
430 // to get around this. Having the duplicate at the front would cause problems with
431 // rules like "<<%" to format, say, percents...
432 ++subEnd;
433 }
434 }
435
436 // if we don't find the end of the token (i.e., if we're on a single,
437 // unmatched token character), create a null substitution positioned
438 // at the end of the rule
439 if (subEnd == -1) {
440 return NFSubstitution::makeSubstitution(ruleText.length(), this, predecessor,
441 ruleSet, rbnf, gEmptyString, status);
442 }
443
444 // if we get here, we have a real substitution token (or at least
445 // some text bounded by substitution token characters). Use
446 // makeSubstitution() to create the right kind of substitution
447 UnicodeString subToken;
448 subToken.setTo(ruleText, subStart, subEnd + 1 - subStart);
449 result = NFSubstitution::makeSubstitution(subStart, this, predecessor, ruleSet,
450 rbnf, subToken, status);
451
452 // remove the substitution from the rule text
453 ruleText.removeBetween(subStart, subEnd+1);
454
455 return result;
456 }
457
458 /**
459 * Sets the rule's base value, and causes the radix and exponent
460 * to be recalculated. This is used during construction when we
461 * don't know the rule's base value until after it's been
462 * constructed. It should be used at any other time.
463 * @param The new base value for the rule.
464 */
465 void
466 NFRule::setBaseValue(int64_t newBaseValue, UErrorCode& status)
467 {
468 // set the base value
469 baseValue = newBaseValue;
470
471 // if this isn't a special rule, recalculate the radix and exponent
472 // (the radix always defaults to 10; if it's supposed to be something
473 // else, it's cleaned up by the caller and the exponent is
474 // recalculated again-- the only function that does this is
475 // NFRule.parseRuleDescriptor() )
476 if (baseValue >= 1) {
477 radix = 10;
478 exponent = expectedExponent();
479
480 // this function gets called on a fully-constructed rule whose
481 // description didn't specify a base value. This means it
482 // has substitutions, and some substitutions hold on to copies
483 // of the rule's divisor. Fix their copies of the divisor.
484 if (sub1 != NULL) {
485 sub1->setDivisor(radix, exponent, status);
486 }
487 if (sub2 != NULL) {
488 sub2->setDivisor(radix, exponent, status);
489 }
490
491 // if this is a special rule, its radix and exponent are basically
492 // ignored. Set them to "safe" default values
493 } else {
494 radix = 10;
495 exponent = 0;
496 }
497 }
498
499 /**
500 * This calculates the rule's exponent based on its radix and base
501 * value. This will be the highest power the radix can be raised to
502 * and still produce a result less than or equal to the base value.
503 */
504 int16_t
505 NFRule::expectedExponent() const
506 {
507 // since the log of 0, or the log base 0 of something, causes an
508 // error, declare the exponent in these cases to be 0 (we also
509 // deal with the special-rule identifiers here)
510 if (radix == 0 || baseValue < 1) {
511 return 0;
512 }
513
514 // we get rounding error in some cases-- for example, log 1000 / log 10
515 // gives us 1.9999999996 instead of 2. The extra logic here is to take
516 // that into account
517 int16_t tempResult = (int16_t)(uprv_log((double)baseValue) / uprv_log((double)radix));
518 int64_t temp = util64_pow(radix, tempResult + 1);
519 if (temp <= baseValue) {
520 tempResult += 1;
521 }
522 return tempResult;
523 }
524
525 /**
526 * Searches the rule's rule text for any of the specified strings.
527 * @param strings An array of strings to search the rule's rule
528 * text for
529 * @return The index of the first match in the rule's rule text
530 * (i.e., the first substring in the rule's rule text that matches
531 * _any_ of the strings in "strings"). If none of the strings in
532 * "strings" is found in the rule's rule text, returns -1.
533 */
534 int32_t
535 NFRule::indexOfAny(const UChar* const strings[]) const
536 {
537 int result = -1;
538 for (int i = 0; strings[i]; i++) {
539 int32_t pos = ruleText.indexOf(*strings[i]);
540 if (pos != -1 && (result == -1 || pos < result)) {
541 result = pos;
542 }
543 }
544 return result;
545 }
546
547 //-----------------------------------------------------------------------
548 // boilerplate
549 //-----------------------------------------------------------------------
550
551 /**
552 * Tests two rules for equality.
553 * @param that The rule to compare this one against
554 * @return True is the two rules are functionally equivalent
555 */
556 UBool
557 NFRule::operator==(const NFRule& rhs) const
558 {
559 return baseValue == rhs.baseValue
560 && radix == rhs.radix
561 && exponent == rhs.exponent
562 && ruleText == rhs.ruleText
563 && *sub1 == *rhs.sub1
564 && *sub2 == *rhs.sub2;
565 }
566
567 /**
568 * Returns a textual representation of the rule. This won't
569 * necessarily be the same as the description that this rule
570 * was created with, but it will produce the same result.
571 * @return A textual description of the rule
572 */
573 static void util_append64(UnicodeString& result, int64_t n)
574 {
575 UChar buffer[256];
576 int32_t len = util64_tou(n, buffer, sizeof(buffer));
577 UnicodeString temp(buffer, len);
578 result.append(temp);
579 }
580
581 void
582 NFRule::_appendRuleText(UnicodeString& result) const
583 {
584 switch (getType()) {
585 case kNegativeNumberRule: result.append(gMinusX); break;
586 case kImproperFractionRule: result.append(gXDotX); break;
587 case kProperFractionRule: result.append(gZeroDotX); break;
588 case kMasterRule: result.append(gXDotZero); break;
589 default:
590 // for a normal rule, write out its base value, and if the radix is
591 // something other than 10, write out the radix (with the preceding
592 // slash, of course). Then calculate the expected exponent and if
593 // if isn't the same as the actual exponent, write an appropriate
594 // number of > signs. Finally, terminate the whole thing with
595 // a colon.
596 util_append64(result, baseValue);
597 if (radix != 10) {
598 result.append(gSlash);
599 util_append64(result, radix);
600 }
601 int numCarets = expectedExponent() - exponent;
602 for (int i = 0; i < numCarets; i++) {
603 result.append(gGreaterThan);
604 }
605 break;
606 }
607 result.append(gColon);
608 result.append(gSpace);
609
610 // if the rule text begins with a space, write an apostrophe
611 // (whitespace after the rule descriptor is ignored; the
612 // apostrophe is used to make the whitespace significant)
613 if (ruleText.startsWith(gSpace) && sub1->getPos() != 0) {
614 result.append(gTick);
615 }
616
617 // now, write the rule's rule text, inserting appropriate
618 // substitution tokens in the appropriate places
619 UnicodeString ruleTextCopy;
620 ruleTextCopy.setTo(ruleText);
621
622 UnicodeString temp;
623 sub2->toString(temp);
624 ruleTextCopy.insert(sub2->getPos(), temp);
625 sub1->toString(temp);
626 ruleTextCopy.insert(sub1->getPos(), temp);
627
628 result.append(ruleTextCopy);
629
630 // and finally, top the whole thing off with a semicolon and
631 // return the result
632 result.append(gSemicolon);
633 }
634
635 //-----------------------------------------------------------------------
636 // formatting
637 //-----------------------------------------------------------------------
638
639 /**
640 * Formats the number, and inserts the resulting text into
641 * toInsertInto.
642 * @param number The number being formatted
643 * @param toInsertInto The string where the resultant text should
644 * be inserted
645 * @param pos The position in toInsertInto where the resultant text
646 * should be inserted
647 */
648 void
649 NFRule::doFormat(int64_t number, UnicodeString& toInsertInto, int32_t pos) const
650 {
651 // first, insert the rule's rule text into toInsertInto at the
652 // specified position, then insert the results of the substitutions
653 // into the right places in toInsertInto (notice we do the
654 // substitutions in reverse order so that the offsets don't get
655 // messed up)
656 toInsertInto.insert(pos, ruleText);
657 sub2->doSubstitution(number, toInsertInto, pos);
658 sub1->doSubstitution(number, toInsertInto, pos);
659 }
660
661 /**
662 * Formats the number, and inserts the resulting text into
663 * toInsertInto.
664 * @param number The number being formatted
665 * @param toInsertInto The string where the resultant text should
666 * be inserted
667 * @param pos The position in toInsertInto where the resultant text
668 * should be inserted
669 */
670 void
671 NFRule::doFormat(double number, UnicodeString& toInsertInto, int32_t pos) const
672 {
673 // first, insert the rule's rule text into toInsertInto at the
674 // specified position, then insert the results of the substitutions
675 // into the right places in toInsertInto
676 // [again, we have two copies of this routine that do the same thing
677 // so that we don't sacrifice precision in a long by casting it
678 // to a double]
679 toInsertInto.insert(pos, ruleText);
680 sub2->doSubstitution(number, toInsertInto, pos);
681 sub1->doSubstitution(number, toInsertInto, pos);
682 }
683
684 /**
685 * Used by the owning rule set to determine whether to invoke the
686 * rollback rule (i.e., whether this rule or the one that precedes
687 * it in the rule set's list should be used to format the number)
688 * @param The number being formatted
689 * @return True if the rule set should use the rule that precedes
690 * this one in its list; false if it should use this rule
691 */
692 UBool
693 NFRule::shouldRollBack(double number) const
694 {
695 // we roll back if the rule contains a modulus substitution,
696 // the number being formatted is an even multiple of the rule's
697 // divisor, and the rule's base value is NOT an even multiple
698 // of its divisor
699 // In other words, if the original description had
700 // 100: << hundred[ >>];
701 // that expands into
702 // 100: << hundred;
703 // 101: << hundred >>;
704 // internally. But when we're formatting 200, if we use the rule
705 // at 101, which would normally apply, we get "two hundred zero".
706 // To prevent this, we roll back and use the rule at 100 instead.
707 // This is the logic that makes this happen: the rule at 101 has
708 // a modulus substitution, its base value isn't an even multiple
709 // of 100, and the value we're trying to format _is_ an even
710 // multiple of 100. This is called the "rollback rule."
711 if ((sub1->isModulusSubstitution()) || (sub2->isModulusSubstitution())) {
712 int64_t re = util64_pow(radix, exponent);
713 return uprv_fmod(number, (double)re) == 0 && (baseValue % re) != 0;
714 }
715 return FALSE;
716 }
717
718 //-----------------------------------------------------------------------
719 // parsing
720 //-----------------------------------------------------------------------
721
722 /**
723 * Attempts to parse the string with this rule.
724 * @param text The string being parsed
725 * @param parsePosition On entry, the value is ignored and assumed to
726 * be 0. On exit, this has been updated with the position of the first
727 * character not consumed by matching the text against this rule
728 * (if this rule doesn't match the text at all, the parse position
729 * if left unchanged (presumably at 0) and the function returns
730 * new Long(0)).
731 * @param isFractionRule True if this rule is contained within a
732 * fraction rule set. This is only used if the rule has no
733 * substitutions.
734 * @return If this rule matched the text, this is the rule's base value
735 * combined appropriately with the results of parsing the substitutions.
736 * If nothing matched, this is new Long(0) and the parse position is
737 * left unchanged. The result will be an instance of Long if the
738 * result is an integer and Double otherwise. The result is never null.
739 */
740 #ifdef RBNF_DEBUG
741 #include <stdio.h>
742
743 static void dumpUS(FILE* f, const UnicodeString& us) {
744 int len = us.length();
745 char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1];
746 if (buf != NULL) {
747 us.extract(0, len, buf);
748 buf[len] = 0;
749 fprintf(f, "%s", buf);
750 uprv_free(buf); //delete[] buf;
751 }
752 }
753 #endif
754
755 UBool
756 NFRule::doParse(const UnicodeString& text,
757 ParsePosition& parsePosition,
758 UBool isFractionRule,
759 double upperBound,
760 Formattable& resVal) const
761 {
762 // internally we operate on a copy of the string being parsed
763 // (because we're going to change it) and use our own ParsePosition
764 ParsePosition pp;
765 UnicodeString workText(text);
766
767 // check to see whether the text before the first substitution
768 // matches the text at the beginning of the string being
769 // parsed. If it does, strip that off the front of workText;
770 // otherwise, dump out with a mismatch
771 UnicodeString prefix;
772 prefix.setTo(ruleText, 0, sub1->getPos());
773
774 #ifdef RBNF_DEBUG
775 fprintf(stderr, "doParse %x ", this);
776 {
777 UnicodeString rt;
778 _appendRuleText(rt);
779 dumpUS(stderr, rt);
780 }
781
782 fprintf(stderr, " text: '", this);
783 dumpUS(stderr, text);
784 fprintf(stderr, "' prefix: '");
785 dumpUS(stderr, prefix);
786 #endif
787 stripPrefix(workText, prefix, pp);
788 int32_t prefixLength = text.length() - workText.length();
789
790 #ifdef RBNF_DEBUG
791 fprintf(stderr, "' pl: %d ppi: %d s1p: %d\n", prefixLength, pp.getIndex(), sub1->getPos());
792 #endif
793
794 if (pp.getIndex() == 0 && sub1->getPos() != 0) {
795 // commented out because ParsePosition doesn't have error index in 1.1.x
796 // restored for ICU4C port
797 parsePosition.setErrorIndex(pp.getErrorIndex());
798 resVal.setLong(0);
799 return TRUE;
800 }
801
802 // this is the fun part. The basic guts of the rule-matching
803 // logic is matchToDelimiter(), which is called twice. The first
804 // time it searches the input string for the rule text BETWEEN
805 // the substitutions and tries to match the intervening text
806 // in the input string with the first substitution. If that
807 // succeeds, it then calls it again, this time to look for the
808 // rule text after the second substitution and to match the
809 // intervening input text against the second substitution.
810 //
811 // For example, say we have a rule that looks like this:
812 // first << middle >> last;
813 // and input text that looks like this:
814 // first one middle two last
815 // First we use stripPrefix() to match "first " in both places and
816 // strip it off the front, leaving
817 // one middle two last
818 // Then we use matchToDelimiter() to match " middle " and try to
819 // match "one" against a substitution. If it's successful, we now
820 // have
821 // two last
822 // We use matchToDelimiter() a second time to match " last" and
823 // try to match "two" against a substitution. If "two" matches
824 // the substitution, we have a successful parse.
825 //
826 // Since it's possible in many cases to find multiple instances
827 // of each of these pieces of rule text in the input string,
828 // we need to try all the possible combinations of these
829 // locations. This prevents us from prematurely declaring a mismatch,
830 // and makes sure we match as much input text as we can.
831 int highWaterMark = 0;
832 double result = 0;
833 int start = 0;
834 double tempBaseValue = (double)(baseValue <= 0 ? 0 : baseValue);
835
836 UnicodeString temp;
837 do {
838 // our partial parse result starts out as this rule's base
839 // value. If it finds a successful match, matchToDelimiter()
840 // will compose this in some way with what it gets back from
841 // the substitution, giving us a new partial parse result
842 pp.setIndex(0);
843
844 temp.setTo(ruleText, sub1->getPos(), sub2->getPos() - sub1->getPos());
845 double partialResult = matchToDelimiter(workText, start, tempBaseValue,
846 temp, pp, sub1,
847 upperBound);
848
849 // if we got a successful match (or were trying to match a
850 // null substitution), pp is now pointing at the first unmatched
851 // character. Take note of that, and try matchToDelimiter()
852 // on the input text again
853 if (pp.getIndex() != 0 || sub1->isNullSubstitution()) {
854 start = pp.getIndex();
855
856 UnicodeString workText2;
857 workText2.setTo(workText, pp.getIndex(), workText.length() - pp.getIndex());
858 ParsePosition pp2;
859
860 // the second matchToDelimiter() will compose our previous
861 // partial result with whatever it gets back from its
862 // substitution if there's a successful match, giving us
863 // a real result
864 temp.setTo(ruleText, sub2->getPos(), ruleText.length() - sub2->getPos());
865 partialResult = matchToDelimiter(workText2, 0, partialResult,
866 temp, pp2, sub2,
867 upperBound);
868
869 // if we got a successful match on this second
870 // matchToDelimiter() call, update the high-water mark
871 // and result (if necessary)
872 if (pp2.getIndex() != 0 || sub2->isNullSubstitution()) {
873 if (prefixLength + pp.getIndex() + pp2.getIndex() > highWaterMark) {
874 highWaterMark = prefixLength + pp.getIndex() + pp2.getIndex();
875 result = partialResult;
876 }
877 }
878 // commented out because ParsePosition doesn't have error index in 1.1.x
879 // restored for ICU4C port
880 else {
881 int32_t temp = pp2.getErrorIndex() + sub1->getPos() + pp.getIndex();
882 if (temp> parsePosition.getErrorIndex()) {
883 parsePosition.setErrorIndex(temp);
884 }
885 }
886 }
887 // commented out because ParsePosition doesn't have error index in 1.1.x
888 // restored for ICU4C port
889 else {
890 int32_t temp = sub1->getPos() + pp.getErrorIndex();
891 if (temp > parsePosition.getErrorIndex()) {
892 parsePosition.setErrorIndex(temp);
893 }
894 }
895 // keep trying to match things until the outer matchToDelimiter()
896 // call fails to make a match (each time, it picks up where it
897 // left off the previous time)
898 } while (sub1->getPos() != sub2->getPos()
899 && pp.getIndex() > 0
900 && pp.getIndex() < workText.length()
901 && pp.getIndex() != start);
902
903 // update the caller's ParsePosition with our high-water mark
904 // (i.e., it now points at the first character this function
905 // didn't match-- the ParsePosition is therefore unchanged if
906 // we didn't match anything)
907 parsePosition.setIndex(highWaterMark);
908 // commented out because ParsePosition doesn't have error index in 1.1.x
909 // restored for ICU4C port
910 if (highWaterMark > 0) {
911 parsePosition.setErrorIndex(0);
912 }
913
914 // this is a hack for one unusual condition: Normally, whether this
915 // rule belong to a fraction rule set or not is handled by its
916 // substitutions. But if that rule HAS NO substitutions, then
917 // we have to account for it here. By definition, if the matching
918 // rule in a fraction rule set has no substitutions, its numerator
919 // is 1, and so the result is the reciprocal of its base value.
920 if (isFractionRule &&
921 highWaterMark > 0 &&
922 sub1->isNullSubstitution()) {
923 result = 1 / result;
924 }
925
926 resVal.setDouble(result);
927 return TRUE; // ??? do we need to worry if it is a long or a double?
928 }
929
930 /**
931 * This function is used by parse() to match the text being parsed
932 * against a possible prefix string. This function
933 * matches characters from the beginning of the string being parsed
934 * to characters from the prospective prefix. If they match, pp is
935 * updated to the first character not matched, and the result is
936 * the unparsed part of the string. If they don't match, the whole
937 * string is returned, and pp is left unchanged.
938 * @param text The string being parsed
939 * @param prefix The text to match against
940 * @param pp On entry, ignored and assumed to be 0. On exit, points
941 * to the first unmatched character (assuming the whole prefix matched),
942 * or is unchanged (if the whole prefix didn't match).
943 * @return If things match, this is the unparsed part of "text";
944 * if they didn't match, this is "text".
945 */
946 void
947 NFRule::stripPrefix(UnicodeString& text, const UnicodeString& prefix, ParsePosition& pp) const
948 {
949 // if the prefix text is empty, dump out without doing anything
950 if (prefix.length() != 0) {
951 UErrorCode status = U_ZERO_ERROR;
952 // use prefixLength() to match the beginning of
953 // "text" against "prefix". This function returns the
954 // number of characters from "text" that matched (or 0 if
955 // we didn't match the whole prefix)
956 int32_t pfl = prefixLength(text, prefix, status);
957 if (U_FAILURE(status)) { // Memory allocation error.
958 return;
959 }
960 if (pfl != 0) {
961 // if we got a successful match, update the parse position
962 // and strip the prefix off of "text"
963 pp.setIndex(pp.getIndex() + pfl);
964 text.remove(0, pfl);
965 }
966 }
967 }
968
969 /**
970 * Used by parse() to match a substitution and any following text.
971 * "text" is searched for instances of "delimiter". For each instance
972 * of delimiter, the intervening text is tested to see whether it
973 * matches the substitution. The longest match wins.
974 * @param text The string being parsed
975 * @param startPos The position in "text" where we should start looking
976 * for "delimiter".
977 * @param baseValue A partial parse result (often the rule's base value),
978 * which is combined with the result from matching the substitution
979 * @param delimiter The string to search "text" for.
980 * @param pp Ignored and presumed to be 0 on entry. If there's a match,
981 * on exit this will point to the first unmatched character.
982 * @param sub If we find "delimiter" in "text", this substitution is used
983 * to match the text between the beginning of the string and the
984 * position of "delimiter." (If "delimiter" is the empty string, then
985 * this function just matches against this substitution and updates
986 * everything accordingly.)
987 * @param upperBound When matching the substitution, it will only
988 * consider rules with base values lower than this value.
989 * @return If there's a match, this is the result of composing
990 * baseValue with the result of matching the substitution. Otherwise,
991 * this is new Long(0). It's never null. If the result is an integer,
992 * this will be an instance of Long; otherwise, it's an instance of
993 * Double.
994 *
995 * !!! note {dlf} in point of fact, in the java code the caller always converts
996 * the result to a double, so we might as well return one.
997 */
998 double
999 NFRule::matchToDelimiter(const UnicodeString& text,
1000 int32_t startPos,
1001 double _baseValue,
1002 const UnicodeString& delimiter,
1003 ParsePosition& pp,
1004 const NFSubstitution* sub,
1005 double upperBound) const
1006 {
1007 UErrorCode status = U_ZERO_ERROR;
1008 // if "delimiter" contains real (i.e., non-ignorable) text, search
1009 // it for "delimiter" beginning at "start". If that succeeds, then
1010 // use "sub"'s doParse() method to match the text before the
1011 // instance of "delimiter" we just found.
1012 if (!allIgnorable(delimiter, status)) {
1013 if (U_FAILURE(status)) { //Memory allocation error.
1014 return 0;
1015 }
1016 ParsePosition tempPP;
1017 Formattable result;
1018
1019 // use findText() to search for "delimiter". It returns a two-
1020 // element array: element 0 is the position of the match, and
1021 // element 1 is the number of characters that matched
1022 // "delimiter".
1023 int32_t dLen;
1024 int32_t dPos = findText(text, delimiter, startPos, &dLen);
1025
1026 // if findText() succeeded, isolate the text preceding the
1027 // match, and use "sub" to match that text
1028 while (dPos >= 0) {
1029 UnicodeString subText;
1030 subText.setTo(text, 0, dPos);
1031 if (subText.length() > 0) {
1032 UBool success = sub->doParse(subText, tempPP, _baseValue, upperBound,
1033 #if UCONFIG_NO_COLLATION
1034 FALSE,
1035 #else
1036 formatter->isLenient(),
1037 #endif
1038 result);
1039
1040 // if the substitution could match all the text up to
1041 // where we found "delimiter", then this function has
1042 // a successful match. Bump the caller's parse position
1043 // to point to the first character after the text
1044 // that matches "delimiter", and return the result
1045 // we got from parsing the substitution.
1046 if (success && tempPP.getIndex() == dPos) {
1047 pp.setIndex(dPos + dLen);
1048 return result.getDouble();
1049 }
1050 // commented out because ParsePosition doesn't have error index in 1.1.x
1051 // restored for ICU4C port
1052 else {
1053 if (tempPP.getErrorIndex() > 0) {
1054 pp.setErrorIndex(tempPP.getErrorIndex());
1055 } else {
1056 pp.setErrorIndex(tempPP.getIndex());
1057 }
1058 }
1059 }
1060
1061 // if we didn't match the substitution, search for another
1062 // copy of "delimiter" in "text" and repeat the loop if
1063 // we find it
1064 tempPP.setIndex(0);
1065 dPos = findText(text, delimiter, dPos + dLen, &dLen);
1066 }
1067 // if we make it here, this was an unsuccessful match, and we
1068 // leave pp unchanged and return 0
1069 pp.setIndex(0);
1070 return 0;
1071
1072 // if "delimiter" is empty, or consists only of ignorable characters
1073 // (i.e., is semantically empty), thwe we obviously can't search
1074 // for "delimiter". Instead, just use "sub" to parse as much of
1075 // "text" as possible.
1076 } else {
1077 ParsePosition tempPP;
1078 Formattable result;
1079
1080 // try to match the whole string against the substitution
1081 UBool success = sub->doParse(text, tempPP, _baseValue, upperBound,
1082 #if UCONFIG_NO_COLLATION
1083 FALSE,
1084 #else
1085 formatter->isLenient(),
1086 #endif
1087 result);
1088 if (success && (tempPP.getIndex() != 0 || sub->isNullSubstitution())) {
1089 // if there's a successful match (or it's a null
1090 // substitution), update pp to point to the first
1091 // character we didn't match, and pass the result from
1092 // sub.doParse() on through to the caller
1093 pp.setIndex(tempPP.getIndex());
1094 return result.getDouble();
1095 }
1096 // commented out because ParsePosition doesn't have error index in 1.1.x
1097 // restored for ICU4C port
1098 else {
1099 pp.setErrorIndex(tempPP.getErrorIndex());
1100 }
1101
1102 // and if we get to here, then nothing matched, so we return
1103 // 0 and leave pp alone
1104 return 0;
1105 }
1106 }
1107
1108 /**
1109 * Used by stripPrefix() to match characters. If lenient parse mode
1110 * is off, this just calls startsWith(). If lenient parse mode is on,
1111 * this function uses CollationElementIterators to match characters in
1112 * the strings (only primary-order differences are significant in
1113 * determining whether there's a match).
1114 * @param str The string being tested
1115 * @param prefix The text we're hoping to see at the beginning
1116 * of "str"
1117 * @return If "prefix" is found at the beginning of "str", this
1118 * is the number of characters in "str" that were matched (this
1119 * isn't necessarily the same as the length of "prefix" when matching
1120 * text with a collator). If there's no match, this is 0.
1121 */
1122 int32_t
1123 NFRule::prefixLength(const UnicodeString& str, const UnicodeString& prefix, UErrorCode& status) const
1124 {
1125 // if we're looking for an empty prefix, it obviously matches
1126 // zero characters. Just go ahead and return 0.
1127 if (prefix.length() == 0) {
1128 return 0;
1129 }
1130
1131 #if !UCONFIG_NO_COLLATION
1132 // go through all this grief if we're in lenient-parse mode
1133 if (formatter->isLenient()) {
1134 // get the formatter's collator and use it to create two
1135 // collation element iterators, one over the target string
1136 // and another over the prefix (right now, we'll throw an
1137 // exception if the collator we get back from the formatter
1138 // isn't a RuleBasedCollator, because RuleBasedCollator defines
1139 // the CollationElementIterator protocol. Hopefully, this
1140 // will change someday.)
1141 RuleBasedCollator* collator = (RuleBasedCollator*)formatter->getCollator();
1142 CollationElementIterator* strIter = collator->createCollationElementIterator(str);
1143 CollationElementIterator* prefixIter = collator->createCollationElementIterator(prefix);
1144 // Check for memory allocation error.
1145 if (collator == NULL || strIter == NULL || prefixIter == NULL) {
1146 delete collator;
1147 delete strIter;
1148 delete prefixIter;
1149 status = U_MEMORY_ALLOCATION_ERROR;
1150 return 0;
1151 }
1152
1153 UErrorCode err = U_ZERO_ERROR;
1154
1155 // The original code was problematic. Consider this match:
1156 // prefix = "fifty-"
1157 // string = " fifty-7"
1158 // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1159 // in the string. Unfortunately, we were getting a match, and then computing where
1160 // the match terminated by rematching the string. The rematch code was using as an
1161 // initial guess the substring of string between 0 and prefix.length. Because of
1162 // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1163 // the position before the hyphen in the string. Recursing down, we then parsed the
1164 // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7).
1165 // This was not pretty, especially since the string "fifty-7" parsed just fine.
1166 //
1167 // We have newer APIs now, so we can use calls on the iterator to determine what we
1168 // matched up to. If we terminate because we hit the last element in the string,
1169 // our match terminates at this length. If we terminate because we hit the last element
1170 // in the target, our match terminates at one before the element iterator position.
1171
1172 // match collation elements between the strings
1173 int32_t oStr = strIter->next(err);
1174 int32_t oPrefix = prefixIter->next(err);
1175
1176 while (oPrefix != CollationElementIterator::NULLORDER) {
1177 // skip over ignorable characters in the target string
1178 while (CollationElementIterator::primaryOrder(oStr) == 0
1179 && oStr != CollationElementIterator::NULLORDER) {
1180 oStr = strIter->next(err);
1181 }
1182
1183 // skip over ignorable characters in the prefix
1184 while (CollationElementIterator::primaryOrder(oPrefix) == 0
1185 && oPrefix != CollationElementIterator::NULLORDER) {
1186 oPrefix = prefixIter->next(err);
1187 }
1188
1189 // dlf: move this above following test, if we consume the
1190 // entire target, aren't we ok even if the source was also
1191 // entirely consumed?
1192
1193 // if skipping over ignorables brought to the end of
1194 // the prefix, we DID match: drop out of the loop
1195 if (oPrefix == CollationElementIterator::NULLORDER) {
1196 break;
1197 }
1198
1199 // if skipping over ignorables brought us to the end
1200 // of the target string, we didn't match and return 0
1201 if (oStr == CollationElementIterator::NULLORDER) {
1202 delete prefixIter;
1203 delete strIter;
1204 return 0;
1205 }
1206
1207 // match collation elements from the two strings
1208 // (considering only primary differences). If we
1209 // get a mismatch, dump out and return 0
1210 if (CollationElementIterator::primaryOrder(oStr)
1211 != CollationElementIterator::primaryOrder(oPrefix)) {
1212 delete prefixIter;
1213 delete strIter;
1214 return 0;
1215
1216 // otherwise, advance to the next character in each string
1217 // and loop (we drop out of the loop when we exhaust
1218 // collation elements in the prefix)
1219 } else {
1220 oStr = strIter->next(err);
1221 oPrefix = prefixIter->next(err);
1222 }
1223 }
1224
1225 int32_t result = strIter->getOffset();
1226 if (oStr != CollationElementIterator::NULLORDER) {
1227 --result; // back over character that we don't want to consume;
1228 }
1229
1230 #ifdef RBNF_DEBUG
1231 fprintf(stderr, "prefix length: %d\n", result);
1232 #endif
1233 delete prefixIter;
1234 delete strIter;
1235
1236 return result;
1237 #if 0
1238 //----------------------------------------------------------------
1239 // JDK 1.2-specific API call
1240 // return strIter.getOffset();
1241 //----------------------------------------------------------------
1242 // JDK 1.1 HACK (take out for 1.2-specific code)
1243
1244 // if we make it to here, we have a successful match. Now we
1245 // have to find out HOW MANY characters from the target string
1246 // matched the prefix (there isn't necessarily a one-to-one
1247 // mapping between collation elements and characters).
1248 // In JDK 1.2, there's a simple getOffset() call we can use.
1249 // In JDK 1.1, on the other hand, we have to go through some
1250 // ugly contortions. First, use the collator to compare the
1251 // same number of characters from the prefix and target string.
1252 // If they're equal, we're done.
1253 collator->setStrength(Collator::PRIMARY);
1254 if (str.length() >= prefix.length()) {
1255 UnicodeString temp;
1256 temp.setTo(str, 0, prefix.length());
1257 if (collator->equals(temp, prefix)) {
1258 #ifdef RBNF_DEBUG
1259 fprintf(stderr, "returning: %d\n", prefix.length());
1260 #endif
1261 return prefix.length();
1262 }
1263 }
1264
1265 // if they're not equal, then we have to compare successively
1266 // larger and larger substrings of the target string until we
1267 // get to one that matches the prefix. At that point, we know
1268 // how many characters matched the prefix, and we can return.
1269 int32_t p = 1;
1270 while (p <= str.length()) {
1271 UnicodeString temp;
1272 temp.setTo(str, 0, p);
1273 if (collator->equals(temp, prefix)) {
1274 return p;
1275 } else {
1276 ++p;
1277 }
1278 }
1279
1280 // SHOULD NEVER GET HERE!!!
1281 return 0;
1282 //----------------------------------------------------------------
1283 #endif
1284
1285 // If lenient parsing is turned off, forget all that crap above.
1286 // Just use String.startsWith() and be done with it.
1287 } else
1288 #endif
1289 {
1290 if (str.startsWith(prefix)) {
1291 return prefix.length();
1292 } else {
1293 return 0;
1294 }
1295 }
1296 }
1297
1298 /**
1299 * Searches a string for another string. If lenient parsing is off,
1300 * this just calls indexOf(). If lenient parsing is on, this function
1301 * uses CollationElementIterator to match characters, and only
1302 * primary-order differences are significant in determining whether
1303 * there's a match.
1304 * @param str The string to search
1305 * @param key The string to search "str" for
1306 * @param startingAt The index into "str" where the search is to
1307 * begin
1308 * @return A two-element array of ints. Element 0 is the position
1309 * of the match, or -1 if there was no match. Element 1 is the
1310 * number of characters in "str" that matched (which isn't necessarily
1311 * the same as the length of "key")
1312 */
1313 int32_t
1314 NFRule::findText(const UnicodeString& str,
1315 const UnicodeString& key,
1316 int32_t startingAt,
1317 int32_t* length) const
1318 {
1319 #if !UCONFIG_NO_COLLATION
1320 // if lenient parsing is turned off, this is easy: just call
1321 // String.indexOf() and we're done
1322 if (!formatter->isLenient()) {
1323 *length = key.length();
1324 return str.indexOf(key, startingAt);
1325
1326 // but if lenient parsing is turned ON, we've got some work
1327 // ahead of us
1328 } else
1329 #endif
1330 {
1331 //----------------------------------------------------------------
1332 // JDK 1.1 HACK (take out of 1.2-specific code)
1333
1334 // in JDK 1.2, CollationElementIterator provides us with an
1335 // API to map between character offsets and collation elements
1336 // and we can do this by marching through the string comparing
1337 // collation elements. We can't do that in JDK 1.1. Insted,
1338 // we have to go through this horrible slow mess:
1339 int32_t p = startingAt;
1340 int32_t keyLen = 0;
1341
1342 // basically just isolate smaller and smaller substrings of
1343 // the target string (each running to the end of the string,
1344 // and with the first one running from startingAt to the end)
1345 // and then use prefixLength() to see if the search key is at
1346 // the beginning of each substring. This is excruciatingly
1347 // slow, but it will locate the key and tell use how long the
1348 // matching text was.
1349 UnicodeString temp;
1350 UErrorCode status = U_ZERO_ERROR;
1351 while (p < str.length() && keyLen == 0) {
1352 temp.setTo(str, p, str.length() - p);
1353 keyLen = prefixLength(temp, key, status);
1354 if (U_FAILURE(status)) {
1355 break;
1356 }
1357 if (keyLen != 0) {
1358 *length = keyLen;
1359 return p;
1360 }
1361 ++p;
1362 }
1363 // if we make it to here, we didn't find it. Return -1 for the
1364 // location. The length should be ignored, but set it to 0,
1365 // which should be "safe"
1366 *length = 0;
1367 return -1;
1368
1369 //----------------------------------------------------------------
1370 // JDK 1.2 version of this routine
1371 //RuleBasedCollator collator = (RuleBasedCollator)formatter.getCollator();
1372 //
1373 //CollationElementIterator strIter = collator.getCollationElementIterator(str);
1374 //CollationElementIterator keyIter = collator.getCollationElementIterator(key);
1375 //
1376 //int keyStart = -1;
1377 //
1378 //str.setOffset(startingAt);
1379 //
1380 //int oStr = strIter.next();
1381 //int oKey = keyIter.next();
1382 //while (oKey != CollationElementIterator.NULLORDER) {
1383 // while (oStr != CollationElementIterator.NULLORDER &&
1384 // CollationElementIterator.primaryOrder(oStr) == 0)
1385 // oStr = strIter.next();
1386 //
1387 // while (oKey != CollationElementIterator.NULLORDER &&
1388 // CollationElementIterator.primaryOrder(oKey) == 0)
1389 // oKey = keyIter.next();
1390 //
1391 // if (oStr == CollationElementIterator.NULLORDER) {
1392 // return new int[] { -1, 0 };
1393 // }
1394 //
1395 // if (oKey == CollationElementIterator.NULLORDER) {
1396 // break;
1397 // }
1398 //
1399 // if (CollationElementIterator.primaryOrder(oStr) ==
1400 // CollationElementIterator.primaryOrder(oKey)) {
1401 // keyStart = strIter.getOffset();
1402 // oStr = strIter.next();
1403 // oKey = keyIter.next();
1404 // } else {
1405 // if (keyStart != -1) {
1406 // keyStart = -1;
1407 // keyIter.reset();
1408 // } else {
1409 // oStr = strIter.next();
1410 // }
1411 // }
1412 //}
1413 //
1414 //if (oKey == CollationElementIterator.NULLORDER) {
1415 // return new int[] { keyStart, strIter.getOffset() - keyStart };
1416 //} else {
1417 // return new int[] { -1, 0 };
1418 //}
1419 }
1420 }
1421
1422 /**
1423 * Checks to see whether a string consists entirely of ignorable
1424 * characters.
1425 * @param str The string to test.
1426 * @return true if the string is empty of consists entirely of
1427 * characters that the number formatter's collator says are
1428 * ignorable at the primary-order level. false otherwise.
1429 */
1430 UBool
1431 NFRule::allIgnorable(const UnicodeString& str, UErrorCode& status) const
1432 {
1433 // if the string is empty, we can just return true
1434 if (str.length() == 0) {
1435 return TRUE;
1436 }
1437
1438 #if !UCONFIG_NO_COLLATION
1439 // if lenient parsing is turned on, walk through the string with
1440 // a collation element iterator and make sure each collation
1441 // element is 0 (ignorable) at the primary level
1442 if (formatter->isLenient()) {
1443 RuleBasedCollator* collator = (RuleBasedCollator*)(formatter->getCollator());
1444 CollationElementIterator* iter = collator->createCollationElementIterator(str);
1445
1446 // Memory allocation error check.
1447 if (collator == NULL || iter == NULL) {
1448 delete collator;
1449 delete iter;
1450 status = U_MEMORY_ALLOCATION_ERROR;
1451 return FALSE;
1452 }
1453
1454 UErrorCode err = U_ZERO_ERROR;
1455 int32_t o = iter->next(err);
1456 while (o != CollationElementIterator::NULLORDER
1457 && CollationElementIterator::primaryOrder(o) == 0) {
1458 o = iter->next(err);
1459 }
1460
1461 delete iter;
1462 return o == CollationElementIterator::NULLORDER;
1463 }
1464 #endif
1465
1466 // if lenient parsing is turned off, there is no such thing as
1467 // an ignorable character: return true only if the string is empty
1468 return FALSE;
1469 }
1470
1471 U_NAMESPACE_END
1472
1473 /* U_HAVE_RBNF */
1474 #endif
1475
1476