]> git.saurik.com Git - apple/icu.git/blob - icuSources/i18n/decNumberLocal.h
ICU-491.11.1.tar.gz
[apple/icu.git] / icuSources / i18n / decNumberLocal.h
1 /* ------------------------------------------------------------------ */
2 /* decNumber package local type, tuning, and macro definitions */
3 /* ------------------------------------------------------------------ */
4 /* Copyright (c) IBM Corporation, 2000-2010. All rights reserved. */
5 /* */
6 /* This software is made available under the terms of the */
7 /* ICU License -- ICU 1.8.1 and later. */
8 /* */
9 /* The description and User's Guide ("The decNumber C Library") for */
10 /* this software is called decNumber.pdf. This document is */
11 /* available, together with arithmetic and format specifications, */
12 /* testcases, and Web links, on the General Decimal Arithmetic page. */
13 /* */
14 /* Please send comments, suggestions, and corrections to the author: */
15 /* mfc@uk.ibm.com */
16 /* Mike Cowlishaw, IBM Fellow */
17 /* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */
18 /* ------------------------------------------------------------------ */
19 /* This header file is included by all modules in the decNumber */
20 /* library, and contains local type definitions, tuning parameters, */
21 /* etc. It should not need to be used by application programs. */
22 /* decNumber.h or one of decDouble (etc.) must be included first. */
23 /* ------------------------------------------------------------------ */
24
25 #if !defined(DECNUMBERLOC)
26 #define DECNUMBERLOC
27 #define DECVERSION "decNumber 3.61" /* Package Version [16 max.] */
28 #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */
29
30 #include <stdlib.h> /* for abs */
31 #include <string.h> /* for memset, strcpy */
32
33 /* Conditional code flag -- set this to match hardware platform */
34 #if !defined(DECLITEND)
35 #define DECLITEND 1 /* 1=little-endian, 0=big-endian */
36 #endif
37
38 /* Conditional code flag -- set this to 1 for best performance */
39 #if !defined(DECUSE64)
40 #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */
41 #endif
42
43 /* Conditional check flags -- set these to 0 for best performance */
44 #if !defined(DECCHECK)
45 #define DECCHECK 0 /* 1 to enable robust checking */
46 #endif
47 #if !defined(DECALLOC)
48 #define DECALLOC 0 /* 1 to enable memory accounting */
49 #endif
50 #if !defined(DECTRACE)
51 #define DECTRACE 0 /* 1 to trace certain internals, etc. */
52 #endif
53
54 /* Tuning parameter for decNumber (arbitrary precision) module */
55 #if !defined(DECBUFFER)
56 #define DECBUFFER 36 /* Size basis for local buffers. This */
57 /* should be a common maximum precision */
58 /* rounded up to a multiple of 4; must */
59 /* be zero or positive. */
60 #endif
61
62 /* ---------------------------------------------------------------- */
63 /* Definitions for all modules (general-purpose) */
64 /* ---------------------------------------------------------------- */
65
66 /* Local names for common types -- for safety, decNumber modules do */
67 /* not use int or long directly. */
68 #define Flag uint8_t
69 #define Byte int8_t
70 #define uByte uint8_t
71 #define Short int16_t
72 #define uShort uint16_t
73 #define Int int32_t
74 #define uInt uint32_t
75 #define Unit decNumberUnit
76 #if DECUSE64
77 #define Long int64_t
78 #define uLong uint64_t
79 #endif
80
81 /* Development-use definitions */
82 typedef long int LI; /* for printf arguments only */
83 #define DECNOINT 0 /* 1 to check no internal use of 'int' */
84 /* or stdint types */
85 #if DECNOINT
86 /* if these interfere with your C includes, do not set DECNOINT */
87 #define int ? /* enable to ensure that plain C 'int' */
88 #define long ?? /* .. or 'long' types are not used */
89 #endif
90
91 /* Shared lookup tables */
92 extern const uByte DECSTICKYTAB[10]; /* re-round digits if sticky */
93 extern const uInt DECPOWERS[10]; /* powers of ten table */
94 /* The following are included from decDPD.h */
95 extern const uShort DPD2BIN[1024]; /* DPD -> 0-999 */
96 extern const uShort BIN2DPD[1000]; /* 0-999 -> DPD */
97 extern const uInt DPD2BINK[1024]; /* DPD -> 0-999000 */
98 extern const uInt DPD2BINM[1024]; /* DPD -> 0-999000000 */
99 extern const uByte DPD2BCD8[4096]; /* DPD -> ddd + len */
100 extern const uByte BIN2BCD8[4000]; /* 0-999 -> ddd + len */
101 extern const uShort BCD2DPD[2458]; /* 0-0x999 -> DPD (0x999=2457)*/
102
103 /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */
104 /* (that is, sets w to be the high-order word of the 64-bit result; */
105 /* the low-order word is simply u*v.) */
106 /* This version is derived from Knuth via Hacker's Delight; */
107 /* it seems to optimize better than some others tried */
108 #define LONGMUL32HI(w, u, v) { \
109 uInt u0, u1, v0, v1, w0, w1, w2, t; \
110 u0=u & 0xffff; u1=u>>16; \
111 v0=v & 0xffff; v1=v>>16; \
112 w0=u0*v0; \
113 t=u1*v0 + (w0>>16); \
114 w1=t & 0xffff; w2=t>>16; \
115 w1=u0*v1 + w1; \
116 (w)=u1*v1 + w2 + (w1>>16);}
117
118 /* ROUNDUP -- round an integer up to a multiple of n */
119 #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n)
120 #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */
121
122 /* ROUNDDOWN -- round an integer down to a multiple of n */
123 #define ROUNDDOWN(i, n) (((i)/n)*n)
124 #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */
125
126 /* References to multi-byte sequences under different sizes; these */
127 /* require locally declared variables, but do not violate strict */
128 /* aliasing or alignment (as did the UINTAT simple cast to uInt). */
129 /* Variables needed are uswork, uiwork, etc. [so do not use at same */
130 /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */
131
132 /* Return a uInt, etc., from bytes starting at a char* or uByte* */
133 #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork)
134 #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork)
135
136 /* Store a uInt, etc., into bytes starting at a char* or uByte*. */
137 /* Returns i, evaluated, for convenience; has to use uiwork because */
138 /* i may be an expression. */
139 #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2), uswork)
140 #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4), uiwork)
141
142 /* X10 and X100 -- multiply integer i by 10 or 100 */
143 /* [shifts are usually faster than multiply; could be conditional] */
144 #define X10(i) (((i)<<1)+((i)<<3))
145 #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6))
146
147 /* MAXI and MINI -- general max & min (not in ANSI) for integers */
148 #define MAXI(x,y) ((x)<(y)?(y):(x))
149 #define MINI(x,y) ((x)>(y)?(y):(x))
150
151 /* Useful constants */
152 #define BILLION 1000000000 /* 10**9 */
153 /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */
154 #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0')
155
156
157 /* ---------------------------------------------------------------- */
158 /* Definitions for arbitary-precision modules (only valid after */
159 /* decNumber.h has been included) */
160 /* ---------------------------------------------------------------- */
161
162 /* Limits and constants */
163 #define DECNUMMAXP 999999999 /* maximum precision code can handle */
164 #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */
165 #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */
166 #if (DECNUMMAXP != DEC_MAX_DIGITS)
167 #error Maximum digits mismatch
168 #endif
169 #if (DECNUMMAXE != DEC_MAX_EMAX)
170 #error Maximum exponent mismatch
171 #endif
172 #if (DECNUMMINE != DEC_MIN_EMIN)
173 #error Minimum exponent mismatch
174 #endif
175
176 /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */
177 /* digits, and D2UTABLE -- the initializer for the D2U table */
178 #if DECDPUN==1
179 #define DECDPUNMAX 9
180 #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \
181 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \
182 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \
183 48,49}
184 #elif DECDPUN==2
185 #define DECDPUNMAX 99
186 #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \
187 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \
188 18,19,19,20,20,21,21,22,22,23,23,24,24,25}
189 #elif DECDPUN==3
190 #define DECDPUNMAX 999
191 #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \
192 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \
193 13,14,14,14,15,15,15,16,16,16,17}
194 #elif DECDPUN==4
195 #define DECDPUNMAX 9999
196 #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \
197 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \
198 11,11,11,12,12,12,12,13}
199 #elif DECDPUN==5
200 #define DECDPUNMAX 99999
201 #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \
202 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \
203 9,9,10,10,10,10}
204 #elif DECDPUN==6
205 #define DECDPUNMAX 999999
206 #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \
207 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \
208 8,8,8,8,8,9}
209 #elif DECDPUN==7
210 #define DECDPUNMAX 9999999
211 #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \
212 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \
213 7,7,7,7,7,7}
214 #elif DECDPUN==8
215 #define DECDPUNMAX 99999999
216 #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \
217 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \
218 6,6,6,6,6,7}
219 #elif DECDPUN==9
220 #define DECDPUNMAX 999999999
221 #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \
222 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \
223 5,5,6,6,6,6}
224 #elif defined(DECDPUN)
225 #error DECDPUN must be in the range 1-9
226 #endif
227
228 /* ----- Shared data (in decNumber.c) ----- */
229 /* Public lookup table used by the D2U macro (see below) */
230 #define DECMAXD2U 49
231 extern const uByte d2utable[DECMAXD2U+1];
232
233 /* ----- Macros ----- */
234 /* ISZERO -- return true if decNumber dn is a zero */
235 /* [performance-critical in some situations] */
236 #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */
237
238 /* D2U -- return the number of Units needed to hold d digits */
239 /* (runtime version, with table lookaside for small d) */
240 #if DECDPUN==8
241 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3))
242 #elif DECDPUN==4
243 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2))
244 #else
245 #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN)
246 #endif
247 /* SD2U -- static D2U macro (for compile-time calculation) */
248 #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN)
249
250 /* MSUDIGITS -- returns digits in msu, from digits, calculated */
251 /* using D2U */
252 #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN)
253
254 /* D2N -- return the number of decNumber structs that would be */
255 /* needed to contain that number of digits (and the initial */
256 /* decNumber struct) safely. Note that one Unit is included in the */
257 /* initial structure. Used for allocating space that is aligned on */
258 /* a decNumber struct boundary. */
259 #define D2N(d) \
260 ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber))
261
262 /* TODIGIT -- macro to remove the leading digit from the unsigned */
263 /* integer u at column cut (counting from the right, LSD=0) and */
264 /* place it as an ASCII character into the character pointed to by */
265 /* c. Note that cut must be <= 9, and the maximum value for u is */
266 /* 2,000,000,000 (as is needed for negative exponents of */
267 /* subnormals). The unsigned integer pow is used as a temporary */
268 /* variable. */
269 #define TODIGIT(u, cut, c, pow) { \
270 *(c)='0'; \
271 pow=DECPOWERS[cut]*2; \
272 if ((u)>pow) { \
273 pow*=4; \
274 if ((u)>=pow) {(u)-=pow; *(c)+=8;} \
275 pow/=2; \
276 if ((u)>=pow) {(u)-=pow; *(c)+=4;} \
277 pow/=2; \
278 } \
279 if ((u)>=pow) {(u)-=pow; *(c)+=2;} \
280 pow/=2; \
281 if ((u)>=pow) {(u)-=pow; *(c)+=1;} \
282 }
283
284 /* ---------------------------------------------------------------- */
285 /* Definitions for fixed-precision modules (only valid after */
286 /* decSingle.h, decDouble.h, or decQuad.h has been included) */
287 /* ---------------------------------------------------------------- */
288
289 /* bcdnum -- a structure describing a format-independent finite */
290 /* number, whose coefficient is a string of bcd8 uBytes */
291 typedef struct {
292 uByte *msd; /* -> most significant digit */
293 uByte *lsd; /* -> least ditto */
294 uInt sign; /* 0=positive, DECFLOAT_Sign=negative */
295 Int exponent; /* Unadjusted signed exponent (q), or */
296 /* DECFLOAT_NaN etc. for a special */
297 } bcdnum;
298
299 /* Test if exponent or bcdnum exponent must be a special, etc. */
300 #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp)
301 #define EXPISINF(exp) (exp==DECFLOAT_Inf)
302 #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN)
303 #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent))
304
305 /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */
306 /* (array) notation (the 0 word or byte contains the sign bit), */
307 /* automatically adjusting for endianness; similarly address a word */
308 /* in the next-wider format (decFloatWider, or dfw) */
309 #define DECWORDS (DECBYTES/4)
310 #define DECWWORDS (DECWBYTES/4)
311 #if DECLITEND
312 #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)])
313 #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)])
314 #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)])
315 #else
316 #define DFBYTE(df, off) ((df)->bytes[off])
317 #define DFWORD(df, off) ((df)->words[off])
318 #define DFWWORD(dfw, off) ((dfw)->words[off])
319 #endif
320
321 /* Tests for sign or specials, directly on DECFLOATs */
322 #define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000)
323 #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000)
324 #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000)
325 #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000)
326 #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000)
327 #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000)
328
329 /* Shared lookup tables */
330 extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */
331 extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */
332
333 /* Private generic (utility) routine */
334 #if DECCHECK || DECTRACE
335 extern void decShowNum(const bcdnum *, const char *);
336 #endif
337
338 /* Format-dependent macros and constants */
339 #if defined(DECPMAX)
340
341 /* Useful constants */
342 #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */
343 /* Top words for a zero */
344 #define SINGLEZERO 0x22500000
345 #define DOUBLEZERO 0x22380000
346 #define QUADZERO 0x22080000
347 /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */
348
349 /* Format-dependent common tests: */
350 /* DFISZERO -- test for (any) zero */
351 /* DFISCCZERO -- test for coefficient continuation being zero */
352 /* DFISCC01 -- test for coefficient contains only 0s and 1s */
353 /* DFISINT -- test for finite and exponent q=0 */
354 /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */
355 /* MSD=0 or 1 */
356 /* ZEROWORD is also defined here. */
357 /* In DFISZERO the first test checks the least-significant word */
358 /* (most likely to be non-zero); the penultimate tests MSD and */
359 /* DPDs in the signword, and the final test excludes specials and */
360 /* MSD>7. DFISINT similarly has to allow for the two forms of */
361 /* MSD codes. DFISUINT01 only has to allow for one form of MSD */
362 /* code. */
363 #if DECPMAX==7
364 #define ZEROWORD SINGLEZERO
365 /* [test macros not needed except for Zero] */
366 #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \
367 && (DFWORD(df, 0)&0x60000000)!=0x60000000)
368 #elif DECPMAX==16
369 #define ZEROWORD DOUBLEZERO
370 #define DFISZERO(df) ((DFWORD(df, 1)==0 \
371 && (DFWORD(df, 0)&0x1c03ffff)==0 \
372 && (DFWORD(df, 0)&0x60000000)!=0x60000000))
373 #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \
374 ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000)
375 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000)
376 #define DFISCCZERO(df) (DFWORD(df, 1)==0 \
377 && (DFWORD(df, 0)&0x0003ffff)==0)
378 #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \
379 && (DFWORD(df, 1)&~0x49124491)==0)
380 #elif DECPMAX==34
381 #define ZEROWORD QUADZERO
382 #define DFISZERO(df) ((DFWORD(df, 3)==0 \
383 && DFWORD(df, 2)==0 \
384 && DFWORD(df, 1)==0 \
385 && (DFWORD(df, 0)&0x1c003fff)==0 \
386 && (DFWORD(df, 0)&0x60000000)!=0x60000000))
387 #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \
388 ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000)
389 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000)
390 #define DFISCCZERO(df) (DFWORD(df, 3)==0 \
391 && DFWORD(df, 2)==0 \
392 && DFWORD(df, 1)==0 \
393 && (DFWORD(df, 0)&0x00003fff)==0)
394
395 #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \
396 && (DFWORD(df, 1)&~0x44912449)==0 \
397 && (DFWORD(df, 2)&~0x12449124)==0 \
398 && (DFWORD(df, 3)&~0x49124491)==0)
399 #endif
400
401 /* Macros to test if a certain 10 bits of a uInt or pair of uInts */
402 /* are a canonical declet [higher or lower bits are ignored]. */
403 /* declet is at offset 0 (from the right) in a uInt: */
404 #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e)
405 /* declet is at offset k (a multiple of 2) in a uInt: */
406 #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \
407 || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
408 /* declet is at offset k (a multiple of 2) in a pair of uInts: */
409 /* [the top 2 bits will always be in the more-significant uInt] */
410 #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \
411 || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \
412 || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
413
414 /* Macro to test whether a full-length (length DECPMAX) BCD8 */
415 /* coefficient, starting at uByte u, is all zeros */
416 /* Test just the LSWord first, then the remainder as a sequence */
417 /* of tests in order to avoid same-level use of UBTOUI */
418 #if DECPMAX==7
419 #define ISCOEFFZERO(u) ( \
420 UBTOUI((u)+DECPMAX-4)==0 \
421 && UBTOUS((u)+DECPMAX-6)==0 \
422 && *(u)==0)
423 #elif DECPMAX==16
424 #define ISCOEFFZERO(u) ( \
425 UBTOUI((u)+DECPMAX-4)==0 \
426 && UBTOUI((u)+DECPMAX-8)==0 \
427 && UBTOUI((u)+DECPMAX-12)==0 \
428 && UBTOUI(u)==0)
429 #elif DECPMAX==34
430 #define ISCOEFFZERO(u) ( \
431 UBTOUI((u)+DECPMAX-4)==0 \
432 && UBTOUI((u)+DECPMAX-8)==0 \
433 && UBTOUI((u)+DECPMAX-12)==0 \
434 && UBTOUI((u)+DECPMAX-16)==0 \
435 && UBTOUI((u)+DECPMAX-20)==0 \
436 && UBTOUI((u)+DECPMAX-24)==0 \
437 && UBTOUI((u)+DECPMAX-28)==0 \
438 && UBTOUI((u)+DECPMAX-32)==0 \
439 && UBTOUS(u)==0)
440 #endif
441
442 /* Macros and masks for the exponent continuation field and MSD */
443 /* Get the exponent continuation from a decFloat *df as an Int */
444 #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL)))
445 /* Ditto, from the next-wider format */
446 #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL)))
447 /* Get the biased exponent similarly */
448 #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df)))
449 /* Get the unbiased exponent similarly */
450 #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS)
451 /* Get the MSD similarly (as uInt) */
452 #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26])
453
454 /* Compile-time computes of the exponent continuation field masks */
455 /* full exponent continuation field: */
456 #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
457 /* same, not including its first digit (the qNaN/sNaN selector): */
458 #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
459
460 /* Macros to decode the coefficient in a finite decFloat *df into */
461 /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */
462
463 /* In-line sequence to convert least significant 10 bits of uInt */
464 /* dpd to three BCD8 digits starting at uByte u. Note that an */
465 /* extra byte is written to the right of the three digits because */
466 /* four bytes are moved at a time for speed; the alternative */
467 /* macro moves exactly three bytes (usually slower). */
468 #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4)
469 #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3)
470
471 /* Decode the declets. After extracting each one, it is decoded */
472 /* to BCD8 using a table lookup (also used for variable-length */
473 /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */
474 /* length which is not used, here). Fixed-length 4-byte moves */
475 /* are fast, however, almost everywhere, and so are used except */
476 /* for the final three bytes (to avoid overrun). The code below */
477 /* is 36 instructions for Doubles and about 70 for Quads, even */
478 /* on IA32. */
479
480 /* Two macros are defined for each format: */
481 /* GETCOEFF extracts the coefficient of the current format */
482 /* GETWCOEFF extracts the coefficient of the next-wider format. */
483 /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */
484
485 #if DECPMAX==7
486 #define GETCOEFF(df, bcd) { \
487 uInt sourhi=DFWORD(df, 0); \
488 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
489 dpd2bcd8(bcd+1, sourhi>>10); \
490 dpd2bcd83(bcd+4, sourhi);}
491 #define GETWCOEFF(df, bcd) { \
492 uInt sourhi=DFWWORD(df, 0); \
493 uInt sourlo=DFWWORD(df, 1); \
494 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
495 dpd2bcd8(bcd+1, sourhi>>8); \
496 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
497 dpd2bcd8(bcd+7, sourlo>>20); \
498 dpd2bcd8(bcd+10, sourlo>>10); \
499 dpd2bcd83(bcd+13, sourlo);}
500
501 #elif DECPMAX==16
502 #define GETCOEFF(df, bcd) { \
503 uInt sourhi=DFWORD(df, 0); \
504 uInt sourlo=DFWORD(df, 1); \
505 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
506 dpd2bcd8(bcd+1, sourhi>>8); \
507 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
508 dpd2bcd8(bcd+7, sourlo>>20); \
509 dpd2bcd8(bcd+10, sourlo>>10); \
510 dpd2bcd83(bcd+13, sourlo);}
511 #define GETWCOEFF(df, bcd) { \
512 uInt sourhi=DFWWORD(df, 0); \
513 uInt sourmh=DFWWORD(df, 1); \
514 uInt sourml=DFWWORD(df, 2); \
515 uInt sourlo=DFWWORD(df, 3); \
516 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
517 dpd2bcd8(bcd+1, sourhi>>4); \
518 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
519 dpd2bcd8(bcd+7, sourmh>>16); \
520 dpd2bcd8(bcd+10, sourmh>>6); \
521 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
522 dpd2bcd8(bcd+16, sourml>>18); \
523 dpd2bcd8(bcd+19, sourml>>8); \
524 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
525 dpd2bcd8(bcd+25, sourlo>>20); \
526 dpd2bcd8(bcd+28, sourlo>>10); \
527 dpd2bcd83(bcd+31, sourlo);}
528
529 #elif DECPMAX==34
530 #define GETCOEFF(df, bcd) { \
531 uInt sourhi=DFWORD(df, 0); \
532 uInt sourmh=DFWORD(df, 1); \
533 uInt sourml=DFWORD(df, 2); \
534 uInt sourlo=DFWORD(df, 3); \
535 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
536 dpd2bcd8(bcd+1, sourhi>>4); \
537 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
538 dpd2bcd8(bcd+7, sourmh>>16); \
539 dpd2bcd8(bcd+10, sourmh>>6); \
540 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
541 dpd2bcd8(bcd+16, sourml>>18); \
542 dpd2bcd8(bcd+19, sourml>>8); \
543 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
544 dpd2bcd8(bcd+25, sourlo>>20); \
545 dpd2bcd8(bcd+28, sourlo>>10); \
546 dpd2bcd83(bcd+31, sourlo);}
547
548 #define GETWCOEFF(df, bcd) {??} /* [should never be used] */
549 #endif
550
551 /* Macros to decode the coefficient in a finite decFloat *df into */
552 /* a base-billion uInt array, with the least-significant */
553 /* 0-999999999 'digit' at offset 0. */
554
555 /* Decode the declets. After extracting each one, it is decoded */
556 /* to binary using a table lookup. Three tables are used; one */
557 /* the usual DPD to binary, the other two pre-multiplied by 1000 */
558 /* and 1000000 to avoid multiplication during decode. These */
559 /* tables can also be used for multiplying up the MSD as the DPD */
560 /* code for 0 through 9 is the identity. */
561 #define DPD2BIN0 DPD2BIN /* for prettier code */
562
563 #if DECPMAX==7
564 #define GETCOEFFBILL(df, buf) { \
565 uInt sourhi=DFWORD(df, 0); \
566 (buf)[0]=DPD2BIN0[sourhi&0x3ff] \
567 +DPD2BINK[(sourhi>>10)&0x3ff] \
568 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
569
570 #elif DECPMAX==16
571 #define GETCOEFFBILL(df, buf) { \
572 uInt sourhi, sourlo; \
573 sourlo=DFWORD(df, 1); \
574 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
575 +DPD2BINK[(sourlo>>10)&0x3ff] \
576 +DPD2BINM[(sourlo>>20)&0x3ff]; \
577 sourhi=DFWORD(df, 0); \
578 (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \
579 +DPD2BINK[(sourhi>>8)&0x3ff] \
580 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
581
582 #elif DECPMAX==34
583 #define GETCOEFFBILL(df, buf) { \
584 uInt sourhi, sourmh, sourml, sourlo; \
585 sourlo=DFWORD(df, 3); \
586 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
587 +DPD2BINK[(sourlo>>10)&0x3ff] \
588 +DPD2BINM[(sourlo>>20)&0x3ff]; \
589 sourml=DFWORD(df, 2); \
590 (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \
591 +DPD2BINK[(sourml>>8)&0x3ff] \
592 +DPD2BINM[(sourml>>18)&0x3ff]; \
593 sourmh=DFWORD(df, 1); \
594 (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \
595 +DPD2BINK[(sourmh>>6)&0x3ff] \
596 +DPD2BINM[(sourmh>>16)&0x3ff]; \
597 sourhi=DFWORD(df, 0); \
598 (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \
599 +DPD2BINK[(sourhi>>4)&0x3ff] \
600 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
601
602 #endif
603
604 /* Macros to decode the coefficient in a finite decFloat *df into */
605 /* a base-thousand uInt array (of size DECLETS+1, to allow for */
606 /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/
607
608 /* Decode the declets. After extracting each one, it is decoded */
609 /* to binary using a table lookup. */
610 #if DECPMAX==7
611 #define GETCOEFFTHOU(df, buf) { \
612 uInt sourhi=DFWORD(df, 0); \
613 (buf)[0]=DPD2BIN[sourhi&0x3ff]; \
614 (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \
615 (buf)[2]=DECCOMBMSD[sourhi>>26];}
616
617 #elif DECPMAX==16
618 #define GETCOEFFTHOU(df, buf) { \
619 uInt sourhi, sourlo; \
620 sourlo=DFWORD(df, 1); \
621 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
622 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
623 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
624 sourhi=DFWORD(df, 0); \
625 (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
626 (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \
627 (buf)[5]=DECCOMBMSD[sourhi>>26];}
628
629 #elif DECPMAX==34
630 #define GETCOEFFTHOU(df, buf) { \
631 uInt sourhi, sourmh, sourml, sourlo; \
632 sourlo=DFWORD(df, 3); \
633 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
634 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
635 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
636 sourml=DFWORD(df, 2); \
637 (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
638 (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \
639 (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \
640 sourmh=DFWORD(df, 1); \
641 (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
642 (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \
643 (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \
644 sourhi=DFWORD(df, 0); \
645 (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
646 (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \
647 (buf)[11]=DECCOMBMSD[sourhi>>26];}
648 #endif
649
650
651 /* Macros to decode the coefficient in a finite decFloat *df and */
652 /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */
653 /* After the addition then most significant 'digit' in the array */
654 /* might have a value larger then 10 (with a maximum of 19). */
655 #if DECPMAX==7
656 #define ADDCOEFFTHOU(df, buf) { \
657 uInt sourhi=DFWORD(df, 0); \
658 (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \
659 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
660 (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \
661 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
662 (buf)[2]+=DECCOMBMSD[sourhi>>26];}
663
664 #elif DECPMAX==16
665 #define ADDCOEFFTHOU(df, buf) { \
666 uInt sourhi, sourlo; \
667 sourlo=DFWORD(df, 1); \
668 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
669 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
670 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
671 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
672 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
673 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
674 sourhi=DFWORD(df, 0); \
675 (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
676 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
677 (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \
678 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
679 (buf)[5]+=DECCOMBMSD[sourhi>>26];}
680
681 #elif DECPMAX==34
682 #define ADDCOEFFTHOU(df, buf) { \
683 uInt sourhi, sourmh, sourml, sourlo; \
684 sourlo=DFWORD(df, 3); \
685 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
686 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
687 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
688 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
689 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
690 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
691 sourml=DFWORD(df, 2); \
692 (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
693 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
694 (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \
695 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
696 (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \
697 if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \
698 sourmh=DFWORD(df, 1); \
699 (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
700 if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \
701 (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \
702 if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \
703 (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \
704 if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \
705 sourhi=DFWORD(df, 0); \
706 (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
707 if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \
708 (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \
709 if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \
710 (buf)[11]+=DECCOMBMSD[sourhi>>26];}
711 #endif
712
713
714 /* Set a decFloat to the maximum positive finite number (Nmax) */
715 #if DECPMAX==7
716 #define DFSETNMAX(df) \
717 {DFWORD(df, 0)=0x77f3fcff;}
718 #elif DECPMAX==16
719 #define DFSETNMAX(df) \
720 {DFWORD(df, 0)=0x77fcff3f; \
721 DFWORD(df, 1)=0xcff3fcff;}
722 #elif DECPMAX==34
723 #define DFSETNMAX(df) \
724 {DFWORD(df, 0)=0x77ffcff3; \
725 DFWORD(df, 1)=0xfcff3fcf; \
726 DFWORD(df, 2)=0xf3fcff3f; \
727 DFWORD(df, 3)=0xcff3fcff;}
728 #endif
729
730 /* [end of format-dependent macros and constants] */
731 #endif
732
733 #else
734 #error decNumberLocal included more than once
735 #endif