]> git.saurik.com Git - apple/icu.git/blob - icuSources/i18n/fmtable.cpp
ICU-64232.0.1.tar.gz
[apple/icu.git] / icuSources / i18n / fmtable.cpp
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 * Copyright (C) 1997-2016, International Business Machines Corporation and
6 * others. All Rights Reserved.
7 *******************************************************************************
8 *
9 * File FMTABLE.CPP
10 *
11 * Modification History:
12 *
13 * Date Name Description
14 * 03/25/97 clhuang Initial Implementation.
15 ********************************************************************************
16 */
17
18 #include "unicode/utypes.h"
19
20 #if !UCONFIG_NO_FORMATTING
21
22 #include <cstdlib>
23 #include <math.h>
24 #include "unicode/fmtable.h"
25 #include "unicode/ustring.h"
26 #include "unicode/measure.h"
27 #include "unicode/curramt.h"
28 #include "unicode/uformattable.h"
29 #include "charstr.h"
30 #include "cmemory.h"
31 #include "cstring.h"
32 #include "fmtableimp.h"
33 #include "number_decimalquantity.h"
34
35 // *****************************************************************************
36 // class Formattable
37 // *****************************************************************************
38
39 U_NAMESPACE_BEGIN
40
41 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(Formattable)
42
43 using number::impl::DecimalQuantity;
44
45
46 //-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
47
48 // NOTE: As of 3.0, there are limitations to the UObject API. It does
49 // not (yet) support cloning, operator=, nor operator==. To
50 // work around this, I implement some simple inlines here. Later
51 // these can be modified or removed. [alan]
52
53 // NOTE: These inlines assume that all fObjects are in fact instances
54 // of the Measure class, which is true as of 3.0. [alan]
55
56 // Return TRUE if *a == *b.
57 static inline UBool objectEquals(const UObject* a, const UObject* b) {
58 // LATER: return *a == *b;
59 return *((const Measure*) a) == *((const Measure*) b);
60 }
61
62 // Return a clone of *a.
63 static inline UObject* objectClone(const UObject* a) {
64 // LATER: return a->clone();
65 return ((const Measure*) a)->clone();
66 }
67
68 // Return TRUE if *a is an instance of Measure.
69 static inline UBool instanceOfMeasure(const UObject* a) {
70 return dynamic_cast<const Measure*>(a) != NULL;
71 }
72
73 /**
74 * Creates a new Formattable array and copies the values from the specified
75 * original.
76 * @param array the original array
77 * @param count the original array count
78 * @return the new Formattable array.
79 */
80 static Formattable* createArrayCopy(const Formattable* array, int32_t count) {
81 Formattable *result = new Formattable[count];
82 if (result != NULL) {
83 for (int32_t i=0; i<count; ++i)
84 result[i] = array[i]; // Don't memcpy!
85 }
86 return result;
87 }
88
89 //-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.
90
91 /**
92 * Set 'ec' to 'err' only if 'ec' is not already set to a failing UErrorCode.
93 */
94 static void setError(UErrorCode& ec, UErrorCode err) {
95 if (U_SUCCESS(ec)) {
96 ec = err;
97 }
98 }
99
100 //
101 // Common initialization code, shared by constructors.
102 // Put everything into a known state.
103 //
104 void Formattable::init() {
105 fValue.fInt64 = 0;
106 fType = kLong;
107 fDecimalStr = NULL;
108 fDecimalQuantity = NULL;
109 fBogus.setToBogus();
110 }
111
112 // -------------------------------------
113 // default constructor.
114 // Creates a formattable object with a long value 0.
115
116 Formattable::Formattable() {
117 init();
118 }
119
120 // -------------------------------------
121 // Creates a formattable object with a Date instance.
122
123 Formattable::Formattable(UDate date, ISDATE /*isDate*/)
124 {
125 init();
126 fType = kDate;
127 fValue.fDate = date;
128 }
129
130 // -------------------------------------
131 // Creates a formattable object with a double value.
132
133 Formattable::Formattable(double value)
134 {
135 init();
136 fType = kDouble;
137 fValue.fDouble = value;
138 }
139
140 // -------------------------------------
141 // Creates a formattable object with an int32_t value.
142
143 Formattable::Formattable(int32_t value)
144 {
145 init();
146 fValue.fInt64 = value;
147 }
148
149 // -------------------------------------
150 // Creates a formattable object with an int64_t value.
151
152 Formattable::Formattable(int64_t value)
153 {
154 init();
155 fType = kInt64;
156 fValue.fInt64 = value;
157 }
158
159 // -------------------------------------
160 // Creates a formattable object with a decimal number value from a string.
161
162 Formattable::Formattable(StringPiece number, UErrorCode &status) {
163 init();
164 setDecimalNumber(number, status);
165 }
166
167
168 // -------------------------------------
169 // Creates a formattable object with a UnicodeString instance.
170
171 Formattable::Formattable(const UnicodeString& stringToCopy)
172 {
173 init();
174 fType = kString;
175 fValue.fString = new UnicodeString(stringToCopy);
176 }
177
178 // -------------------------------------
179 // Creates a formattable object with a UnicodeString* value.
180 // (adopting symantics)
181
182 Formattable::Formattable(UnicodeString* stringToAdopt)
183 {
184 init();
185 fType = kString;
186 fValue.fString = stringToAdopt;
187 }
188
189 Formattable::Formattable(UObject* objectToAdopt)
190 {
191 init();
192 fType = kObject;
193 fValue.fObject = objectToAdopt;
194 }
195
196 // -------------------------------------
197
198 Formattable::Formattable(const Formattable* arrayToCopy, int32_t count)
199 : UObject(), fType(kArray)
200 {
201 init();
202 fType = kArray;
203 fValue.fArrayAndCount.fArray = createArrayCopy(arrayToCopy, count);
204 fValue.fArrayAndCount.fCount = count;
205 }
206
207 // -------------------------------------
208 // copy constructor
209
210
211 Formattable::Formattable(const Formattable &source)
212 : UObject(*this)
213 {
214 init();
215 *this = source;
216 }
217
218 // -------------------------------------
219 // assignment operator
220
221 Formattable&
222 Formattable::operator=(const Formattable& source)
223 {
224 if (this != &source)
225 {
226 // Disposes the current formattable value/setting.
227 dispose();
228
229 // Sets the correct data type for this value.
230 fType = source.fType;
231 switch (fType)
232 {
233 case kArray:
234 // Sets each element in the array one by one and records the array count.
235 fValue.fArrayAndCount.fCount = source.fValue.fArrayAndCount.fCount;
236 fValue.fArrayAndCount.fArray = createArrayCopy(source.fValue.fArrayAndCount.fArray,
237 source.fValue.fArrayAndCount.fCount);
238 break;
239 case kString:
240 // Sets the string value.
241 fValue.fString = new UnicodeString(*source.fValue.fString);
242 break;
243 case kDouble:
244 // Sets the double value.
245 fValue.fDouble = source.fValue.fDouble;
246 break;
247 case kLong:
248 case kInt64:
249 // Sets the long value.
250 fValue.fInt64 = source.fValue.fInt64;
251 break;
252 case kDate:
253 // Sets the Date value.
254 fValue.fDate = source.fValue.fDate;
255 break;
256 case kObject:
257 fValue.fObject = objectClone(source.fValue.fObject);
258 break;
259 }
260
261 UErrorCode status = U_ZERO_ERROR;
262 if (source.fDecimalQuantity != NULL) {
263 fDecimalQuantity = new DecimalQuantity(*source.fDecimalQuantity);
264 }
265 if (source.fDecimalStr != NULL) {
266 fDecimalStr = new CharString(*source.fDecimalStr, status);
267 if (U_FAILURE(status)) {
268 delete fDecimalStr;
269 fDecimalStr = NULL;
270 }
271 }
272 }
273 return *this;
274 }
275
276 // -------------------------------------
277
278 UBool
279 Formattable::operator==(const Formattable& that) const
280 {
281 int32_t i;
282
283 if (this == &that) return TRUE;
284
285 // Returns FALSE if the data types are different.
286 if (fType != that.fType) return FALSE;
287
288 // Compares the actual data values.
289 UBool equal = TRUE;
290 switch (fType) {
291 case kDate:
292 equal = (fValue.fDate == that.fValue.fDate);
293 break;
294 case kDouble:
295 equal = (fValue.fDouble == that.fValue.fDouble);
296 break;
297 case kLong:
298 case kInt64:
299 equal = (fValue.fInt64 == that.fValue.fInt64);
300 break;
301 case kString:
302 equal = (*(fValue.fString) == *(that.fValue.fString));
303 break;
304 case kArray:
305 if (fValue.fArrayAndCount.fCount != that.fValue.fArrayAndCount.fCount) {
306 equal = FALSE;
307 break;
308 }
309 // Checks each element for equality.
310 for (i=0; i<fValue.fArrayAndCount.fCount; ++i) {
311 if (fValue.fArrayAndCount.fArray[i] != that.fValue.fArrayAndCount.fArray[i]) {
312 equal = FALSE;
313 break;
314 }
315 }
316 break;
317 case kObject:
318 if (fValue.fObject == NULL || that.fValue.fObject == NULL) {
319 equal = FALSE;
320 } else {
321 equal = objectEquals(fValue.fObject, that.fValue.fObject);
322 }
323 break;
324 }
325
326 // TODO: compare digit lists if numeric.
327 return equal;
328 }
329
330 // -------------------------------------
331
332 Formattable::~Formattable()
333 {
334 dispose();
335 }
336
337 // -------------------------------------
338
339 void Formattable::dispose()
340 {
341 // Deletes the data value if necessary.
342 switch (fType) {
343 case kString:
344 delete fValue.fString;
345 break;
346 case kArray:
347 delete[] fValue.fArrayAndCount.fArray;
348 break;
349 case kObject:
350 delete fValue.fObject;
351 break;
352 default:
353 break;
354 }
355
356 fType = kLong;
357 fValue.fInt64 = 0;
358
359 delete fDecimalStr;
360 fDecimalStr = NULL;
361
362 delete fDecimalQuantity;
363 fDecimalQuantity = NULL;
364 }
365
366 Formattable *
367 Formattable::clone() const {
368 return new Formattable(*this);
369 }
370
371 // -------------------------------------
372 // Gets the data type of this Formattable object.
373 Formattable::Type
374 Formattable::getType() const
375 {
376 return fType;
377 }
378
379 UBool
380 Formattable::isNumeric() const {
381 switch (fType) {
382 case kDouble:
383 case kLong:
384 case kInt64:
385 return TRUE;
386 default:
387 return FALSE;
388 }
389 }
390
391 // -------------------------------------
392 int32_t
393 //Formattable::getLong(UErrorCode* status) const
394 Formattable::getLong(UErrorCode& status) const
395 {
396 if (U_FAILURE(status)) {
397 return 0;
398 }
399
400 switch (fType) {
401 case Formattable::kLong:
402 return (int32_t)fValue.fInt64;
403 case Formattable::kInt64:
404 if (fValue.fInt64 > INT32_MAX) {
405 status = U_INVALID_FORMAT_ERROR;
406 return INT32_MAX;
407 } else if (fValue.fInt64 < INT32_MIN) {
408 status = U_INVALID_FORMAT_ERROR;
409 return INT32_MIN;
410 } else {
411 return (int32_t)fValue.fInt64;
412 }
413 case Formattable::kDouble:
414 if (fValue.fDouble > INT32_MAX) {
415 status = U_INVALID_FORMAT_ERROR;
416 return INT32_MAX;
417 } else if (fValue.fDouble < INT32_MIN) {
418 status = U_INVALID_FORMAT_ERROR;
419 return INT32_MIN;
420 } else {
421 return (int32_t)fValue.fDouble; // loses fraction
422 }
423 case Formattable::kObject:
424 if (fValue.fObject == NULL) {
425 status = U_MEMORY_ALLOCATION_ERROR;
426 return 0;
427 }
428 // TODO Later replace this with instanceof call
429 if (instanceOfMeasure(fValue.fObject)) {
430 return ((const Measure*) fValue.fObject)->
431 getNumber().getLong(status);
432 }
433 U_FALLTHROUGH;
434 default:
435 status = U_INVALID_FORMAT_ERROR;
436 return 0;
437 }
438 }
439
440 // -------------------------------------
441 // Maximum int that can be represented exactly in a double. (53 bits)
442 // Larger ints may be rounded to a near-by value as not all are representable.
443 // TODO: move this constant elsewhere, possibly configure it for different
444 // floating point formats, if any non-standard ones are still in use.
445 static const int64_t U_DOUBLE_MAX_EXACT_INT = 9007199254740992LL;
446
447 int64_t
448 Formattable::getInt64(UErrorCode& status) const
449 {
450 if (U_FAILURE(status)) {
451 return 0;
452 }
453
454 switch (fType) {
455 case Formattable::kLong:
456 case Formattable::kInt64:
457 return fValue.fInt64;
458 case Formattable::kDouble:
459 if (fValue.fDouble > (double)U_INT64_MAX) {
460 status = U_INVALID_FORMAT_ERROR;
461 return U_INT64_MAX;
462 } else if (fValue.fDouble < (double)U_INT64_MIN) {
463 status = U_INVALID_FORMAT_ERROR;
464 return U_INT64_MIN;
465 } else if (fabs(fValue.fDouble) > U_DOUBLE_MAX_EXACT_INT && fDecimalQuantity != NULL) {
466 if (fDecimalQuantity->fitsInLong(true)) {
467 return fDecimalQuantity->toLong();
468 } else {
469 // Unexpected
470 status = U_INVALID_FORMAT_ERROR;
471 return fDecimalQuantity->isNegative() ? U_INT64_MIN : U_INT64_MAX;
472 }
473 } else {
474 return (int64_t)fValue.fDouble;
475 }
476 case Formattable::kObject:
477 if (fValue.fObject == NULL) {
478 status = U_MEMORY_ALLOCATION_ERROR;
479 return 0;
480 }
481 if (instanceOfMeasure(fValue.fObject)) {
482 return ((const Measure*) fValue.fObject)->
483 getNumber().getInt64(status);
484 }
485 U_FALLTHROUGH;
486 default:
487 status = U_INVALID_FORMAT_ERROR;
488 return 0;
489 }
490 }
491
492 // -------------------------------------
493 double
494 Formattable::getDouble(UErrorCode& status) const
495 {
496 if (U_FAILURE(status)) {
497 return 0;
498 }
499
500 switch (fType) {
501 case Formattable::kLong:
502 case Formattable::kInt64: // loses precision
503 return (double)fValue.fInt64;
504 case Formattable::kDouble:
505 return fValue.fDouble;
506 case Formattable::kObject:
507 if (fValue.fObject == NULL) {
508 status = U_MEMORY_ALLOCATION_ERROR;
509 return 0;
510 }
511 // TODO Later replace this with instanceof call
512 if (instanceOfMeasure(fValue.fObject)) {
513 return ((const Measure*) fValue.fObject)->
514 getNumber().getDouble(status);
515 }
516 U_FALLTHROUGH;
517 default:
518 status = U_INVALID_FORMAT_ERROR;
519 return 0;
520 }
521 }
522
523 const UObject*
524 Formattable::getObject() const {
525 return (fType == kObject) ? fValue.fObject : NULL;
526 }
527
528 // -------------------------------------
529 // Sets the value to a double value d.
530
531 void
532 Formattable::setDouble(double d)
533 {
534 dispose();
535 fType = kDouble;
536 fValue.fDouble = d;
537 }
538
539 // -------------------------------------
540 // Sets the value to a long value l.
541
542 void
543 Formattable::setLong(int32_t l)
544 {
545 dispose();
546 fType = kLong;
547 fValue.fInt64 = l;
548 }
549
550 // -------------------------------------
551 // Sets the value to an int64 value ll.
552
553 void
554 Formattable::setInt64(int64_t ll)
555 {
556 dispose();
557 fType = kInt64;
558 fValue.fInt64 = ll;
559 }
560
561 // -------------------------------------
562 // Sets the value to a Date instance d.
563
564 void
565 Formattable::setDate(UDate d)
566 {
567 dispose();
568 fType = kDate;
569 fValue.fDate = d;
570 }
571
572 // -------------------------------------
573 // Sets the value to a string value stringToCopy.
574
575 void
576 Formattable::setString(const UnicodeString& stringToCopy)
577 {
578 dispose();
579 fType = kString;
580 fValue.fString = new UnicodeString(stringToCopy);
581 }
582
583 // -------------------------------------
584 // Sets the value to an array of Formattable objects.
585
586 void
587 Formattable::setArray(const Formattable* array, int32_t count)
588 {
589 dispose();
590 fType = kArray;
591 fValue.fArrayAndCount.fArray = createArrayCopy(array, count);
592 fValue.fArrayAndCount.fCount = count;
593 }
594
595 // -------------------------------------
596 // Adopts the stringToAdopt value.
597
598 void
599 Formattable::adoptString(UnicodeString* stringToAdopt)
600 {
601 dispose();
602 fType = kString;
603 fValue.fString = stringToAdopt;
604 }
605
606 // -------------------------------------
607 // Adopts the array value and its count.
608
609 void
610 Formattable::adoptArray(Formattable* array, int32_t count)
611 {
612 dispose();
613 fType = kArray;
614 fValue.fArrayAndCount.fArray = array;
615 fValue.fArrayAndCount.fCount = count;
616 }
617
618 void
619 Formattable::adoptObject(UObject* objectToAdopt) {
620 dispose();
621 fType = kObject;
622 fValue.fObject = objectToAdopt;
623 }
624
625 // -------------------------------------
626 UnicodeString&
627 Formattable::getString(UnicodeString& result, UErrorCode& status) const
628 {
629 if (fType != kString) {
630 setError(status, U_INVALID_FORMAT_ERROR);
631 result.setToBogus();
632 } else {
633 if (fValue.fString == NULL) {
634 setError(status, U_MEMORY_ALLOCATION_ERROR);
635 } else {
636 result = *fValue.fString;
637 }
638 }
639 return result;
640 }
641
642 // -------------------------------------
643 const UnicodeString&
644 Formattable::getString(UErrorCode& status) const
645 {
646 if (fType != kString) {
647 setError(status, U_INVALID_FORMAT_ERROR);
648 return *getBogus();
649 }
650 if (fValue.fString == NULL) {
651 setError(status, U_MEMORY_ALLOCATION_ERROR);
652 return *getBogus();
653 }
654 return *fValue.fString;
655 }
656
657 // -------------------------------------
658 UnicodeString&
659 Formattable::getString(UErrorCode& status)
660 {
661 if (fType != kString) {
662 setError(status, U_INVALID_FORMAT_ERROR);
663 return *getBogus();
664 }
665 if (fValue.fString == NULL) {
666 setError(status, U_MEMORY_ALLOCATION_ERROR);
667 return *getBogus();
668 }
669 return *fValue.fString;
670 }
671
672 // -------------------------------------
673 const Formattable*
674 Formattable::getArray(int32_t& count, UErrorCode& status) const
675 {
676 if (fType != kArray) {
677 setError(status, U_INVALID_FORMAT_ERROR);
678 count = 0;
679 return NULL;
680 }
681 count = fValue.fArrayAndCount.fCount;
682 return fValue.fArrayAndCount.fArray;
683 }
684
685 // -------------------------------------
686 // Gets the bogus string, ensures mondo bogosity.
687
688 UnicodeString*
689 Formattable::getBogus() const
690 {
691 return (UnicodeString*)&fBogus; /* cast away const :-( */
692 }
693
694
695 // --------------------------------------
696 StringPiece Formattable::getDecimalNumber(UErrorCode &status) {
697 if (U_FAILURE(status)) {
698 return "";
699 }
700 if (fDecimalStr != NULL) {
701 return fDecimalStr->toStringPiece();
702 }
703
704 CharString *decimalStr = internalGetCharString(status);
705 if(decimalStr == NULL) {
706 return ""; // getDecimalNumber returns "" for error cases
707 } else {
708 return decimalStr->toStringPiece();
709 }
710 }
711
712 CharString *Formattable::internalGetCharString(UErrorCode &status) {
713 if(fDecimalStr == NULL) {
714 if (fDecimalQuantity == NULL) {
715 // No decimal number for the formattable yet. Which means the value was
716 // set directly by the user as an int, int64 or double. If the value came
717 // from parsing, or from the user setting a decimal number, fDecimalNum
718 // would already be set.
719 //
720 LocalPointer<DecimalQuantity> dq(new DecimalQuantity(), status);
721 if (U_FAILURE(status)) { return nullptr; }
722 populateDecimalQuantity(*dq, status);
723 if (U_FAILURE(status)) { return nullptr; }
724 fDecimalQuantity = dq.orphan();
725 }
726
727 fDecimalStr = new CharString();
728 if (fDecimalStr == NULL) {
729 status = U_MEMORY_ALLOCATION_ERROR;
730 return NULL;
731 }
732 // Older ICUs called uprv_decNumberToString here, which is not exactly the same as
733 // DecimalQuantity::toScientificString(). The biggest difference is that uprv_decNumberToString does
734 // not print scientific notation for magnitudes greater than -5 and smaller than some amount (+5?).
735 if (fDecimalQuantity->isInfinite()) {
736 fDecimalStr->append("Infinity", status);
737 } else if (fDecimalQuantity->isNaN()) {
738 fDecimalStr->append("NaN", status);
739 } else if (fDecimalQuantity->isZero()) {
740 fDecimalStr->append("0", -1, status);
741 } else if (fType==kLong || fType==kInt64 || // use toPlainString for integer types
742 (fDecimalQuantity->getMagnitude() != INT32_MIN && std::abs(fDecimalQuantity->getMagnitude()) < 5)) {
743 fDecimalStr->appendInvariantChars(fDecimalQuantity->toPlainString(), status);
744 } else {
745 fDecimalStr->appendInvariantChars(fDecimalQuantity->toScientificString(), status);
746 }
747 }
748 return fDecimalStr;
749 }
750
751 void
752 Formattable::populateDecimalQuantity(number::impl::DecimalQuantity& output, UErrorCode& status) const {
753 if (fDecimalQuantity != nullptr) {
754 output = *fDecimalQuantity;
755 return;
756 }
757
758 switch (fType) {
759 case kDouble:
760 output.setToDouble(this->getDouble());
761 output.roundToInfinity();
762 break;
763 case kLong:
764 output.setToInt(this->getLong());
765 break;
766 case kInt64:
767 output.setToLong(this->getInt64());
768 break;
769 default:
770 // The formattable's value is not a numeric type.
771 status = U_INVALID_STATE_ERROR;
772 }
773 }
774
775 // ---------------------------------------
776 void
777 Formattable::adoptDecimalQuantity(DecimalQuantity *dq) {
778 if (fDecimalQuantity != NULL) {
779 delete fDecimalQuantity;
780 }
781 fDecimalQuantity = dq;
782 if (dq == NULL) { // allow adoptDigitList(NULL) to clear
783 return;
784 }
785
786 // Set the value into the Union of simple type values.
787 // Cannot use the set() functions because they would delete the fDecimalNum value.
788 if (fDecimalQuantity->fitsInLong()) {
789 fValue.fInt64 = fDecimalQuantity->toLong();
790 if (fValue.fInt64 <= INT32_MAX && fValue.fInt64 >= INT32_MIN) {
791 fType = kLong;
792 } else {
793 fType = kInt64;
794 }
795 } else {
796 fType = kDouble;
797 fValue.fDouble = fDecimalQuantity->toDouble();
798 }
799 }
800
801
802 // ---------------------------------------
803 void
804 Formattable::setDecimalNumber(StringPiece numberString, UErrorCode &status) {
805 if (U_FAILURE(status)) {
806 return;
807 }
808 dispose();
809
810 auto* dq = new DecimalQuantity();
811 dq->setToDecNumber(numberString, status);
812 adoptDecimalQuantity(dq);
813
814 // Note that we do not hang on to the caller's input string.
815 // If we are asked for the string, we will regenerate one from fDecimalQuantity.
816 }
817
818 #if 0
819 //----------------------------------------------------
820 // console I/O
821 //----------------------------------------------------
822 #ifdef _DEBUG
823
824 #include <iostream>
825 using namespace std;
826
827 #include "unicode/datefmt.h"
828 #include "unistrm.h"
829
830 class FormattableStreamer /* not : public UObject because all methods are static */ {
831 public:
832 static void streamOut(ostream& stream, const Formattable& obj);
833
834 private:
835 FormattableStreamer() {} // private - forbid instantiation
836 };
837
838 // This is for debugging purposes only. This will send a displayable
839 // form of the Formattable object to the output stream.
840
841 void
842 FormattableStreamer::streamOut(ostream& stream, const Formattable& obj)
843 {
844 static DateFormat *defDateFormat = 0;
845
846 UnicodeString buffer;
847 switch(obj.getType()) {
848 case Formattable::kDate :
849 // Creates a DateFormat instance for formatting the
850 // Date instance.
851 if (defDateFormat == 0) {
852 defDateFormat = DateFormat::createInstance();
853 }
854 defDateFormat->format(obj.getDate(), buffer);
855 stream << buffer;
856 break;
857 case Formattable::kDouble :
858 // Output the double as is.
859 stream << obj.getDouble() << 'D';
860 break;
861 case Formattable::kLong :
862 // Output the double as is.
863 stream << obj.getLong() << 'L';
864 break;
865 case Formattable::kString:
866 // Output the double as is. Please see UnicodeString console
867 // I/O routine for more details.
868 stream << '"' << obj.getString(buffer) << '"';
869 break;
870 case Formattable::kArray:
871 int32_t i, count;
872 const Formattable* array;
873 array = obj.getArray(count);
874 stream << '[';
875 // Recursively calling the console I/O routine for each element in the array.
876 for (i=0; i<count; ++i) {
877 FormattableStreamer::streamOut(stream, array[i]);
878 stream << ( (i==(count-1)) ? "" : ", " );
879 }
880 stream << ']';
881 break;
882 default:
883 // Not a recognizable Formattable object.
884 stream << "INVALID_Formattable";
885 }
886 stream.flush();
887 }
888 #endif
889
890 #endif
891
892 U_NAMESPACE_END
893
894 /* ---- UFormattable implementation ---- */
895
896 U_NAMESPACE_USE
897
898 U_DRAFT UFormattable* U_EXPORT2
899 ufmt_open(UErrorCode *status) {
900 if( U_FAILURE(*status) ) {
901 return NULL;
902 }
903 UFormattable *fmt = (new Formattable())->toUFormattable();
904
905 if( fmt == NULL ) {
906 *status = U_MEMORY_ALLOCATION_ERROR;
907 }
908 return fmt;
909 }
910
911 U_DRAFT void U_EXPORT2
912 ufmt_close(UFormattable *fmt) {
913 Formattable *obj = Formattable::fromUFormattable(fmt);
914
915 delete obj;
916 }
917
918 U_INTERNAL UFormattableType U_EXPORT2
919 ufmt_getType(const UFormattable *fmt, UErrorCode *status) {
920 if(U_FAILURE(*status)) {
921 return (UFormattableType)UFMT_COUNT;
922 }
923 const Formattable *obj = Formattable::fromUFormattable(fmt);
924 return (UFormattableType)obj->getType();
925 }
926
927
928 U_INTERNAL UBool U_EXPORT2
929 ufmt_isNumeric(const UFormattable *fmt) {
930 const Formattable *obj = Formattable::fromUFormattable(fmt);
931 return obj->isNumeric();
932 }
933
934 U_DRAFT UDate U_EXPORT2
935 ufmt_getDate(const UFormattable *fmt, UErrorCode *status) {
936 const Formattable *obj = Formattable::fromUFormattable(fmt);
937
938 return obj->getDate(*status);
939 }
940
941 U_DRAFT double U_EXPORT2
942 ufmt_getDouble(UFormattable *fmt, UErrorCode *status) {
943 Formattable *obj = Formattable::fromUFormattable(fmt);
944
945 return obj->getDouble(*status);
946 }
947
948 U_DRAFT int32_t U_EXPORT2
949 ufmt_getLong(UFormattable *fmt, UErrorCode *status) {
950 Formattable *obj = Formattable::fromUFormattable(fmt);
951
952 return obj->getLong(*status);
953 }
954
955
956 U_DRAFT const void *U_EXPORT2
957 ufmt_getObject(const UFormattable *fmt, UErrorCode *status) {
958 const Formattable *obj = Formattable::fromUFormattable(fmt);
959
960 const void *ret = obj->getObject();
961 if( ret==NULL &&
962 (obj->getType() != Formattable::kObject) &&
963 U_SUCCESS( *status )) {
964 *status = U_INVALID_FORMAT_ERROR;
965 }
966 return ret;
967 }
968
969 U_DRAFT const UChar* U_EXPORT2
970 ufmt_getUChars(UFormattable *fmt, int32_t *len, UErrorCode *status) {
971 Formattable *obj = Formattable::fromUFormattable(fmt);
972
973 // avoid bogosity by checking the type first.
974 if( obj->getType() != Formattable::kString ) {
975 if( U_SUCCESS(*status) ){
976 *status = U_INVALID_FORMAT_ERROR;
977 }
978 return NULL;
979 }
980
981 // This should return a valid string
982 UnicodeString &str = obj->getString(*status);
983 if( U_SUCCESS(*status) && len != NULL ) {
984 *len = str.length();
985 }
986 return str.getTerminatedBuffer();
987 }
988
989 U_DRAFT int32_t U_EXPORT2
990 ufmt_getArrayLength(const UFormattable* fmt, UErrorCode *status) {
991 const Formattable *obj = Formattable::fromUFormattable(fmt);
992
993 int32_t count;
994 (void)obj->getArray(count, *status);
995 return count;
996 }
997
998 U_DRAFT UFormattable * U_EXPORT2
999 ufmt_getArrayItemByIndex(UFormattable* fmt, int32_t n, UErrorCode *status) {
1000 Formattable *obj = Formattable::fromUFormattable(fmt);
1001 int32_t count;
1002 (void)obj->getArray(count, *status);
1003 if(U_FAILURE(*status)) {
1004 return NULL;
1005 } else if(n<0 || n>=count) {
1006 setError(*status, U_INDEX_OUTOFBOUNDS_ERROR);
1007 return NULL;
1008 } else {
1009 return (*obj)[n].toUFormattable(); // returns non-const Formattable
1010 }
1011 }
1012
1013 U_DRAFT const char * U_EXPORT2
1014 ufmt_getDecNumChars(UFormattable *fmt, int32_t *len, UErrorCode *status) {
1015 if(U_FAILURE(*status)) {
1016 return "";
1017 }
1018 Formattable *obj = Formattable::fromUFormattable(fmt);
1019 CharString *charString = obj->internalGetCharString(*status);
1020 if(U_FAILURE(*status)) {
1021 return "";
1022 }
1023 if(charString == NULL) {
1024 *status = U_MEMORY_ALLOCATION_ERROR;
1025 return "";
1026 } else {
1027 if(len!=NULL) {
1028 *len = charString->length();
1029 }
1030 return charString->data();
1031 }
1032 }
1033
1034 U_DRAFT int64_t U_EXPORT2
1035 ufmt_getInt64(UFormattable *fmt, UErrorCode *status) {
1036 Formattable *obj = Formattable::fromUFormattable(fmt);
1037 return obj->getInt64(*status);
1038 }
1039
1040 #endif /* #if !UCONFIG_NO_FORMATTING */
1041
1042 //eof