1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
4 ******************************************************************************
5 * Copyright (C) 1997-2015, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 ******************************************************************************
8 * file name: nfrule.cpp
10 * tab size: 8 (not used)
13 * Modification history
15 * 10/11/2001 Doug Ported from ICU4J
22 #include "unicode/localpointer.h"
23 #include "unicode/rbnf.h"
24 #include "unicode/tblcoll.h"
25 #include "unicode/plurfmt.h"
26 #include "unicode/upluralrules.h"
27 #include "unicode/coleitr.h"
28 #include "unicode/uchar.h"
32 #include "patternprops.h"
37 NFRule::NFRule(const RuleBasedNumberFormat
* _rbnf
, const UnicodeString
&_ruleText
, UErrorCode
&status
)
38 : baseValue((int32_t)0)
46 , rulePatternFormat(NULL
)
48 if (!ruleText
.isEmpty()) {
49 parseRuleDescriptor(ruleText
, status
);
61 delete rulePatternFormat
;
62 rulePatternFormat
= NULL
;
65 static const UChar gLeftBracket
= 0x005b;
66 static const UChar gRightBracket
= 0x005d;
67 static const UChar gColon
= 0x003a;
68 static const UChar gZero
= 0x0030;
69 static const UChar gNine
= 0x0039;
70 static const UChar gSpace
= 0x0020;
71 static const UChar gSlash
= 0x002f;
72 static const UChar gGreaterThan
= 0x003e;
73 static const UChar gLessThan
= 0x003c;
74 static const UChar gComma
= 0x002c;
75 static const UChar gDot
= 0x002e;
76 static const UChar gTick
= 0x0027;
77 //static const UChar gMinus = 0x002d;
78 static const UChar gSemicolon
= 0x003b;
79 static const UChar gX
= 0x0078;
81 static const UChar gMinusX
[] = {0x2D, 0x78, 0}; /* "-x" */
82 static const UChar gInf
[] = {0x49, 0x6E, 0x66, 0}; /* "Inf" */
83 static const UChar gNaN
[] = {0x4E, 0x61, 0x4E, 0}; /* "NaN" */
85 static const UChar gDollarOpenParenthesis
[] = {0x24, 0x28, 0}; /* "$(" */
86 static const UChar gClosedParenthesisDollar
[] = {0x29, 0x24, 0}; /* ")$" */
88 static const UChar gLessLess
[] = {0x3C, 0x3C, 0}; /* "<<" */
89 static const UChar gLessPercent
[] = {0x3C, 0x25, 0}; /* "<%" */
90 static const UChar gLessHash
[] = {0x3C, 0x23, 0}; /* "<#" */
91 static const UChar gLessZero
[] = {0x3C, 0x30, 0}; /* "<0" */
92 static const UChar gGreaterGreater
[] = {0x3E, 0x3E, 0}; /* ">>" */
93 static const UChar gGreaterPercent
[] = {0x3E, 0x25, 0}; /* ">%" */
94 static const UChar gGreaterHash
[] = {0x3E, 0x23, 0}; /* ">#" */
95 static const UChar gGreaterZero
[] = {0x3E, 0x30, 0}; /* ">0" */
96 static const UChar gEqualPercent
[] = {0x3D, 0x25, 0}; /* "=%" */
97 static const UChar gEqualHash
[] = {0x3D, 0x23, 0}; /* "=#" */
98 static const UChar gEqualZero
[] = {0x3D, 0x30, 0}; /* "=0" */
99 static const UChar gGreaterGreaterGreater
[] = {0x3E, 0x3E, 0x3E, 0}; /* ">>>" */
101 static const UChar
* const RULE_PREFIXES
[] = {
102 gLessLess
, gLessPercent
, gLessHash
, gLessZero
,
103 gGreaterGreater
, gGreaterPercent
,gGreaterHash
, gGreaterZero
,
104 gEqualPercent
, gEqualHash
, gEqualZero
, NULL
108 NFRule::makeRules(UnicodeString
& description
,
110 const NFRule
*predecessor
,
111 const RuleBasedNumberFormat
*rbnf
,
115 // we know we're making at least one rule, so go ahead and
116 // new it up and initialize its basevalue and divisor
117 // (this also strips the rule descriptor, if any, off the
118 // descripton string)
119 NFRule
* rule1
= new NFRule(rbnf
, description
, status
);
122 status
= U_MEMORY_ALLOCATION_ERROR
;
125 description
= rule1
->ruleText
;
127 // check the description to see whether there's text enclosed
129 int32_t brack1
= description
.indexOf(gLeftBracket
);
130 int32_t brack2
= brack1
< 0 ? -1 : description
.indexOf(gRightBracket
);
132 // if the description doesn't contain a matched pair of brackets,
133 // or if it's of a type that doesn't recognize bracketed text,
134 // then leave the description alone, initialize the rule's
135 // rule text and substitutions, and return that rule
136 if (brack2
< 0 || brack1
> brack2
137 || rule1
->getType() == kProperFractionRule
138 || rule1
->getType() == kNegativeNumberRule
139 || rule1
->getType() == kInfinityRule
140 || rule1
->getType() == kNaNRule
)
142 rule1
->extractSubstitutions(owner
, description
, predecessor
, status
);
145 // if the description does contain a matched pair of brackets,
146 // then it's really shorthand for two rules (with one exception)
147 NFRule
* rule2
= NULL
;
150 // we'll actually only split the rule into two rules if its
151 // base value is an even multiple of its divisor (or it's one
152 // of the special rules)
153 if ((rule1
->baseValue
> 0
154 && (rule1
->baseValue
% util64_pow(rule1
->radix
, rule1
->exponent
)) == 0)
155 || rule1
->getType() == kImproperFractionRule
156 || rule1
->getType() == kMasterRule
) {
158 // if it passes that test, new up the second rule. If the
159 // rule set both rules will belong to is a fraction rule
160 // set, they both have the same base value; otherwise,
161 // increment the original rule's base value ("rule1" actually
162 // goes SECOND in the rule set's rule list)
163 rule2
= new NFRule(rbnf
, UnicodeString(), status
);
166 status
= U_MEMORY_ALLOCATION_ERROR
;
169 if (rule1
->baseValue
>= 0) {
170 rule2
->baseValue
= rule1
->baseValue
;
171 if (!owner
->isFractionRuleSet()) {
176 // if the description began with "x.x" and contains bracketed
177 // text, it describes both the improper fraction rule and
178 // the proper fraction rule
179 else if (rule1
->getType() == kImproperFractionRule
) {
180 rule2
->setType(kProperFractionRule
);
183 // if the description began with "x.0" and contains bracketed
184 // text, it describes both the master rule and the
185 // improper fraction rule
186 else if (rule1
->getType() == kMasterRule
) {
187 rule2
->baseValue
= rule1
->baseValue
;
188 rule1
->setType(kImproperFractionRule
);
191 // both rules have the same radix and exponent (i.e., the
193 rule2
->radix
= rule1
->radix
;
194 rule2
->exponent
= rule1
->exponent
;
196 // rule2's rule text omits the stuff in brackets: initalize
197 // its rule text and substitutions accordingly
198 sbuf
.append(description
, 0, brack1
);
199 if (brack2
+ 1 < description
.length()) {
200 sbuf
.append(description
, brack2
+ 1, description
.length() - brack2
- 1);
202 rule2
->extractSubstitutions(owner
, sbuf
, predecessor
, status
);
205 // rule1's text includes the text in the brackets but omits
206 // the brackets themselves: initialize _its_ rule text and
207 // substitutions accordingly
208 sbuf
.setTo(description
, 0, brack1
);
209 sbuf
.append(description
, brack1
+ 1, brack2
- brack1
- 1);
210 if (brack2
+ 1 < description
.length()) {
211 sbuf
.append(description
, brack2
+ 1, description
.length() - brack2
- 1);
213 rule1
->extractSubstitutions(owner
, sbuf
, predecessor
, status
);
215 // if we only have one rule, return it; if we have two, return
216 // a two-element array containing them (notice that rule2 goes
217 // BEFORE rule1 in the list: in all cases, rule2 OMITS the
218 // material in the brackets and rule1 INCLUDES the material
221 if (rule2
->baseValue
>= kNoBase
) {
225 owner
->setNonNumericalRule(rule2
);
229 if (rule1
->baseValue
>= kNoBase
) {
233 owner
->setNonNumericalRule(rule1
);
238 * This function parses the rule's rule descriptor (i.e., the base
239 * value and/or other tokens that precede the rule's rule text
240 * in the description) and sets the rule's base value, radix, and
241 * exponent according to the descriptor. (If the description doesn't
242 * include a rule descriptor, then this function sets everything to
243 * default values and the rule set sets the rule's real base value).
244 * @param description The rule's description
245 * @return If "description" included a rule descriptor, this is
246 * "description" with the descriptor and any trailing whitespace
247 * stripped off. Otherwise; it's "descriptor" unchangd.
250 NFRule::parseRuleDescriptor(UnicodeString
& description
, UErrorCode
& status
)
252 // the description consists of a rule descriptor and a rule body,
253 // separated by a colon. The rule descriptor is optional. If
254 // it's omitted, just set the base value to 0.
255 int32_t p
= description
.indexOf(gColon
);
257 // copy the descriptor out into its own string and strip it,
258 // along with any trailing whitespace, out of the original
260 UnicodeString descriptor
;
261 descriptor
.setTo(description
, 0, p
);
264 while (p
< description
.length() && PatternProps::isWhiteSpace(description
.charAt(p
))) {
267 description
.removeBetween(0, p
);
269 // check first to see if the rule descriptor matches the token
270 // for one of the special rules. If it does, set the base
271 // value to the correct identifier value
272 int descriptorLength
= descriptor
.length();
273 UChar firstChar
= descriptor
.charAt(0);
274 UChar lastChar
= descriptor
.charAt(descriptorLength
- 1);
275 if (firstChar
>= gZero
&& firstChar
<= gNine
&& lastChar
!= gX
) {
276 // if the rule descriptor begins with a digit, it's a descriptor
278 // since we don't have Long.parseLong, and this isn't much work anyway,
279 // just build up the value as we encounter the digits.
284 // begin parsing the descriptor: copy digits
285 // into "tempValue", skip periods, commas, and spaces,
286 // stop on a slash or > sign (or at the end of the string),
287 // and throw an exception on any other character
289 while (p
< descriptorLength
) {
290 c
= descriptor
.charAt(p
);
291 if (c
>= gZero
&& c
<= gNine
) {
292 val
= val
* ll_10
+ (int32_t)(c
- gZero
);
294 else if (c
== gSlash
|| c
== gGreaterThan
) {
297 else if (PatternProps::isWhiteSpace(c
) || c
== gComma
|| c
== gDot
) {
300 // throw new IllegalArgumentException("Illegal character in rule descriptor");
301 status
= U_PARSE_ERROR
;
307 // we have the base value, so set it
308 setBaseValue(val
, status
);
310 // if we stopped the previous loop on a slash, we're
311 // now parsing the rule's radix. Again, accumulate digits
312 // in tempValue, skip punctuation, stop on a > mark, and
313 // throw an exception on anything else
318 while (p
< descriptorLength
) {
319 c
= descriptor
.charAt(p
);
320 if (c
>= gZero
&& c
<= gNine
) {
321 val
= val
* ll_10
+ (int32_t)(c
- gZero
);
323 else if (c
== gGreaterThan
) {
326 else if (PatternProps::isWhiteSpace(c
) || c
== gComma
|| c
== gDot
) {
329 // throw new IllegalArgumentException("Illegal character is rule descriptor");
330 status
= U_PARSE_ERROR
;
336 // tempValue now contain's the rule's radix. Set it
337 // accordingly, and recalculate the rule's exponent
338 radix
= (int32_t)val
;
340 // throw new IllegalArgumentException("Rule can't have radix of 0");
341 status
= U_PARSE_ERROR
;
344 exponent
= expectedExponent();
347 // if we stopped the previous loop on a > sign, then continue
348 // for as long as we still see > signs. For each one,
349 // decrement the exponent (unless the exponent is already 0).
350 // If we see another character before reaching the end of
351 // the descriptor, that's also a syntax error.
352 if (c
== gGreaterThan
) {
353 while (p
< descriptor
.length()) {
354 c
= descriptor
.charAt(p
);
355 if (c
== gGreaterThan
&& exponent
> 0) {
358 // throw new IllegalArgumentException("Illegal character in rule descriptor");
359 status
= U_PARSE_ERROR
;
366 else if (0 == descriptor
.compare(gMinusX
, 2)) {
367 setType(kNegativeNumberRule
);
369 else if (descriptorLength
== 3) {
370 if (firstChar
== gZero
&& lastChar
== gX
) {
371 setBaseValue(kProperFractionRule
, status
);
372 decimalPoint
= descriptor
.charAt(1);
374 else if (firstChar
== gX
&& lastChar
== gX
) {
375 setBaseValue(kImproperFractionRule
, status
);
376 decimalPoint
= descriptor
.charAt(1);
378 else if (firstChar
== gX
&& lastChar
== gZero
) {
379 setBaseValue(kMasterRule
, status
);
380 decimalPoint
= descriptor
.charAt(1);
382 else if (descriptor
.compare(gNaN
, 3) == 0) {
383 setBaseValue(kNaNRule
, status
);
385 else if (descriptor
.compare(gInf
, 3) == 0) {
386 setBaseValue(kInfinityRule
, status
);
390 // else use the default base value for now.
392 // finally, if the rule body begins with an apostrophe, strip it off
393 // (this is generally used to put whitespace at the beginning of
394 // a rule's rule text)
395 if (description
.length() > 0 && description
.charAt(0) == gTick
) {
396 description
.removeBetween(0, 1);
399 // return the description with all the stuff we've just waded through
400 // stripped off the front. It now contains just the rule body.
401 // return description;
405 * Searches the rule's rule text for the substitution tokens,
406 * creates the substitutions, and removes the substitution tokens
407 * from the rule's rule text.
408 * @param owner The rule set containing this rule
409 * @param predecessor The rule preseding this one in "owners" rule list
410 * @param ownersOwner The RuleBasedFormat that owns this rule
413 NFRule::extractSubstitutions(const NFRuleSet
* ruleSet
,
414 const UnicodeString
&ruleText
,
415 const NFRule
* predecessor
,
418 if (U_FAILURE(status
)) {
421 this->ruleText
= ruleText
;
422 sub1
= extractSubstitution(ruleSet
, predecessor
, status
);
424 // Small optimization. There is no need to create a redundant NullSubstitution.
428 sub2
= extractSubstitution(ruleSet
, predecessor
, status
);
430 int32_t pluralRuleStart
= this->ruleText
.indexOf(gDollarOpenParenthesis
, -1, 0);
431 int32_t pluralRuleEnd
= (pluralRuleStart
>= 0 ? this->ruleText
.indexOf(gClosedParenthesisDollar
, -1, pluralRuleStart
) : -1);
432 if (pluralRuleEnd
>= 0) {
433 int32_t endType
= this->ruleText
.indexOf(gComma
, pluralRuleStart
);
435 status
= U_PARSE_ERROR
;
438 UnicodeString
type(this->ruleText
.tempSubString(pluralRuleStart
+ 2, endType
- pluralRuleStart
- 2));
439 UPluralType pluralType
;
440 if (type
.startsWith(UNICODE_STRING_SIMPLE("cardinal"))) {
441 pluralType
= UPLURAL_TYPE_CARDINAL
;
443 else if (type
.startsWith(UNICODE_STRING_SIMPLE("ordinal"))) {
444 pluralType
= UPLURAL_TYPE_ORDINAL
;
447 status
= U_ILLEGAL_ARGUMENT_ERROR
;
450 rulePatternFormat
= formatter
->createPluralFormat(pluralType
,
451 this->ruleText
.tempSubString(endType
+ 1, pluralRuleEnd
- endType
- 1), status
);
456 * Searches the rule's rule text for the first substitution token,
457 * creates a substitution based on it, and removes the token from
458 * the rule's rule text.
459 * @param owner The rule set containing this rule
460 * @param predecessor The rule preceding this one in the rule set's
462 * @param ownersOwner The RuleBasedNumberFormat that owns this rule
463 * @return The newly-created substitution. This is never null; if
464 * the rule text doesn't contain any substitution tokens, this will
465 * be a NullSubstitution.
468 NFRule::extractSubstitution(const NFRuleSet
* ruleSet
,
469 const NFRule
* predecessor
,
472 NFSubstitution
* result
= NULL
;
474 // search the rule's rule text for the first two characters of
475 // a substitution token
476 int32_t subStart
= indexOfAnyRulePrefix();
477 int32_t subEnd
= subStart
;
479 // if we didn't find one, create a null substitution positioned
480 // at the end of the rule text
481 if (subStart
== -1) {
485 // special-case the ">>>" token, since searching for the > at the
486 // end will actually find the > in the middle
487 if (ruleText
.indexOf(gGreaterGreaterGreater
, 3, 0) == subStart
) {
488 subEnd
= subStart
+ 2;
490 // otherwise the substitution token ends with the same character
493 UChar c
= ruleText
.charAt(subStart
);
494 subEnd
= ruleText
.indexOf(c
, subStart
+ 1);
495 // special case for '<%foo<<'
496 if (c
== gLessThan
&& subEnd
!= -1 && subEnd
< ruleText
.length() - 1 && ruleText
.charAt(subEnd
+1) == c
) {
497 // ordinals use "=#,##0==%abbrev=" as their rule. Notice that the '==' in the middle
498 // occurs because of the juxtaposition of two different rules. The check for '<' is a hack
499 // to get around this. Having the duplicate at the front would cause problems with
500 // rules like "<<%" to format, say, percents...
505 // if we don't find the end of the token (i.e., if we're on a single,
506 // unmatched token character), create a null substitution positioned
507 // at the end of the rule
512 // if we get here, we have a real substitution token (or at least
513 // some text bounded by substitution token characters). Use
514 // makeSubstitution() to create the right kind of substitution
515 UnicodeString subToken
;
516 subToken
.setTo(ruleText
, subStart
, subEnd
+ 1 - subStart
);
517 result
= NFSubstitution::makeSubstitution(subStart
, this, predecessor
, ruleSet
,
518 this->formatter
, subToken
, status
);
520 // remove the substitution from the rule text
521 ruleText
.removeBetween(subStart
, subEnd
+1);
527 * Sets the rule's base value, and causes the radix and exponent
528 * to be recalculated. This is used during construction when we
529 * don't know the rule's base value until after it's been
530 * constructed. It should be used at any other time.
531 * @param The new base value for the rule.
534 NFRule::setBaseValue(int64_t newBaseValue
, UErrorCode
& status
)
536 // set the base value
537 baseValue
= newBaseValue
;
540 // if this isn't a special rule, recalculate the radix and exponent
541 // (the radix always defaults to 10; if it's supposed to be something
542 // else, it's cleaned up by the caller and the exponent is
543 // recalculated again-- the only function that does this is
544 // NFRule.parseRuleDescriptor() )
545 if (baseValue
>= 1) {
546 exponent
= expectedExponent();
548 // this function gets called on a fully-constructed rule whose
549 // description didn't specify a base value. This means it
550 // has substitutions, and some substitutions hold on to copies
551 // of the rule's divisor. Fix their copies of the divisor.
553 sub1
->setDivisor(radix
, exponent
, status
);
556 sub2
->setDivisor(radix
, exponent
, status
);
559 // if this is a special rule, its radix and exponent are basically
560 // ignored. Set them to "safe" default values
567 * This calculates the rule's exponent based on its radix and base
568 * value. This will be the highest power the radix can be raised to
569 * and still produce a result less than or equal to the base value.
572 NFRule::expectedExponent() const
574 // since the log of 0, or the log base 0 of something, causes an
575 // error, declare the exponent in these cases to be 0 (we also
576 // deal with the special-rule identifiers here)
577 if (radix
== 0 || baseValue
< 1) {
581 // we get rounding error in some cases-- for example, log 1000 / log 10
582 // gives us 1.9999999996 instead of 2. The extra logic here is to take
584 int16_t tempResult
= (int16_t)(uprv_log((double)baseValue
) / uprv_log((double)radix
));
585 int64_t temp
= util64_pow(radix
, tempResult
+ 1);
586 if (temp
<= baseValue
) {
593 * Searches the rule's rule text for any of the specified strings.
594 * @return The index of the first match in the rule's rule text
595 * (i.e., the first substring in the rule's rule text that matches
596 * _any_ of the strings in "strings"). If none of the strings in
597 * "strings" is found in the rule's rule text, returns -1.
600 NFRule::indexOfAnyRulePrefix() const
603 for (int i
= 0; RULE_PREFIXES
[i
]; i
++) {
604 int32_t pos
= ruleText
.indexOf(*RULE_PREFIXES
[i
]);
605 if (pos
!= -1 && (result
== -1 || pos
< result
)) {
612 //-----------------------------------------------------------------------
614 //-----------------------------------------------------------------------
617 util_equalSubstitutions(const NFSubstitution
* sub1
, const NFSubstitution
* sub2
)
621 return *sub1
== *sub2
;
630 * Tests two rules for equality.
631 * @param that The rule to compare this one against
632 * @return True is the two rules are functionally equivalent
635 NFRule::operator==(const NFRule
& rhs
) const
637 return baseValue
== rhs
.baseValue
638 && radix
== rhs
.radix
639 && exponent
== rhs
.exponent
640 && ruleText
== rhs
.ruleText
641 && util_equalSubstitutions(sub1
, rhs
.sub1
)
642 && util_equalSubstitutions(sub2
, rhs
.sub2
);
646 * Returns a textual representation of the rule. This won't
647 * necessarily be the same as the description that this rule
648 * was created with, but it will produce the same result.
649 * @return A textual description of the rule
651 static void util_append64(UnicodeString
& result
, int64_t n
)
654 int32_t len
= util64_tou(n
, buffer
, sizeof(buffer
));
655 UnicodeString
temp(buffer
, len
);
660 NFRule::_appendRuleText(UnicodeString
& result
) const
663 case kNegativeNumberRule
: result
.append(gMinusX
, 2); break;
664 case kImproperFractionRule
: result
.append(gX
).append(decimalPoint
== 0 ? gDot
: decimalPoint
).append(gX
); break;
665 case kProperFractionRule
: result
.append(gZero
).append(decimalPoint
== 0 ? gDot
: decimalPoint
).append(gX
); break;
666 case kMasterRule
: result
.append(gX
).append(decimalPoint
== 0 ? gDot
: decimalPoint
).append(gZero
); break;
667 case kInfinityRule
: result
.append(gInf
, 3); break;
668 case kNaNRule
: result
.append(gNaN
, 3); break;
670 // for a normal rule, write out its base value, and if the radix is
671 // something other than 10, write out the radix (with the preceding
672 // slash, of course). Then calculate the expected exponent and if
673 // if isn't the same as the actual exponent, write an appropriate
674 // number of > signs. Finally, terminate the whole thing with
676 util_append64(result
, baseValue
);
678 result
.append(gSlash
);
679 util_append64(result
, radix
);
681 int numCarets
= expectedExponent() - exponent
;
682 for (int i
= 0; i
< numCarets
; i
++) {
683 result
.append(gGreaterThan
);
687 result
.append(gColon
);
688 result
.append(gSpace
);
690 // if the rule text begins with a space, write an apostrophe
691 // (whitespace after the rule descriptor is ignored; the
692 // apostrophe is used to make the whitespace significant)
693 if (ruleText
.charAt(0) == gSpace
&& (sub1
== NULL
|| sub1
->getPos() != 0)) {
694 result
.append(gTick
);
697 // now, write the rule's rule text, inserting appropriate
698 // substitution tokens in the appropriate places
699 UnicodeString ruleTextCopy
;
700 ruleTextCopy
.setTo(ruleText
);
704 sub2
->toString(temp
);
705 ruleTextCopy
.insert(sub2
->getPos(), temp
);
708 sub1
->toString(temp
);
709 ruleTextCopy
.insert(sub1
->getPos(), temp
);
712 result
.append(ruleTextCopy
);
714 // and finally, top the whole thing off with a semicolon and
716 result
.append(gSemicolon
);
719 int64_t NFRule::getDivisor() const
721 return util64_pow(radix
, exponent
);
725 //-----------------------------------------------------------------------
727 //-----------------------------------------------------------------------
730 * Formats the number, and inserts the resulting text into
732 * @param number The number being formatted
733 * @param toInsertInto The string where the resultant text should
735 * @param pos The position in toInsertInto where the resultant text
739 NFRule::doFormat(int64_t number
, UnicodeString
& toInsertInto
, int32_t pos
, int32_t recursionCount
, UErrorCode
& status
) const
741 // first, insert the rule's rule text into toInsertInto at the
742 // specified position, then insert the results of the substitutions
743 // into the right places in toInsertInto (notice we do the
744 // substitutions in reverse order so that the offsets don't get
746 int32_t pluralRuleStart
= ruleText
.length();
747 int32_t lengthOffset
= 0;
748 if (!rulePatternFormat
) {
749 toInsertInto
.insert(pos
, ruleText
);
752 pluralRuleStart
= ruleText
.indexOf(gDollarOpenParenthesis
, -1, 0);
753 int pluralRuleEnd
= ruleText
.indexOf(gClosedParenthesisDollar
, -1, pluralRuleStart
);
754 int initialLength
= toInsertInto
.length();
755 if (pluralRuleEnd
< ruleText
.length() - 1) {
756 toInsertInto
.insert(pos
, ruleText
.tempSubString(pluralRuleEnd
+ 2));
758 toInsertInto
.insert(pos
,
759 rulePatternFormat
->format((int32_t)(number
/util64_pow(radix
, exponent
)), status
));
760 if (pluralRuleStart
> 0) {
761 toInsertInto
.insert(pos
, ruleText
.tempSubString(0, pluralRuleStart
));
763 lengthOffset
= ruleText
.length() - (toInsertInto
.length() - initialLength
);
767 sub2
->doSubstitution(number
, toInsertInto
, pos
- (sub2
->getPos() > pluralRuleStart
? lengthOffset
: 0), recursionCount
, status
);
770 sub1
->doSubstitution(number
, toInsertInto
, pos
- (sub1
->getPos() > pluralRuleStart
? lengthOffset
: 0), recursionCount
, status
);
775 * Formats the number, and inserts the resulting text into
777 * @param number The number being formatted
778 * @param toInsertInto The string where the resultant text should
780 * @param pos The position in toInsertInto where the resultant text
784 NFRule::doFormat(double number
, UnicodeString
& toInsertInto
, int32_t pos
, int32_t recursionCount
, UErrorCode
& status
) const
786 // first, insert the rule's rule text into toInsertInto at the
787 // specified position, then insert the results of the substitutions
788 // into the right places in toInsertInto
789 // [again, we have two copies of this routine that do the same thing
790 // so that we don't sacrifice precision in a long by casting it
792 int32_t pluralRuleStart
= ruleText
.length();
793 int32_t lengthOffset
= 0;
794 if (!rulePatternFormat
) {
795 toInsertInto
.insert(pos
, ruleText
);
798 pluralRuleStart
= ruleText
.indexOf(gDollarOpenParenthesis
, -1, 0);
799 int pluralRuleEnd
= ruleText
.indexOf(gClosedParenthesisDollar
, -1, pluralRuleStart
);
800 int initialLength
= toInsertInto
.length();
801 if (pluralRuleEnd
< ruleText
.length() - 1) {
802 toInsertInto
.insert(pos
, ruleText
.tempSubString(pluralRuleEnd
+ 2));
804 double pluralVal
= number
;
805 if (0 <= pluralVal
&& pluralVal
< 1) {
806 // We're in a fractional rule, and we have to match the NumeratorSubstitution behavior.
807 // 2.3 can become 0.2999999999999998 for the fraction due to rounding errors.
808 pluralVal
= uprv_round(pluralVal
* util64_pow(radix
, exponent
));
811 pluralVal
= pluralVal
/ util64_pow(radix
, exponent
);
813 toInsertInto
.insert(pos
, rulePatternFormat
->format((int32_t)(pluralVal
), status
));
814 if (pluralRuleStart
> 0) {
815 toInsertInto
.insert(pos
, ruleText
.tempSubString(0, pluralRuleStart
));
817 lengthOffset
= ruleText
.length() - (toInsertInto
.length() - initialLength
);
821 sub2
->doSubstitution(number
, toInsertInto
, pos
- (sub2
->getPos() > pluralRuleStart
? lengthOffset
: 0), recursionCount
, status
);
824 sub1
->doSubstitution(number
, toInsertInto
, pos
- (sub1
->getPos() > pluralRuleStart
? lengthOffset
: 0), recursionCount
, status
);
829 * Used by the owning rule set to determine whether to invoke the
830 * rollback rule (i.e., whether this rule or the one that precedes
831 * it in the rule set's list should be used to format the number)
832 * @param The number being formatted
833 * @return True if the rule set should use the rule that precedes
834 * this one in its list; false if it should use this rule
837 NFRule::shouldRollBack(int64_t number
) const
839 // we roll back if the rule contains a modulus substitution,
840 // the number being formatted is an even multiple of the rule's
841 // divisor, and the rule's base value is NOT an even multiple
843 // In other words, if the original description had
844 // 100: << hundred[ >>];
847 // 101: << hundred >>;
848 // internally. But when we're formatting 200, if we use the rule
849 // at 101, which would normally apply, we get "two hundred zero".
850 // To prevent this, we roll back and use the rule at 100 instead.
851 // This is the logic that makes this happen: the rule at 101 has
852 // a modulus substitution, its base value isn't an even multiple
853 // of 100, and the value we're trying to format _is_ an even
854 // multiple of 100. This is called the "rollback rule."
855 if ((sub1
!= NULL
&& sub1
->isModulusSubstitution()) || (sub2
!= NULL
&& sub2
->isModulusSubstitution())) {
856 int64_t re
= util64_pow(radix
, exponent
);
857 return (number
% re
) == 0 && (baseValue
% re
) != 0;
862 //-----------------------------------------------------------------------
864 //-----------------------------------------------------------------------
867 * Attempts to parse the string with this rule.
868 * @param text The string being parsed
869 * @param parsePosition On entry, the value is ignored and assumed to
870 * be 0. On exit, this has been updated with the position of the first
871 * character not consumed by matching the text against this rule
872 * (if this rule doesn't match the text at all, the parse position
873 * if left unchanged (presumably at 0) and the function returns
875 * @param isFractionRule True if this rule is contained within a
876 * fraction rule set. This is only used if the rule has no
878 * @return If this rule matched the text, this is the rule's base value
879 * combined appropriately with the results of parsing the substitutions.
880 * If nothing matched, this is new Long(0) and the parse position is
881 * left unchanged. The result will be an instance of Long if the
882 * result is an integer and Double otherwise. The result is never null.
887 static void dumpUS(FILE* f
, const UnicodeString
& us
) {
888 int len
= us
.length();
889 char* buf
= (char *)uprv_malloc((len
+1)*sizeof(char)); //new char[len+1];
891 us
.extract(0, len
, buf
);
893 fprintf(f
, "%s", buf
);
894 uprv_free(buf
); //delete[] buf;
899 NFRule::doParse(const UnicodeString
& text
,
900 ParsePosition
& parsePosition
,
901 UBool isFractionRule
,
904 UBool isDecimFmtParseable
) const
906 // internally we operate on a copy of the string being parsed
907 // (because we're going to change it) and use our own ParsePosition
909 UnicodeString
workText(text
);
911 int32_t sub1Pos
= sub1
!= NULL
? sub1
->getPos() : ruleText
.length();
912 int32_t sub2Pos
= sub2
!= NULL
? sub2
->getPos() : ruleText
.length();
914 // check to see whether the text before the first substitution
915 // matches the text at the beginning of the string being
916 // parsed. If it does, strip that off the front of workText;
917 // otherwise, dump out with a mismatch
918 UnicodeString prefix
;
919 prefix
.setTo(ruleText
, 0, sub1Pos
);
922 fprintf(stderr
, "doParse %p ", this);
929 fprintf(stderr
, " text: '");
930 dumpUS(stderr
, text
);
931 fprintf(stderr
, "' prefix: '");
932 dumpUS(stderr
, prefix
);
934 stripPrefix(workText
, prefix
, pp
);
935 int32_t prefixLength
= text
.length() - workText
.length();
938 fprintf(stderr
, "' pl: %d ppi: %d s1p: %d\n", prefixLength
, pp
.getIndex(), sub1Pos
);
941 if (pp
.getIndex() == 0 && sub1Pos
!= 0) {
942 // commented out because ParsePosition doesn't have error index in 1.1.x
943 // restored for ICU4C port
944 parsePosition
.setErrorIndex(pp
.getErrorIndex());
948 if (baseValue
== kInfinityRule
) {
949 // If you match this, don't try to perform any calculations on it.
950 parsePosition
.setIndex(pp
.getIndex());
951 resVal
.setDouble(uprv_getInfinity());
954 if (baseValue
== kNaNRule
) {
955 // If you match this, don't try to perform any calculations on it.
956 parsePosition
.setIndex(pp
.getIndex());
957 resVal
.setDouble(uprv_getNaN());
961 // Detect when this rule's main job is to parse a decimal format and we're not
963 if (!isDecimFmtParseable
&& sub1
!= NULL
&& sub1
->isDecimalFormatSubstitutionOnly()) {
964 // This is trying to detect a rule like "x.x: =#,##0.#=;"
965 // We used to also check sub2->isRuleSetSubstitutionOnly() to detect this
966 // but now sub2 is usually NULL when we get here, and that test no longer seems to matter.
967 // Need to check into this more.
968 parsePosition
.setErrorIndex(pp
.getErrorIndex());
973 // this is the fun part. The basic guts of the rule-matching
974 // logic is matchToDelimiter(), which is called twice. The first
975 // time it searches the input string for the rule text BETWEEN
976 // the substitutions and tries to match the intervening text
977 // in the input string with the first substitution. If that
978 // succeeds, it then calls it again, this time to look for the
979 // rule text after the second substitution and to match the
980 // intervening input text against the second substitution.
982 // For example, say we have a rule that looks like this:
983 // first << middle >> last;
984 // and input text that looks like this:
985 // first one middle two last
986 // First we use stripPrefix() to match "first " in both places and
987 // strip it off the front, leaving
988 // one middle two last
989 // Then we use matchToDelimiter() to match " middle " and try to
990 // match "one" against a substitution. If it's successful, we now
993 // We use matchToDelimiter() a second time to match " last" and
994 // try to match "two" against a substitution. If "two" matches
995 // the substitution, we have a successful parse.
997 // Since it's possible in many cases to find multiple instances
998 // of each of these pieces of rule text in the input string,
999 // we need to try all the possible combinations of these
1000 // locations. This prevents us from prematurely declaring a mismatch,
1001 // and makes sure we match as much input text as we can.
1002 int highWaterMark
= 0;
1005 double tempBaseValue
= (double)(baseValue
<= 0 ? 0 : baseValue
);
1009 // our partial parse result starts out as this rule's base
1010 // value. If it finds a successful match, matchToDelimiter()
1011 // will compose this in some way with what it gets back from
1012 // the substitution, giving us a new partial parse result
1015 temp
.setTo(ruleText
, sub1Pos
, sub2Pos
- sub1Pos
);
1016 double partialResult
= matchToDelimiter(workText
, start
, tempBaseValue
,
1020 // if we got a successful match (or were trying to match a
1021 // null substitution), pp is now pointing at the first unmatched
1022 // character. Take note of that, and try matchToDelimiter()
1023 // on the input text again
1024 if (pp
.getIndex() != 0 || sub1
== NULL
) {
1025 start
= pp
.getIndex();
1027 UnicodeString workText2
;
1028 workText2
.setTo(workText
, pp
.getIndex(), workText
.length() - pp
.getIndex());
1031 // the second matchToDelimiter() will compose our previous
1032 // partial result with whatever it gets back from its
1033 // substitution if there's a successful match, giving us
1035 temp
.setTo(ruleText
, sub2Pos
, ruleText
.length() - sub2Pos
);
1036 partialResult
= matchToDelimiter(workText2
, 0, partialResult
,
1040 // if we got a successful match on this second
1041 // matchToDelimiter() call, update the high-water mark
1042 // and result (if necessary)
1043 if (pp2
.getIndex() != 0 || sub2
== NULL
) {
1044 if (prefixLength
+ pp
.getIndex() + pp2
.getIndex() > highWaterMark
) {
1045 highWaterMark
= prefixLength
+ pp
.getIndex() + pp2
.getIndex();
1046 result
= partialResult
;
1050 // commented out because ParsePosition doesn't have error index in 1.1.x
1051 // restored for ICU4C port
1052 int32_t temp
= pp2
.getErrorIndex() + sub1Pos
+ pp
.getIndex();
1053 if (temp
> parsePosition
.getErrorIndex()) {
1054 parsePosition
.setErrorIndex(temp
);
1059 // commented out because ParsePosition doesn't have error index in 1.1.x
1060 // restored for ICU4C port
1061 int32_t temp
= sub1Pos
+ pp
.getErrorIndex();
1062 if (temp
> parsePosition
.getErrorIndex()) {
1063 parsePosition
.setErrorIndex(temp
);
1066 // keep trying to match things until the outer matchToDelimiter()
1067 // call fails to make a match (each time, it picks up where it
1068 // left off the previous time)
1069 } while (sub1Pos
!= sub2Pos
1070 && pp
.getIndex() > 0
1071 && pp
.getIndex() < workText
.length()
1072 && pp
.getIndex() != start
);
1074 // update the caller's ParsePosition with our high-water mark
1075 // (i.e., it now points at the first character this function
1076 // didn't match-- the ParsePosition is therefore unchanged if
1077 // we didn't match anything)
1078 parsePosition
.setIndex(highWaterMark
);
1079 // commented out because ParsePosition doesn't have error index in 1.1.x
1080 // restored for ICU4C port
1081 if (highWaterMark
> 0) {
1082 parsePosition
.setErrorIndex(0);
1085 // this is a hack for one unusual condition: Normally, whether this
1086 // rule belong to a fraction rule set or not is handled by its
1087 // substitutions. But if that rule HAS NO substitutions, then
1088 // we have to account for it here. By definition, if the matching
1089 // rule in a fraction rule set has no substitutions, its numerator
1090 // is 1, and so the result is the reciprocal of its base value.
1091 if (isFractionRule
&& highWaterMark
> 0 && sub1
== NULL
) {
1092 result
= 1 / result
;
1095 resVal
.setDouble(result
);
1096 return TRUE
; // ??? do we need to worry if it is a long or a double?
1100 * This function is used by parse() to match the text being parsed
1101 * against a possible prefix string. This function
1102 * matches characters from the beginning of the string being parsed
1103 * to characters from the prospective prefix. If they match, pp is
1104 * updated to the first character not matched, and the result is
1105 * the unparsed part of the string. If they don't match, the whole
1106 * string is returned, and pp is left unchanged.
1107 * @param text The string being parsed
1108 * @param prefix The text to match against
1109 * @param pp On entry, ignored and assumed to be 0. On exit, points
1110 * to the first unmatched character (assuming the whole prefix matched),
1111 * or is unchanged (if the whole prefix didn't match).
1112 * @return If things match, this is the unparsed part of "text";
1113 * if they didn't match, this is "text".
1116 NFRule::stripPrefix(UnicodeString
& text
, const UnicodeString
& prefix
, ParsePosition
& pp
) const
1118 // if the prefix text is empty, dump out without doing anything
1119 if (prefix
.length() != 0) {
1120 UErrorCode status
= U_ZERO_ERROR
;
1121 // use prefixLength() to match the beginning of
1122 // "text" against "prefix". This function returns the
1123 // number of characters from "text" that matched (or 0 if
1124 // we didn't match the whole prefix)
1125 int32_t pfl
= prefixLength(text
, prefix
, status
);
1126 if (U_FAILURE(status
)) { // Memory allocation error.
1130 // if we got a successful match, update the parse position
1131 // and strip the prefix off of "text"
1132 pp
.setIndex(pp
.getIndex() + pfl
);
1133 text
.remove(0, pfl
);
1139 * Used by parse() to match a substitution and any following text.
1140 * "text" is searched for instances of "delimiter". For each instance
1141 * of delimiter, the intervening text is tested to see whether it
1142 * matches the substitution. The longest match wins.
1143 * @param text The string being parsed
1144 * @param startPos The position in "text" where we should start looking
1146 * @param baseValue A partial parse result (often the rule's base value),
1147 * which is combined with the result from matching the substitution
1148 * @param delimiter The string to search "text" for.
1149 * @param pp Ignored and presumed to be 0 on entry. If there's a match,
1150 * on exit this will point to the first unmatched character.
1151 * @param sub If we find "delimiter" in "text", this substitution is used
1152 * to match the text between the beginning of the string and the
1153 * position of "delimiter." (If "delimiter" is the empty string, then
1154 * this function just matches against this substitution and updates
1155 * everything accordingly.)
1156 * @param upperBound When matching the substitution, it will only
1157 * consider rules with base values lower than this value.
1158 * @return If there's a match, this is the result of composing
1159 * baseValue with the result of matching the substitution. Otherwise,
1160 * this is new Long(0). It's never null. If the result is an integer,
1161 * this will be an instance of Long; otherwise, it's an instance of
1164 * !!! note {dlf} in point of fact, in the java code the caller always converts
1165 * the result to a double, so we might as well return one.
1168 NFRule::matchToDelimiter(const UnicodeString
& text
,
1171 const UnicodeString
& delimiter
,
1173 const NFSubstitution
* sub
,
1174 double upperBound
) const
1176 UErrorCode status
= U_ZERO_ERROR
;
1177 // if "delimiter" contains real (i.e., non-ignorable) text, search
1178 // it for "delimiter" beginning at "start". If that succeeds, then
1179 // use "sub"'s doParse() method to match the text before the
1180 // instance of "delimiter" we just found.
1181 if (!allIgnorable(delimiter
, status
)) {
1182 if (U_FAILURE(status
)) { //Memory allocation error.
1185 ParsePosition tempPP
;
1188 // use findText() to search for "delimiter". It returns a two-
1189 // element array: element 0 is the position of the match, and
1190 // element 1 is the number of characters that matched
1193 int32_t dPos
= findText(text
, delimiter
, startPos
, &dLen
);
1195 // if findText() succeeded, isolate the text preceding the
1196 // match, and use "sub" to match that text
1198 UnicodeString subText
;
1199 subText
.setTo(text
, 0, dPos
);
1200 if (subText
.length() > 0) {
1201 UBool success
= sub
->doParse(subText
, tempPP
, _baseValue
, upperBound
,
1202 #if UCONFIG_NO_COLLATION
1205 formatter
->isLenient(),
1209 // if the substitution could match all the text up to
1210 // where we found "delimiter", then this function has
1211 // a successful match. Bump the caller's parse position
1212 // to point to the first character after the text
1213 // that matches "delimiter", and return the result
1214 // we got from parsing the substitution.
1215 if (success
&& tempPP
.getIndex() == dPos
) {
1216 pp
.setIndex(dPos
+ dLen
);
1217 return result
.getDouble();
1220 // commented out because ParsePosition doesn't have error index in 1.1.x
1221 // restored for ICU4C port
1222 if (tempPP
.getErrorIndex() > 0) {
1223 pp
.setErrorIndex(tempPP
.getErrorIndex());
1225 pp
.setErrorIndex(tempPP
.getIndex());
1230 // if we didn't match the substitution, search for another
1231 // copy of "delimiter" in "text" and repeat the loop if
1234 dPos
= findText(text
, delimiter
, dPos
+ dLen
, &dLen
);
1236 // if we make it here, this was an unsuccessful match, and we
1237 // leave pp unchanged and return 0
1241 // if "delimiter" is empty, or consists only of ignorable characters
1242 // (i.e., is semantically empty), thwe we obviously can't search
1243 // for "delimiter". Instead, just use "sub" to parse as much of
1244 // "text" as possible.
1246 else if (sub
== NULL
) {
1250 ParsePosition tempPP
;
1253 // try to match the whole string against the substitution
1254 UBool success
= sub
->doParse(text
, tempPP
, _baseValue
, upperBound
,
1255 #if UCONFIG_NO_COLLATION
1258 formatter
->isLenient(),
1261 if (success
&& (tempPP
.getIndex() != 0)) {
1262 // if there's a successful match (or it's a null
1263 // substitution), update pp to point to the first
1264 // character we didn't match, and pass the result from
1265 // sub.doParse() on through to the caller
1266 pp
.setIndex(tempPP
.getIndex());
1267 return result
.getDouble();
1270 // commented out because ParsePosition doesn't have error index in 1.1.x
1271 // restored for ICU4C port
1272 pp
.setErrorIndex(tempPP
.getErrorIndex());
1275 // and if we get to here, then nothing matched, so we return
1276 // 0 and leave pp alone
1282 * Used by stripPrefix() to match characters. If lenient parse mode
1283 * is off, this just calls startsWith(). If lenient parse mode is on,
1284 * this function uses CollationElementIterators to match characters in
1285 * the strings (only primary-order differences are significant in
1286 * determining whether there's a match).
1287 * @param str The string being tested
1288 * @param prefix The text we're hoping to see at the beginning
1290 * @return If "prefix" is found at the beginning of "str", this
1291 * is the number of characters in "str" that were matched (this
1292 * isn't necessarily the same as the length of "prefix" when matching
1293 * text with a collator). If there's no match, this is 0.
1296 NFRule::prefixLength(const UnicodeString
& str
, const UnicodeString
& prefix
, UErrorCode
& status
) const
1298 // if we're looking for an empty prefix, it obviously matches
1299 // zero characters. Just go ahead and return 0.
1300 if (prefix
.length() == 0) {
1304 #if !UCONFIG_NO_COLLATION
1305 // go through all this grief if we're in lenient-parse mode
1306 if (formatter
->isLenient()) {
1307 // get the formatter's collator and use it to create two
1308 // collation element iterators, one over the target string
1309 // and another over the prefix (right now, we'll throw an
1310 // exception if the collator we get back from the formatter
1311 // isn't a RuleBasedCollator, because RuleBasedCollator defines
1312 // the CollationElementIterator protocol. Hopefully, this
1313 // will change someday.)
1314 const RuleBasedCollator
* collator
= formatter
->getCollator();
1315 if (collator
== NULL
) {
1316 status
= U_MEMORY_ALLOCATION_ERROR
;
1319 LocalPointer
<CollationElementIterator
> strIter(collator
->createCollationElementIterator(str
));
1320 LocalPointer
<CollationElementIterator
> prefixIter(collator
->createCollationElementIterator(prefix
));
1321 // Check for memory allocation error.
1322 if (strIter
.isNull() || prefixIter
.isNull()) {
1323 status
= U_MEMORY_ALLOCATION_ERROR
;
1327 UErrorCode err
= U_ZERO_ERROR
;
1329 // The original code was problematic. Consider this match:
1330 // prefix = "fifty-"
1331 // string = " fifty-7"
1332 // The intent is to match string up to the '7', by matching 'fifty-' at position 1
1333 // in the string. Unfortunately, we were getting a match, and then computing where
1334 // the match terminated by rematching the string. The rematch code was using as an
1335 // initial guess the substring of string between 0 and prefix.length. Because of
1336 // the leading space and trailing hyphen (both ignorable) this was succeeding, leaving
1337 // the position before the hyphen in the string. Recursing down, we then parsed the
1338 // remaining string '-7' as numeric. The resulting number turned out as 43 (50 - 7).
1339 // This was not pretty, especially since the string "fifty-7" parsed just fine.
1341 // We have newer APIs now, so we can use calls on the iterator to determine what we
1342 // matched up to. If we terminate because we hit the last element in the string,
1343 // our match terminates at this length. If we terminate because we hit the last element
1344 // in the target, our match terminates at one before the element iterator position.
1346 // match collation elements between the strings
1347 int32_t oStr
= strIter
->next(err
);
1348 int32_t oPrefix
= prefixIter
->next(err
);
1350 while (oPrefix
!= CollationElementIterator::NULLORDER
) {
1351 // skip over ignorable characters in the target string
1352 while (CollationElementIterator::primaryOrder(oStr
) == 0
1353 && oStr
!= CollationElementIterator::NULLORDER
) {
1354 oStr
= strIter
->next(err
);
1357 // skip over ignorable characters in the prefix
1358 while (CollationElementIterator::primaryOrder(oPrefix
) == 0
1359 && oPrefix
!= CollationElementIterator::NULLORDER
) {
1360 oPrefix
= prefixIter
->next(err
);
1363 // dlf: move this above following test, if we consume the
1364 // entire target, aren't we ok even if the source was also
1365 // entirely consumed?
1367 // if skipping over ignorables brought to the end of
1368 // the prefix, we DID match: drop out of the loop
1369 if (oPrefix
== CollationElementIterator::NULLORDER
) {
1373 // if skipping over ignorables brought us to the end
1374 // of the target string, we didn't match and return 0
1375 if (oStr
== CollationElementIterator::NULLORDER
) {
1379 // match collation elements from the two strings
1380 // (considering only primary differences). If we
1381 // get a mismatch, dump out and return 0
1382 if (CollationElementIterator::primaryOrder(oStr
)
1383 != CollationElementIterator::primaryOrder(oPrefix
)) {
1386 // otherwise, advance to the next character in each string
1387 // and loop (we drop out of the loop when we exhaust
1388 // collation elements in the prefix)
1390 oStr
= strIter
->next(err
);
1391 oPrefix
= prefixIter
->next(err
);
1395 int32_t result
= strIter
->getOffset();
1396 if (oStr
!= CollationElementIterator::NULLORDER
) {
1397 --result
; // back over character that we don't want to consume;
1401 fprintf(stderr
, "prefix length: %d\n", result
);
1405 //----------------------------------------------------------------
1406 // JDK 1.2-specific API call
1407 // return strIter.getOffset();
1408 //----------------------------------------------------------------
1409 // JDK 1.1 HACK (take out for 1.2-specific code)
1411 // if we make it to here, we have a successful match. Now we
1412 // have to find out HOW MANY characters from the target string
1413 // matched the prefix (there isn't necessarily a one-to-one
1414 // mapping between collation elements and characters).
1415 // In JDK 1.2, there's a simple getOffset() call we can use.
1416 // In JDK 1.1, on the other hand, we have to go through some
1417 // ugly contortions. First, use the collator to compare the
1418 // same number of characters from the prefix and target string.
1419 // If they're equal, we're done.
1420 collator
->setStrength(Collator::PRIMARY
);
1421 if (str
.length() >= prefix
.length()) {
1423 temp
.setTo(str
, 0, prefix
.length());
1424 if (collator
->equals(temp
, prefix
)) {
1426 fprintf(stderr
, "returning: %d\n", prefix
.length());
1428 return prefix
.length();
1432 // if they're not equal, then we have to compare successively
1433 // larger and larger substrings of the target string until we
1434 // get to one that matches the prefix. At that point, we know
1435 // how many characters matched the prefix, and we can return.
1437 while (p
<= str
.length()) {
1439 temp
.setTo(str
, 0, p
);
1440 if (collator
->equals(temp
, prefix
)) {
1447 // SHOULD NEVER GET HERE!!!
1449 //----------------------------------------------------------------
1452 // If lenient parsing is turned off, forget all that crap above.
1453 // Just use String.startsWith() and be done with it.
1457 if (str
.startsWith(prefix
)) {
1458 return prefix
.length();
1466 * Searches a string for another string. If lenient parsing is off,
1467 * this just calls indexOf(). If lenient parsing is on, this function
1468 * uses CollationElementIterator to match characters, and only
1469 * primary-order differences are significant in determining whether
1471 * @param str The string to search
1472 * @param key The string to search "str" for
1473 * @param startingAt The index into "str" where the search is to
1475 * @return A two-element array of ints. Element 0 is the position
1476 * of the match, or -1 if there was no match. Element 1 is the
1477 * number of characters in "str" that matched (which isn't necessarily
1478 * the same as the length of "key")
1481 NFRule::findText(const UnicodeString
& str
,
1482 const UnicodeString
& key
,
1484 int32_t* length
) const
1486 if (rulePatternFormat
) {
1488 FieldPosition
position(UNUM_INTEGER_FIELD
);
1489 position
.setBeginIndex(startingAt
);
1490 rulePatternFormat
->parseType(str
, this, result
, position
);
1491 int start
= position
.getBeginIndex();
1493 int32_t pluralRuleStart
= ruleText
.indexOf(gDollarOpenParenthesis
, -1, 0);
1494 int32_t pluralRuleSuffix
= ruleText
.indexOf(gClosedParenthesisDollar
, -1, pluralRuleStart
) + 2;
1495 int32_t matchLen
= position
.getEndIndex() - start
;
1496 UnicodeString
prefix(ruleText
.tempSubString(0, pluralRuleStart
));
1497 UnicodeString
suffix(ruleText
.tempSubString(pluralRuleSuffix
));
1498 if (str
.compare(start
- prefix
.length(), prefix
.length(), prefix
, 0, prefix
.length()) == 0
1499 && str
.compare(start
+ matchLen
, suffix
.length(), suffix
, 0, suffix
.length()) == 0)
1501 *length
= matchLen
+ prefix
.length() + suffix
.length();
1502 return start
- prefix
.length();
1508 if (!formatter
->isLenient()) {
1509 // if lenient parsing is turned off, this is easy: just call
1510 // String.indexOf() and we're done
1511 *length
= key
.length();
1512 return str
.indexOf(key
, startingAt
);
1515 // but if lenient parsing is turned ON, we've got some work
1517 return findTextLenient(str
, key
, startingAt
, length
);
1522 NFRule::findTextLenient(const UnicodeString
& str
,
1523 const UnicodeString
& key
,
1525 int32_t* length
) const
1527 //----------------------------------------------------------------
1528 // JDK 1.1 HACK (take out of 1.2-specific code)
1530 // in JDK 1.2, CollationElementIterator provides us with an
1531 // API to map between character offsets and collation elements
1532 // and we can do this by marching through the string comparing
1533 // collation elements. We can't do that in JDK 1.1. Insted,
1534 // we have to go through this horrible slow mess:
1535 int32_t p
= startingAt
;
1538 // basically just isolate smaller and smaller substrings of
1539 // the target string (each running to the end of the string,
1540 // and with the first one running from startingAt to the end)
1541 // and then use prefixLength() to see if the search key is at
1542 // the beginning of each substring. This is excruciatingly
1543 // slow, but it will locate the key and tell use how long the
1544 // matching text was.
1546 UErrorCode status
= U_ZERO_ERROR
;
1547 while (p
< str
.length() && keyLen
== 0) {
1548 temp
.setTo(str
, p
, str
.length() - p
);
1549 keyLen
= prefixLength(temp
, key
, status
);
1550 if (U_FAILURE(status
)) {
1559 // if we make it to here, we didn't find it. Return -1 for the
1560 // location. The length should be ignored, but set it to 0,
1561 // which should be "safe"
1567 * Checks to see whether a string consists entirely of ignorable
1569 * @param str The string to test.
1570 * @return true if the string is empty of consists entirely of
1571 * characters that the number formatter's collator says are
1572 * ignorable at the primary-order level. false otherwise.
1575 NFRule::allIgnorable(const UnicodeString
& str
, UErrorCode
& status
) const
1577 // if the string is empty, we can just return true
1578 if (str
.length() == 0) {
1582 #if !UCONFIG_NO_COLLATION
1583 // if lenient parsing is turned on, walk through the string with
1584 // a collation element iterator and make sure each collation
1585 // element is 0 (ignorable) at the primary level
1586 if (formatter
->isLenient()) {
1587 const RuleBasedCollator
* collator
= formatter
->getCollator();
1588 if (collator
== NULL
) {
1589 status
= U_MEMORY_ALLOCATION_ERROR
;
1592 LocalPointer
<CollationElementIterator
> iter(collator
->createCollationElementIterator(str
));
1594 // Memory allocation error check.
1595 if (iter
.isNull()) {
1596 status
= U_MEMORY_ALLOCATION_ERROR
;
1600 UErrorCode err
= U_ZERO_ERROR
;
1601 int32_t o
= iter
->next(err
);
1602 while (o
!= CollationElementIterator::NULLORDER
1603 && CollationElementIterator::primaryOrder(o
) == 0) {
1604 o
= iter
->next(err
);
1607 return o
== CollationElementIterator::NULLORDER
;
1611 // if lenient parsing is turned off, there is no such thing as
1612 // an ignorable character: return true only if the string is empty
1617 NFRule::setDecimalFormatSymbols(const DecimalFormatSymbols
& newSymbols
, UErrorCode
& status
) {
1619 sub1
->setDecimalFormatSymbols(newSymbols
, status
);
1622 sub2
->setDecimalFormatSymbols(newSymbols
, status
);