1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
4 *******************************************************************************
5 * Copyright (C) 1997-2016, International Business Machines Corporation and
6 * others. All Rights Reserved.
7 *******************************************************************************
11 * Modification History:
13 * Date Name Description
14 * 02/05/97 clhuang Creation.
15 * 03/28/97 aliu Made highly questionable fix to computeFields to
16 * handle DST correctly.
17 * 04/22/97 aliu Cleaned up code drastically. Added monthLength().
18 * Finished unimplemented parts of computeTime() for
19 * week-based date determination. Removed quetionable
20 * fix and wrote correct fix for computeFields() and
21 * daylight time handling. Rewrote inDaylightTime()
22 * and computeFields() to handle sensitive Daylight to
23 * Standard time transitions correctly.
24 * 05/08/97 aliu Added code review changes. Fixed isLeapYear() to
26 * 08/12/97 aliu Added equivalentTo. Misc other fixes. Updated
27 * add() from Java source.
28 * 07/28/98 stephen Sync up with JDK 1.2
29 * 09/14/98 stephen Changed type of kOneDay, kOneWeek to double.
31 * 10/15/99 aliu Fixed j31, incorrect WEEK_OF_YEAR computation.
32 * 10/15/99 aliu Fixed j32, cannot set date to Feb 29 2000 AD.
33 * {JDK bug 4210209 4209272}
34 * 11/15/99 weiv Added YEAR_WOY and DOW_LOCAL computation
35 * to timeToFields method, updated kMinValues, kMaxValues & kLeastMaxValues
36 * 12/09/99 aliu Fixed j81, calculation errors and roll bugs
38 * 01/24/2000 aliu Revised computeJulianDay for YEAR YEAR_WOY WOY.
39 ********************************************************************************
42 #include "unicode/utypes.h"
45 #if !UCONFIG_NO_FORMATTING
47 #include "unicode/gregocal.h"
52 // *****************************************************************************
53 // class GregorianCalendar
54 // *****************************************************************************
57 * Note that the Julian date used here is not a true Julian date, since
58 * it is measured from midnight, not noon. This value is the Julian
59 * day number of January 1, 1970 (Gregorian calendar) at noon UTC. [LIU]
62 static const int16_t kNumDays
[]
63 = {0,31,59,90,120,151,181,212,243,273,304,334}; // 0-based, for day-in-year
64 static const int16_t kLeapNumDays
[]
65 = {0,31,60,91,121,152,182,213,244,274,305,335}; // 0-based, for day-in-year
66 static const int8_t kMonthLength
[]
67 = {31,28,31,30,31,30,31,31,30,31,30,31}; // 0-based
68 static const int8_t kLeapMonthLength
[]
69 = {31,29,31,30,31,30,31,31,30,31,30,31}; // 0-based
71 // setTimeInMillis() limits the Julian day range to +/-7F000000.
72 // This would seem to limit the year range to:
73 // ms=+183882168921600000 jd=7f000000 December 20, 5828963 AD
74 // ms=-184303902528000000 jd=81000000 September 20, 5838270 BC
75 // HOWEVER, CalendarRegressionTest/Test4167060 shows that the actual
76 // range limit on the year field is smaller (~ +/-140000). [alan 3.0]
78 static const int32_t kGregorianCalendarLimits
[UCAL_FIELD_COUNT
][4] = {
79 // Minimum Greatest Least Maximum
82 { 1, 1, 140742, 144683}, // YEAR
83 { 0, 0, 11, 11}, // MONTH
84 { 1, 1, 52, 53}, // WEEK_OF_YEAR
85 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH
86 { 1, 1, 28, 31}, // DAY_OF_MONTH
87 { 1, 1, 365, 366}, // DAY_OF_YEAR
88 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK
89 { -1, -1, 4, 5}, // DAY_OF_WEEK_IN_MONTH
90 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM
91 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR
92 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY
93 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE
94 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND
95 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND
96 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET
97 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET
98 { -140742, -140742, 140742, 144683}, // YEAR_WOY
99 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL
100 { -140742, -140742, 140742, 144683}, // EXTENDED_YEAR
101 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY
102 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY
103 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // IS_LEAP_MONTH
109 * Field name Minimum Minimum Maximum Maximum
110 * ---------- ------- ------- ------- -------
112 * YEAR 1 1 140742 144683
114 * WEEK_OF_YEAR 1 1 52 53
115 * WEEK_OF_MONTH 0 0 4 6
116 * DAY_OF_MONTH 1 1 28 31
117 * DAY_OF_YEAR 1 1 365 366
118 * DAY_OF_WEEK 1 1 7 7
119 * DAY_OF_WEEK_IN_MONTH -1 -1 4 5
122 * HOUR_OF_DAY 0 0 23 23
125 * MILLISECOND 0 0 999 999
126 * ZONE_OFFSET -12* -12* 12* 12*
127 * DST_OFFSET 0 0 1* 1*
128 * YEAR_WOY 1 1 140742 144683
131 * (*) In units of one-hour
134 #if defined( U_DEBUG_CALSVC ) || defined (U_DEBUG_CAL)
140 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(GregorianCalendar
)
142 // 00:00:00 UTC, October 15, 1582, expressed in ms from the epoch.
143 // Note that only Italy and other Catholic countries actually
144 // observed this cutover. Most other countries followed in
145 // the next few centuries, some as late as 1928. [LIU]
146 // in Java, -12219292800000L
147 //const UDate GregorianCalendar::kPapalCutover = -12219292800000L;
148 static const uint32_t kCutoverJulianDay
= 2299161;
149 static const UDate kPapalCutover
= (2299161.0 - kEpochStartAsJulianDay
) * U_MILLIS_PER_DAY
;
150 //static const UDate kPapalCutoverJulian = (2299161.0 - kEpochStartAsJulianDay);
152 // -------------------------------------
154 GregorianCalendar::GregorianCalendar(UErrorCode
& status
)
156 fGregorianCutover(kPapalCutover
),
157 fCutoverJulianDay(kCutoverJulianDay
), fNormalizedGregorianCutover(fGregorianCutover
), fGregorianCutoverYear(1582),
158 fIsGregorian(TRUE
), fInvertGregorian(FALSE
)
160 setTimeInMillis(getNow(), status
);
163 // -------------------------------------
165 GregorianCalendar::GregorianCalendar(TimeZone
* zone
, UErrorCode
& status
)
166 : Calendar(zone
, Locale::getDefault(), status
),
167 fGregorianCutover(kPapalCutover
),
168 fCutoverJulianDay(kCutoverJulianDay
), fNormalizedGregorianCutover(fGregorianCutover
), fGregorianCutoverYear(1582),
169 fIsGregorian(TRUE
), fInvertGregorian(FALSE
)
171 setTimeInMillis(getNow(), status
);
174 // -------------------------------------
176 GregorianCalendar::GregorianCalendar(const TimeZone
& zone
, UErrorCode
& status
)
177 : Calendar(zone
, Locale::getDefault(), status
),
178 fGregorianCutover(kPapalCutover
),
179 fCutoverJulianDay(kCutoverJulianDay
), fNormalizedGregorianCutover(fGregorianCutover
), fGregorianCutoverYear(1582),
180 fIsGregorian(TRUE
), fInvertGregorian(FALSE
)
182 setTimeInMillis(getNow(), status
);
185 // -------------------------------------
187 GregorianCalendar::GregorianCalendar(const Locale
& aLocale
, UErrorCode
& status
)
188 : Calendar(TimeZone::createDefault(), aLocale
, status
),
189 fGregorianCutover(kPapalCutover
),
190 fCutoverJulianDay(kCutoverJulianDay
), fNormalizedGregorianCutover(fGregorianCutover
), fGregorianCutoverYear(1582),
191 fIsGregorian(TRUE
), fInvertGregorian(FALSE
)
193 setTimeInMillis(getNow(), status
);
196 // -------------------------------------
198 GregorianCalendar::GregorianCalendar(TimeZone
* zone
, const Locale
& aLocale
,
200 : Calendar(zone
, aLocale
, status
),
201 fGregorianCutover(kPapalCutover
),
202 fCutoverJulianDay(kCutoverJulianDay
), fNormalizedGregorianCutover(fGregorianCutover
), fGregorianCutoverYear(1582),
203 fIsGregorian(TRUE
), fInvertGregorian(FALSE
)
205 setTimeInMillis(getNow(), status
);
208 // -------------------------------------
210 GregorianCalendar::GregorianCalendar(const TimeZone
& zone
, const Locale
& aLocale
,
212 : Calendar(zone
, aLocale
, status
),
213 fGregorianCutover(kPapalCutover
),
214 fCutoverJulianDay(kCutoverJulianDay
), fNormalizedGregorianCutover(fGregorianCutover
), fGregorianCutoverYear(1582),
215 fIsGregorian(TRUE
), fInvertGregorian(FALSE
)
217 setTimeInMillis(getNow(), status
);
220 // -------------------------------------
222 GregorianCalendar::GregorianCalendar(int32_t year
, int32_t month
, int32_t date
,
224 : Calendar(TimeZone::createDefault(), Locale::getDefault(), status
),
225 fGregorianCutover(kPapalCutover
),
226 fCutoverJulianDay(kCutoverJulianDay
), fNormalizedGregorianCutover(fGregorianCutover
), fGregorianCutoverYear(1582),
227 fIsGregorian(TRUE
), fInvertGregorian(FALSE
)
230 set(UCAL_YEAR
, year
);
231 set(UCAL_MONTH
, month
);
232 set(UCAL_DATE
, date
);
235 // -------------------------------------
237 GregorianCalendar::GregorianCalendar(int32_t year
, int32_t month
, int32_t date
,
238 int32_t hour
, int32_t minute
, UErrorCode
& status
)
239 : Calendar(TimeZone::createDefault(), Locale::getDefault(), status
),
240 fGregorianCutover(kPapalCutover
),
241 fCutoverJulianDay(kCutoverJulianDay
), fNormalizedGregorianCutover(fGregorianCutover
), fGregorianCutoverYear(1582),
242 fIsGregorian(TRUE
), fInvertGregorian(FALSE
)
245 set(UCAL_YEAR
, year
);
246 set(UCAL_MONTH
, month
);
247 set(UCAL_DATE
, date
);
248 set(UCAL_HOUR_OF_DAY
, hour
);
249 set(UCAL_MINUTE
, minute
);
252 // -------------------------------------
254 GregorianCalendar::GregorianCalendar(int32_t year
, int32_t month
, int32_t date
,
255 int32_t hour
, int32_t minute
, int32_t second
,
257 : Calendar(TimeZone::createDefault(), Locale::getDefault(), status
),
258 fGregorianCutover(kPapalCutover
),
259 fCutoverJulianDay(kCutoverJulianDay
), fNormalizedGregorianCutover(fGregorianCutover
), fGregorianCutoverYear(1582),
260 fIsGregorian(TRUE
), fInvertGregorian(FALSE
)
263 set(UCAL_YEAR
, year
);
264 set(UCAL_MONTH
, month
);
265 set(UCAL_DATE
, date
);
266 set(UCAL_HOUR_OF_DAY
, hour
);
267 set(UCAL_MINUTE
, minute
);
268 set(UCAL_SECOND
, second
);
271 // -------------------------------------
273 GregorianCalendar::~GregorianCalendar()
277 // -------------------------------------
279 GregorianCalendar::GregorianCalendar(const GregorianCalendar
&source
)
281 fGregorianCutover(source
.fGregorianCutover
),
282 fCutoverJulianDay(source
.fCutoverJulianDay
), fNormalizedGregorianCutover(source
.fNormalizedGregorianCutover
), fGregorianCutoverYear(source
.fGregorianCutoverYear
),
283 fIsGregorian(source
.fIsGregorian
), fInvertGregorian(source
.fInvertGregorian
)
287 // -------------------------------------
289 Calendar
* GregorianCalendar::clone() const
291 return new GregorianCalendar(*this);
294 // -------------------------------------
297 GregorianCalendar::operator=(const GregorianCalendar
&right
)
301 Calendar::operator=(right
);
302 fGregorianCutover
= right
.fGregorianCutover
;
303 fNormalizedGregorianCutover
= right
.fNormalizedGregorianCutover
;
304 fGregorianCutoverYear
= right
.fGregorianCutoverYear
;
305 fCutoverJulianDay
= right
.fCutoverJulianDay
;
310 // -------------------------------------
312 UBool
GregorianCalendar::isEquivalentTo(const Calendar
& other
) const
314 // Calendar override.
315 return Calendar::isEquivalentTo(other
) &&
316 fGregorianCutover
== ((GregorianCalendar
*)&other
)->fGregorianCutover
;
319 // -------------------------------------
322 GregorianCalendar::setGregorianChange(UDate date
, UErrorCode
& status
)
324 if (U_FAILURE(status
))
327 fGregorianCutover
= date
;
329 // Precompute two internal variables which we use to do the actual
330 // cutover computations. These are the normalized cutover, which is the
331 // midnight at or before the cutover, and the cutover year. The
332 // normalized cutover is in pure date milliseconds; it contains no time
333 // of day or timezone component, and it used to compare against other
335 int32_t cutoverDay
= (int32_t)ClockMath::floorDivide(fGregorianCutover
, (double)kOneDay
);
336 fNormalizedGregorianCutover
= cutoverDay
* kOneDay
;
338 // Handle the rare case of numeric overflow. If the user specifies a
339 // change of UDate(Long.MIN_VALUE), in order to get a pure Gregorian
340 // calendar, then the epoch day is -106751991168, which when multiplied
341 // by ONE_DAY gives 9223372036794351616 -- the negative value is too
342 // large for 64 bits, and overflows into a positive value. We correct
343 // this by using the next day, which for all intents is semantically
345 if (cutoverDay
< 0 && fNormalizedGregorianCutover
> 0) {
346 fNormalizedGregorianCutover
= (cutoverDay
+ 1) * kOneDay
;
349 // Normalize the year so BC values are represented as 0 and negative
351 GregorianCalendar
*cal
= new GregorianCalendar(getTimeZone(), status
);
354 status
= U_MEMORY_ALLOCATION_ERROR
;
357 if(U_FAILURE(status
))
359 cal
->setTime(date
, status
);
360 fGregorianCutoverYear
= cal
->get(UCAL_YEAR
, status
);
361 if (cal
->get(UCAL_ERA
, status
) == BC
)
362 fGregorianCutoverYear
= 1 - fGregorianCutoverYear
;
363 fCutoverJulianDay
= cutoverDay
;
368 void GregorianCalendar::handleComputeFields(int32_t julianDay
, UErrorCode
& status
) {
369 int32_t eyear
, month
, dayOfMonth
, dayOfYear
, unusedRemainder
;
372 if(U_FAILURE(status
)) {
376 #if defined (U_DEBUG_CAL)
377 fprintf(stderr
, "%s:%d: jd%d- (greg's %d)- [cut=%d]\n",
378 __FILE__
, __LINE__
, julianDay
, getGregorianDayOfYear(), fCutoverJulianDay
);
382 if (julianDay
>= fCutoverJulianDay
) {
383 month
= getGregorianMonth();
384 dayOfMonth
= getGregorianDayOfMonth();
385 dayOfYear
= getGregorianDayOfYear();
386 eyear
= getGregorianYear();
388 // The Julian epoch day (not the same as Julian Day)
389 // is zero on Saturday December 30, 0 (Gregorian).
390 int32_t julianEpochDay
= julianDay
- (kJan1_1JulianDay
- 2);
391 eyear
= (int32_t) ClockMath::floorDivide((4.0*julianEpochDay
) + 1464.0, (int32_t) 1461, unusedRemainder
);
393 // Compute the Julian calendar day number for January 1, eyear
394 int32_t january1
= 365*(eyear
-1) + ClockMath::floorDivide(eyear
-1, (int32_t)4);
395 dayOfYear
= (julianEpochDay
- january1
); // 0-based
397 // Julian leap years occurred historically every 4 years starting
398 // with 8 AD. Before 8 AD the spacing is irregular; every 3 years
399 // from 45 BC to 9 BC, and then none until 8 AD. However, we don't
400 // implement this historical detail; instead, we implement the
401 // computatinally cleaner proleptic calendar, which assumes
402 // consistent 4-year cycles throughout time.
403 UBool isLeap
= ((eyear
&0x3) == 0); // equiv. to (eyear%4 == 0)
405 // Common Julian/Gregorian calculation
406 int32_t correction
= 0;
407 int32_t march1
= isLeap
? 60 : 59; // zero-based DOY for March 1
408 if (dayOfYear
>= march1
) {
409 correction
= isLeap
? 1 : 2;
411 month
= (12 * (dayOfYear
+ correction
) + 6) / 367; // zero-based month
412 dayOfMonth
= dayOfYear
- (isLeap
?kLeapNumDays
[month
]:kNumDays
[month
]) + 1; // one-based DOM
414 #if defined (U_DEBUG_CAL)
415 // fprintf(stderr, "%d - %d[%d] + 1\n", dayOfYear, isLeap?kLeapNumDays[month]:kNumDays[month], month );
416 // fprintf(stderr, "%s:%d: greg's HCF %d -> %d/%d/%d not %d/%d/%d\n",
417 // __FILE__, __LINE__,julianDay,
418 // eyear,month,dayOfMonth,
419 // getGregorianYear(), getGregorianMonth(), getGregorianDayOfMonth() );
420 fprintf(stderr
, "%s:%d: doy %d (greg's %d)- [cut=%d]\n",
421 __FILE__
, __LINE__
, dayOfYear
, getGregorianDayOfYear(), fCutoverJulianDay
);
426 // [j81] if we are after the cutover in its year, shift the day of the year
427 if((eyear
== fGregorianCutoverYear
) && (julianDay
>= fCutoverJulianDay
)) {
428 //from handleComputeMonthStart
429 int32_t gregShift
= Grego::gregorianShift(eyear
);
430 #if defined (U_DEBUG_CAL)
431 fprintf(stderr
, "%s:%d: gregorian shift %d ::: doy%d => %d [cut=%d]\n",
432 __FILE__
, __LINE__
,gregShift
, dayOfYear
, dayOfYear
+gregShift
, fCutoverJulianDay
);
434 dayOfYear
+= gregShift
;
437 internalSet(UCAL_MONTH
, month
);
438 internalSet(UCAL_DAY_OF_MONTH
, dayOfMonth
);
439 internalSet(UCAL_DAY_OF_YEAR
, dayOfYear
);
440 internalSet(UCAL_EXTENDED_YEAR
, eyear
);
446 internalSet(UCAL_ERA
, era
);
447 internalSet(UCAL_YEAR
, eyear
);
451 // -------------------------------------
454 GregorianCalendar::getGregorianChange() const
456 return fGregorianCutover
;
459 // -------------------------------------
462 GregorianCalendar::isLeapYear(int32_t year
) const
464 // MSVC complains bitterly if we try to use Grego::isLeapYear here
465 // NOTE: year&0x3 == year%4
466 return (year
>= fGregorianCutoverYear
?
467 (((year
&0x3) == 0) && ((year%100
!= 0) || (year%400
== 0))) : // Gregorian
468 ((year
&0x3) == 0)); // Julian
471 // -------------------------------------
473 int32_t GregorianCalendar::handleComputeJulianDay(UCalendarDateFields bestField
)
475 fInvertGregorian
= FALSE
;
477 int32_t jd
= Calendar::handleComputeJulianDay(bestField
);
479 if((bestField
== UCAL_WEEK_OF_YEAR
) && // if we are doing WOY calculations, we are counting relative to Jan 1 *julian*
480 (internalGet(UCAL_EXTENDED_YEAR
)==fGregorianCutoverYear
) &&
481 jd
>= fCutoverJulianDay
) {
482 fInvertGregorian
= TRUE
; // So that the Julian Jan 1 will be used in handleComputeMonthStart
483 return Calendar::handleComputeJulianDay(bestField
);
487 // The following check handles portions of the cutover year BEFORE the
488 // cutover itself happens.
489 //if ((fIsGregorian==TRUE) != (jd >= fCutoverJulianDay)) { /* cutoverJulianDay)) { */
490 if ((fIsGregorian
==TRUE
) != (jd
>= fCutoverJulianDay
)) { /* cutoverJulianDay)) { */
491 #if defined (U_DEBUG_CAL)
492 fprintf(stderr
, "%s:%d: jd [invert] %d\n",
493 __FILE__
, __LINE__
, jd
);
495 fInvertGregorian
= TRUE
;
496 jd
= Calendar::handleComputeJulianDay(bestField
);
497 #if defined (U_DEBUG_CAL)
498 fprintf(stderr
, "%s:%d: fIsGregorian %s, fInvertGregorian %s - ",
499 __FILE__
, __LINE__
,fIsGregorian
?"T":"F", fInvertGregorian
?"T":"F");
500 fprintf(stderr
, " jd NOW %d\n",
504 #if defined (U_DEBUG_CAL)
505 fprintf(stderr
, "%s:%d: jd [==] %d - %sfIsGregorian %sfInvertGregorian, %d\n",
506 __FILE__
, __LINE__
, jd
, fIsGregorian
?"T":"F", fInvertGregorian
?"T":"F", bestField
);
510 if(fIsGregorian
&& (internalGet(UCAL_EXTENDED_YEAR
) == fGregorianCutoverYear
)) {
511 int32_t gregShift
= Grego::gregorianShift(internalGet(UCAL_EXTENDED_YEAR
));
512 if (bestField
== UCAL_DAY_OF_YEAR
) {
513 #if defined (U_DEBUG_CAL)
514 fprintf(stderr
, "%s:%d: [DOY%d] gregorian shift of JD %d += %d\n",
515 __FILE__
, __LINE__
, fFields
[bestField
],jd
, gregShift
);
518 } else if ( bestField
== UCAL_WEEK_OF_MONTH
) {
519 int32_t weekShift
= 14;
520 #if defined (U_DEBUG_CAL)
521 fprintf(stderr
, "%s:%d: [WOY/WOM] gregorian week shift of %d += %d\n",
522 __FILE__
, __LINE__
, jd
, weekShift
);
524 jd
+= weekShift
; // shift by weeks for week based fields.
531 int32_t GregorianCalendar::handleComputeMonthStart(int32_t eyear
, int32_t month
,
533 UBool
/* useMonth */) const
535 GregorianCalendar
*nonConstThis
= (GregorianCalendar
*)this; // cast away const
537 // If the month is out of range, adjust it into range, and
538 // modify the extended year value accordingly.
539 if (month
< 0 || month
> 11) {
540 eyear
+= ClockMath::floorDivide(month
, 12, month
);
543 UBool isLeap
= eyear%4
== 0;
545 int32_t julianDay
= 365*y
+ ClockMath::floorDivide(y
, 4) + (kJan1_1JulianDay
- 3);
547 nonConstThis
->fIsGregorian
= (eyear
>= fGregorianCutoverYear
);
548 #if defined (U_DEBUG_CAL)
549 fprintf(stderr
, "%s:%d: (hcms%d/%d) fIsGregorian %s, fInvertGregorian %s\n",
550 __FILE__
, __LINE__
, eyear
,month
, fIsGregorian
?"T":"F", fInvertGregorian
?"T":"F");
552 if (fInvertGregorian
) {
553 nonConstThis
->fIsGregorian
= !fIsGregorian
;
556 isLeap
= isLeap
&& ((eyear%100
!= 0) || (eyear%400
== 0));
557 // Add 2 because Gregorian calendar starts 2 days after
559 int32_t gregShift
= Grego::gregorianShift(eyear
);
560 #if defined (U_DEBUG_CAL)
561 fprintf(stderr
, "%s:%d: (hcms%d/%d) gregorian shift of %d += %d\n",
562 __FILE__
, __LINE__
, eyear
, month
, julianDay
, gregShift
);
564 julianDay
+= gregShift
;
567 // At this point julianDay indicates the day BEFORE the first
568 // day of January 1, <eyear> of either the Julian or Gregorian
572 julianDay
+= isLeap
?kLeapNumDays
[month
]:kNumDays
[month
];
578 int32_t GregorianCalendar::handleGetMonthLength(int32_t extendedYear
, int32_t month
) const
580 // If the month is out of range, adjust it into range, and
581 // modify the extended year value accordingly.
582 if (month
< 0 || month
> 11) {
583 extendedYear
+= ClockMath::floorDivide(month
, 12, month
);
586 return isLeapYear(extendedYear
) ? kLeapMonthLength
[month
] : kMonthLength
[month
];
589 int32_t GregorianCalendar::handleGetYearLength(int32_t eyear
) const {
590 return isLeapYear(eyear
) ? 366 : 365;
595 GregorianCalendar::monthLength(int32_t month
) const
597 int32_t year
= internalGet(UCAL_EXTENDED_YEAR
);
598 return handleGetMonthLength(year
, month
);
601 // -------------------------------------
604 GregorianCalendar::monthLength(int32_t month
, int32_t year
) const
606 return isLeapYear(year
) ? kLeapMonthLength
[month
] : kMonthLength
[month
];
609 // -------------------------------------
612 GregorianCalendar::yearLength(int32_t year
) const
614 return isLeapYear(year
) ? 366 : 365;
617 // -------------------------------------
620 GregorianCalendar::yearLength() const
622 return isLeapYear(internalGet(UCAL_YEAR
)) ? 366 : 365;
625 // -------------------------------------
628 * After adjustments such as add(MONTH), add(YEAR), we don't want the
629 * month to jump around. E.g., we don't want Jan 31 + 1 month to go to Mar
630 * 3, we want it to go to Feb 28. Adjustments which might run into this
631 * problem call this method to retain the proper month.
634 GregorianCalendar::pinDayOfMonth()
636 int32_t monthLen
= monthLength(internalGet(UCAL_MONTH
));
637 int32_t dom
= internalGet(UCAL_DATE
);
639 set(UCAL_DATE
, monthLen
);
642 // -------------------------------------
646 GregorianCalendar::validateFields() const
648 for (int32_t field
= 0; field
< UCAL_FIELD_COUNT
; field
++) {
649 // Ignore DATE and DAY_OF_YEAR which are handled below
650 if (field
!= UCAL_DATE
&&
651 field
!= UCAL_DAY_OF_YEAR
&&
652 isSet((UCalendarDateFields
)field
) &&
653 ! boundsCheck(internalGet((UCalendarDateFields
)field
), (UCalendarDateFields
)field
))
657 // Values differ in Least-Maximum and Maximum should be handled
659 if (isSet(UCAL_DATE
)) {
660 int32_t date
= internalGet(UCAL_DATE
);
661 if (date
< getMinimum(UCAL_DATE
) ||
662 date
> monthLength(internalGet(UCAL_MONTH
))) {
667 if (isSet(UCAL_DAY_OF_YEAR
)) {
668 int32_t days
= internalGet(UCAL_DAY_OF_YEAR
);
669 if (days
< 1 || days
> yearLength()) {
674 // Handle DAY_OF_WEEK_IN_MONTH, which must not have the value zero.
675 // We've checked against minimum and maximum above already.
676 if (isSet(UCAL_DAY_OF_WEEK_IN_MONTH
) &&
677 0 == internalGet(UCAL_DAY_OF_WEEK_IN_MONTH
)) {
684 // -------------------------------------
687 GregorianCalendar::boundsCheck(int32_t value
, UCalendarDateFields field
) const
689 return value
>= getMinimum(field
) && value
<= getMaximum(field
);
692 // -------------------------------------
695 GregorianCalendar::getEpochDay(UErrorCode
& status
)
698 // Divide by 1000 (convert to seconds) in order to prevent overflow when
699 // dealing with UDate(Long.MIN_VALUE) and UDate(Long.MAX_VALUE).
700 double wallSec
= internalGetTime()/1000 + (internalGet(UCAL_ZONE_OFFSET
) + internalGet(UCAL_DST_OFFSET
))/1000;
702 return ClockMath::floorDivide(wallSec
, kOneDay
/1000.0);
705 // -------------------------------------
708 // -------------------------------------
711 * Compute the julian day number of the day BEFORE the first day of
712 * January 1, year 1 of the given calendar. If julianDay == 0, it
713 * specifies (Jan. 1, 1) - 1, in whatever calendar we are using (Julian
716 double GregorianCalendar::computeJulianDayOfYear(UBool isGregorian
,
717 int32_t year
, UBool
& isLeap
)
719 isLeap
= year%4
== 0;
720 int32_t y
= year
- 1;
721 double julianDay
= 365.0*y
+ ClockMath::floorDivide(y
, 4) + (kJan1_1JulianDay
- 3);
724 isLeap
= isLeap
&& ((year%100
!= 0) || (year%400
== 0));
725 // Add 2 because Gregorian calendar starts 2 days after Julian calendar
726 julianDay
+= Grego::gregorianShift(year
);
733 // * Compute the day of week, relative to the first day of week, from
734 // * 0..6, of the current DOW_LOCAL or DAY_OF_WEEK fields. This is
735 // * equivalent to get(DOW_LOCAL) - 1.
737 // int32_t GregorianCalendar::computeRelativeDOW() const {
738 // int32_t relDow = 0;
739 // if (fStamp[UCAL_DOW_LOCAL] > fStamp[UCAL_DAY_OF_WEEK]) {
740 // relDow = internalGet(UCAL_DOW_LOCAL) - 1; // 1-based
741 // } else if (fStamp[UCAL_DAY_OF_WEEK] != kUnset) {
742 // relDow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek();
743 // if (relDow < 0) relDow += 7;
749 // * Compute the day of week, relative to the first day of week,
750 // * from 0..6 of the given julian day.
752 // int32_t GregorianCalendar::computeRelativeDOW(double julianDay) const {
753 // int32_t relDow = julianDayToDayOfWeek(julianDay) - getFirstDayOfWeek();
761 // * Compute the DOY using the WEEK_OF_YEAR field and the julian day
762 // * of the day BEFORE January 1 of a year (a return value from
763 // * computeJulianDayOfYear).
765 // int32_t GregorianCalendar::computeDOYfromWOY(double julianDayOfYear) const {
766 // // Compute DOY from day of week plus week of year
768 // // Find the day of the week for the first of this year. This
769 // // is zero-based, with 0 being the locale-specific first day of
770 // // the week. Add 1 to get first day of year.
771 // int32_t fdy = computeRelativeDOW(julianDayOfYear + 1);
774 // // Compute doy of first (relative) DOW of WOY 1
775 // (((7 - fdy) < getMinimalDaysInFirstWeek())
776 // ? (8 - fdy) : (1 - fdy))
778 // // Adjust for the week number.
779 // + (7 * (internalGet(UCAL_WEEK_OF_YEAR) - 1))
781 // // Adjust for the DOW
782 // + computeRelativeDOW();
785 // -------------------------------------
788 GregorianCalendar::millisToJulianDay(UDate millis
)
790 return (double)kEpochStartAsJulianDay
+ ClockMath::floorDivide(millis
, (double)kOneDay
);
793 // -------------------------------------
796 GregorianCalendar::julianDayToMillis(double julian
)
798 return (UDate
) ((julian
- kEpochStartAsJulianDay
) * (double) kOneDay
);
801 // -------------------------------------
804 GregorianCalendar::aggregateStamp(int32_t stamp_a
, int32_t stamp_b
)
806 return (((stamp_a
!= kUnset
&& stamp_b
!= kUnset
)
807 ? uprv_max(stamp_a
, stamp_b
)
811 // -------------------------------------
814 * Roll a field by a signed amount.
815 * Note: This will be made public later. [LIU]
819 GregorianCalendar::roll(EDateFields field
, int32_t amount
, UErrorCode
& status
) {
820 roll((UCalendarDateFields
) field
, amount
, status
);
824 GregorianCalendar::roll(UCalendarDateFields field
, int32_t amount
, UErrorCode
& status
)
826 if((amount
== 0) || U_FAILURE(status
)) {
830 // J81 processing. (gregorian cutover)
831 UBool inCutoverMonth
= FALSE
;
832 int32_t cMonthLen
=0; // 'c' for cutover; in days
833 int32_t cDayOfMonth
=0; // no discontinuity: [0, cMonthLen)
834 double cMonthStart
=0.0; // in ms
836 // Common code - see if we're in the cutover month of the cutover year
837 if(get(UCAL_EXTENDED_YEAR
, status
) == fGregorianCutoverYear
) {
839 case UCAL_DAY_OF_MONTH
:
840 case UCAL_WEEK_OF_MONTH
:
842 int32_t max
= monthLength(internalGet(UCAL_MONTH
));
843 UDate t
= internalGetTime();
844 // We subtract 1 from the DAY_OF_MONTH to make it zero-based, and an
845 // additional 10 if we are after the cutover. Thus the monthStart
846 // value will be correct iff we actually are in the cutover month.
847 cDayOfMonth
= internalGet(UCAL_DAY_OF_MONTH
) - ((t
>= fGregorianCutover
) ? 10 : 0);
848 cMonthStart
= t
- ((cDayOfMonth
- 1) * kOneDay
);
849 // A month containing the cutover is 10 days shorter.
850 if ((cMonthStart
< fGregorianCutover
) &&
851 (cMonthStart
+ (cMonthLen
=(max
-10))*kOneDay
>= fGregorianCutover
)) {
852 inCutoverMonth
= TRUE
;
862 case UCAL_WEEK_OF_YEAR
: {
863 // Unlike WEEK_OF_MONTH, WEEK_OF_YEAR never shifts the day of the
864 // week. Also, rolling the week of the year can have seemingly
865 // strange effects simply because the year of the week of year
866 // may be different from the calendar year. For example, the
867 // date Dec 28, 1997 is the first day of week 1 of 1998 (if
868 // weeks start on Sunday and the minimal days in first week is
870 int32_t woy
= get(UCAL_WEEK_OF_YEAR
, status
);
871 // Get the ISO year, which matches the week of year. This
872 // may be one year before or after the calendar year.
873 int32_t isoYear
= get(UCAL_YEAR_WOY
, status
);
874 int32_t isoDoy
= internalGet(UCAL_DAY_OF_YEAR
);
875 if (internalGet(UCAL_MONTH
) == UCAL_JANUARY
) {
877 isoDoy
+= handleGetYearLength(isoYear
);
881 isoDoy
-= handleGetYearLength(isoYear
- 1);
885 // Do fast checks to avoid unnecessary computation:
886 if (woy
< 1 || woy
> 52) {
887 // Determine the last week of the ISO year.
888 // We do this using the standard formula we use
889 // everywhere in this file. If we can see that the
890 // days at the end of the year are going to fall into
891 // week 1 of the next year, we drop the last week by
892 // subtracting 7 from the last day of the year.
893 int32_t lastDoy
= handleGetYearLength(isoYear
);
894 int32_t lastRelDow
= (lastDoy
- isoDoy
+ internalGet(UCAL_DAY_OF_WEEK
) -
895 getFirstDayOfWeek()) % 7;
896 if (lastRelDow
< 0) lastRelDow
+= 7;
897 if ((6 - lastRelDow
) >= getMinimalDaysInFirstWeek()) lastDoy
-= 7;
898 int32_t lastWoy
= weekNumber(lastDoy
, lastRelDow
+ 1);
899 woy
= ((woy
+ lastWoy
- 1) % lastWoy
) + 1;
901 set(UCAL_WEEK_OF_YEAR
, woy
);
902 set(UCAL_YEAR_WOY
,isoYear
);
906 case UCAL_DAY_OF_MONTH
:
907 if( !inCutoverMonth
) {
908 Calendar::roll(field
, amount
, status
);
911 // [j81] 1582 special case for DOM
912 // The default computation works except when the current month
913 // contains the Gregorian cutover. We handle this special case
914 // here. [j81 - aliu]
915 double monthLen
= cMonthLen
* kOneDay
;
916 double msIntoMonth
= uprv_fmod(internalGetTime() - cMonthStart
+
917 amount
* kOneDay
, monthLen
);
918 if (msIntoMonth
< 0) {
919 msIntoMonth
+= monthLen
;
921 #if defined (U_DEBUG_CAL)
922 fprintf(stderr
, "%s:%d: roll DOM %d -> %.0lf ms \n",
923 __FILE__
, __LINE__
,amount
, cMonthLen
, cMonthStart
+msIntoMonth
);
925 setTimeInMillis(cMonthStart
+ msIntoMonth
, status
);
929 case UCAL_WEEK_OF_MONTH
:
930 if( !inCutoverMonth
) {
931 Calendar::roll(field
, amount
, status
);
934 #if defined (U_DEBUG_CAL)
935 fprintf(stderr
, "%s:%d: roll WOM %d ??????????????????? \n",
936 __FILE__
, __LINE__
,amount
);
938 // NOTE: following copied from the old
939 // GregorianCalendar::roll( WEEK_OF_MONTH ) code
941 // This is tricky, because during the roll we may have to shift
942 // to a different day of the week. For example:
948 // When rolling from the 6th or 7th back one week, we go to the
949 // 1st (assuming that the first partial week counts). The same
950 // thing happens at the end of the month.
952 // The other tricky thing is that we have to figure out whether
953 // the first partial week actually counts or not, based on the
954 // minimal first days in the week. And we have to use the
955 // correct first day of the week to delineate the week
958 // Here's our algorithm. First, we find the real boundaries of
959 // the month. Then we discard the first partial week if it
960 // doesn't count in this locale. Then we fill in the ends with
961 // phantom days, so that the first partial week and the last
962 // partial week are full weeks. We then have a nice square
963 // block of weeks. We do the usual rolling within this block,
964 // as is done elsewhere in this method. If we wind up on one of
965 // the phantom days that we added, we recognize this and pin to
966 // the first or the last day of the month. Easy, eh?
968 // Another wrinkle: To fix jitterbug 81, we have to make all this
969 // work in the oddball month containing the Gregorian cutover.
970 // This month is 10 days shorter than usual, and also contains
971 // a discontinuity in the days; e.g., the default cutover month
972 // is Oct 1582, and goes from day of month 4 to day of month 15.
974 // Normalize the DAY_OF_WEEK so that 0 is the first day of the week
975 // in this locale. We have dow in 0..6.
976 int32_t dow
= internalGet(UCAL_DAY_OF_WEEK
) - getFirstDayOfWeek();
980 // Find the day of month, compensating for cutover discontinuity.
981 int32_t dom
= cDayOfMonth
;
983 // Find the day of the week (normalized for locale) for the first
985 int32_t fdm
= (dow
- dom
+ 1) % 7;
989 // Get the first day of the first full week of the month,
990 // including phantom days, if any. Figure out if the first week
991 // counts or not; if it counts, then fill in phantom days. If
992 // not, advance to the first real full week (skip the partial week).
994 if ((7 - fdm
) < getMinimalDaysInFirstWeek())
995 start
= 8 - fdm
; // Skip the first partial week
997 start
= 1 - fdm
; // This may be zero or negative
999 // Get the day of the week (normalized for locale) for the last
1000 // day of the month.
1001 int32_t monthLen
= cMonthLen
;
1002 int32_t ldm
= (monthLen
- dom
+ dow
) % 7;
1003 // We know monthLen >= DAY_OF_MONTH so we skip the += 7 step here.
1005 // Get the limit day for the blocked-off rectangular month; that
1006 // is, the day which is one past the last day of the month,
1007 // after the month has already been filled in with phantom days
1008 // to fill out the last week. This day has a normalized DOW of 0.
1009 int32_t limit
= monthLen
+ 7 - ldm
;
1011 // Now roll between start and (limit - 1).
1012 int32_t gap
= limit
- start
;
1013 int32_t newDom
= (dom
+ amount
*7 - start
) % gap
;
1018 // Finally, pin to the real start and end of the month.
1021 if (newDom
> monthLen
)
1024 // Set the DAY_OF_MONTH. We rely on the fact that this field
1025 // takes precedence over everything else (since all other fields
1026 // are also set at this point). If this fact changes (if the
1027 // disambiguation algorithm changes) then we will have to unset
1028 // the appropriate fields here so that DAY_OF_MONTH is attended
1031 // If we are in the cutover month, manipulate ms directly. Don't do
1032 // this in general because it doesn't work across DST boundaries
1033 // (details, details). This takes care of the discontinuity.
1034 setTimeInMillis(cMonthStart
+ (newDom
-1)*kOneDay
, status
);
1039 Calendar::roll(field
, amount
, status
);
1044 // -------------------------------------
1048 * Return the minimum value that this field could have, given the current date.
1049 * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum().
1050 * @param field the time field.
1051 * @return the minimum value that this field could have, given the current date.
1052 * @deprecated ICU 2.6. Use getActualMinimum(UCalendarDateFields field) instead.
1054 int32_t GregorianCalendar::getActualMinimum(EDateFields field
) const
1056 return getMinimum((UCalendarDateFields
)field
);
1059 int32_t GregorianCalendar::getActualMinimum(EDateFields field
, UErrorCode
& /* status */) const
1061 return getMinimum((UCalendarDateFields
)field
);
1065 * Return the minimum value that this field could have, given the current date.
1066 * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMinimum().
1067 * @param field the time field.
1068 * @return the minimum value that this field could have, given the current date.
1071 int32_t GregorianCalendar::getActualMinimum(UCalendarDateFields field
, UErrorCode
& /* status */) const
1073 return getMinimum(field
);
1077 // ------------------------------------
1080 * Old year limits were least max 292269054, max 292278994.
1086 int32_t GregorianCalendar::handleGetLimit(UCalendarDateFields field
, ELimitType limitType
) const {
1087 return kGregorianCalendarLimits
[field
][limitType
];
1091 * Return the maximum value that this field could have, given the current date.
1092 * For example, with the date "Feb 3, 1997" and the DAY_OF_MONTH field, the actual
1093 * maximum would be 28; for "Feb 3, 1996" it s 29. Similarly for a Hebrew calendar,
1094 * for some years the actual maximum for MONTH is 12, and for others 13.
1097 int32_t GregorianCalendar::getActualMaximum(UCalendarDateFields field
, UErrorCode
& status
) const
1099 /* It is a known limitation that the code here (and in getActualMinimum)
1100 * won't behave properly at the extreme limits of GregorianCalendar's
1101 * representable range (except for the code that handles the YEAR
1102 * field). That's because the ends of the representable range are at
1103 * odd spots in the year. For calendars with the default Gregorian
1104 * cutover, these limits are Sun Dec 02 16:47:04 GMT 292269055 BC to Sun
1105 * Aug 17 07:12:55 GMT 292278994 AD, somewhat different for non-GMT
1106 * zones. As a result, if the calendar is set to Aug 1 292278994 AD,
1107 * the actual maximum of DAY_OF_MONTH is 17, not 30. If the date is Mar
1108 * 31 in that year, the actual maximum month might be Jul, whereas is
1109 * the date is Mar 15, the actual maximum might be Aug -- depending on
1110 * the precise semantics that are desired. Similar considerations
1111 * affect all fields. Nonetheless, this effect is sufficiently arcane
1112 * that we permit it, rather than complicating the code to handle such
1113 * intricacies. - liu 8/20/98
1115 * UPDATE: No longer true, since we have pulled in the limit values on
1116 * the year. - Liu 11/6/00 */
1121 /* The year computation is no different, in principle, from the
1122 * others, however, the range of possible maxima is large. In
1123 * addition, the way we know we've exceeded the range is different.
1124 * For these reasons, we use the special case code below to handle
1127 * The actual maxima for YEAR depend on the type of calendar:
1129 * Gregorian = May 17, 292275056 BC - Aug 17, 292278994 AD
1130 * Julian = Dec 2, 292269055 BC - Jan 3, 292272993 AD
1131 * Hybrid = Dec 2, 292269055 BC - Aug 17, 292278994 AD
1133 * We know we've exceeded the maximum when either the month, date,
1134 * time, or era changes in response to setting the year. We don't
1135 * check for month, date, and time here because the year and era are
1136 * sufficient to detect an invalid year setting. NOTE: If code is
1137 * added to check the month and date in the future for some reason,
1138 * Feb 29 must be allowed to shift to Mar 1 when setting the year.
1141 if(U_FAILURE(status
)) return 0;
1142 Calendar
*cal
= clone();
1144 status
= U_MEMORY_ALLOCATION_ERROR
;
1148 cal
->setLenient(TRUE
);
1150 int32_t era
= cal
->get(UCAL_ERA
, status
);
1151 UDate d
= cal
->getTime(status
);
1153 /* Perform a binary search, with the invariant that lowGood is a
1154 * valid year, and highBad is an out of range year.
1156 int32_t lowGood
= kGregorianCalendarLimits
[UCAL_YEAR
][1];
1157 int32_t highBad
= kGregorianCalendarLimits
[UCAL_YEAR
][2]+1;
1158 while ((lowGood
+ 1) < highBad
) {
1159 int32_t y
= (lowGood
+ highBad
) / 2;
1160 cal
->set(UCAL_YEAR
, y
);
1161 if (cal
->get(UCAL_YEAR
, status
) == y
&& cal
->get(UCAL_ERA
, status
) == era
) {
1165 cal
->setTime(d
, status
); // Restore original fields
1174 return Calendar::getActualMaximum(field
,status
);
1179 int32_t GregorianCalendar::handleGetExtendedYear() {
1180 // the year to return
1181 int32_t year
= kEpochYear
;
1183 // year field to use
1184 int32_t yearField
= UCAL_EXTENDED_YEAR
;
1186 // There are three separate fields which could be used to
1187 // derive the proper year. Use the one most recently set.
1188 if (fStamp
[yearField
] < fStamp
[UCAL_YEAR
])
1189 yearField
= UCAL_YEAR
;
1190 if (fStamp
[yearField
] < fStamp
[UCAL_YEAR_WOY
])
1191 yearField
= UCAL_YEAR_WOY
;
1193 // based on the "best" year field, get the year
1195 case UCAL_EXTENDED_YEAR
:
1196 year
= internalGet(UCAL_EXTENDED_YEAR
, kEpochYear
);
1201 // The year defaults to the epoch start, the era to AD
1202 int32_t era
= internalGet(UCAL_ERA
, AD
);
1204 year
= 1 - internalGet(UCAL_YEAR
, 1); // Convert to extended year
1206 year
= internalGet(UCAL_YEAR
, kEpochYear
);
1212 year
= handleGetExtendedYearFromWeekFields(internalGet(UCAL_YEAR_WOY
), internalGet(UCAL_WEEK_OF_YEAR
));
1213 #if defined (U_DEBUG_CAL)
1214 // if(internalGet(UCAL_YEAR_WOY) != year) {
1215 fprintf(stderr
, "%s:%d: hGEYFWF[%d,%d] -> %d\n",
1216 __FILE__
, __LINE__
,internalGet(UCAL_YEAR_WOY
),internalGet(UCAL_WEEK_OF_YEAR
),year
);
1227 int32_t GregorianCalendar::handleGetExtendedYearFromWeekFields(int32_t yearWoy
, int32_t woy
)
1229 // convert year to extended form
1230 int32_t era
= internalGet(UCAL_ERA
, AD
);
1232 yearWoy
= 1 - yearWoy
;
1234 return Calendar::handleGetExtendedYearFromWeekFields(yearWoy
, woy
);
1238 // -------------------------------------
1241 GregorianCalendar::inDaylightTime(UErrorCode
& status
) const
1243 if (U_FAILURE(status
) || !getTimeZone().useDaylightTime())
1246 // Force an update of the state of the Calendar.
1247 ((GregorianCalendar
*)this)->complete(status
); // cast away const
1249 return (UBool
)(U_SUCCESS(status
) ? (internalGet(UCAL_DST_OFFSET
) != 0) : FALSE
);
1252 // -------------------------------------
1255 * Return the ERA. We need a special method for this because the
1256 * default ERA is AD, but a zero (unset) ERA is BC.
1259 GregorianCalendar::internalGetEra() const {
1260 return isSet(UCAL_ERA
) ? internalGet(UCAL_ERA
) : (int32_t)AD
;
1264 GregorianCalendar::getType() const {
1265 //static const char kGregorianType = "gregorian";
1271 * The system maintains a static default century start date and Year. They are
1272 * initialized the first time they are used. Once the system default century date
1273 * and year are set, they do not change.
1275 static UDate gSystemDefaultCenturyStart
= DBL_MIN
;
1276 static int32_t gSystemDefaultCenturyStartYear
= -1;
1277 static icu::UInitOnce gSystemDefaultCenturyInit
= U_INITONCE_INITIALIZER
;
1280 UBool
GregorianCalendar::haveDefaultCentury() const
1285 static void U_CALLCONV
1286 initializeSystemDefaultCentury()
1288 // initialize systemDefaultCentury and systemDefaultCenturyYear based
1289 // on the current time. They'll be set to 80 years before
1290 // the current time.
1291 UErrorCode status
= U_ZERO_ERROR
;
1292 GregorianCalendar
calendar(status
);
1293 if (U_SUCCESS(status
)) {
1294 calendar
.setTime(Calendar::getNow(), status
);
1295 calendar
.add(UCAL_YEAR
, -80, status
);
1297 gSystemDefaultCenturyStart
= calendar
.getTime(status
);
1298 gSystemDefaultCenturyStartYear
= calendar
.get(UCAL_YEAR
, status
);
1300 // We have no recourse upon failure unless we want to propagate the failure
1304 UDate
GregorianCalendar::defaultCenturyStart() const {
1305 // lazy-evaluate systemDefaultCenturyStart
1306 umtx_initOnce(gSystemDefaultCenturyInit
, &initializeSystemDefaultCentury
);
1307 return gSystemDefaultCenturyStart
;
1310 int32_t GregorianCalendar::defaultCenturyStartYear() const {
1311 // lazy-evaluate systemDefaultCenturyStartYear
1312 umtx_initOnce(gSystemDefaultCenturyInit
, &initializeSystemDefaultCentury
);
1313 return gSystemDefaultCenturyStartYear
;
1318 #endif /* #if !UCONFIG_NO_FORMATTING */