1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
4 ******************************************************************************
5 * Copyright (C) 1997-2016, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 ******************************************************************************
8 * Date Name Description
9 * 03/22/00 aliu Adapted from original C++ ICU Hashtable.
10 * 07/06/01 aliu Modified to support int32_t keys on
11 * platforms with sizeof(void*) < 32.
12 ******************************************************************************
16 #include "unicode/ustring.h"
22 /* This hashtable is implemented as a double hash. All elements are
23 * stored in a single array with no secondary storage for collision
24 * resolution (no linked list, etc.). When there is a hash collision
25 * (when two unequal keys have the same hashcode) we resolve this by
26 * using a secondary hash. The secondary hash is an increment
27 * computed as a hash function (a different one) of the primary
28 * hashcode. This increment is added to the initial hash value to
29 * obtain further slots assigned to the same hash code. For this to
30 * work, the length of the array and the increment must be relatively
31 * prime. The easiest way to achieve this is to have the length of
32 * the array be prime, and the increment be any value from
35 * Hashcodes are 32-bit integers. We make sure all hashcodes are
36 * non-negative by masking off the top bit. This has two effects: (1)
37 * modulo arithmetic is simplified. If we allowed negative hashcodes,
38 * then when we computed hashcode % length, we could get a negative
39 * result, which we would then have to adjust back into range. It's
40 * simpler to just make hashcodes non-negative. (2) It makes it easy
41 * to check for empty vs. occupied slots in the table. We just mark
42 * empty or deleted slots with a negative hashcode.
44 * The central function is _uhash_find(). This function looks for a
45 * slot matching the given key and hashcode. If one is found, it
46 * returns a pointer to that slot. If the table is full, and no match
47 * is found, it returns NULL -- in theory. This would make the code
48 * more complicated, since all callers of _uhash_find() would then
49 * have to check for a NULL result. To keep this from happening, we
50 * don't allow the table to fill. When there is only one
51 * empty/deleted slot left, uhash_put() will refuse to increase the
52 * count, and fail. This simplifies the code. In practice, one will
53 * seldom encounter this using default UHashtables. However, if a
54 * hashtable is set to a U_FIXED resize policy, or if memory is
55 * exhausted, then the table may fill.
57 * High and low water ratios control rehashing. They establish levels
58 * of fullness (from 0 to 1) outside of which the data array is
59 * reallocated and repopulated. Setting the low water ratio to zero
60 * means the table will never shrink. Setting the high water ratio to
61 * one means the table will never grow. The ratios should be
62 * coordinated with the ratio between successive elements of the
63 * PRIMES table, so that when the primeIndex is incremented or
64 * decremented during rehashing, it brings the ratio of count / length
65 * back into the desired range (between low and high water ratios).
68 /********************************************************************
69 * PRIVATE Constants, Macros
70 ********************************************************************/
72 /* This is a list of non-consecutive primes chosen such that
73 * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81
74 * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this
75 * ratio is changed, the low and high water ratios should also be
78 * These prime numbers were also chosen so that they are the largest
79 * prime number while being less than a power of two.
81 static const int32_t PRIMES
[] = {
82 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749,
83 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593,
84 16777213, 33554393, 67108859, 134217689, 268435399, 536870909,
85 1073741789, 2147483647 /*, 4294967291 */
88 #define PRIMES_LENGTH UPRV_LENGTHOF(PRIMES)
89 #define DEFAULT_PRIME_INDEX 4
91 /* These ratios are tuned to the PRIMES array such that a resize
92 * places the table back into the zone of non-resizing. That is,
93 * after a call to _uhash_rehash(), a subsequent call to
94 * _uhash_rehash() should do nothing (should not churn). This is only
95 * a potential problem with U_GROW_AND_SHRINK.
97 static const float RESIZE_POLICY_RATIO_TABLE
[6] = {
98 /* low, high water ratio */
99 0.0F
, 0.5F
, /* U_GROW: Grow on demand, do not shrink */
100 0.1F
, 0.5F
, /* U_GROW_AND_SHRINK: Grow and shrink on demand */
101 0.0F
, 1.0F
/* U_FIXED: Never change size */
105 Invariants for hashcode values:
111 Hashcodes may not start out this way, but internally they are
112 adjusted so that they are always positive. We assume 32-bit
113 hashcodes; adjust these constants for other hashcode sizes.
115 #define HASH_DELETED ((int32_t) 0x80000000)
116 #define HASH_EMPTY ((int32_t) HASH_DELETED + 1)
118 #define IS_EMPTY_OR_DELETED(x) ((x) < 0)
120 /* This macro expects a UHashTok.pointer as its keypointer and
121 valuepointer parameters */
122 #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \
123 if (hash->keyDeleter != NULL && keypointer != NULL) { \
124 (*hash->keyDeleter)(keypointer); \
126 if (hash->valueDeleter != NULL && valuepointer != NULL) { \
127 (*hash->valueDeleter)(valuepointer); \
131 * Constants for hinting whether a key or value is an integer
132 * or a pointer. If a hint bit is zero, then the associated
133 * token is assumed to be an integer.
135 #define HINT_KEY_POINTER (1)
136 #define HINT_VALUE_POINTER (2)
138 /********************************************************************
139 * PRIVATE Implementation
140 ********************************************************************/
143 _uhash_setElement(UHashtable
*hash
, UHashElement
* e
,
145 UHashTok key
, UHashTok value
, int8_t hint
) {
147 UHashTok oldValue
= e
->value
;
148 if (hash
->keyDeleter
!= NULL
&& e
->key
.pointer
!= NULL
&&
149 e
->key
.pointer
!= key
.pointer
) { /* Avoid double deletion */
150 (*hash
->keyDeleter
)(e
->key
.pointer
);
152 if (hash
->valueDeleter
!= NULL
) {
153 if (oldValue
.pointer
!= NULL
&&
154 oldValue
.pointer
!= value
.pointer
) { /* Avoid double deletion */
155 (*hash
->valueDeleter
)(oldValue
.pointer
);
157 oldValue
.pointer
= NULL
;
159 /* Compilers should copy the UHashTok union correctly, but even if
160 * they do, memory heap tools (e.g. BoundsChecker) can get
161 * confused when a pointer is cloaked in a union and then copied.
162 * TO ALLEVIATE THIS, we use hints (based on what API the user is
163 * calling) to copy pointers when we know the user thinks
164 * something is a pointer. */
165 if (hint
& HINT_KEY_POINTER
) {
166 e
->key
.pointer
= key
.pointer
;
170 if (hint
& HINT_VALUE_POINTER
) {
171 e
->value
.pointer
= value
.pointer
;
175 e
->hashcode
= hashcode
;
180 * Assumes that the given element is not empty or deleted.
183 _uhash_internalRemoveElement(UHashtable
*hash
, UHashElement
* e
) {
185 U_ASSERT(!IS_EMPTY_OR_DELETED(e
->hashcode
));
187 empty
.pointer
= NULL
; empty
.integer
= 0;
188 return _uhash_setElement(hash
, e
, HASH_DELETED
, empty
, empty
, 0);
192 _uhash_internalSetResizePolicy(UHashtable
*hash
, enum UHashResizePolicy policy
) {
193 U_ASSERT(hash
!= NULL
);
194 U_ASSERT(((int32_t)policy
) >= 0);
195 U_ASSERT(((int32_t)policy
) < 3);
196 hash
->lowWaterRatio
= RESIZE_POLICY_RATIO_TABLE
[policy
* 2];
197 hash
->highWaterRatio
= RESIZE_POLICY_RATIO_TABLE
[policy
* 2 + 1];
201 * Allocate internal data array of a size determined by the given
202 * prime index. If the index is out of range it is pinned into range.
203 * If the allocation fails the status is set to
204 * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In
205 * either case the previous array pointer is overwritten.
207 * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
210 _uhash_allocate(UHashtable
*hash
,
212 UErrorCode
*status
) {
214 UHashElement
*p
, *limit
;
217 if (U_FAILURE(*status
)) return;
219 U_ASSERT(primeIndex
>= 0 && primeIndex
< PRIMES_LENGTH
);
221 hash
->primeIndex
= primeIndex
;
222 hash
->length
= PRIMES
[primeIndex
];
224 p
= hash
->elements
= (UHashElement
*)
225 uprv_malloc(sizeof(UHashElement
) * hash
->length
);
227 if (hash
->elements
== NULL
) {
228 *status
= U_MEMORY_ALLOCATION_ERROR
;
232 emptytok
.pointer
= NULL
; /* Only one of these two is needed */
233 emptytok
.integer
= 0; /* but we don't know which one. */
235 limit
= p
+ hash
->length
;
239 p
->hashcode
= HASH_EMPTY
;
244 hash
->lowWaterMark
= (int32_t)(hash
->length
* hash
->lowWaterRatio
);
245 hash
->highWaterMark
= (int32_t)(hash
->length
* hash
->highWaterRatio
);
249 _uhash_init(UHashtable
*result
,
250 UHashFunction
*keyHash
,
251 UKeyComparator
*keyComp
,
252 UValueComparator
*valueComp
,
256 if (U_FAILURE(*status
)) return NULL
;
257 U_ASSERT(keyHash
!= NULL
);
258 U_ASSERT(keyComp
!= NULL
);
260 result
->keyHasher
= keyHash
;
261 result
->keyComparator
= keyComp
;
262 result
->valueComparator
= valueComp
;
263 result
->keyDeleter
= NULL
;
264 result
->valueDeleter
= NULL
;
265 result
->allocated
= FALSE
;
266 _uhash_internalSetResizePolicy(result
, U_GROW
);
268 _uhash_allocate(result
, primeIndex
, status
);
270 if (U_FAILURE(*status
)) {
278 _uhash_create(UHashFunction
*keyHash
,
279 UKeyComparator
*keyComp
,
280 UValueComparator
*valueComp
,
282 UErrorCode
*status
) {
285 if (U_FAILURE(*status
)) return NULL
;
287 result
= (UHashtable
*) uprv_malloc(sizeof(UHashtable
));
288 if (result
== NULL
) {
289 *status
= U_MEMORY_ALLOCATION_ERROR
;
293 _uhash_init(result
, keyHash
, keyComp
, valueComp
, primeIndex
, status
);
294 result
->allocated
= TRUE
;
296 if (U_FAILURE(*status
)) {
305 * Look for a key in the table, or if no such key exists, the first
306 * empty slot matching the given hashcode. Keys are compared using
307 * the keyComparator function.
309 * First find the start position, which is the hashcode modulo
310 * the length. Test it to see if it is:
312 * a. identical: First check the hash values for a quick check,
313 * then compare keys for equality using keyComparator.
317 * Stop if it is identical or empty, otherwise continue by adding a
318 * "jump" value (moduloing by the length again to keep it within
319 * range) and retesting. For efficiency, there need enough empty
320 * values so that the searchs stop within a reasonable amount of time.
321 * This can be changed by changing the high/low water marks.
323 * In theory, this function can return NULL, if it is full (no empty
324 * or deleted slots) and if no matching key is found. In practice, we
325 * prevent this elsewhere (in uhash_put) by making sure the last slot
326 * in the table is never filled.
328 * The size of the table should be prime for this algorithm to work;
329 * otherwise we are not guaranteed that the jump value (the secondary
330 * hash) is relatively prime to the table length.
333 _uhash_find(const UHashtable
*hash
, UHashTok key
,
336 int32_t firstDeleted
= -1; /* assume invalid index */
337 int32_t theIndex
, startIndex
;
338 int32_t jump
= 0; /* lazy evaluate */
340 UHashElement
*elements
= hash
->elements
;
342 hashcode
&= 0x7FFFFFFF; /* must be positive */
343 startIndex
= theIndex
= (hashcode
^ 0x4000000) % hash
->length
;
346 tableHash
= elements
[theIndex
].hashcode
;
347 if (tableHash
== hashcode
) { /* quick check */
348 if ((*hash
->keyComparator
)(key
, elements
[theIndex
].key
)) {
349 return &(elements
[theIndex
]);
351 } else if (!IS_EMPTY_OR_DELETED(tableHash
)) {
352 /* We have hit a slot which contains a key-value pair,
353 * but for which the hash code does not match. Keep
356 } else if (tableHash
== HASH_EMPTY
) { /* empty, end o' the line */
358 } else if (firstDeleted
< 0) { /* remember first deleted */
359 firstDeleted
= theIndex
;
361 if (jump
== 0) { /* lazy compute jump */
362 /* The jump value must be relatively prime to the table
363 * length. As long as the length is prime, then any value
364 * 1..length-1 will be relatively prime to it.
366 jump
= (hashcode
% (hash
->length
- 1)) + 1;
368 theIndex
= (theIndex
+ jump
) % hash
->length
;
369 } while (theIndex
!= startIndex
);
371 if (firstDeleted
>= 0) {
372 theIndex
= firstDeleted
; /* reset if had deleted slot */
373 } else if (tableHash
!= HASH_EMPTY
) {
374 /* We get to this point if the hashtable is full (no empty or
375 * deleted slots), and we've failed to find a match. THIS
376 * WILL NEVER HAPPEN as long as uhash_put() makes sure that
377 * count is always < length.
380 return NULL
; /* Never happens if uhash_put() behaves */
382 return &(elements
[theIndex
]);
386 * Attempt to grow or shrink the data arrays in order to make the
387 * count fit between the high and low water marks. hash_put() and
388 * hash_remove() call this method when the count exceeds the high or
389 * low water marks. This method may do nothing, if memory allocation
390 * fails, or if the count is already in range, or if the length is
391 * already at the low or high limit. In any case, upon return the
392 * arrays will be valid.
395 _uhash_rehash(UHashtable
*hash
, UErrorCode
*status
) {
397 UHashElement
*old
= hash
->elements
;
398 int32_t oldLength
= hash
->length
;
399 int32_t newPrimeIndex
= hash
->primeIndex
;
402 if (hash
->count
> hash
->highWaterMark
) {
403 if (++newPrimeIndex
>= PRIMES_LENGTH
) {
406 } else if (hash
->count
< hash
->lowWaterMark
) {
407 if (--newPrimeIndex
< 0) {
414 _uhash_allocate(hash
, newPrimeIndex
, status
);
416 if (U_FAILURE(*status
)) {
417 hash
->elements
= old
;
418 hash
->length
= oldLength
;
422 for (i
= oldLength
- 1; i
>= 0; --i
) {
423 if (!IS_EMPTY_OR_DELETED(old
[i
].hashcode
)) {
424 UHashElement
*e
= _uhash_find(hash
, old
[i
].key
, old
[i
].hashcode
);
426 U_ASSERT(e
->hashcode
== HASH_EMPTY
);
428 e
->value
= old
[i
].value
;
429 e
->hashcode
= old
[i
].hashcode
;
438 _uhash_remove(UHashtable
*hash
,
440 /* First find the position of the key in the table. If the object
441 * has not been removed already, remove it. If the user wanted
442 * keys deleted, then delete it also. We have to put a special
443 * hashcode in that position that means that something has been
444 * deleted, since when we do a find, we have to continue PAST any
448 UHashElement
* e
= _uhash_find(hash
, key
, hash
->keyHasher(key
));
450 result
.pointer
= NULL
;
452 if (!IS_EMPTY_OR_DELETED(e
->hashcode
)) {
453 result
= _uhash_internalRemoveElement(hash
, e
);
454 if (hash
->count
< hash
->lowWaterMark
) {
455 UErrorCode status
= U_ZERO_ERROR
;
456 _uhash_rehash(hash
, &status
);
463 _uhash_put(UHashtable
*hash
,
467 UErrorCode
*status
) {
469 /* Put finds the position in the table for the new value. If the
470 * key is already in the table, it is deleted, if there is a
471 * non-NULL keyDeleter. Then the key, the hash and the value are
472 * all put at the position in their respective arrays.
478 if (U_FAILURE(*status
)) {
481 U_ASSERT(hash
!= NULL
);
482 /* Cannot always check pointer here or iSeries sees NULL every time. */
483 if ((hint
& HINT_VALUE_POINTER
) && value
.pointer
== NULL
) {
484 /* Disallow storage of NULL values, since NULL is returned by
485 * get() to indicate an absent key. Storing NULL == removing.
487 return _uhash_remove(hash
, key
);
489 if (hash
->count
> hash
->highWaterMark
) {
490 _uhash_rehash(hash
, status
);
491 if (U_FAILURE(*status
)) {
496 hashcode
= (*hash
->keyHasher
)(key
);
497 e
= _uhash_find(hash
, key
, hashcode
);
500 if (IS_EMPTY_OR_DELETED(e
->hashcode
)) {
501 /* Important: We must never actually fill the table up. If we
502 * do so, then _uhash_find() will return NULL, and we'll have
503 * to check for NULL after every call to _uhash_find(). To
504 * avoid this we make sure there is always at least one empty
505 * or deleted slot in the table. This only is a problem if we
506 * are out of memory and rehash isn't working.
509 if (hash
->count
== hash
->length
) {
510 /* Don't allow count to reach length */
512 *status
= U_MEMORY_ALLOCATION_ERROR
;
517 /* We must in all cases handle storage properly. If there was an
518 * old key, then it must be deleted (if the deleter != NULL).
519 * Make hashcodes stored in table positive.
521 return _uhash_setElement(hash
, e
, hashcode
& 0x7FFFFFFF, key
, value
, hint
);
524 /* If the deleters are non-NULL, this method adopts its key and/or
525 * value arguments, and we must be sure to delete the key and/or
526 * value in all cases, even upon failure.
528 HASH_DELETE_KEY_VALUE(hash
, key
.pointer
, value
.pointer
);
529 emptytok
.pointer
= NULL
; emptytok
.integer
= 0;
534 /********************************************************************
536 ********************************************************************/
538 U_CAPI UHashtable
* U_EXPORT2
539 uhash_open(UHashFunction
*keyHash
,
540 UKeyComparator
*keyComp
,
541 UValueComparator
*valueComp
,
542 UErrorCode
*status
) {
544 return _uhash_create(keyHash
, keyComp
, valueComp
, DEFAULT_PRIME_INDEX
, status
);
547 U_CAPI UHashtable
* U_EXPORT2
548 uhash_openSize(UHashFunction
*keyHash
,
549 UKeyComparator
*keyComp
,
550 UValueComparator
*valueComp
,
552 UErrorCode
*status
) {
554 /* Find the smallest index i for which PRIMES[i] >= size. */
556 while (i
<(PRIMES_LENGTH
-1) && PRIMES
[i
]<size
) {
560 return _uhash_create(keyHash
, keyComp
, valueComp
, i
, status
);
563 U_CAPI UHashtable
* U_EXPORT2
564 uhash_init(UHashtable
*fillinResult
,
565 UHashFunction
*keyHash
,
566 UKeyComparator
*keyComp
,
567 UValueComparator
*valueComp
,
568 UErrorCode
*status
) {
570 return _uhash_init(fillinResult
, keyHash
, keyComp
, valueComp
, DEFAULT_PRIME_INDEX
, status
);
573 U_CAPI UHashtable
* U_EXPORT2
574 uhash_initSize(UHashtable
*fillinResult
,
575 UHashFunction
*keyHash
,
576 UKeyComparator
*keyComp
,
577 UValueComparator
*valueComp
,
579 UErrorCode
*status
) {
581 /* Find the smallest index i for which PRIMES[i] >= size. */
583 while (i
<(PRIMES_LENGTH
-1) && PRIMES
[i
]<size
) {
587 return _uhash_init(fillinResult
, keyHash
, keyComp
, valueComp
, i
, status
);
590 U_CAPI
void U_EXPORT2
591 uhash_close(UHashtable
*hash
) {
595 if (hash
->elements
!= NULL
) {
596 if (hash
->keyDeleter
!= NULL
|| hash
->valueDeleter
!= NULL
) {
597 int32_t pos
=UHASH_FIRST
;
599 while ((e
= (UHashElement
*) uhash_nextElement(hash
, &pos
)) != NULL
) {
600 HASH_DELETE_KEY_VALUE(hash
, e
->key
.pointer
, e
->value
.pointer
);
603 uprv_free(hash
->elements
);
604 hash
->elements
= NULL
;
606 if (hash
->allocated
) {
611 U_CAPI UHashFunction
*U_EXPORT2
612 uhash_setKeyHasher(UHashtable
*hash
, UHashFunction
*fn
) {
613 UHashFunction
*result
= hash
->keyHasher
;
614 hash
->keyHasher
= fn
;
618 U_CAPI UKeyComparator
*U_EXPORT2
619 uhash_setKeyComparator(UHashtable
*hash
, UKeyComparator
*fn
) {
620 UKeyComparator
*result
= hash
->keyComparator
;
621 hash
->keyComparator
= fn
;
624 U_CAPI UValueComparator
*U_EXPORT2
625 uhash_setValueComparator(UHashtable
*hash
, UValueComparator
*fn
){
626 UValueComparator
*result
= hash
->valueComparator
;
627 hash
->valueComparator
= fn
;
631 U_CAPI UObjectDeleter
*U_EXPORT2
632 uhash_setKeyDeleter(UHashtable
*hash
, UObjectDeleter
*fn
) {
633 UObjectDeleter
*result
= hash
->keyDeleter
;
634 hash
->keyDeleter
= fn
;
638 U_CAPI UObjectDeleter
*U_EXPORT2
639 uhash_setValueDeleter(UHashtable
*hash
, UObjectDeleter
*fn
) {
640 UObjectDeleter
*result
= hash
->valueDeleter
;
641 hash
->valueDeleter
= fn
;
645 U_CAPI
void U_EXPORT2
646 uhash_setResizePolicy(UHashtable
*hash
, enum UHashResizePolicy policy
) {
647 UErrorCode status
= U_ZERO_ERROR
;
648 _uhash_internalSetResizePolicy(hash
, policy
);
649 hash
->lowWaterMark
= (int32_t)(hash
->length
* hash
->lowWaterRatio
);
650 hash
->highWaterMark
= (int32_t)(hash
->length
* hash
->highWaterRatio
);
651 _uhash_rehash(hash
, &status
);
654 U_CAPI
int32_t U_EXPORT2
655 uhash_count(const UHashtable
*hash
) {
659 U_CAPI
void* U_EXPORT2
660 uhash_get(const UHashtable
*hash
,
663 keyholder
.pointer
= (void*) key
;
664 return _uhash_find(hash
, keyholder
, hash
->keyHasher(keyholder
))->value
.pointer
;
667 U_CAPI
void* U_EXPORT2
668 uhash_iget(const UHashtable
*hash
,
671 keyholder
.integer
= key
;
672 return _uhash_find(hash
, keyholder
, hash
->keyHasher(keyholder
))->value
.pointer
;
675 U_CAPI
int32_t U_EXPORT2
676 uhash_geti(const UHashtable
*hash
,
679 keyholder
.pointer
= (void*) key
;
680 return _uhash_find(hash
, keyholder
, hash
->keyHasher(keyholder
))->value
.integer
;
683 U_CAPI
int32_t U_EXPORT2
684 uhash_igeti(const UHashtable
*hash
,
687 keyholder
.integer
= key
;
688 return _uhash_find(hash
, keyholder
, hash
->keyHasher(keyholder
))->value
.integer
;
691 U_CAPI
void* U_EXPORT2
692 uhash_put(UHashtable
*hash
,
695 UErrorCode
*status
) {
696 UHashTok keyholder
, valueholder
;
697 keyholder
.pointer
= key
;
698 valueholder
.pointer
= value
;
699 return _uhash_put(hash
, keyholder
, valueholder
,
700 HINT_KEY_POINTER
| HINT_VALUE_POINTER
,
704 U_CAPI
void* U_EXPORT2
705 uhash_iput(UHashtable
*hash
,
708 UErrorCode
*status
) {
709 UHashTok keyholder
, valueholder
;
710 keyholder
.integer
= key
;
711 valueholder
.pointer
= value
;
712 return _uhash_put(hash
, keyholder
, valueholder
,
717 U_CAPI
int32_t U_EXPORT2
718 uhash_puti(UHashtable
*hash
,
721 UErrorCode
*status
) {
722 UHashTok keyholder
, valueholder
;
723 keyholder
.pointer
= key
;
724 valueholder
.integer
= value
;
725 return _uhash_put(hash
, keyholder
, valueholder
,
731 U_CAPI
int32_t U_EXPORT2
732 uhash_iputi(UHashtable
*hash
,
735 UErrorCode
*status
) {
736 UHashTok keyholder
, valueholder
;
737 keyholder
.integer
= key
;
738 valueholder
.integer
= value
;
739 return _uhash_put(hash
, keyholder
, valueholder
,
740 0, /* neither is a ptr */
744 U_CAPI
void* U_EXPORT2
745 uhash_remove(UHashtable
*hash
,
748 keyholder
.pointer
= (void*) key
;
749 return _uhash_remove(hash
, keyholder
).pointer
;
752 U_CAPI
void* U_EXPORT2
753 uhash_iremove(UHashtable
*hash
,
756 keyholder
.integer
= key
;
757 return _uhash_remove(hash
, keyholder
).pointer
;
760 U_CAPI
int32_t U_EXPORT2
761 uhash_removei(UHashtable
*hash
,
764 keyholder
.pointer
= (void*) key
;
765 return _uhash_remove(hash
, keyholder
).integer
;
768 U_CAPI
int32_t U_EXPORT2
769 uhash_iremovei(UHashtable
*hash
,
772 keyholder
.integer
= key
;
773 return _uhash_remove(hash
, keyholder
).integer
;
776 U_CAPI
void U_EXPORT2
777 uhash_removeAll(UHashtable
*hash
) {
778 int32_t pos
= UHASH_FIRST
;
779 const UHashElement
*e
;
780 U_ASSERT(hash
!= NULL
);
781 if (hash
->count
!= 0) {
782 while ((e
= uhash_nextElement(hash
, &pos
)) != NULL
) {
783 uhash_removeElement(hash
, e
);
786 U_ASSERT(hash
->count
== 0);
789 U_CAPI
const UHashElement
* U_EXPORT2
790 uhash_find(const UHashtable
*hash
, const void* key
) {
792 const UHashElement
*e
;
793 keyholder
.pointer
= (void*) key
;
794 e
= _uhash_find(hash
, keyholder
, hash
->keyHasher(keyholder
));
795 return IS_EMPTY_OR_DELETED(e
->hashcode
) ? NULL
: e
;
798 U_CAPI
const UHashElement
* U_EXPORT2
799 uhash_nextElement(const UHashtable
*hash
, int32_t *pos
) {
800 /* Walk through the array until we find an element that is not
801 * EMPTY and not DELETED.
804 U_ASSERT(hash
!= NULL
);
805 for (i
= *pos
+ 1; i
< hash
->length
; ++i
) {
806 if (!IS_EMPTY_OR_DELETED(hash
->elements
[i
].hashcode
)) {
808 return &(hash
->elements
[i
]);
812 /* No more elements */
816 U_CAPI
void* U_EXPORT2
817 uhash_removeElement(UHashtable
*hash
, const UHashElement
* e
) {
818 U_ASSERT(hash
!= NULL
);
820 if (!IS_EMPTY_OR_DELETED(e
->hashcode
)) {
821 UHashElement
*nce
= (UHashElement
*)e
;
822 return _uhash_internalRemoveElement(hash
, nce
).pointer
;
827 /********************************************************************
828 * UHashTok convenience
829 ********************************************************************/
832 * Return a UHashTok for an integer.
834 /*U_CAPI UHashTok U_EXPORT2
835 uhash_toki(int32_t i) {
842 * Return a UHashTok for a pointer.
844 /*U_CAPI UHashTok U_EXPORT2
845 uhash_tokp(void* p) {
851 /********************************************************************
852 * PUBLIC Key Hash Functions
853 ********************************************************************/
855 U_CAPI
int32_t U_EXPORT2
856 uhash_hashUChars(const UHashTok key
) {
857 const UChar
*s
= (const UChar
*)key
.pointer
;
858 return s
== NULL
? 0 : ustr_hashUCharsN(s
, u_strlen(s
));
861 U_CAPI
int32_t U_EXPORT2
862 uhash_hashChars(const UHashTok key
) {
863 const char *s
= (const char *)key
.pointer
;
864 return s
== NULL
? 0 : ustr_hashCharsN(s
, uprv_strlen(s
));
867 U_CAPI
int32_t U_EXPORT2
868 uhash_hashIChars(const UHashTok key
) {
869 const char *s
= (const char *)key
.pointer
;
870 return s
== NULL
? 0 : ustr_hashICharsN(s
, uprv_strlen(s
));
873 U_CAPI UBool U_EXPORT2
874 uhash_equals(const UHashtable
* hash1
, const UHashtable
* hash2
){
875 int32_t count1
, count2
, pos
, i
;
882 * Make sure that we are comparing 2 valid hashes of the same type
883 * with valid comparison functions.
884 * Without valid comparison functions, a binary comparison
885 * of the hash values will yield random results on machines
886 * with 64-bit pointers and 32-bit integer hashes.
887 * A valueComparator is normally optional.
889 if (hash1
==NULL
|| hash2
==NULL
||
890 hash1
->keyComparator
!= hash2
->keyComparator
||
891 hash1
->valueComparator
!= hash2
->valueComparator
||
892 hash1
->valueComparator
== NULL
)
895 Normally we would return an error here about incompatible hash tables,
896 but we return FALSE instead.
901 count1
= uhash_count(hash1
);
902 count2
= uhash_count(hash2
);
908 for(i
=0; i
<count1
; i
++){
909 const UHashElement
* elem1
= uhash_nextElement(hash1
, &pos
);
910 const UHashTok key1
= elem1
->key
;
911 const UHashTok val1
= elem1
->value
;
912 /* here the keys are not compared, instead the key form hash1 is used to fetch
913 * value from hash2. If the hashes are equal then then both hashes should
914 * contain equal values for the same key!
916 const UHashElement
* elem2
= _uhash_find(hash2
, key1
, hash2
->keyHasher(key1
));
917 const UHashTok val2
= elem2
->value
;
918 if(hash1
->valueComparator(val1
, val2
)==FALSE
){
925 /********************************************************************
926 * PUBLIC Comparator Functions
927 ********************************************************************/
929 U_CAPI UBool U_EXPORT2
930 uhash_compareUChars(const UHashTok key1
, const UHashTok key2
) {
931 const UChar
*p1
= (const UChar
*) key1
.pointer
;
932 const UChar
*p2
= (const UChar
*) key2
.pointer
;
936 if (p1
== NULL
|| p2
== NULL
) {
939 while (*p1
!= 0 && *p1
== *p2
) {
943 return (UBool
)(*p1
== *p2
);
946 U_CAPI UBool U_EXPORT2
947 uhash_compareChars(const UHashTok key1
, const UHashTok key2
) {
948 const char *p1
= (const char*) key1
.pointer
;
949 const char *p2
= (const char*) key2
.pointer
;
953 if (p1
== NULL
|| p2
== NULL
) {
956 while (*p1
!= 0 && *p1
== *p2
) {
960 return (UBool
)(*p1
== *p2
);
963 U_CAPI UBool U_EXPORT2
964 uhash_compareIChars(const UHashTok key1
, const UHashTok key2
) {
965 const char *p1
= (const char*) key1
.pointer
;
966 const char *p2
= (const char*) key2
.pointer
;
970 if (p1
== NULL
|| p2
== NULL
) {
973 while (*p1
!= 0 && uprv_tolower(*p1
) == uprv_tolower(*p2
)) {
977 return (UBool
)(*p1
== *p2
);
980 /********************************************************************
981 * PUBLIC int32_t Support Functions
982 ********************************************************************/
984 U_CAPI
int32_t U_EXPORT2
985 uhash_hashLong(const UHashTok key
) {
989 U_CAPI UBool U_EXPORT2
990 uhash_compareLong(const UHashTok key1
, const UHashTok key2
) {
991 return (UBool
)(key1
.integer
== key2
.integer
);