]> git.saurik.com Git - apple/icu.git/blob - icuSources/common/ucnv_lmb.c
ICU-6.2.4.tar.gz
[apple/icu.git] / icuSources / common / ucnv_lmb.c
1 /*
2 **********************************************************************
3 * Copyright (C) 2000-2004, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 **********************************************************************
6 * file name: ucnv_lmb.cpp
7 * encoding: US-ASCII
8 * tab size: 4 (not used)
9 * indentation:4
10 *
11 * created on: 2000feb09
12 * created by: Brendan Murray
13 * extensively hacked up by: Jim Snyder-Grant
14 *
15 * Modification History:
16 *
17 * Date Name Description
18 *
19 * 06/20/2000 helena OS/400 port changes; mostly typecast.
20 * 06/27/2000 Jim Snyder-Grant Deal with partial characters and small buffers.
21 * Add comments to document LMBCS format and implementation
22 * restructured order & breakdown of functions
23 * 06/28/2000 helena Major rewrite for the callback API changes.
24 */
25
26 #include "unicode/utypes.h"
27
28 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION
29
30 #include "unicode/ucnv_err.h"
31 #include "unicode/ucnv.h"
32 #include "unicode/uset.h"
33 #include "cmemory.h"
34 #include "cstring.h"
35 #include "uassert.h"
36 #include "ucnv_imp.h"
37 #include "ucnv_bld.h"
38 #include "ucnv_cnv.h"
39
40 #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
41
42 /*
43 LMBCS
44
45 (Lotus Multi-Byte Character Set)
46
47 LMBCS was invented in the late 1980's and is primarily used in Lotus Notes
48 databases and in Lotus 1-2-3 files. Programmers who work with the APIs
49 into these products will sometimes need to deal with strings in this format.
50
51 The code in this file provides an implementation for an ICU converter of
52 LMBCS to and from Unicode.
53
54 Since the LMBCS character set is only sparsely documented in existing
55 printed or online material, we have added extensive annotation to this
56 file to serve as a guide to understanding LMBCS.
57
58 LMBCS was originally designed with these four sometimes-competing design goals:
59
60 -Provide encodings for the characters in 12 existing national standards
61 (plus a few other characters)
62 -Minimal memory footprint
63 -Maximal speed of conversion into the existing national character sets
64 -No need to track a changing state as you interpret a string.
65
66
67 All of the national character sets LMBCS was trying to encode are 'ANSI'
68 based, in that the bytes from 0x20 - 0x7F are almost exactly the
69 same common Latin unaccented characters and symbols in all character sets.
70
71 So, in order to help meet the speed & memory design goals, the common ANSI
72 bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS.
73
74 The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as
75 follows:
76
77 [G] D1 [D2]
78
79 That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2
80 data bytes. The maximum size of a LMBCS chjaracter is 3 bytes:
81 */
82 #define ULMBCS_CHARSIZE_MAX 3
83 /*
84 The single-byte values from 0x20 to 0x7F are examples of single D1 bytes.
85 We often have to figure out if byte values are below or above this, so we
86 use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control
87 characters just above & below the common lower-ANSI range */
88 #define ULMBCS_C0END 0x1F
89 #define ULMBCS_C1START 0x80
90 /*
91 Since LMBCS is always dealing in byte units. we create a local type here for
92 dealing with these units of LMBCS code units:
93
94 */
95 typedef uint8_t ulmbcs_byte_t;
96
97 /*
98 Most of the values less than 0x20 are reserved in LMBCS to announce
99 which national character standard is being used for the 'D' bytes.
100 In the comments we show the common name and the IBM character-set ID
101 for these character-set announcers:
102 */
103
104 #define ULMBCS_GRP_L1 0x01 /* Latin-1 :ibm-850 */
105 #define ULMBCS_GRP_GR 0x02 /* Greek :ibm-851 */
106 #define ULMBCS_GRP_HE 0x03 /* Hebrew :ibm-1255 */
107 #define ULMBCS_GRP_AR 0x04 /* Arabic :ibm-1256 */
108 #define ULMBCS_GRP_RU 0x05 /* Cyrillic :ibm-1251 */
109 #define ULMBCS_GRP_L2 0x06 /* Latin-2 :ibm-852 */
110 #define ULMBCS_GRP_TR 0x08 /* Turkish :ibm-1254 */
111 #define ULMBCS_GRP_TH 0x0B /* Thai :ibm-874 */
112 #define ULMBCS_GRP_JA 0x10 /* Japanese :ibm-943 */
113 #define ULMBCS_GRP_KO 0x11 /* Korean :ibm-1261 */
114 #define ULMBCS_GRP_TW 0x12 /* Chinese SC :ibm-950 */
115 #define ULMBCS_GRP_CN 0x13 /* Chinese TC :ibm-1386 */
116
117 /*
118 So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS
119 character is one of those 12 values, you can interpret the remaining bytes of
120 that character as coming from one of those character sets. Since the lower
121 ANSI bytes already are represented in single bytes, using one of the character
122 set announcers is used to announce a character that starts with a byte of
123 0x80 or greater.
124
125 The character sets are arranged so that the single byte sets all appear
126 before the multi-byte character sets. When we need to tell whether a
127 group byte is for a single byte char set or not we use this define: */
128
129 #define ULMBCS_DOUBLEOPTGROUP_START 0x10
130
131 /*
132 However, to fully understand LMBCS, you must also understand a series of
133 exceptions & optimizations made in service of the design goals.
134
135 First, those of you who are character set mavens may have noticed that
136 the 'double-byte' character sets are actually multi-byte character sets
137 that can have 1 or two bytes, even in the upper-ascii range. To force
138 each group byte to introduce a fixed-width encoding (to make it faster to
139 count characters), we use a convention of doubling up on the group byte
140 to introduce any single-byte character > 0x80 in an otherwise double-byte
141 character set. So, for example, the LMBCS sequence x10 x10 xAE is the
142 same as '0xAE' in the Japanese code page 943.
143
144 Next, you will notice that the list of group bytes has some gaps.
145 These are used in various ways.
146
147 We reserve a few special single byte values for common control
148 characters. These are in the same place as their ANSI eqivalents for speed.
149 */
150
151 #define ULMBCS_HT 0x09 /* Fixed control char - Horizontal Tab */
152 #define ULMBCS_LF 0x0A /* Fixed control char - Line Feed */
153 #define ULMBCS_CR 0x0D /* Fixed control char - Carriage Return */
154
155 /* Then, 1-2-3 reserved a special single-byte character to put at the
156 beginning of internal 'system' range names: */
157
158 #define ULMBCS_123SYSTEMRANGE 0x19
159
160 /* Then we needed a place to put all the other ansi control characters
161 that must be moved to different values because LMBCS reserves those
162 values for other purposes. To represent the control characters, we start
163 with a first byte of 0xF & add the control chaarcter value as the
164 second byte */
165 #define ULMBCS_GRP_CTRL 0x0F
166
167 /* For the C0 controls (less than 0x20), we add 0x20 to preserve the
168 useful doctrine that any byte less than 0x20 in a LMBCS char must be
169 the first byte of a character:*/
170 #define ULMBCS_CTRLOFFSET 0x20
171
172 /*
173 Where to put the characters that aren't part of any of the 12 national
174 character sets? The first thing that was done, in the earlier years of
175 LMBCS, was to use up the spaces of the form
176
177 [G] D1,
178
179 where 'G' was one of the single-byte character groups, and
180 D1 was less than 0x80. These sequences are gathered together
181 into a Lotus-invented doublebyte character set to represent a
182 lot of stray values. Internally, in this implementation, we track this
183 as group '0', as a place to tuck this exceptions list.*/
184
185 #define ULMBCS_GRP_EXCEPT 0x00
186 /*
187 Finally, as the durability and usefulness of UNICODE became clear,
188 LOTUS added a new group 0x14 to hold Unicode values not otherwise
189 represented in LMBCS: */
190 #define ULMBCS_GRP_UNICODE 0x14
191 /* The two bytes appearing after a 0x14 are intrepreted as UFT-16 BE
192 (Big-Endian) characters. The exception comes when the UTF16
193 representation would have a zero as the second byte. In that case,
194 'F6' is used in its place, and the bytes are swapped. (This prevents
195 LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK:
196 0xF6xx is in the middle of the Private Use Area.)*/
197 #define ULMBCS_UNICOMPATZERO 0xF6
198
199 /* It is also useful in our code to have a constant for the size of
200 a LMBCS char that holds a literal Unicode value */
201 #define ULMBCS_UNICODE_SIZE 3
202
203 /*
204 To squish the LMBCS representations down even further, and to make
205 translations even faster,sometimes the optimization group byte can be dropped
206 from a LMBCS character. This is decided on a process-by-process basis. The
207 group byte that is dropped is called the 'optimization group'.
208
209 For Notes, the optimzation group is always 0x1.*/
210 #define ULMBCS_DEFAULTOPTGROUP 0x1
211 /* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3
212 file.
213
214 In any case, when using ICU, you either pass in the
215 optimization group as part of the name of the converter (LMBCS-1, LMBCS-2,
216 etc.). Using plain 'LMBCS' as the name of the converter will give you
217 LMBCS-1.
218
219
220 *** Implementation strategy ***
221
222
223 Because of the extensive use of other character sets, the LMBCS converter
224 keeps a mapping between optimization groups and IBM character sets, so that
225 ICU converters can be created and used as needed. */
226
227 /* As you can see, even though any byte below 0x20 could be an optimization
228 byte, only those at 0x13 or below can map to an actual converter. To limit
229 some loops and searches, we define a value for that last group converter:*/
230
231 #define ULMBCS_GRP_LAST 0x13 /* last LMBCS group that has a converter */
232
233 static const char * const OptGroupByteToCPName[ULMBCS_GRP_LAST + 1] = {
234 /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */
235 /* 0x0001 */ "ibm-850",
236 /* 0x0002 */ "ibm-851",
237 /* 0x0003 */ "windows-1255",
238 /* 0x0004 */ "windows-1256",
239 /* 0x0005 */ "windows-1251",
240 /* 0x0006 */ "ibm-852",
241 /* 0x0007 */ NULL, /* Unused */
242 /* 0x0008 */ "windows-1254",
243 /* 0x0009 */ NULL, /* Control char HT */
244 /* 0x000A */ NULL, /* Control char LF */
245 /* 0x000B */ "windows-874",
246 /* 0x000C */ NULL, /* Unused */
247 /* 0x000D */ NULL, /* Control char CR */
248 /* 0x000E */ NULL, /* Unused */
249 /* 0x000F */ NULL, /* Control chars: 0x0F20 + C0/C1 character: algorithmic */
250 /* 0x0010 */ "windows-932",
251 /* 0x0011 */ "windows-949",
252 /* 0x0012 */ "windows-950",
253 /* 0x0013 */ "windows-936"
254
255 /* The rest are null, including the 0x0014 Unicode compatibility region
256 and 0x0019, the 1-2-3 system range control char */
257 };
258
259
260 /* That's approximately all the data that's needed for translating
261 LMBCS to Unicode.
262
263
264 However, to translate Unicode to LMBCS, we need some more support.
265
266 That's because there are often more than one possible mappings from a Unicode
267 code point back into LMBCS. The first thing we do is look up into a table
268 to figure out if there are more than one possible mappings. This table,
269 arranged by Unicode values (including ranges) either lists which group
270 to use, or says that it could go into one or more of the SBCS sets, or
271 into one or more of the DBCS sets. (If the character exists in both DBCS &
272 SBCS, the table will place it in the SBCS sets, to make the LMBCS code point
273 length as small as possible. Here's the two special markers we use to indicate
274 ambiguous mappings: */
275
276 #define ULMBCS_AMBIGUOUS_SBCS 0x80 /* could fit in more than one
277 LMBCS sbcs native encoding
278 (example: most accented latin) */
279 #define ULMBCS_AMBIGUOUS_MBCS 0x81 /* could fit in more than one
280 LMBCS mbcs native encoding
281 (example: Unihan) */
282
283 /* And here's a simple way to see if a group falls in an appropriate range */
284 #define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \
285 ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \
286 (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \
287 (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \
288 (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START))
289
290
291 /* The table & some code to use it: */
292
293
294 static const struct _UniLMBCSGrpMap
295 {
296 const UChar uniStartRange;
297 const UChar uniEndRange;
298 const ulmbcs_byte_t GrpType;
299 } UniLMBCSGrpMap[]
300 =
301 {
302
303 {0x0001, 0x001F, ULMBCS_GRP_CTRL},
304 {0x0080, 0x009F, ULMBCS_GRP_CTRL},
305 {0x00A0, 0x01CD, ULMBCS_AMBIGUOUS_SBCS},
306 {0x01CE, 0x01CE, ULMBCS_GRP_TW },
307 {0x01CF, 0x02B9, ULMBCS_AMBIGUOUS_SBCS},
308 {0x02BA, 0x02BA, ULMBCS_GRP_CN},
309 {0x02BC, 0x02C8, ULMBCS_AMBIGUOUS_SBCS},
310 {0x02C9, 0x02D0, ULMBCS_AMBIGUOUS_MBCS},
311 {0x02D8, 0x02DD, ULMBCS_AMBIGUOUS_SBCS},
312 {0x0384, 0x03CE, ULMBCS_AMBIGUOUS_SBCS},
313 {0x0400, 0x044E, ULMBCS_GRP_RU},
314 {0x044F, 0x044F, ULMBCS_AMBIGUOUS_MBCS},
315 {0x0450, 0x0491, ULMBCS_GRP_RU},
316 {0x05B0, 0x05F2, ULMBCS_GRP_HE},
317 {0x060C, 0x06AF, ULMBCS_GRP_AR},
318 {0x0E01, 0x0E5B, ULMBCS_GRP_TH},
319 {0x200C, 0x200F, ULMBCS_AMBIGUOUS_SBCS},
320 {0x2010, 0x2010, ULMBCS_AMBIGUOUS_MBCS},
321 {0x2013, 0x2015, ULMBCS_AMBIGUOUS_SBCS},
322 {0x2016, 0x2016, ULMBCS_AMBIGUOUS_MBCS},
323 {0x2017, 0x2024, ULMBCS_AMBIGUOUS_SBCS},
324 {0x2025, 0x2025, ULMBCS_AMBIGUOUS_MBCS},
325 {0x2026, 0x2026, ULMBCS_AMBIGUOUS_SBCS},
326 {0x2027, 0x2027, ULMBCS_GRP_CN},
327 {0x2030, 0x2033, ULMBCS_AMBIGUOUS_SBCS},
328 {0x2035, 0x2035, ULMBCS_AMBIGUOUS_MBCS},
329 {0x2039, 0x203A, ULMBCS_AMBIGUOUS_SBCS},
330 {0x203B, 0x203B, ULMBCS_AMBIGUOUS_MBCS},
331 {0x2074, 0x2074, ULMBCS_GRP_KO},
332 {0x207F, 0x207F, ULMBCS_GRP_EXCEPT},
333 {0x2081, 0x2084, ULMBCS_GRP_KO},
334 {0x20A4, 0x20AC, ULMBCS_AMBIGUOUS_SBCS},
335 {0x2103, 0x2109, ULMBCS_AMBIGUOUS_MBCS},
336 {0x2111, 0x2126, ULMBCS_AMBIGUOUS_SBCS},
337 {0x212B, 0x212B, ULMBCS_AMBIGUOUS_MBCS},
338 {0x2135, 0x2135, ULMBCS_AMBIGUOUS_SBCS},
339 {0x2153, 0x2154, ULMBCS_GRP_KO},
340 {0x215B, 0x215E, ULMBCS_GRP_EXCEPT},
341 {0x2160, 0x2179, ULMBCS_AMBIGUOUS_MBCS},
342 {0x2190, 0x2195, ULMBCS_GRP_EXCEPT},
343 {0x2196, 0x2199, ULMBCS_AMBIGUOUS_MBCS},
344 {0x21A8, 0x21A8, ULMBCS_GRP_EXCEPT},
345 {0x21B8, 0x21B9, ULMBCS_GRP_CN},
346 {0x21D0, 0x21D5, ULMBCS_GRP_EXCEPT},
347 {0x21E7, 0x21E7, ULMBCS_GRP_CN},
348 {0x2200, 0x220B, ULMBCS_GRP_EXCEPT},
349 {0x220F, 0x2215, ULMBCS_AMBIGUOUS_MBCS},
350 {0x2219, 0x2220, ULMBCS_GRP_EXCEPT},
351 {0x2223, 0x2228, ULMBCS_AMBIGUOUS_MBCS},
352 {0x2229, 0x222B, ULMBCS_GRP_EXCEPT},
353 {0x222C, 0x223D, ULMBCS_AMBIGUOUS_MBCS},
354 {0x2245, 0x2248, ULMBCS_GRP_EXCEPT},
355 {0x224C, 0x224C, ULMBCS_GRP_TW},
356 {0x2252, 0x2252, ULMBCS_AMBIGUOUS_MBCS},
357 {0x2260, 0x2265, ULMBCS_GRP_EXCEPT},
358 {0x2266, 0x226F, ULMBCS_AMBIGUOUS_MBCS},
359 {0x2282, 0x2297, ULMBCS_GRP_EXCEPT},
360 {0x2299, 0x22BF, ULMBCS_AMBIGUOUS_MBCS},
361 {0x22C0, 0x22C0, ULMBCS_GRP_EXCEPT},
362 {0x2310, 0x2310, ULMBCS_GRP_EXCEPT},
363 {0x2312, 0x2312, ULMBCS_AMBIGUOUS_MBCS},
364 {0x2318, 0x2321, ULMBCS_GRP_EXCEPT},
365 {0x2318, 0x2321, ULMBCS_GRP_CN},
366 {0x2460, 0x24E9, ULMBCS_AMBIGUOUS_MBCS},
367 {0x2500, 0x2500, ULMBCS_AMBIGUOUS_SBCS},
368 {0x2501, 0x2501, ULMBCS_AMBIGUOUS_MBCS},
369 {0x2502, 0x2502, ULMBCS_AMBIGUOUS_SBCS},
370 {0x2503, 0x2503, ULMBCS_AMBIGUOUS_MBCS},
371 {0x2504, 0x2505, ULMBCS_GRP_TW},
372 {0x2506, 0x2665, ULMBCS_AMBIGUOUS_MBCS},
373 {0x2666, 0x2666, ULMBCS_GRP_EXCEPT},
374 {0x2666, 0x2666, ULMBCS_GRP_EXCEPT},
375 {0x2667, 0x2E7F, ULMBCS_AMBIGUOUS_SBCS},
376 {0x2E80, 0xF861, ULMBCS_AMBIGUOUS_MBCS},
377 {0xF862, 0xF8FF, ULMBCS_GRP_EXCEPT},
378 {0xF900, 0xFA2D, ULMBCS_AMBIGUOUS_MBCS},
379 {0xFB00, 0xFEFF, ULMBCS_AMBIGUOUS_SBCS},
380 {0xFF01, 0xFFEE, ULMBCS_AMBIGUOUS_MBCS},
381 {0xFFFF, 0xFFFF, ULMBCS_GRP_UNICODE}
382 };
383
384 static ulmbcs_byte_t
385 FindLMBCSUniRange(UChar uniChar)
386 {
387 const struct _UniLMBCSGrpMap * pTable = UniLMBCSGrpMap;
388
389 while (uniChar > pTable->uniEndRange)
390 {
391 pTable++;
392 }
393
394 if (uniChar >= pTable->uniStartRange)
395 {
396 return pTable->GrpType;
397 }
398 return ULMBCS_GRP_UNICODE;
399 }
400
401 /*
402 We also ask the creator of a converter to send in a preferred locale
403 that we can use in resolving ambiguous mappings. They send the locale
404 in as a string, and we map it, if possible, to one of the
405 LMBCS groups. We use this table, and the associated code, to
406 do the lookup: */
407
408 /**************************************************
409 This table maps locale ID's to LMBCS opt groups.
410 The default return is group 0x01. Note that for
411 performance reasons, the table is sorted in
412 increasing alphabetic order, with the notable
413 exception of zhTW. This is to force the check
414 for Traditonal Chinese before dropping back to
415 Simplified.
416
417 Note too that the Latin-1 groups have been
418 commented out because it's the default, and
419 this shortens the table, allowing a serial
420 search to go quickly.
421 *************************************************/
422
423 static const struct _LocaleLMBCSGrpMap
424 {
425 const char *LocaleID;
426 const ulmbcs_byte_t OptGroup;
427 } LocaleLMBCSGrpMap[] =
428 {
429 {"ar", ULMBCS_GRP_AR},
430 {"be", ULMBCS_GRP_RU},
431 {"bg", ULMBCS_GRP_L2},
432 /* {"ca", ULMBCS_GRP_L1}, */
433 {"cs", ULMBCS_GRP_L2},
434 /* {"da", ULMBCS_GRP_L1}, */
435 /* {"de", ULMBCS_GRP_L1}, */
436 {"el", ULMBCS_GRP_GR},
437 /* {"en", ULMBCS_GRP_L1}, */
438 /* {"es", ULMBCS_GRP_L1}, */
439 /* {"et", ULMBCS_GRP_L1}, */
440 /* {"fi", ULMBCS_GRP_L1}, */
441 /* {"fr", ULMBCS_GRP_L1}, */
442 {"he", ULMBCS_GRP_HE},
443 {"hu", ULMBCS_GRP_L2},
444 /* {"is", ULMBCS_GRP_L1}, */
445 /* {"it", ULMBCS_GRP_L1}, */
446 {"iw", ULMBCS_GRP_HE},
447 {"ja", ULMBCS_GRP_JA},
448 {"ko", ULMBCS_GRP_KO},
449 /* {"lt", ULMBCS_GRP_L1}, */
450 /* {"lv", ULMBCS_GRP_L1}, */
451 {"mk", ULMBCS_GRP_RU},
452 /* {"nl", ULMBCS_GRP_L1}, */
453 /* {"no", ULMBCS_GRP_L1}, */
454 {"pl", ULMBCS_GRP_L2},
455 /* {"pt", ULMBCS_GRP_L1}, */
456 {"ro", ULMBCS_GRP_L2},
457 {"ru", ULMBCS_GRP_RU},
458 {"sh", ULMBCS_GRP_L2},
459 {"sk", ULMBCS_GRP_L2},
460 {"sl", ULMBCS_GRP_L2},
461 {"sq", ULMBCS_GRP_L2},
462 {"sr", ULMBCS_GRP_RU},
463 /* {"sv", ULMBCS_GRP_L1}, */
464 {"th", ULMBCS_GRP_TH},
465 {"tr", ULMBCS_GRP_TR},
466 {"uk", ULMBCS_GRP_RU},
467 /* {"vi", ULMBCS_GRP_L1}, */
468 {"zhTW", ULMBCS_GRP_TW},
469 {"zh", ULMBCS_GRP_CN},
470 {NULL, ULMBCS_GRP_L1}
471 };
472
473
474 static ulmbcs_byte_t
475 FindLMBCSLocale(const char *LocaleID)
476 {
477 const struct _LocaleLMBCSGrpMap *pTable = LocaleLMBCSGrpMap;
478
479 if ((!LocaleID) || (!*LocaleID))
480 {
481 return 0;
482 }
483
484 while (pTable->LocaleID)
485 {
486 if (*pTable->LocaleID == *LocaleID) /* Check only first char for speed */
487 {
488 /* First char matches - check whole name, for entry-length */
489 if (uprv_strncmp(pTable->LocaleID, LocaleID, strlen(pTable->LocaleID)) == 0)
490 return pTable->OptGroup;
491 }
492 else
493 if (*pTable->LocaleID > *LocaleID) /* Sorted alphabetically - exit */
494 break;
495 pTable++;
496 }
497 return ULMBCS_GRP_L1;
498 }
499
500
501 /*
502 Before we get to the main body of code, here's how we hook up to the rest
503 of ICU. ICU converters are required to define a structure that includes
504 some function pointers, and some common data, in the style of a C++
505 vtable. There is also room in there for converter-specific data. LMBCS
506 uses that converter-specific data to keep track of the 12 subconverters
507 we use, the optimization group, and the group (if any) that matches the
508 locale. We have one structure instantiated for each of the 12 possible
509 optimization groups. To avoid typos & to avoid boring the reader, we
510 put the declarations of these structures and functions into macros. To see
511 the definitions of these structures, see unicode\ucnv_bld.h
512 */
513
514 typedef struct
515 {
516 UConverterSharedData *OptGrpConverter[ULMBCS_GRP_LAST+1]; /* Converter per Opt. grp. */
517 uint8_t OptGroup; /* default Opt. grp. for this LMBCS session */
518 uint8_t localeConverterIndex; /* reasonable locale match for index */
519 }
520 UConverterDataLMBCS;
521
522
523 #define DECLARE_LMBCS_DATA(n) \
524 static const UConverterImpl _LMBCSImpl##n={\
525 UCNV_LMBCS_##n,\
526 NULL,NULL,\
527 _LMBCSOpen##n,\
528 _LMBCSClose,\
529 NULL,\
530 _LMBCSToUnicodeWithOffsets,\
531 _LMBCSToUnicodeWithOffsets,\
532 _LMBCSFromUnicode,\
533 _LMBCSFromUnicode,\
534 NULL,\
535 NULL,\
536 NULL,\
537 NULL,\
538 _LMBCSSafeClone,\
539 _LMBCSGetUnicodeSet\
540 };\
541 static const UConverterStaticData _LMBCSStaticData##n={\
542 sizeof(UConverterStaticData),\
543 "LMBCS-" #n,\
544 0, UCNV_IBM, UCNV_LMBCS_##n, 1, 3,\
545 { 0x3f, 0, 0, 0 },1,FALSE,FALSE,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \
546 };\
547 const UConverterSharedData _LMBCSData##n={\
548 sizeof(UConverterSharedData), ~((uint32_t) 0),\
549 NULL, NULL, &_LMBCSStaticData##n, FALSE, &_LMBCSImpl##n, \
550 0 \
551 };
552
553 /* The only function we needed to duplicate 12 times was the 'open'
554 function, which will do basically the same thing except set a different
555 optimization group. So, we put the common stuff into a worker function,
556 and set up another macro to stamp out the 12 open functions:*/
557 #define DEFINE_LMBCS_OPEN(n) \
558 static void \
559 _LMBCSOpen##n(UConverter* _this,const char* name,const char* locale,uint32_t options,UErrorCode* err) \
560 { _LMBCSOpenWorker(_this, name,locale,options, err, n);}
561
562
563
564 /* Here's the open worker & the common close function */
565 static void
566 _LMBCSOpenWorker(UConverter* _this,
567 const char* name,
568 const char* locale,
569 uint32_t options,
570 UErrorCode* err,
571 ulmbcs_byte_t OptGroup
572 )
573 {
574 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS*)uprv_malloc (sizeof (UConverterDataLMBCS));
575 if(extraInfo != NULL)
576 {
577 ulmbcs_byte_t i;
578
579 uprv_memset(extraInfo, 0, sizeof(UConverterDataLMBCS));
580
581 for (i=0; i <= ULMBCS_GRP_LAST && U_SUCCESS(*err); i++)
582 {
583 if(OptGroupByteToCPName[i] != NULL) {
584 extraInfo->OptGrpConverter[i] = ucnv_loadSharedData(OptGroupByteToCPName[i], NULL, err);
585 }
586 }
587
588 if(U_SUCCESS(*err)) {
589 extraInfo->OptGroup = OptGroup;
590 extraInfo->localeConverterIndex = FindLMBCSLocale(locale);
591 } else {
592 /* one of the subconverters could not be loaded, unload the previous ones */
593 while(i > 0) {
594 if(extraInfo->OptGrpConverter[--i] != NULL) {
595 ucnv_unloadSharedDataIfReady(extraInfo->OptGrpConverter[i]);
596 extraInfo->OptGrpConverter[i] = NULL;
597 }
598 }
599 }
600 }
601 else
602 {
603 *err = U_MEMORY_ALLOCATION_ERROR;
604 }
605 _this->extraInfo = extraInfo;
606 }
607
608 static void
609 _LMBCSClose(UConverter * _this)
610 {
611 if (_this->extraInfo != NULL)
612 {
613 ulmbcs_byte_t Ix;
614 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) _this->extraInfo;
615
616 for (Ix=0; Ix <= ULMBCS_GRP_LAST; Ix++)
617 {
618 if (extraInfo->OptGrpConverter[Ix] != NULL)
619 ucnv_unloadSharedDataIfReady(extraInfo->OptGrpConverter[Ix]);
620 }
621 if (!_this->isExtraLocal) {
622 uprv_free (_this->extraInfo);
623 }
624 }
625 }
626
627 typedef struct LMBCSClone {
628 UConverter cnv;
629 UConverterDataLMBCS lmbcs;
630 } LMBCSClone;
631
632 static UConverter *
633 _LMBCSSafeClone(const UConverter *cnv,
634 void *stackBuffer,
635 int32_t *pBufferSize,
636 UErrorCode *status) {
637 LMBCSClone *newLMBCS;
638 UConverterDataLMBCS *extraInfo;
639 int32_t i;
640
641 if(*pBufferSize<=0) {
642 *pBufferSize=(int32_t)sizeof(LMBCSClone);
643 return NULL;
644 }
645
646 extraInfo=(UConverterDataLMBCS *)cnv->extraInfo;
647 newLMBCS=(LMBCSClone *)stackBuffer;
648
649 /* ucnv.c/ucnv_safeClone() copied the main UConverter already */
650
651 uprv_memcpy(&newLMBCS->lmbcs, extraInfo, sizeof(UConverterDataLMBCS));
652
653 /* share the subconverters */
654 for(i = 0; i <= ULMBCS_GRP_LAST; ++i) {
655 if(extraInfo->OptGrpConverter[i] != NULL) {
656 ucnv_incrementRefCount(extraInfo->OptGrpConverter[i]);
657 }
658 }
659
660 newLMBCS->cnv.extraInfo = &newLMBCS->lmbcs;
661 newLMBCS->cnv.isExtraLocal = TRUE;
662 return &newLMBCS->cnv;
663 }
664
665 static void
666 _LMBCSGetUnicodeSet(const UConverter *cnv,
667 USetAdder *sa,
668 UConverterUnicodeSet which,
669 UErrorCode *pErrorCode) {
670 /* all but U+F6xx, see LMBCS explanation above (search for F6xx) */
671 sa->addRange(sa->set, 0, 0xf5ff);
672 sa->addRange(sa->set, 0xf700, 0x10ffff);
673 }
674
675 /*
676 Here's the basic helper function that we use when converting from
677 Unicode to LMBCS, and we suspect that a Unicode character will fit into
678 one of the 12 groups. The return value is the number of bytes written
679 starting at pStartLMBCS (if any).
680 */
681
682 static size_t
683 LMBCSConversionWorker (
684 UConverterDataLMBCS * extraInfo, /* subconverters, opt & locale groups */
685 ulmbcs_byte_t group, /* The group to try */
686 ulmbcs_byte_t * pStartLMBCS, /* where to put the results */
687 UChar * pUniChar, /* The input unicode character */
688 ulmbcs_byte_t * lastConverterIndex, /* output: track last successful group used */
689 UBool * groups_tried /* output: track any unsuccessful groups */
690 )
691 {
692 ulmbcs_byte_t * pLMBCS = pStartLMBCS;
693 UConverterSharedData * xcnv = extraInfo->OptGrpConverter[group];
694
695 int bytesConverted;
696 uint32_t value;
697 ulmbcs_byte_t firstByte;
698
699 U_ASSERT(xcnv);
700 U_ASSERT(group<ULMBCS_GRP_UNICODE);
701
702 bytesConverted = ucnv_MBCSFromUChar32(xcnv, *pUniChar, &value, FALSE);
703
704 /* get the first result byte */
705 if(bytesConverted > 0) {
706 firstByte = (ulmbcs_byte_t)(value >> ((bytesConverted - 1) * 8));
707 } else {
708 /* most common failure mode is an unassigned character */
709 groups_tried[group] = TRUE;
710 return 0;
711 }
712
713 *lastConverterIndex = group;
714
715 /* All initial byte values in lower ascii range should have been caught by now,
716 except with the exception group.
717 */
718 U_ASSERT((firstByte <= ULMBCS_C0END) || (firstByte >= ULMBCS_C1START) || (group == ULMBCS_GRP_EXCEPT));
719
720 /* use converted data: first write 0, 1 or two group bytes */
721 if (group != ULMBCS_GRP_EXCEPT && extraInfo->OptGroup != group)
722 {
723 *pLMBCS++ = group;
724 if (bytesConverted == 1 && group >= ULMBCS_DOUBLEOPTGROUP_START)
725 {
726 *pLMBCS++ = group;
727 }
728 }
729
730 /* don't emit control chars */
731 if ( bytesConverted == 1 && firstByte < 0x20 )
732 return 0;
733
734
735 /* then move over the converted data */
736 switch(bytesConverted)
737 {
738 case 4:
739 *pLMBCS++ = (ulmbcs_byte_t)(value >> 24);
740 case 3:
741 *pLMBCS++ = (ulmbcs_byte_t)(value >> 16);
742 case 2:
743 *pLMBCS++ = (ulmbcs_byte_t)(value >> 8);
744 case 1:
745 *pLMBCS++ = (ulmbcs_byte_t)value;
746 default:
747 /* will never occur */
748 break;
749 }
750
751 return (pLMBCS - pStartLMBCS);
752 }
753
754
755 /* This is a much simpler version of above, when we
756 know we are writing LMBCS using the Unicode group
757 */
758 static size_t
759 LMBCSConvertUni(ulmbcs_byte_t * pLMBCS, UChar uniChar)
760 {
761 /* encode into LMBCS Unicode range */
762 uint8_t LowCh = (uint8_t)(uniChar & 0x00FF);
763 uint8_t HighCh = (uint8_t)(uniChar >> 8);
764
765 *pLMBCS++ = ULMBCS_GRP_UNICODE;
766
767 if (LowCh == 0)
768 {
769 *pLMBCS++ = ULMBCS_UNICOMPATZERO;
770 *pLMBCS++ = HighCh;
771 }
772 else
773 {
774 *pLMBCS++ = HighCh;
775 *pLMBCS++ = LowCh;
776 }
777 return ULMBCS_UNICODE_SIZE;
778 }
779
780
781
782 /* The main Unicode to LMBCS conversion function */
783 static void
784 _LMBCSFromUnicode(UConverterFromUnicodeArgs* args,
785 UErrorCode* err)
786 {
787 ulmbcs_byte_t lastConverterIndex = 0;
788 UChar uniChar;
789 ulmbcs_byte_t LMBCS[ULMBCS_CHARSIZE_MAX];
790 ulmbcs_byte_t * pLMBCS;
791 int bytes_written;
792 UBool groups_tried[ULMBCS_GRP_LAST+1];
793 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
794 int sourceIndex = 0;
795
796
797 /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS)
798 If that succeeds, see if it will all fit into the target & copy it over
799 if it does.
800
801 We try conversions in the following order:
802
803 1. Single-byte ascii & special fixed control chars (&null)
804 2. Look up group in table & try that (could be
805 A) Unicode group
806 B) control group,
807 C) national encoding,
808 or ambiguous SBCS or MBCS group (on to step 4...)
809
810 3. If its ambiguous, try this order:
811 A) The optimization group
812 B) The locale group
813 C) The last group that succeeded with this string.
814 D) every other group that's relevent (single or double)
815 E) If its single-byte ambiguous, try the exceptions group
816
817 4. And as a grand fallback: Unicode
818 */
819
820 while (args->source < args->sourceLimit && !U_FAILURE(*err))
821 {
822 if (args->target >= args->targetLimit)
823 {
824 *err = U_BUFFER_OVERFLOW_ERROR;
825 break;
826 }
827 uniChar = *(args->source);
828 bytes_written = 0;
829 pLMBCS = LMBCS;
830
831 /* check cases in rough order of how common they are, for speed */
832
833 /* single byte matches: strategy 1 */
834
835 if (((uniChar > ULMBCS_C0END) && (uniChar < ULMBCS_C1START)) ||
836 uniChar == 0 || uniChar == ULMBCS_HT || uniChar == ULMBCS_CR ||
837 uniChar == ULMBCS_LF || uniChar == ULMBCS_123SYSTEMRANGE
838 )
839 {
840 *pLMBCS++ = (ulmbcs_byte_t ) uniChar;
841 bytes_written = 1;
842 }
843
844
845 if (!bytes_written)
846 {
847 /* Check by UNICODE range (Strategy 2) */
848 ulmbcs_byte_t group = FindLMBCSUniRange(uniChar);
849
850 if (group == ULMBCS_GRP_UNICODE) /* (Strategy 2A) */
851 {
852 pLMBCS += LMBCSConvertUni(pLMBCS,uniChar);
853
854 bytes_written = pLMBCS - LMBCS;
855 }
856 else if (group == ULMBCS_GRP_CTRL) /* (Strategy 2B) */
857 {
858 /* Handle control characters here */
859 if (uniChar <= ULMBCS_C0END)
860 {
861 *pLMBCS++ = ULMBCS_GRP_CTRL;
862 *pLMBCS++ = (ulmbcs_byte_t)(ULMBCS_CTRLOFFSET + uniChar);
863 }
864 else if (uniChar >= ULMBCS_C1START && uniChar <= ULMBCS_C1START + ULMBCS_CTRLOFFSET)
865 {
866 *pLMBCS++ = ULMBCS_GRP_CTRL;
867 *pLMBCS++ = (ulmbcs_byte_t ) (uniChar & 0x00FF);
868 }
869 bytes_written = pLMBCS - LMBCS;
870 }
871 else if (group < ULMBCS_GRP_UNICODE) /* (Strategy 2C) */
872 {
873 /* a specific converter has been identified - use it */
874 bytes_written = LMBCSConversionWorker (
875 extraInfo, group, pLMBCS, &uniChar,
876 &lastConverterIndex, groups_tried);
877 }
878 if (!bytes_written) /* the ambiguous group cases (Strategy 3) */
879 {
880 uprv_memset(groups_tried, 0, sizeof(groups_tried));
881
882 /* check for non-default optimization group (Strategy 3A )*/
883 if (extraInfo->OptGroup != 1
884 && ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->OptGroup))
885 {
886 bytes_written = LMBCSConversionWorker (extraInfo,
887 extraInfo->OptGroup, pLMBCS, &uniChar,
888 &lastConverterIndex, groups_tried);
889 }
890 /* check for locale optimization group (Strategy 3B) */
891 if (!bytes_written
892 && (extraInfo->localeConverterIndex)
893 && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->localeConverterIndex)))
894 {
895 bytes_written = LMBCSConversionWorker (extraInfo,
896 extraInfo->localeConverterIndex, pLMBCS, &uniChar,
897 &lastConverterIndex, groups_tried);
898 }
899 /* check for last optimization group used for this string (Strategy 3C) */
900 if (!bytes_written
901 && (lastConverterIndex)
902 && (ULMBCS_AMBIGUOUS_MATCH(group, lastConverterIndex)))
903 {
904 bytes_written = LMBCSConversionWorker (extraInfo,
905 lastConverterIndex, pLMBCS, &uniChar,
906 &lastConverterIndex, groups_tried);
907
908 }
909 if (!bytes_written)
910 {
911 /* just check every possible matching converter (Strategy 3D) */
912 ulmbcs_byte_t grp_start;
913 ulmbcs_byte_t grp_end;
914 ulmbcs_byte_t grp_ix;
915 grp_start = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
916 ? ULMBCS_DOUBLEOPTGROUP_START
917 : ULMBCS_GRP_L1);
918 grp_end = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
919 ? ULMBCS_GRP_LAST
920 : ULMBCS_GRP_TH);
921 for (grp_ix = grp_start;
922 grp_ix <= grp_end && !bytes_written;
923 grp_ix++)
924 {
925 if (extraInfo->OptGrpConverter [grp_ix] && !groups_tried [grp_ix])
926 {
927 bytes_written = LMBCSConversionWorker (extraInfo,
928 grp_ix, pLMBCS, &uniChar,
929 &lastConverterIndex, groups_tried);
930 }
931 }
932 /* a final conversion fallback to the exceptions group if its likely
933 to be single byte (Strategy 3E) */
934 if (!bytes_written && grp_start == ULMBCS_GRP_L1)
935 {
936 bytes_written = LMBCSConversionWorker (extraInfo,
937 ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
938 &lastConverterIndex, groups_tried);
939 }
940 }
941 /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/
942 if (!bytes_written)
943 {
944
945 pLMBCS += LMBCSConvertUni(pLMBCS, uniChar);
946 bytes_written = pLMBCS - LMBCS;
947 }
948 }
949 }
950
951 /* we have a translation. increment source and write as much as posible to target */
952 args->source++;
953 pLMBCS = LMBCS;
954 while (args->target < args->targetLimit && bytes_written--)
955 {
956 *(args->target)++ = *pLMBCS++;
957 if (args->offsets)
958 {
959 *(args->offsets)++ = sourceIndex;
960 }
961 }
962 sourceIndex++;
963 if (bytes_written > 0)
964 {
965 /* write any bytes that didn't fit in target to the error buffer,
966 common code will move this to target if we get called back with
967 enough target room
968 */
969 uint8_t * pErrorBuffer = args->converter->charErrorBuffer;
970 *err = U_BUFFER_OVERFLOW_ERROR;
971 args->converter->charErrorBufferLength = (int8_t)bytes_written;
972 while (bytes_written--)
973 {
974 *pErrorBuffer++ = *pLMBCS++;
975 }
976 }
977 }
978 }
979
980
981 /* Now, the Unicode from LMBCS section */
982
983
984 /* A function to call when we are looking at the Unicode group byte in LMBCS */
985 static UChar
986 GetUniFromLMBCSUni(char const ** ppLMBCSin) /* Called with LMBCS-style Unicode byte stream */
987 {
988 uint8_t HighCh = *(*ppLMBCSin)++; /* Big-endian Unicode in LMBCS compatibility group*/
989 uint8_t LowCh = *(*ppLMBCSin)++;
990
991 if (HighCh == ULMBCS_UNICOMPATZERO )
992 {
993 HighCh = LowCh;
994 LowCh = 0; /* zero-byte in LSB special character */
995 }
996 return (UChar)((HighCh << 8) | LowCh);
997 }
998
999
1000
1001 /* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index'
1002 bytes left in source up to sourceLimit.Errors appropriately if not.
1003 If we reach the limit, then update the source pointer to there to consume
1004 all input as required by ICU converter semantics.
1005 */
1006
1007 #define CHECK_SOURCE_LIMIT(index) \
1008 if (args->source+index > args->sourceLimit){\
1009 *err = U_TRUNCATED_CHAR_FOUND;\
1010 args->source = args->sourceLimit;\
1011 return 0xffff;}
1012
1013 /* Return the Unicode representation for the current LMBCS character */
1014
1015 static UChar32
1016 _LMBCSGetNextUCharWorker(UConverterToUnicodeArgs* args,
1017 UErrorCode* err)
1018 {
1019 UChar32 uniChar = 0; /* an output UNICODE char */
1020 ulmbcs_byte_t CurByte; /* A byte from the input stream */
1021 const char * saveSource;
1022
1023 /* error check */
1024 if (args->source >= args->sourceLimit)
1025 {
1026 *err = U_ILLEGAL_ARGUMENT_ERROR;
1027 return 0xffff;
1028 }
1029 /* Grab first byte & save address for error recovery */
1030 CurByte = *((ulmbcs_byte_t *) (saveSource = args->source++));
1031
1032 /*
1033 * at entry of each if clause:
1034 * 1. 'CurByte' points at the first byte of a LMBCS character
1035 * 2. '*source'points to the next byte of the source stream after 'CurByte'
1036 *
1037 * the job of each if clause is:
1038 * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte)
1039 * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately
1040 */
1041
1042 /* First lets check the simple fixed values. */
1043
1044 if(((CurByte > ULMBCS_C0END) && (CurByte < ULMBCS_C1START)) /* ascii range */
1045 || (CurByte == 0)
1046 || CurByte == ULMBCS_HT || CurByte == ULMBCS_CR
1047 || CurByte == ULMBCS_LF || CurByte == ULMBCS_123SYSTEMRANGE)
1048 {
1049 uniChar = CurByte;
1050 }
1051 else
1052 {
1053 UConverterDataLMBCS * extraInfo;
1054 ulmbcs_byte_t group;
1055 UConverterSharedData *cnv;
1056
1057 if (CurByte == ULMBCS_GRP_CTRL) /* Control character group - no opt group update */
1058 {
1059 ulmbcs_byte_t C0C1byte;
1060 CHECK_SOURCE_LIMIT(1);
1061 C0C1byte = *(args->source)++;
1062 uniChar = (C0C1byte < ULMBCS_C1START) ? C0C1byte - ULMBCS_CTRLOFFSET : C0C1byte;
1063 }
1064 else
1065 if (CurByte == ULMBCS_GRP_UNICODE) /* Unicode compatibility group: BigEndian UTF16 */
1066 {
1067 CHECK_SOURCE_LIMIT(2);
1068
1069 /* don't check for error indicators fffe/ffff below */
1070 return GetUniFromLMBCSUni(&(args->source));
1071 }
1072 else if (CurByte <= ULMBCS_CTRLOFFSET)
1073 {
1074 group = CurByte; /* group byte is in the source */
1075 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1076 if (group > ULMBCS_GRP_LAST || (cnv = extraInfo->OptGrpConverter[group]) == NULL)
1077 {
1078 /* this is not a valid group byte - no converter*/
1079 *err = U_INVALID_CHAR_FOUND;
1080 }
1081 else if (group >= ULMBCS_DOUBLEOPTGROUP_START) /* double byte conversion */
1082 {
1083
1084 CHECK_SOURCE_LIMIT(2);
1085
1086 /* check for LMBCS doubled-group-byte case */
1087 if (*args->source == group) {
1088 /* single byte */
1089 ++args->source;
1090 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 1, FALSE);
1091 ++args->source;
1092 } else {
1093 /* double byte */
1094 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 2, FALSE);
1095 args->source += 2;
1096 }
1097 }
1098 else { /* single byte conversion */
1099 CHECK_SOURCE_LIMIT(1);
1100 CurByte = *(args->source)++;
1101
1102 if (CurByte >= ULMBCS_C1START)
1103 {
1104 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1105 }
1106 else
1107 {
1108 /* The non-optimizable oddballs where there is an explicit byte
1109 * AND the second byte is not in the upper ascii range
1110 */
1111 char bytes[2];
1112
1113 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1114 cnv = extraInfo->OptGrpConverter [ULMBCS_GRP_EXCEPT];
1115
1116 /* Lookup value must include opt group */
1117 bytes[0] = group;
1118 bytes[1] = CurByte;
1119 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, bytes, 2, FALSE);
1120 }
1121 }
1122 }
1123 else if (CurByte >= ULMBCS_C1START) /* group byte is implicit */
1124 {
1125 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1126 group = extraInfo->OptGroup;
1127 cnv = extraInfo->OptGrpConverter[group];
1128 if (group >= ULMBCS_DOUBLEOPTGROUP_START) /* double byte conversion */
1129 {
1130 if (!ucnv_MBCSIsLeadByte(cnv, CurByte))
1131 {
1132 CHECK_SOURCE_LIMIT(0);
1133
1134 /* let the MBCS conversion consume CurByte again */
1135 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 1, FALSE);
1136 }
1137 else
1138 {
1139 CHECK_SOURCE_LIMIT(1);
1140 /* let the MBCS conversion consume CurByte again */
1141 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 2, FALSE);
1142 ++args->source;
1143 }
1144 }
1145 else /* single byte conversion */
1146 {
1147 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1148 }
1149 }
1150 }
1151 return uniChar;
1152 }
1153
1154
1155 /* The exported function that converts lmbcs to one or more
1156 UChars - currently UTF-16
1157 */
1158 static void
1159 _LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs* args,
1160 UErrorCode* err)
1161 {
1162 char LMBCS [ULMBCS_CHARSIZE_MAX];
1163 UChar uniChar; /* one output UNICODE char */
1164 const char * saveSource; /* beginning of current code point */
1165 const char * pStartLMBCS = args->source; /* beginning of whole string */
1166 const char * errSource = NULL; /* pointer to actual input in case an error occurs */
1167 int8_t savebytes = 0;
1168
1169 /* Process from source to limit, or until error */
1170 while (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit > args->target)
1171 {
1172 saveSource = args->source; /* beginning of current code point */
1173
1174 if (args->converter->toULength) /* reassemble char from previous call */
1175 {
1176 const char *saveSourceLimit;
1177 size_t size_old = args->converter->toULength;
1178
1179 /* limit from source is either remainder of temp buffer, or user limit on source */
1180 size_t size_new_maybe_1 = sizeof(LMBCS) - size_old;
1181 size_t size_new_maybe_2 = args->sourceLimit - args->source;
1182 size_t size_new = (size_new_maybe_1 < size_new_maybe_2) ? size_new_maybe_1 : size_new_maybe_2;
1183
1184
1185 uprv_memcpy(LMBCS, args->converter->toUBytes, size_old);
1186 uprv_memcpy(LMBCS + size_old, args->source, size_new);
1187 saveSourceLimit = args->sourceLimit;
1188 args->source = errSource = LMBCS;
1189 args->sourceLimit = LMBCS+size_old+size_new;
1190 savebytes = (int8_t)(size_old+size_new);
1191 uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1192 args->source = saveSource + ((args->source - LMBCS) - size_old);
1193 args->sourceLimit = saveSourceLimit;
1194
1195 if (*err == U_TRUNCATED_CHAR_FOUND)
1196 {
1197 /* evil special case: source buffers so small a char spans more than 2 buffers */
1198 args->converter->toULength = savebytes;
1199 uprv_memcpy(args->converter->toUBytes, LMBCS, savebytes);
1200 args->source = args->sourceLimit;
1201 *err = U_ZERO_ERROR;
1202 return;
1203 }
1204 else
1205 {
1206 /* clear the partial-char marker */
1207 args->converter->toULength = 0;
1208 }
1209 }
1210 else
1211 {
1212 errSource = saveSource;
1213 uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1214 savebytes = (int8_t)(args->source - saveSource);
1215 }
1216 if (U_SUCCESS(*err))
1217 {
1218 if (uniChar < 0xfffe)
1219 {
1220 *(args->target)++ = uniChar;
1221 if(args->offsets)
1222 {
1223 *(args->offsets)++ = saveSource - pStartLMBCS;
1224 }
1225 }
1226 else if (uniChar == 0xfffe)
1227 {
1228 *err = U_INVALID_CHAR_FOUND;
1229 }
1230 else /* if (uniChar == 0xffff) */
1231 {
1232 *err = U_ILLEGAL_CHAR_FOUND;
1233 }
1234 }
1235 }
1236 /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */
1237 if (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit <= args->target)
1238 {
1239 *err = U_BUFFER_OVERFLOW_ERROR;
1240 }
1241 else if (U_FAILURE(*err))
1242 {
1243 /* If character incomplete or unmappable/illegal, store it in toUBytes[] */
1244 args->converter->toULength = savebytes;
1245 if (savebytes > 0) {
1246 uprv_memcpy(args->converter->toUBytes, errSource, savebytes);
1247 }
1248 if (*err == U_TRUNCATED_CHAR_FOUND) {
1249 *err = U_ZERO_ERROR;
1250 }
1251 }
1252 }
1253
1254 /* And now, the macroized declarations of data & functions: */
1255 DEFINE_LMBCS_OPEN(1)
1256 DEFINE_LMBCS_OPEN(2)
1257 DEFINE_LMBCS_OPEN(3)
1258 DEFINE_LMBCS_OPEN(4)
1259 DEFINE_LMBCS_OPEN(5)
1260 DEFINE_LMBCS_OPEN(6)
1261 DEFINE_LMBCS_OPEN(8)
1262 DEFINE_LMBCS_OPEN(11)
1263 DEFINE_LMBCS_OPEN(16)
1264 DEFINE_LMBCS_OPEN(17)
1265 DEFINE_LMBCS_OPEN(18)
1266 DEFINE_LMBCS_OPEN(19)
1267
1268
1269 DECLARE_LMBCS_DATA(1)
1270 DECLARE_LMBCS_DATA(2)
1271 DECLARE_LMBCS_DATA(3)
1272 DECLARE_LMBCS_DATA(4)
1273 DECLARE_LMBCS_DATA(5)
1274 DECLARE_LMBCS_DATA(6)
1275 DECLARE_LMBCS_DATA(8)
1276 DECLARE_LMBCS_DATA(11)
1277 DECLARE_LMBCS_DATA(16)
1278 DECLARE_LMBCS_DATA(17)
1279 DECLARE_LMBCS_DATA(18)
1280 DECLARE_LMBCS_DATA(19)
1281
1282 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */