]> git.saurik.com Git - apple/icu.git/blob - icuSources/i18n/collationfastlatinbuilder.cpp
ICU-57131.0.1.tar.gz
[apple/icu.git] / icuSources / i18n / collationfastlatinbuilder.cpp
1 /*
2 *******************************************************************************
3 * Copyright (C) 2013-2015, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 *******************************************************************************
6 * collationfastlatinbuilder.cpp
7 *
8 * created on: 2013aug09
9 * created by: Markus W. Scherer
10 */
11
12 #define DEBUG_COLLATION_FAST_LATIN_BUILDER 0 // 0 or 1 or 2
13 #if DEBUG_COLLATION_FAST_LATIN_BUILDER
14 #include <stdio.h>
15 #include <string>
16 #endif
17
18 #include "unicode/utypes.h"
19
20 #if !UCONFIG_NO_COLLATION
21
22 #include "unicode/ucol.h"
23 #include "unicode/ucharstrie.h"
24 #include "unicode/unistr.h"
25 #include "unicode/uobject.h"
26 #include "unicode/uscript.h"
27 #include "cmemory.h"
28 #include "collation.h"
29 #include "collationdata.h"
30 #include "collationfastlatin.h"
31 #include "collationfastlatinbuilder.h"
32 #include "uassert.h"
33 #include "uvectr64.h"
34
35 U_NAMESPACE_BEGIN
36
37 struct CollationData;
38
39 namespace {
40
41 /**
42 * Compare two signed int64_t values as if they were unsigned.
43 */
44 int32_t
45 compareInt64AsUnsigned(int64_t a, int64_t b) {
46 if((uint64_t)a < (uint64_t)b) {
47 return -1;
48 } else if((uint64_t)a > (uint64_t)b) {
49 return 1;
50 } else {
51 return 0;
52 }
53 }
54
55 // TODO: Merge this with the near-identical version in collationbasedatabuilder.cpp
56 /**
57 * Like Java Collections.binarySearch(List, String, Comparator).
58 *
59 * @return the index>=0 where the item was found,
60 * or the index<0 for inserting the string at ~index in sorted order
61 */
62 int32_t
63 binarySearch(const int64_t list[], int32_t limit, int64_t ce) {
64 if (limit == 0) { return ~0; }
65 int32_t start = 0;
66 for (;;) {
67 int32_t i = (start + limit) / 2;
68 int32_t cmp = compareInt64AsUnsigned(ce, list[i]);
69 if (cmp == 0) {
70 return i;
71 } else if (cmp < 0) {
72 if (i == start) {
73 return ~start; // insert ce before i
74 }
75 limit = i;
76 } else {
77 if (i == start) {
78 return ~(start + 1); // insert ce after i
79 }
80 start = i;
81 }
82 }
83 }
84
85 } // namespace
86
87 CollationFastLatinBuilder::CollationFastLatinBuilder(UErrorCode &errorCode)
88 : ce0(0), ce1(0),
89 contractionCEs(errorCode), uniqueCEs(errorCode),
90 miniCEs(NULL),
91 firstDigitPrimary(0), firstLatinPrimary(0), lastLatinPrimary(0),
92 firstShortPrimary(0), shortPrimaryOverflow(FALSE),
93 headerLength(0) {
94 }
95
96 CollationFastLatinBuilder::~CollationFastLatinBuilder() {
97 uprv_free(miniCEs);
98 }
99
100 UBool
101 CollationFastLatinBuilder::forData(const CollationData &data, UErrorCode &errorCode) {
102 if(U_FAILURE(errorCode)) { return FALSE; }
103 if(!result.isEmpty()) { // This builder is not reusable.
104 errorCode = U_INVALID_STATE_ERROR;
105 return FALSE;
106 }
107 if(!loadGroups(data, errorCode)) { return FALSE; }
108
109 // Fast handling of digits.
110 firstShortPrimary = firstDigitPrimary;
111 getCEs(data, errorCode);
112 if(!encodeUniqueCEs(errorCode)) { return FALSE; }
113 if(shortPrimaryOverflow) {
114 // Give digits long mini primaries,
115 // so that there are more short primaries for letters.
116 firstShortPrimary = firstLatinPrimary;
117 resetCEs();
118 getCEs(data, errorCode);
119 if(!encodeUniqueCEs(errorCode)) { return FALSE; }
120 }
121 // Note: If we still have a short-primary overflow but not a long-primary overflow,
122 // then we could calculate how many more long primaries would fit,
123 // and set the firstShortPrimary to that many after the current firstShortPrimary,
124 // and try again.
125 // However, this might only benefit the en_US_POSIX tailoring,
126 // and it is simpler to suppress building fast Latin data for it in genrb,
127 // or by returning FALSE here if shortPrimaryOverflow.
128
129 UBool ok = !shortPrimaryOverflow &&
130 encodeCharCEs(errorCode) && encodeContractions(errorCode);
131 contractionCEs.removeAllElements(); // might reduce heap memory usage
132 uniqueCEs.removeAllElements();
133 return ok;
134 }
135
136 UBool
137 CollationFastLatinBuilder::loadGroups(const CollationData &data, UErrorCode &errorCode) {
138 if(U_FAILURE(errorCode)) { return FALSE; }
139 headerLength = 1 + NUM_SPECIAL_GROUPS;
140 uint32_t r0 = (CollationFastLatin::VERSION << 8) | headerLength;
141 result.append((UChar)r0);
142 // The first few reordering groups should be special groups
143 // (space, punct, ..., digit) followed by Latn, then Grek and other scripts.
144 for(int32_t i = 0; i < NUM_SPECIAL_GROUPS; ++i) {
145 lastSpecialPrimaries[i] = data.getLastPrimaryForGroup(UCOL_REORDER_CODE_FIRST + i);
146 if(lastSpecialPrimaries[i] == 0) {
147 // missing data
148 return FALSE;
149 }
150 result.append(0); // reserve a slot for this group
151 }
152
153 firstDigitPrimary = data.getFirstPrimaryForGroup(UCOL_REORDER_CODE_DIGIT);
154 firstLatinPrimary = data.getFirstPrimaryForGroup(USCRIPT_LATIN);
155 lastLatinPrimary = data.getLastPrimaryForGroup(USCRIPT_LATIN);
156 if(firstDigitPrimary == 0 || firstLatinPrimary == 0) {
157 // missing data
158 return FALSE;
159 }
160 return TRUE;
161 }
162
163 UBool
164 CollationFastLatinBuilder::inSameGroup(uint32_t p, uint32_t q) const {
165 // Both or neither need to be encoded as short primaries,
166 // so that we can test only one and use the same bit mask.
167 if(p >= firstShortPrimary) {
168 return q >= firstShortPrimary;
169 } else if(q >= firstShortPrimary) {
170 return FALSE;
171 }
172 // Both or neither must be potentially-variable,
173 // so that we can test only one and determine if both are variable.
174 uint32_t lastVariablePrimary = lastSpecialPrimaries[NUM_SPECIAL_GROUPS - 1];
175 if(p > lastVariablePrimary) {
176 return q > lastVariablePrimary;
177 } else if(q > lastVariablePrimary) {
178 return FALSE;
179 }
180 // Both will be encoded with long mini primaries.
181 // They must be in the same special reordering group,
182 // so that we can test only one and determine if both are variable.
183 U_ASSERT(p != 0 && q != 0);
184 for(int32_t i = 0;; ++i) { // will terminate
185 uint32_t lastPrimary = lastSpecialPrimaries[i];
186 if(p <= lastPrimary) {
187 return q <= lastPrimary;
188 } else if(q <= lastPrimary) {
189 return FALSE;
190 }
191 }
192 }
193
194 void
195 CollationFastLatinBuilder::resetCEs() {
196 contractionCEs.removeAllElements();
197 uniqueCEs.removeAllElements();
198 shortPrimaryOverflow = FALSE;
199 result.truncate(headerLength);
200 }
201
202 void
203 CollationFastLatinBuilder::getCEs(const CollationData &data, UErrorCode &errorCode) {
204 if(U_FAILURE(errorCode)) { return; }
205 int32_t i = 0;
206 for(UChar c = 0;; ++i, ++c) {
207 if(c == CollationFastLatin::LATIN_LIMIT) {
208 c = CollationFastLatin::PUNCT_START;
209 } else if(c == CollationFastLatin::PUNCT_LIMIT) {
210 break;
211 }
212 const CollationData *d;
213 uint32_t ce32 = data.getCE32(c);
214 if(ce32 == Collation::FALLBACK_CE32) {
215 d = data.base;
216 ce32 = d->getCE32(c);
217 } else {
218 d = &data;
219 }
220 if(getCEsFromCE32(*d, c, ce32, errorCode)) {
221 charCEs[i][0] = ce0;
222 charCEs[i][1] = ce1;
223 addUniqueCE(ce0, errorCode);
224 addUniqueCE(ce1, errorCode);
225 } else {
226 // bail out for c
227 charCEs[i][0] = ce0 = Collation::NO_CE;
228 charCEs[i][1] = ce1 = 0;
229 }
230 if(c == 0 && !isContractionCharCE(ce0)) {
231 // Always map U+0000 to a contraction.
232 // Write a contraction list with only a default value if there is no real contraction.
233 U_ASSERT(contractionCEs.isEmpty());
234 addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, ce0, ce1, errorCode);
235 charCEs[0][0] = ((int64_t)Collation::NO_CE_PRIMARY << 32) | CONTRACTION_FLAG;
236 charCEs[0][1] = 0;
237 }
238 }
239 // Terminate the last contraction list.
240 contractionCEs.addElement(CollationFastLatin::CONTR_CHAR_MASK, errorCode);
241 }
242
243 UBool
244 CollationFastLatinBuilder::getCEsFromCE32(const CollationData &data, UChar32 c, uint32_t ce32,
245 UErrorCode &errorCode) {
246 if(U_FAILURE(errorCode)) { return FALSE; }
247 ce32 = data.getFinalCE32(ce32);
248 ce1 = 0;
249 if(Collation::isSimpleOrLongCE32(ce32)) {
250 ce0 = Collation::ceFromCE32(ce32);
251 } else {
252 switch(Collation::tagFromCE32(ce32)) {
253 case Collation::LATIN_EXPANSION_TAG:
254 ce0 = Collation::latinCE0FromCE32(ce32);
255 ce1 = Collation::latinCE1FromCE32(ce32);
256 break;
257 case Collation::EXPANSION32_TAG: {
258 const uint32_t *ce32s = data.ce32s + Collation::indexFromCE32(ce32);
259 int32_t length = Collation::lengthFromCE32(ce32);
260 if(length <= 2) {
261 ce0 = Collation::ceFromCE32(ce32s[0]);
262 if(length == 2) {
263 ce1 = Collation::ceFromCE32(ce32s[1]);
264 }
265 break;
266 } else {
267 return FALSE;
268 }
269 }
270 case Collation::EXPANSION_TAG: {
271 const int64_t *ces = data.ces + Collation::indexFromCE32(ce32);
272 int32_t length = Collation::lengthFromCE32(ce32);
273 if(length <= 2) {
274 ce0 = ces[0];
275 if(length == 2) {
276 ce1 = ces[1];
277 }
278 break;
279 } else {
280 return FALSE;
281 }
282 }
283 // Note: We could support PREFIX_TAG (assert c>=0)
284 // by recursing on its default CE32 and checking that none of the prefixes starts
285 // with a fast Latin character.
286 // However, currently (2013) there are only the L-before-middle-dot
287 // prefix mappings in the Latin range, and those would be rejected anyway.
288 case Collation::CONTRACTION_TAG:
289 U_ASSERT(c >= 0);
290 return getCEsFromContractionCE32(data, ce32, errorCode);
291 case Collation::OFFSET_TAG:
292 U_ASSERT(c >= 0);
293 ce0 = data.getCEFromOffsetCE32(c, ce32);
294 break;
295 default:
296 return FALSE;
297 }
298 }
299 // A mapping can be completely ignorable.
300 if(ce0 == 0) { return ce1 == 0; }
301 // We do not support an ignorable ce0 unless it is completely ignorable.
302 uint32_t p0 = (uint32_t)(ce0 >> 32);
303 if(p0 == 0) { return FALSE; }
304 // We only support primaries up to the Latin script.
305 if(p0 > lastLatinPrimary) { return FALSE; }
306 // We support non-common secondary and case weights only together with short primaries.
307 uint32_t lower32_0 = (uint32_t)ce0;
308 if(p0 < firstShortPrimary) {
309 uint32_t sc0 = lower32_0 & Collation::SECONDARY_AND_CASE_MASK;
310 if(sc0 != Collation::COMMON_SECONDARY_CE) { return FALSE; }
311 }
312 // No below-common tertiary weights.
313 if((lower32_0 & Collation::ONLY_TERTIARY_MASK) < Collation::COMMON_WEIGHT16) { return FALSE; }
314 if(ce1 != 0) {
315 // Both primaries must be in the same group,
316 // or both must get short mini primaries,
317 // or a short-primary CE is followed by a secondary CE.
318 // This is so that we can test the first primary and use the same mask for both,
319 // and determine for both whether they are variable.
320 uint32_t p1 = (uint32_t)(ce1 >> 32);
321 if(p1 == 0 ? p0 < firstShortPrimary : !inSameGroup(p0, p1)) { return FALSE; }
322 uint32_t lower32_1 = (uint32_t)ce1;
323 // No tertiary CEs.
324 if((lower32_1 >> 16) == 0) { return FALSE; }
325 // We support non-common secondary and case weights
326 // only for secondary CEs or together with short primaries.
327 if(p1 != 0 && p1 < firstShortPrimary) {
328 uint32_t sc1 = lower32_1 & Collation::SECONDARY_AND_CASE_MASK;
329 if(sc1 != Collation::COMMON_SECONDARY_CE) { return FALSE; }
330 }
331 // No below-common tertiary weights.
332 if((lower32_1 & Collation::ONLY_TERTIARY_MASK) < Collation::COMMON_WEIGHT16) { return FALSE; }
333 }
334 // No quaternary weights.
335 if(((ce0 | ce1) & Collation::QUATERNARY_MASK) != 0) { return FALSE; }
336 return TRUE;
337 }
338
339 UBool
340 CollationFastLatinBuilder::getCEsFromContractionCE32(const CollationData &data, uint32_t ce32,
341 UErrorCode &errorCode) {
342 if(U_FAILURE(errorCode)) { return FALSE; }
343 const UChar *p = data.contexts + Collation::indexFromCE32(ce32);
344 ce32 = CollationData::readCE32(p); // Default if no suffix match.
345 // Since the original ce32 is not a prefix mapping,
346 // the default ce32 must not be another contraction.
347 U_ASSERT(!Collation::isContractionCE32(ce32));
348 int32_t contractionIndex = contractionCEs.size();
349 if(getCEsFromCE32(data, U_SENTINEL, ce32, errorCode)) {
350 addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, ce0, ce1, errorCode);
351 } else {
352 // Bail out for c-without-contraction.
353 addContractionEntry(CollationFastLatin::CONTR_CHAR_MASK, Collation::NO_CE, 0, errorCode);
354 }
355 // Handle an encodable contraction unless the next contraction is too long
356 // and starts with the same character.
357 int32_t prevX = -1;
358 UBool addContraction = FALSE;
359 UCharsTrie::Iterator suffixes(p + 2, 0, errorCode);
360 while(suffixes.next(errorCode)) {
361 const UnicodeString &suffix = suffixes.getString();
362 int32_t x = CollationFastLatin::getCharIndex(suffix.charAt(0));
363 if(x < 0) { continue; } // ignore anything but fast Latin text
364 if(x == prevX) {
365 if(addContraction) {
366 // Bail out for all contractions starting with this character.
367 addContractionEntry(x, Collation::NO_CE, 0, errorCode);
368 addContraction = FALSE;
369 }
370 continue;
371 }
372 if(addContraction) {
373 addContractionEntry(prevX, ce0, ce1, errorCode);
374 }
375 ce32 = (uint32_t)suffixes.getValue();
376 if(suffix.length() == 1 && getCEsFromCE32(data, U_SENTINEL, ce32, errorCode)) {
377 addContraction = TRUE;
378 } else {
379 addContractionEntry(x, Collation::NO_CE, 0, errorCode);
380 addContraction = FALSE;
381 }
382 prevX = x;
383 }
384 if(addContraction) {
385 addContractionEntry(prevX, ce0, ce1, errorCode);
386 }
387 if(U_FAILURE(errorCode)) { return FALSE; }
388 // Note: There might not be any fast Latin contractions, but
389 // we need to enter contraction handling anyway so that we can bail out
390 // when there is a non-fast-Latin character following.
391 // For example: Danish &Y<<u+umlaut, when we compare Y vs. u\u0308 we need to see the
392 // following umlaut and bail out, rather than return the difference of Y vs. u.
393 ce0 = ((int64_t)Collation::NO_CE_PRIMARY << 32) | CONTRACTION_FLAG | contractionIndex;
394 ce1 = 0;
395 return TRUE;
396 }
397
398 void
399 CollationFastLatinBuilder::addContractionEntry(int32_t x, int64_t cce0, int64_t cce1,
400 UErrorCode &errorCode) {
401 contractionCEs.addElement(x, errorCode);
402 contractionCEs.addElement(cce0, errorCode);
403 contractionCEs.addElement(cce1, errorCode);
404 addUniqueCE(cce0, errorCode);
405 addUniqueCE(cce1, errorCode);
406 }
407
408 void
409 CollationFastLatinBuilder::addUniqueCE(int64_t ce, UErrorCode &errorCode) {
410 if(U_FAILURE(errorCode)) { return; }
411 if(ce == 0 || (uint32_t)(ce >> 32) == Collation::NO_CE_PRIMARY) { return; }
412 ce &= ~(int64_t)Collation::CASE_MASK; // blank out case bits
413 int32_t i = binarySearch(uniqueCEs.getBuffer(), uniqueCEs.size(), ce);
414 if(i < 0) {
415 uniqueCEs.insertElementAt(ce, ~i, errorCode);
416 }
417 }
418
419 uint32_t
420 CollationFastLatinBuilder::getMiniCE(int64_t ce) const {
421 ce &= ~(int64_t)Collation::CASE_MASK; // blank out case bits
422 int32_t index = binarySearch(uniqueCEs.getBuffer(), uniqueCEs.size(), ce);
423 U_ASSERT(index >= 0);
424 return miniCEs[index];
425 }
426
427 UBool
428 CollationFastLatinBuilder::encodeUniqueCEs(UErrorCode &errorCode) {
429 if(U_FAILURE(errorCode)) { return FALSE; }
430 uprv_free(miniCEs);
431 miniCEs = (uint16_t *)uprv_malloc(uniqueCEs.size() * 2);
432 if(miniCEs == NULL) {
433 errorCode = U_MEMORY_ALLOCATION_ERROR;
434 return FALSE;
435 }
436 int32_t group = 0;
437 uint32_t lastGroupPrimary = lastSpecialPrimaries[group];
438 // The lowest unique CE must be at least a secondary CE.
439 U_ASSERT(((uint32_t)uniqueCEs.elementAti(0) >> 16) != 0);
440 uint32_t prevPrimary = 0;
441 uint32_t prevSecondary = 0;
442 uint32_t pri = 0;
443 uint32_t sec = 0;
444 uint32_t ter = CollationFastLatin::COMMON_TER;
445 for(int32_t i = 0; i < uniqueCEs.size(); ++i) {
446 int64_t ce = uniqueCEs.elementAti(i);
447 // Note: At least one of the p/s/t weights changes from one unique CE to the next.
448 // (uniqueCEs does not store case bits.)
449 uint32_t p = (uint32_t)(ce >> 32);
450 if(p != prevPrimary) {
451 while(p > lastGroupPrimary) {
452 U_ASSERT(pri <= CollationFastLatin::MAX_LONG);
453 // Set the group's header entry to the
454 // last "long primary" in or before the group.
455 result.setCharAt(1 + group, (UChar)pri);
456 if(++group < NUM_SPECIAL_GROUPS) {
457 lastGroupPrimary = lastSpecialPrimaries[group];
458 } else {
459 lastGroupPrimary = 0xffffffff;
460 break;
461 }
462 }
463 if(p < firstShortPrimary) {
464 if(pri == 0) {
465 pri = CollationFastLatin::MIN_LONG;
466 } else if(pri < CollationFastLatin::MAX_LONG) {
467 pri += CollationFastLatin::LONG_INC;
468 } else {
469 #if DEBUG_COLLATION_FAST_LATIN_BUILDER
470 printf("long-primary overflow for %08x\n", p);
471 #endif
472 miniCEs[i] = CollationFastLatin::BAIL_OUT;
473 continue;
474 }
475 } else {
476 if(pri < CollationFastLatin::MIN_SHORT) {
477 pri = CollationFastLatin::MIN_SHORT;
478 } else if(pri < (CollationFastLatin::MAX_SHORT - CollationFastLatin::SHORT_INC)) {
479 // Reserve the highest primary weight for U+FFFF.
480 pri += CollationFastLatin::SHORT_INC;
481 } else {
482 #if DEBUG_COLLATION_FAST_LATIN_BUILDER
483 printf("short-primary overflow for %08x\n", p);
484 #endif
485 shortPrimaryOverflow = TRUE;
486 miniCEs[i] = CollationFastLatin::BAIL_OUT;
487 continue;
488 }
489 }
490 prevPrimary = p;
491 prevSecondary = Collation::COMMON_WEIGHT16;
492 sec = CollationFastLatin::COMMON_SEC;
493 ter = CollationFastLatin::COMMON_TER;
494 }
495 uint32_t lower32 = (uint32_t)ce;
496 uint32_t s = lower32 >> 16;
497 if(s != prevSecondary) {
498 if(pri == 0) {
499 if(sec == 0) {
500 sec = CollationFastLatin::MIN_SEC_HIGH;
501 } else if(sec < CollationFastLatin::MAX_SEC_HIGH) {
502 sec += CollationFastLatin::SEC_INC;
503 } else {
504 miniCEs[i] = CollationFastLatin::BAIL_OUT;
505 continue;
506 }
507 prevSecondary = s;
508 ter = CollationFastLatin::COMMON_TER;
509 } else if(s < Collation::COMMON_WEIGHT16) {
510 if(sec == CollationFastLatin::COMMON_SEC) {
511 sec = CollationFastLatin::MIN_SEC_BEFORE;
512 } else if(sec < CollationFastLatin::MAX_SEC_BEFORE) {
513 sec += CollationFastLatin::SEC_INC;
514 } else {
515 miniCEs[i] = CollationFastLatin::BAIL_OUT;
516 continue;
517 }
518 } else if(s == Collation::COMMON_WEIGHT16) {
519 sec = CollationFastLatin::COMMON_SEC;
520 } else {
521 if(sec < CollationFastLatin::MIN_SEC_AFTER) {
522 sec = CollationFastLatin::MIN_SEC_AFTER;
523 } else if(sec < CollationFastLatin::MAX_SEC_AFTER) {
524 sec += CollationFastLatin::SEC_INC;
525 } else {
526 miniCEs[i] = CollationFastLatin::BAIL_OUT;
527 continue;
528 }
529 }
530 prevSecondary = s;
531 ter = CollationFastLatin::COMMON_TER;
532 }
533 U_ASSERT((lower32 & Collation::CASE_MASK) == 0); // blanked out in uniqueCEs
534 uint32_t t = lower32 & Collation::ONLY_TERTIARY_MASK;
535 if(t > Collation::COMMON_WEIGHT16) {
536 if(ter < CollationFastLatin::MAX_TER_AFTER) {
537 ++ter;
538 } else {
539 miniCEs[i] = CollationFastLatin::BAIL_OUT;
540 continue;
541 }
542 }
543 if(CollationFastLatin::MIN_LONG <= pri && pri <= CollationFastLatin::MAX_LONG) {
544 U_ASSERT(sec == CollationFastLatin::COMMON_SEC);
545 miniCEs[i] = (uint16_t)(pri | ter);
546 } else {
547 miniCEs[i] = (uint16_t)(pri | sec | ter);
548 }
549 }
550 #if DEBUG_COLLATION_FAST_LATIN_BUILDER
551 printf("last mini primary: %04x\n", pri);
552 #endif
553 #if DEBUG_COLLATION_FAST_LATIN_BUILDER >= 2
554 for(int32_t i = 0; i < uniqueCEs.size(); ++i) {
555 int64_t ce = uniqueCEs.elementAti(i);
556 printf("unique CE 0x%016lx -> 0x%04x\n", ce, miniCEs[i]);
557 }
558 #endif
559 return U_SUCCESS(errorCode);
560 }
561
562 UBool
563 CollationFastLatinBuilder::encodeCharCEs(UErrorCode &errorCode) {
564 if(U_FAILURE(errorCode)) { return FALSE; }
565 int32_t miniCEsStart = result.length();
566 for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) {
567 result.append(0); // initialize to completely ignorable
568 }
569 int32_t indexBase = result.length();
570 for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) {
571 int64_t ce = charCEs[i][0];
572 if(isContractionCharCE(ce)) { continue; } // defer contraction
573 uint32_t miniCE = encodeTwoCEs(ce, charCEs[i][1]);
574 if(miniCE > 0xffff) {
575 // Note: There is a chance that this new expansion is the same as a previous one,
576 // and if so, then we could reuse the other expansion.
577 // However, that seems unlikely.
578 int32_t expansionIndex = result.length() - indexBase;
579 if(expansionIndex > (int32_t)CollationFastLatin::INDEX_MASK) {
580 miniCE = CollationFastLatin::BAIL_OUT;
581 } else {
582 result.append((UChar)(miniCE >> 16)).append((UChar)miniCE);
583 miniCE = CollationFastLatin::EXPANSION | expansionIndex;
584 }
585 }
586 result.setCharAt(miniCEsStart + i, (UChar)miniCE);
587 }
588 return U_SUCCESS(errorCode);
589 }
590
591 UBool
592 CollationFastLatinBuilder::encodeContractions(UErrorCode &errorCode) {
593 // We encode all contraction lists so that the first word of a list
594 // terminates the previous list, and we only need one additional terminator at the end.
595 if(U_FAILURE(errorCode)) { return FALSE; }
596 int32_t indexBase = headerLength + CollationFastLatin::NUM_FAST_CHARS;
597 int32_t firstContractionIndex = result.length();
598 for(int32_t i = 0; i < CollationFastLatin::NUM_FAST_CHARS; ++i) {
599 int64_t ce = charCEs[i][0];
600 if(!isContractionCharCE(ce)) { continue; }
601 int32_t contractionIndex = result.length() - indexBase;
602 if(contractionIndex > (int32_t)CollationFastLatin::INDEX_MASK) {
603 result.setCharAt(headerLength + i, CollationFastLatin::BAIL_OUT);
604 continue;
605 }
606 UBool firstTriple = TRUE;
607 for(int32_t index = (int32_t)ce & 0x7fffffff;; index += 3) {
608 int32_t x = contractionCEs.elementAti(index);
609 if((uint32_t)x == CollationFastLatin::CONTR_CHAR_MASK && !firstTriple) { break; }
610 int64_t cce0 = contractionCEs.elementAti(index + 1);
611 int64_t cce1 = contractionCEs.elementAti(index + 2);
612 uint32_t miniCE = encodeTwoCEs(cce0, cce1);
613 if(miniCE == CollationFastLatin::BAIL_OUT) {
614 result.append((UChar)(x | (1 << CollationFastLatin::CONTR_LENGTH_SHIFT)));
615 } else if(miniCE <= 0xffff) {
616 result.append((UChar)(x | (2 << CollationFastLatin::CONTR_LENGTH_SHIFT)));
617 result.append((UChar)miniCE);
618 } else {
619 result.append((UChar)(x | (3 << CollationFastLatin::CONTR_LENGTH_SHIFT)));
620 result.append((UChar)(miniCE >> 16)).append((UChar)miniCE);
621 }
622 firstTriple = FALSE;
623 }
624 // Note: There is a chance that this new contraction list is the same as a previous one,
625 // and if so, then we could truncate the result and reuse the other list.
626 // However, that seems unlikely.
627 result.setCharAt(headerLength + i,
628 (UChar)(CollationFastLatin::CONTRACTION | contractionIndex));
629 }
630 if(result.length() > firstContractionIndex) {
631 // Terminate the last contraction list.
632 result.append((UChar)CollationFastLatin::CONTR_CHAR_MASK);
633 }
634 if(result.isBogus()) {
635 errorCode = U_MEMORY_ALLOCATION_ERROR;
636 return FALSE;
637 }
638 #if DEBUG_COLLATION_FAST_LATIN_BUILDER
639 printf("** fast Latin %d * 2 = %d bytes\n", result.length(), result.length() * 2);
640 puts(" header & below-digit groups map");
641 int32_t i = 0;
642 for(; i < headerLength; ++i) {
643 printf(" %04x", result[i]);
644 }
645 printf("\n char mini CEs");
646 U_ASSERT(CollationFastLatin::NUM_FAST_CHARS % 16 == 0);
647 for(; i < indexBase; i += 16) {
648 UChar32 c = i - headerLength;
649 if(c >= CollationFastLatin::LATIN_LIMIT) {
650 c = CollationFastLatin::PUNCT_START + c - CollationFastLatin::LATIN_LIMIT;
651 }
652 printf("\n %04x:", c);
653 for(int32_t j = 0; j < 16; ++j) {
654 printf(" %04x", result[i + j]);
655 }
656 }
657 printf("\n expansions & contractions");
658 for(; i < result.length(); ++i) {
659 if((i - indexBase) % 16 == 0) { puts(""); }
660 printf(" %04x", result[i]);
661 }
662 puts("");
663 #endif
664 return TRUE;
665 }
666
667 uint32_t
668 CollationFastLatinBuilder::encodeTwoCEs(int64_t first, int64_t second) const {
669 if(first == 0) {
670 return 0; // completely ignorable
671 }
672 if(first == Collation::NO_CE) {
673 return CollationFastLatin::BAIL_OUT;
674 }
675 U_ASSERT((uint32_t)(first >> 32) != Collation::NO_CE_PRIMARY);
676
677 uint32_t miniCE = getMiniCE(first);
678 if(miniCE == CollationFastLatin::BAIL_OUT) { return miniCE; }
679 if(miniCE >= CollationFastLatin::MIN_SHORT) {
680 // Extract & copy the case bits.
681 // Shift them from normal CE bits 15..14 to mini CE bits 4..3.
682 uint32_t c = (((uint32_t)first & Collation::CASE_MASK) >> (14 - 3));
683 // Only in mini CEs: Ignorable case bits = 0, lowercase = 1.
684 c += CollationFastLatin::LOWER_CASE;
685 miniCE |= c;
686 }
687 if(second == 0) { return miniCE; }
688
689 uint32_t miniCE1 = getMiniCE(second);
690 if(miniCE1 == CollationFastLatin::BAIL_OUT) { return miniCE1; }
691
692 uint32_t case1 = (uint32_t)second & Collation::CASE_MASK;
693 if(miniCE >= CollationFastLatin::MIN_SHORT &&
694 (miniCE & CollationFastLatin::SECONDARY_MASK) == CollationFastLatin::COMMON_SEC) {
695 // Try to combine the two mini CEs into one.
696 uint32_t sec1 = miniCE1 & CollationFastLatin::SECONDARY_MASK;
697 uint32_t ter1 = miniCE1 & CollationFastLatin::TERTIARY_MASK;
698 if(sec1 >= CollationFastLatin::MIN_SEC_HIGH && case1 == 0 &&
699 ter1 == CollationFastLatin::COMMON_TER) {
700 // sec1>=sec_high implies pri1==0.
701 return (miniCE & ~CollationFastLatin::SECONDARY_MASK) | sec1;
702 }
703 }
704
705 if(miniCE1 <= CollationFastLatin::SECONDARY_MASK || CollationFastLatin::MIN_SHORT <= miniCE1) {
706 // Secondary CE, or a CE with a short primary, copy the case bits.
707 case1 = (case1 >> (14 - 3)) + CollationFastLatin::LOWER_CASE;
708 miniCE1 |= case1;
709 }
710 return (miniCE << 16) | miniCE1;
711 }
712
713 U_NAMESPACE_END
714
715 #endif // !UCONFIG_NO_COLLATION