]> git.saurik.com Git - apple/icu.git/blob - icuSources/common/ucnv_lmb.c
ICU-57131.0.1.tar.gz
[apple/icu.git] / icuSources / common / ucnv_lmb.c
1 /*
2 **********************************************************************
3 * Copyright (C) 2000-2016, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 **********************************************************************
6 * file name: ucnv_lmb.cpp
7 * encoding: US-ASCII
8 * tab size: 4 (not used)
9 * indentation:4
10 *
11 * created on: 2000feb09
12 * created by: Brendan Murray
13 * extensively hacked up by: Jim Snyder-Grant
14 *
15 * Modification History:
16 *
17 * Date Name Description
18 *
19 * 06/20/2000 helena OS/400 port changes; mostly typecast.
20 * 06/27/2000 Jim Snyder-Grant Deal with partial characters and small buffers.
21 * Add comments to document LMBCS format and implementation
22 * restructured order & breakdown of functions
23 * 06/28/2000 helena Major rewrite for the callback API changes.
24 */
25
26 #include "unicode/utypes.h"
27
28 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION && !UCONFIG_ONLY_HTML_CONVERSION
29
30 #include "unicode/ucnv_err.h"
31 #include "unicode/ucnv.h"
32 #include "unicode/uset.h"
33 #include "cmemory.h"
34 #include "cstring.h"
35 #include "uassert.h"
36 #include "ucnv_imp.h"
37 #include "ucnv_bld.h"
38 #include "ucnv_cnv.h"
39
40 #ifdef EBCDIC_RTL
41 #include "ascii_a.h"
42 #endif
43
44 /*
45 LMBCS
46
47 (Lotus Multi-Byte Character Set)
48
49 LMBCS was invented in the late 1980's and is primarily used in Lotus Notes
50 databases and in Lotus 1-2-3 files. Programmers who work with the APIs
51 into these products will sometimes need to deal with strings in this format.
52
53 The code in this file provides an implementation for an ICU converter of
54 LMBCS to and from Unicode.
55
56 Since the LMBCS character set is only sparsely documented in existing
57 printed or online material, we have added extensive annotation to this
58 file to serve as a guide to understanding LMBCS.
59
60 LMBCS was originally designed with these four sometimes-competing design goals:
61
62 -Provide encodings for the characters in 12 existing national standards
63 (plus a few other characters)
64 -Minimal memory footprint
65 -Maximal speed of conversion into the existing national character sets
66 -No need to track a changing state as you interpret a string.
67
68
69 All of the national character sets LMBCS was trying to encode are 'ANSI'
70 based, in that the bytes from 0x20 - 0x7F are almost exactly the
71 same common Latin unaccented characters and symbols in all character sets.
72
73 So, in order to help meet the speed & memory design goals, the common ANSI
74 bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS.
75
76 The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as
77 follows:
78
79 [G] D1 [D2]
80
81 That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2
82 data bytes. The maximum size of a LMBCS chjaracter is 3 bytes:
83 */
84 #define ULMBCS_CHARSIZE_MAX 3
85 /*
86 The single-byte values from 0x20 to 0x7F are examples of single D1 bytes.
87 We often have to figure out if byte values are below or above this, so we
88 use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control
89 characters just above & below the common lower-ANSI range */
90 #define ULMBCS_C0END 0x1F
91 #define ULMBCS_C1START 0x80
92 /*
93 Since LMBCS is always dealing in byte units. we create a local type here for
94 dealing with these units of LMBCS code units:
95
96 */
97 typedef uint8_t ulmbcs_byte_t;
98
99 /*
100 Most of the values less than 0x20 are reserved in LMBCS to announce
101 which national character standard is being used for the 'D' bytes.
102 In the comments we show the common name and the IBM character-set ID
103 for these character-set announcers:
104 */
105
106 #define ULMBCS_GRP_L1 0x01 /* Latin-1 :ibm-850 */
107 #define ULMBCS_GRP_GR 0x02 /* Greek :ibm-851 */
108 #define ULMBCS_GRP_HE 0x03 /* Hebrew :ibm-1255 */
109 #define ULMBCS_GRP_AR 0x04 /* Arabic :ibm-1256 */
110 #define ULMBCS_GRP_RU 0x05 /* Cyrillic :ibm-1251 */
111 #define ULMBCS_GRP_L2 0x06 /* Latin-2 :ibm-852 */
112 #define ULMBCS_GRP_TR 0x08 /* Turkish :ibm-1254 */
113 #define ULMBCS_GRP_TH 0x0B /* Thai :ibm-874 */
114 #define ULMBCS_GRP_JA 0x10 /* Japanese :ibm-943 */
115 #define ULMBCS_GRP_KO 0x11 /* Korean :ibm-1261 */
116 #define ULMBCS_GRP_TW 0x12 /* Chinese SC :ibm-950 */
117 #define ULMBCS_GRP_CN 0x13 /* Chinese TC :ibm-1386 */
118
119 /*
120 So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS
121 character is one of those 12 values, you can interpret the remaining bytes of
122 that character as coming from one of those character sets. Since the lower
123 ANSI bytes already are represented in single bytes, using one of the character
124 set announcers is used to announce a character that starts with a byte of
125 0x80 or greater.
126
127 The character sets are arranged so that the single byte sets all appear
128 before the multi-byte character sets. When we need to tell whether a
129 group byte is for a single byte char set or not we use this define: */
130
131 #define ULMBCS_DOUBLEOPTGROUP_START 0x10
132
133 /*
134 However, to fully understand LMBCS, you must also understand a series of
135 exceptions & optimizations made in service of the design goals.
136
137 First, those of you who are character set mavens may have noticed that
138 the 'double-byte' character sets are actually multi-byte character sets
139 that can have 1 or two bytes, even in the upper-ascii range. To force
140 each group byte to introduce a fixed-width encoding (to make it faster to
141 count characters), we use a convention of doubling up on the group byte
142 to introduce any single-byte character > 0x80 in an otherwise double-byte
143 character set. So, for example, the LMBCS sequence x10 x10 xAE is the
144 same as '0xAE' in the Japanese code page 943.
145
146 Next, you will notice that the list of group bytes has some gaps.
147 These are used in various ways.
148
149 We reserve a few special single byte values for common control
150 characters. These are in the same place as their ANSI eqivalents for speed.
151 */
152
153 #define ULMBCS_HT 0x09 /* Fixed control char - Horizontal Tab */
154 #define ULMBCS_LF 0x0A /* Fixed control char - Line Feed */
155 #define ULMBCS_CR 0x0D /* Fixed control char - Carriage Return */
156
157 /* Then, 1-2-3 reserved a special single-byte character to put at the
158 beginning of internal 'system' range names: */
159
160 #define ULMBCS_123SYSTEMRANGE 0x19
161
162 /* Then we needed a place to put all the other ansi control characters
163 that must be moved to different values because LMBCS reserves those
164 values for other purposes. To represent the control characters, we start
165 with a first byte of 0xF & add the control chaarcter value as the
166 second byte */
167 #define ULMBCS_GRP_CTRL 0x0F
168
169 /* For the C0 controls (less than 0x20), we add 0x20 to preserve the
170 useful doctrine that any byte less than 0x20 in a LMBCS char must be
171 the first byte of a character:*/
172 #define ULMBCS_CTRLOFFSET 0x20
173
174 /*
175 Where to put the characters that aren't part of any of the 12 national
176 character sets? The first thing that was done, in the earlier years of
177 LMBCS, was to use up the spaces of the form
178
179 [G] D1,
180
181 where 'G' was one of the single-byte character groups, and
182 D1 was less than 0x80. These sequences are gathered together
183 into a Lotus-invented doublebyte character set to represent a
184 lot of stray values. Internally, in this implementation, we track this
185 as group '0', as a place to tuck this exceptions list.*/
186
187 #define ULMBCS_GRP_EXCEPT 0x00
188 /*
189 Finally, as the durability and usefulness of UNICODE became clear,
190 LOTUS added a new group 0x14 to hold Unicode values not otherwise
191 represented in LMBCS: */
192 #define ULMBCS_GRP_UNICODE 0x14
193 /* The two bytes appearing after a 0x14 are intrepreted as UFT-16 BE
194 (Big-Endian) characters. The exception comes when the UTF16
195 representation would have a zero as the second byte. In that case,
196 'F6' is used in its place, and the bytes are swapped. (This prevents
197 LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK:
198 0xF6xx is in the middle of the Private Use Area.)*/
199 #define ULMBCS_UNICOMPATZERO 0xF6
200
201 /* It is also useful in our code to have a constant for the size of
202 a LMBCS char that holds a literal Unicode value */
203 #define ULMBCS_UNICODE_SIZE 3
204
205 /*
206 To squish the LMBCS representations down even further, and to make
207 translations even faster,sometimes the optimization group byte can be dropped
208 from a LMBCS character. This is decided on a process-by-process basis. The
209 group byte that is dropped is called the 'optimization group'.
210
211 For Notes, the optimzation group is always 0x1.*/
212 #define ULMBCS_DEFAULTOPTGROUP 0x1
213 /* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3
214 file.
215
216 In any case, when using ICU, you either pass in the
217 optimization group as part of the name of the converter (LMBCS-1, LMBCS-2,
218 etc.). Using plain 'LMBCS' as the name of the converter will give you
219 LMBCS-1.
220
221
222 *** Implementation strategy ***
223
224
225 Because of the extensive use of other character sets, the LMBCS converter
226 keeps a mapping between optimization groups and IBM character sets, so that
227 ICU converters can be created and used as needed. */
228
229 /* As you can see, even though any byte below 0x20 could be an optimization
230 byte, only those at 0x13 or below can map to an actual converter. To limit
231 some loops and searches, we define a value for that last group converter:*/
232
233 #define ULMBCS_GRP_LAST 0x13 /* last LMBCS group that has a converter */
234
235 static const char * const OptGroupByteToCPName[ULMBCS_GRP_LAST + 1] = {
236 /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */
237 /* 0x0001 */ "ibm-850",
238 /* 0x0002 */ "ibm-851",
239 /* 0x0003 */ "windows-1255",
240 /* 0x0004 */ "windows-1256",
241 /* 0x0005 */ "windows-1251",
242 /* 0x0006 */ "ibm-852",
243 /* 0x0007 */ NULL, /* Unused */
244 /* 0x0008 */ "windows-1254",
245 /* 0x0009 */ NULL, /* Control char HT */
246 /* 0x000A */ NULL, /* Control char LF */
247 /* 0x000B */ "windows-874",
248 /* 0x000C */ NULL, /* Unused */
249 /* 0x000D */ NULL, /* Control char CR */
250 /* 0x000E */ NULL, /* Unused */
251 /* 0x000F */ NULL, /* Control chars: 0x0F20 + C0/C1 character: algorithmic */
252 /* 0x0010 */ "windows-932",
253 /* 0x0011 */ "windows-949",
254 /* 0x0012 */ "windows-950",
255 /* 0x0013 */ "windows-936"
256
257 /* The rest are null, including the 0x0014 Unicode compatibility region
258 and 0x0019, the 1-2-3 system range control char */
259 };
260
261
262 /* That's approximately all the data that's needed for translating
263 LMBCS to Unicode.
264
265
266 However, to translate Unicode to LMBCS, we need some more support.
267
268 That's because there are often more than one possible mappings from a Unicode
269 code point back into LMBCS. The first thing we do is look up into a table
270 to figure out if there are more than one possible mappings. This table,
271 arranged by Unicode values (including ranges) either lists which group
272 to use, or says that it could go into one or more of the SBCS sets, or
273 into one or more of the DBCS sets. (If the character exists in both DBCS &
274 SBCS, the table will place it in the SBCS sets, to make the LMBCS code point
275 length as small as possible. Here's the two special markers we use to indicate
276 ambiguous mappings: */
277
278 #define ULMBCS_AMBIGUOUS_SBCS 0x80 /* could fit in more than one
279 LMBCS sbcs native encoding
280 (example: most accented latin) */
281 #define ULMBCS_AMBIGUOUS_MBCS 0x81 /* could fit in more than one
282 LMBCS mbcs native encoding
283 (example: Unihan) */
284 #define ULMBCS_AMBIGUOUS_ALL 0x82
285 /* And here's a simple way to see if a group falls in an appropriate range */
286 #define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \
287 ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \
288 (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \
289 (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \
290 (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START)) || \
291 ((agroup) == ULMBCS_AMBIGUOUS_ALL)
292
293
294 /* The table & some code to use it: */
295
296
297 static const struct _UniLMBCSGrpMap
298 {
299 const UChar uniStartRange;
300 const UChar uniEndRange;
301 const ulmbcs_byte_t GrpType;
302 } UniLMBCSGrpMap[]
303 =
304 {
305
306 {0x0001, 0x001F, ULMBCS_GRP_CTRL},
307 {0x0080, 0x009F, ULMBCS_GRP_CTRL},
308 {0x00A0, 0x00A6, ULMBCS_AMBIGUOUS_SBCS},
309 {0x00A7, 0x00A8, ULMBCS_AMBIGUOUS_ALL},
310 {0x00A9, 0x00AF, ULMBCS_AMBIGUOUS_SBCS},
311 {0x00B0, 0x00B1, ULMBCS_AMBIGUOUS_ALL},
312 {0x00B2, 0x00B3, ULMBCS_AMBIGUOUS_SBCS},
313 {0x00B4, 0x00B4, ULMBCS_AMBIGUOUS_ALL},
314 {0x00B5, 0x00B5, ULMBCS_AMBIGUOUS_SBCS},
315 {0x00B6, 0x00B6, ULMBCS_AMBIGUOUS_ALL},
316 {0x00B7, 0x00D6, ULMBCS_AMBIGUOUS_SBCS},
317 {0x00D7, 0x00D7, ULMBCS_AMBIGUOUS_ALL},
318 {0x00D8, 0x00F6, ULMBCS_AMBIGUOUS_SBCS},
319 {0x00F7, 0x00F7, ULMBCS_AMBIGUOUS_ALL},
320 {0x00F8, 0x01CD, ULMBCS_AMBIGUOUS_SBCS},
321 {0x01CE, 0x01CE, ULMBCS_GRP_TW },
322 {0x01CF, 0x02B9, ULMBCS_AMBIGUOUS_SBCS},
323 {0x02BA, 0x02BA, ULMBCS_GRP_CN},
324 {0x02BC, 0x02C8, ULMBCS_AMBIGUOUS_SBCS},
325 {0x02C9, 0x02D0, ULMBCS_AMBIGUOUS_MBCS},
326 {0x02D8, 0x02DD, ULMBCS_AMBIGUOUS_SBCS},
327 {0x0384, 0x0390, ULMBCS_AMBIGUOUS_SBCS},
328 {0x0391, 0x03A9, ULMBCS_AMBIGUOUS_ALL},
329 {0x03AA, 0x03B0, ULMBCS_AMBIGUOUS_SBCS},
330 {0x03B1, 0x03C9, ULMBCS_AMBIGUOUS_ALL},
331 {0x03CA, 0x03CE, ULMBCS_AMBIGUOUS_SBCS},
332 {0x0400, 0x0400, ULMBCS_GRP_RU},
333 {0x0401, 0x0401, ULMBCS_AMBIGUOUS_ALL},
334 {0x0402, 0x040F, ULMBCS_GRP_RU},
335 {0x0410, 0x0431, ULMBCS_AMBIGUOUS_ALL},
336 {0x0432, 0x044E, ULMBCS_GRP_RU},
337 {0x044F, 0x044F, ULMBCS_AMBIGUOUS_ALL},
338 {0x0450, 0x0491, ULMBCS_GRP_RU},
339 {0x05B0, 0x05F2, ULMBCS_GRP_HE},
340 {0x060C, 0x06AF, ULMBCS_GRP_AR},
341 {0x0E01, 0x0E5B, ULMBCS_GRP_TH},
342 {0x200C, 0x200F, ULMBCS_AMBIGUOUS_SBCS},
343 {0x2010, 0x2010, ULMBCS_AMBIGUOUS_MBCS},
344 {0x2013, 0x2014, ULMBCS_AMBIGUOUS_SBCS},
345 {0x2015, 0x2015, ULMBCS_AMBIGUOUS_MBCS},
346 {0x2016, 0x2016, ULMBCS_AMBIGUOUS_MBCS},
347 {0x2017, 0x2017, ULMBCS_AMBIGUOUS_SBCS},
348 {0x2018, 0x2019, ULMBCS_AMBIGUOUS_ALL},
349 {0x201A, 0x201B, ULMBCS_AMBIGUOUS_SBCS},
350 {0x201C, 0x201D, ULMBCS_AMBIGUOUS_ALL},
351 {0x201E, 0x201F, ULMBCS_AMBIGUOUS_SBCS},
352 {0x2020, 0x2021, ULMBCS_AMBIGUOUS_ALL},
353 {0x2022, 0x2024, ULMBCS_AMBIGUOUS_SBCS},
354 {0x2025, 0x2025, ULMBCS_AMBIGUOUS_MBCS},
355 {0x2026, 0x2026, ULMBCS_AMBIGUOUS_ALL},
356 {0x2027, 0x2027, ULMBCS_GRP_TW},
357 {0x2030, 0x2030, ULMBCS_AMBIGUOUS_ALL},
358 {0x2031, 0x2031, ULMBCS_AMBIGUOUS_SBCS},
359 {0x2032, 0x2033, ULMBCS_AMBIGUOUS_MBCS},
360 {0x2035, 0x2035, ULMBCS_AMBIGUOUS_MBCS},
361 {0x2039, 0x203A, ULMBCS_AMBIGUOUS_SBCS},
362 {0x203B, 0x203B, ULMBCS_AMBIGUOUS_MBCS},
363 {0x203C, 0x203C, ULMBCS_GRP_EXCEPT},
364 {0x2074, 0x2074, ULMBCS_GRP_KO},
365 {0x207F, 0x207F, ULMBCS_GRP_EXCEPT},
366 {0x2081, 0x2084, ULMBCS_GRP_KO},
367 {0x20A4, 0x20AC, ULMBCS_AMBIGUOUS_SBCS},
368 {0x2103, 0x2109, ULMBCS_AMBIGUOUS_MBCS},
369 {0x2111, 0x2120, ULMBCS_AMBIGUOUS_SBCS},
370 /*zhujin: upgrade, for regressiont test, spr HKIA4YHTSU*/
371 {0x2121, 0x2121, ULMBCS_AMBIGUOUS_MBCS},
372 {0x2122, 0x2126, ULMBCS_AMBIGUOUS_SBCS},
373 {0x212B, 0x212B, ULMBCS_AMBIGUOUS_MBCS},
374 {0x2135, 0x2135, ULMBCS_AMBIGUOUS_SBCS},
375 {0x2153, 0x2154, ULMBCS_GRP_KO},
376 {0x215B, 0x215E, ULMBCS_GRP_EXCEPT},
377 {0x2160, 0x2179, ULMBCS_AMBIGUOUS_MBCS},
378 {0x2190, 0x2193, ULMBCS_AMBIGUOUS_ALL},
379 {0x2194, 0x2195, ULMBCS_GRP_EXCEPT},
380 {0x2196, 0x2199, ULMBCS_AMBIGUOUS_MBCS},
381 {0x21A8, 0x21A8, ULMBCS_GRP_EXCEPT},
382 {0x21B8, 0x21B9, ULMBCS_GRP_CN},
383 {0x21D0, 0x21D1, ULMBCS_GRP_EXCEPT},
384 {0x21D2, 0x21D2, ULMBCS_AMBIGUOUS_MBCS},
385 {0x21D3, 0x21D3, ULMBCS_GRP_EXCEPT},
386 {0x21D4, 0x21D4, ULMBCS_AMBIGUOUS_MBCS},
387 {0x21D5, 0x21D5, ULMBCS_GRP_EXCEPT},
388 {0x21E7, 0x21E7, ULMBCS_GRP_CN},
389 {0x2200, 0x2200, ULMBCS_AMBIGUOUS_MBCS},
390 {0x2201, 0x2201, ULMBCS_GRP_EXCEPT},
391 {0x2202, 0x2202, ULMBCS_AMBIGUOUS_MBCS},
392 {0x2203, 0x2203, ULMBCS_AMBIGUOUS_MBCS},
393 {0x2204, 0x2206, ULMBCS_GRP_EXCEPT},
394 {0x2207, 0x2208, ULMBCS_AMBIGUOUS_MBCS},
395 {0x2209, 0x220A, ULMBCS_GRP_EXCEPT},
396 {0x220B, 0x220B, ULMBCS_AMBIGUOUS_MBCS},
397 {0x220F, 0x2215, ULMBCS_AMBIGUOUS_MBCS},
398 {0x2219, 0x2219, ULMBCS_GRP_EXCEPT},
399 {0x221A, 0x221A, ULMBCS_AMBIGUOUS_MBCS},
400 {0x221B, 0x221C, ULMBCS_GRP_EXCEPT},
401 {0x221D, 0x221E, ULMBCS_AMBIGUOUS_MBCS},
402 {0x221F, 0x221F, ULMBCS_GRP_EXCEPT},
403 {0x2220, 0x2220, ULMBCS_AMBIGUOUS_MBCS},
404 {0x2223, 0x222A, ULMBCS_AMBIGUOUS_MBCS},
405 {0x222B, 0x223D, ULMBCS_AMBIGUOUS_MBCS},
406 {0x2245, 0x2248, ULMBCS_GRP_EXCEPT},
407 {0x224C, 0x224C, ULMBCS_GRP_TW},
408 {0x2252, 0x2252, ULMBCS_AMBIGUOUS_MBCS},
409 {0x2260, 0x2261, ULMBCS_AMBIGUOUS_MBCS},
410 {0x2262, 0x2265, ULMBCS_GRP_EXCEPT},
411 {0x2266, 0x226F, ULMBCS_AMBIGUOUS_MBCS},
412 {0x2282, 0x2283, ULMBCS_AMBIGUOUS_MBCS},
413 {0x2284, 0x2285, ULMBCS_GRP_EXCEPT},
414 {0x2286, 0x2287, ULMBCS_AMBIGUOUS_MBCS},
415 {0x2288, 0x2297, ULMBCS_GRP_EXCEPT},
416 {0x2299, 0x22BF, ULMBCS_AMBIGUOUS_MBCS},
417 {0x22C0, 0x22C0, ULMBCS_GRP_EXCEPT},
418 {0x2310, 0x2310, ULMBCS_GRP_EXCEPT},
419 {0x2312, 0x2312, ULMBCS_AMBIGUOUS_MBCS},
420 {0x2318, 0x2321, ULMBCS_GRP_EXCEPT},
421 {0x2318, 0x2321, ULMBCS_GRP_CN},
422 {0x2460, 0x24E9, ULMBCS_AMBIGUOUS_MBCS},
423 {0x2500, 0x2500, ULMBCS_AMBIGUOUS_SBCS},
424 {0x2501, 0x2501, ULMBCS_AMBIGUOUS_MBCS},
425 {0x2502, 0x2502, ULMBCS_AMBIGUOUS_ALL},
426 {0x2503, 0x2503, ULMBCS_AMBIGUOUS_MBCS},
427 {0x2504, 0x2505, ULMBCS_GRP_TW},
428 {0x2506, 0x2665, ULMBCS_AMBIGUOUS_ALL},
429 {0x2666, 0x2666, ULMBCS_GRP_EXCEPT},
430 {0x2667, 0x2669, ULMBCS_AMBIGUOUS_SBCS},
431 {0x266A, 0x266A, ULMBCS_AMBIGUOUS_ALL},
432 {0x266B, 0x266C, ULMBCS_AMBIGUOUS_SBCS},
433 {0x266D, 0x266D, ULMBCS_AMBIGUOUS_MBCS},
434 {0x266E, 0x266E, ULMBCS_AMBIGUOUS_SBCS},
435 {0x266F, 0x266F, ULMBCS_GRP_JA},
436 {0x2670, 0x2E7F, ULMBCS_AMBIGUOUS_SBCS},
437 {0x2E80, 0xF861, ULMBCS_AMBIGUOUS_MBCS},
438 {0xF862, 0xF8FF, ULMBCS_GRP_EXCEPT},
439 {0xF900, 0xFA2D, ULMBCS_AMBIGUOUS_MBCS},
440 {0xFB00, 0xFEFF, ULMBCS_AMBIGUOUS_SBCS},
441 {0xFF01, 0xFFEE, ULMBCS_AMBIGUOUS_MBCS},
442 {0xFFFF, 0xFFFF, ULMBCS_GRP_UNICODE}
443 };
444
445 static ulmbcs_byte_t
446 FindLMBCSUniRange(UChar uniChar)
447 {
448 const struct _UniLMBCSGrpMap * pTable = UniLMBCSGrpMap;
449
450 while (uniChar > pTable->uniEndRange)
451 {
452 pTable++;
453 }
454
455 if (uniChar >= pTable->uniStartRange)
456 {
457 return pTable->GrpType;
458 }
459 return ULMBCS_GRP_UNICODE;
460 }
461
462 /*
463 We also ask the creator of a converter to send in a preferred locale
464 that we can use in resolving ambiguous mappings. They send the locale
465 in as a string, and we map it, if possible, to one of the
466 LMBCS groups. We use this table, and the associated code, to
467 do the lookup: */
468
469 /**************************************************
470 This table maps locale ID's to LMBCS opt groups.
471 The default return is group 0x01. Note that for
472 performance reasons, the table is sorted in
473 increasing alphabetic order, with the notable
474 exception of zhTW. This is to force the check
475 for Traditonal Chinese before dropping back to
476 Simplified.
477
478 Note too that the Latin-1 groups have been
479 commented out because it's the default, and
480 this shortens the table, allowing a serial
481 search to go quickly.
482 *************************************************/
483
484 static const struct _LocaleLMBCSGrpMap
485 {
486 const char *LocaleID;
487 const ulmbcs_byte_t OptGroup;
488 } LocaleLMBCSGrpMap[] =
489 {
490 {"ar", ULMBCS_GRP_AR},
491 {"be", ULMBCS_GRP_RU},
492 {"bg", ULMBCS_GRP_L2},
493 /* {"ca", ULMBCS_GRP_L1}, */
494 {"cs", ULMBCS_GRP_L2},
495 /* {"da", ULMBCS_GRP_L1}, */
496 /* {"de", ULMBCS_GRP_L1}, */
497 {"el", ULMBCS_GRP_GR},
498 /* {"en", ULMBCS_GRP_L1}, */
499 /* {"es", ULMBCS_GRP_L1}, */
500 /* {"et", ULMBCS_GRP_L1}, */
501 /* {"fi", ULMBCS_GRP_L1}, */
502 /* {"fr", ULMBCS_GRP_L1}, */
503 {"he", ULMBCS_GRP_HE},
504 {"hu", ULMBCS_GRP_L2},
505 /* {"is", ULMBCS_GRP_L1}, */
506 /* {"it", ULMBCS_GRP_L1}, */
507 {"iw", ULMBCS_GRP_HE},
508 {"ja", ULMBCS_GRP_JA},
509 {"ko", ULMBCS_GRP_KO},
510 /* {"lt", ULMBCS_GRP_L1}, */
511 /* {"lv", ULMBCS_GRP_L1}, */
512 {"mk", ULMBCS_GRP_RU},
513 /* {"nl", ULMBCS_GRP_L1}, */
514 /* {"no", ULMBCS_GRP_L1}, */
515 {"pl", ULMBCS_GRP_L2},
516 /* {"pt", ULMBCS_GRP_L1}, */
517 {"ro", ULMBCS_GRP_L2},
518 {"ru", ULMBCS_GRP_RU},
519 {"sh", ULMBCS_GRP_L2},
520 {"sk", ULMBCS_GRP_L2},
521 {"sl", ULMBCS_GRP_L2},
522 {"sq", ULMBCS_GRP_L2},
523 {"sr", ULMBCS_GRP_RU},
524 /* {"sv", ULMBCS_GRP_L1}, */
525 {"th", ULMBCS_GRP_TH},
526 {"tr", ULMBCS_GRP_TR},
527 {"uk", ULMBCS_GRP_RU},
528 /* {"vi", ULMBCS_GRP_L1}, */
529 {"zhTW", ULMBCS_GRP_TW},
530 {"zh", ULMBCS_GRP_CN},
531 {NULL, ULMBCS_GRP_L1}
532 };
533
534
535 static ulmbcs_byte_t
536 FindLMBCSLocale(const char *LocaleID)
537 {
538 const struct _LocaleLMBCSGrpMap *pTable = LocaleLMBCSGrpMap;
539
540 if ((!LocaleID) || (!*LocaleID))
541 {
542 return 0;
543 }
544
545 while (pTable->LocaleID)
546 {
547 if (*pTable->LocaleID == *LocaleID) /* Check only first char for speed */
548 {
549 /* First char matches - check whole name, for entry-length */
550 if (uprv_strncmp(pTable->LocaleID, LocaleID, strlen(pTable->LocaleID)) == 0)
551 return pTable->OptGroup;
552 }
553 else
554 if (*pTable->LocaleID > *LocaleID) /* Sorted alphabetically - exit */
555 break;
556 pTable++;
557 }
558 return ULMBCS_GRP_L1;
559 }
560
561
562 /*
563 Before we get to the main body of code, here's how we hook up to the rest
564 of ICU. ICU converters are required to define a structure that includes
565 some function pointers, and some common data, in the style of a C++
566 vtable. There is also room in there for converter-specific data. LMBCS
567 uses that converter-specific data to keep track of the 12 subconverters
568 we use, the optimization group, and the group (if any) that matches the
569 locale. We have one structure instantiated for each of the 12 possible
570 optimization groups. To avoid typos & to avoid boring the reader, we
571 put the declarations of these structures and functions into macros. To see
572 the definitions of these structures, see unicode\ucnv_bld.h
573 */
574
575 typedef struct
576 {
577 UConverterSharedData *OptGrpConverter[ULMBCS_GRP_LAST+1]; /* Converter per Opt. grp. */
578 uint8_t OptGroup; /* default Opt. grp. for this LMBCS session */
579 uint8_t localeConverterIndex; /* reasonable locale match for index */
580 }
581 UConverterDataLMBCS;
582
583 static void _LMBCSClose(UConverter * _this);
584
585 #define DECLARE_LMBCS_DATA(n) \
586 static const UConverterImpl _LMBCSImpl##n={\
587 UCNV_LMBCS_##n,\
588 NULL,NULL,\
589 _LMBCSOpen##n,\
590 _LMBCSClose,\
591 NULL,\
592 _LMBCSToUnicodeWithOffsets,\
593 _LMBCSToUnicodeWithOffsets,\
594 _LMBCSFromUnicode,\
595 _LMBCSFromUnicode,\
596 NULL,\
597 NULL,\
598 NULL,\
599 NULL,\
600 _LMBCSSafeClone,\
601 ucnv_getCompleteUnicodeSet\
602 };\
603 static const UConverterStaticData _LMBCSStaticData##n={\
604 sizeof(UConverterStaticData),\
605 "LMBCS-" #n,\
606 0, UCNV_IBM, UCNV_LMBCS_##n, 1, 3,\
607 { 0x3f, 0, 0, 0 },1,FALSE,FALSE,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \
608 };\
609 const UConverterSharedData _LMBCSData##n= \
610 UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_LMBCSStaticData##n, &_LMBCSImpl##n);
611
612 /* The only function we needed to duplicate 12 times was the 'open'
613 function, which will do basically the same thing except set a different
614 optimization group. So, we put the common stuff into a worker function,
615 and set up another macro to stamp out the 12 open functions:*/
616 #define DEFINE_LMBCS_OPEN(n) \
617 static void \
618 _LMBCSOpen##n(UConverter* _this, UConverterLoadArgs* pArgs, UErrorCode* err) \
619 { _LMBCSOpenWorker(_this, pArgs, err, n); }
620
621
622
623 /* Here's the open worker & the common close function */
624 static void
625 _LMBCSOpenWorker(UConverter* _this,
626 UConverterLoadArgs *pArgs,
627 UErrorCode* err,
628 ulmbcs_byte_t OptGroup)
629 {
630 UConverterDataLMBCS * extraInfo = _this->extraInfo =
631 (UConverterDataLMBCS*)uprv_malloc (sizeof (UConverterDataLMBCS));
632 if(extraInfo != NULL)
633 {
634 UConverterNamePieces stackPieces;
635 UConverterLoadArgs stackArgs={ (int32_t)sizeof(UConverterLoadArgs) };
636 ulmbcs_byte_t i;
637
638 uprv_memset(extraInfo, 0, sizeof(UConverterDataLMBCS));
639
640 stackArgs.onlyTestIsLoadable = pArgs->onlyTestIsLoadable;
641
642 for (i=0; i <= ULMBCS_GRP_LAST && U_SUCCESS(*err); i++)
643 {
644 if(OptGroupByteToCPName[i] != NULL) {
645 extraInfo->OptGrpConverter[i] = ucnv_loadSharedData(OptGroupByteToCPName[i], &stackPieces, &stackArgs, err);
646 }
647 }
648
649 if(U_FAILURE(*err) || pArgs->onlyTestIsLoadable) {
650 _LMBCSClose(_this);
651 return;
652 }
653 extraInfo->OptGroup = OptGroup;
654 extraInfo->localeConverterIndex = FindLMBCSLocale(pArgs->locale);
655 }
656 else
657 {
658 *err = U_MEMORY_ALLOCATION_ERROR;
659 }
660 }
661
662 static void
663 _LMBCSClose(UConverter * _this)
664 {
665 if (_this->extraInfo != NULL)
666 {
667 ulmbcs_byte_t Ix;
668 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) _this->extraInfo;
669
670 for (Ix=0; Ix <= ULMBCS_GRP_LAST; Ix++)
671 {
672 if (extraInfo->OptGrpConverter[Ix] != NULL)
673 ucnv_unloadSharedDataIfReady(extraInfo->OptGrpConverter[Ix]);
674 }
675 if (!_this->isExtraLocal) {
676 uprv_free (_this->extraInfo);
677 _this->extraInfo = NULL;
678 }
679 }
680 }
681
682 typedef struct LMBCSClone {
683 UConverter cnv;
684 UConverterDataLMBCS lmbcs;
685 } LMBCSClone;
686
687 static UConverter *
688 _LMBCSSafeClone(const UConverter *cnv,
689 void *stackBuffer,
690 int32_t *pBufferSize,
691 UErrorCode *status) {
692 LMBCSClone *newLMBCS;
693 UConverterDataLMBCS *extraInfo;
694 int32_t i;
695
696 if(*pBufferSize<=0) {
697 *pBufferSize=(int32_t)sizeof(LMBCSClone);
698 return NULL;
699 }
700
701 extraInfo=(UConverterDataLMBCS *)cnv->extraInfo;
702 newLMBCS=(LMBCSClone *)stackBuffer;
703
704 /* ucnv.c/ucnv_safeClone() copied the main UConverter already */
705
706 uprv_memcpy(&newLMBCS->lmbcs, extraInfo, sizeof(UConverterDataLMBCS));
707
708 /* share the subconverters */
709 for(i = 0; i <= ULMBCS_GRP_LAST; ++i) {
710 if(extraInfo->OptGrpConverter[i] != NULL) {
711 ucnv_incrementRefCount(extraInfo->OptGrpConverter[i]);
712 }
713 }
714
715 newLMBCS->cnv.extraInfo = &newLMBCS->lmbcs;
716 newLMBCS->cnv.isExtraLocal = TRUE;
717 return &newLMBCS->cnv;
718 }
719
720 /*
721 * There used to be a _LMBCSGetUnicodeSet() function here (up to svn revision 20117)
722 * which added all code points except for U+F6xx
723 * because those cannot be represented in the Unicode group.
724 * However, it turns out that windows-950 has roundtrips for all of U+F6xx
725 * which means that LMBCS can convert all Unicode code points after all.
726 * We now simply use ucnv_getCompleteUnicodeSet().
727 *
728 * This may need to be looked at again as Lotus uses _LMBCSGetUnicodeSet(). (091216)
729 */
730
731 /*
732 Here's the basic helper function that we use when converting from
733 Unicode to LMBCS, and we suspect that a Unicode character will fit into
734 one of the 12 groups. The return value is the number of bytes written
735 starting at pStartLMBCS (if any).
736 */
737
738 static size_t
739 LMBCSConversionWorker (
740 UConverterDataLMBCS * extraInfo, /* subconverters, opt & locale groups */
741 ulmbcs_byte_t group, /* The group to try */
742 ulmbcs_byte_t * pStartLMBCS, /* where to put the results */
743 UChar * pUniChar, /* The input unicode character */
744 ulmbcs_byte_t * lastConverterIndex, /* output: track last successful group used */
745 UBool * groups_tried /* output: track any unsuccessful groups */
746 )
747 {
748 ulmbcs_byte_t * pLMBCS = pStartLMBCS;
749 UConverterSharedData * xcnv = extraInfo->OptGrpConverter[group];
750
751 int bytesConverted;
752 uint32_t value;
753 ulmbcs_byte_t firstByte;
754
755 U_ASSERT(xcnv);
756 U_ASSERT(group<ULMBCS_GRP_UNICODE);
757
758 bytesConverted = ucnv_MBCSFromUChar32(xcnv, *pUniChar, &value, FALSE);
759
760 /* get the first result byte */
761 if(bytesConverted > 0) {
762 firstByte = (ulmbcs_byte_t)(value >> ((bytesConverted - 1) * 8));
763 } else {
764 /* most common failure mode is an unassigned character */
765 groups_tried[group] = TRUE;
766 return 0;
767 }
768
769 *lastConverterIndex = group;
770
771 /* All initial byte values in lower ascii range should have been caught by now,
772 except with the exception group.
773 */
774 U_ASSERT((firstByte <= ULMBCS_C0END) || (firstByte >= ULMBCS_C1START) || (group == ULMBCS_GRP_EXCEPT));
775
776 /* use converted data: first write 0, 1 or two group bytes */
777 if (group != ULMBCS_GRP_EXCEPT && extraInfo->OptGroup != group)
778 {
779 *pLMBCS++ = group;
780 if (bytesConverted == 1 && group >= ULMBCS_DOUBLEOPTGROUP_START)
781 {
782 *pLMBCS++ = group;
783 }
784 }
785
786 /* don't emit control chars */
787 if ( bytesConverted == 1 && firstByte < 0x20 )
788 return 0;
789
790
791 /* then move over the converted data */
792 switch(bytesConverted)
793 {
794 case 4:
795 *pLMBCS++ = (ulmbcs_byte_t)(value >> 24);
796 U_FALLTHROUGH;
797 case 3:
798 *pLMBCS++ = (ulmbcs_byte_t)(value >> 16);
799 U_FALLTHROUGH;
800 case 2:
801 *pLMBCS++ = (ulmbcs_byte_t)(value >> 8);
802 U_FALLTHROUGH;
803 case 1:
804 *pLMBCS++ = (ulmbcs_byte_t)value;
805 U_FALLTHROUGH;
806 default:
807 /* will never occur */
808 break;
809 }
810
811 return (pLMBCS - pStartLMBCS);
812 }
813
814
815 /* This is a much simpler version of above, when we
816 know we are writing LMBCS using the Unicode group
817 */
818 static size_t
819 LMBCSConvertUni(ulmbcs_byte_t * pLMBCS, UChar uniChar)
820 {
821 /* encode into LMBCS Unicode range */
822 uint8_t LowCh = (uint8_t)(uniChar & 0x00FF);
823 uint8_t HighCh = (uint8_t)(uniChar >> 8);
824
825 *pLMBCS++ = ULMBCS_GRP_UNICODE;
826
827 if (LowCh == 0)
828 {
829 *pLMBCS++ = ULMBCS_UNICOMPATZERO;
830 *pLMBCS++ = HighCh;
831 }
832 else
833 {
834 *pLMBCS++ = HighCh;
835 *pLMBCS++ = LowCh;
836 }
837 return ULMBCS_UNICODE_SIZE;
838 }
839
840
841
842 /* The main Unicode to LMBCS conversion function */
843 static void
844 _LMBCSFromUnicode(UConverterFromUnicodeArgs* args,
845 UErrorCode* err)
846 {
847 ulmbcs_byte_t lastConverterIndex = 0;
848 UChar uniChar;
849 ulmbcs_byte_t LMBCS[ULMBCS_CHARSIZE_MAX];
850 ulmbcs_byte_t * pLMBCS;
851 int32_t bytes_written;
852 UBool groups_tried[ULMBCS_GRP_LAST+1];
853 UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
854 int sourceIndex = 0;
855
856 /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS)
857 If that succeeds, see if it will all fit into the target & copy it over
858 if it does.
859
860 We try conversions in the following order:
861
862 1. Single-byte ascii & special fixed control chars (&null)
863 2. Look up group in table & try that (could be
864 A) Unicode group
865 B) control group,
866 C) national encoding,
867 or ambiguous SBCS or MBCS group (on to step 4...)
868
869 3. If its ambiguous, try this order:
870 A) The optimization group
871 B) The locale group
872 C) The last group that succeeded with this string.
873 D) every other group that's relevent (single or double)
874 E) If its single-byte ambiguous, try the exceptions group
875
876 4. And as a grand fallback: Unicode
877 */
878
879 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
880 ulmbcs_byte_t OldConverterIndex = 0;
881
882 while (args->source < args->sourceLimit && !U_FAILURE(*err))
883 {
884 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
885 OldConverterIndex = extraInfo->localeConverterIndex;
886
887 if (args->target >= args->targetLimit)
888 {
889 *err = U_BUFFER_OVERFLOW_ERROR;
890 break;
891 }
892 uniChar = *(args->source);
893 bytes_written = 0;
894 pLMBCS = LMBCS;
895
896 /* check cases in rough order of how common they are, for speed */
897
898 /* single byte matches: strategy 1 */
899 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
900 if((uniChar>=0x80) && (uniChar<=0xff)
901 /*Fix for SPR#JUYA6XAERU and TSAO7GL5NK (Lotus)*/ &&(uniChar!=0xB1) &&(uniChar!=0xD7) &&(uniChar!=0xF7)
902 &&(uniChar!=0xB0) &&(uniChar!=0xB4) &&(uniChar!=0xB6) &&(uniChar!=0xA7) &&(uniChar!=0xA8))
903 {
904 extraInfo->localeConverterIndex = ULMBCS_GRP_L1;
905 }
906 if (((uniChar > ULMBCS_C0END) && (uniChar < ULMBCS_C1START)) ||
907 uniChar == 0 || uniChar == ULMBCS_HT || uniChar == ULMBCS_CR ||
908 uniChar == ULMBCS_LF || uniChar == ULMBCS_123SYSTEMRANGE
909 )
910 {
911 *pLMBCS++ = (ulmbcs_byte_t ) uniChar;
912 bytes_written = 1;
913 }
914
915
916 if (!bytes_written)
917 {
918 /* Check by UNICODE range (Strategy 2) */
919 ulmbcs_byte_t group = FindLMBCSUniRange(uniChar);
920
921 if (group == ULMBCS_GRP_UNICODE) /* (Strategy 2A) */
922 {
923 pLMBCS += LMBCSConvertUni(pLMBCS,uniChar);
924
925 bytes_written = (int32_t)(pLMBCS - LMBCS);
926 }
927 else if (group == ULMBCS_GRP_CTRL) /* (Strategy 2B) */
928 {
929 /* Handle control characters here */
930 if (uniChar <= ULMBCS_C0END)
931 {
932 *pLMBCS++ = ULMBCS_GRP_CTRL;
933 *pLMBCS++ = (ulmbcs_byte_t)(ULMBCS_CTRLOFFSET + uniChar);
934 }
935 else if (uniChar >= ULMBCS_C1START && uniChar <= ULMBCS_C1START + ULMBCS_CTRLOFFSET)
936 {
937 *pLMBCS++ = ULMBCS_GRP_CTRL;
938 *pLMBCS++ = (ulmbcs_byte_t ) (uniChar & 0x00FF);
939 }
940 bytes_written = (int32_t)(pLMBCS - LMBCS);
941 }
942 else if (group < ULMBCS_GRP_UNICODE) /* (Strategy 2C) */
943 {
944 /* a specific converter has been identified - use it */
945 bytes_written = (int32_t)LMBCSConversionWorker (
946 extraInfo, group, pLMBCS, &uniChar,
947 &lastConverterIndex, groups_tried);
948 }
949 if (!bytes_written) /* the ambiguous group cases (Strategy 3) */
950 {
951 uprv_memset(groups_tried, 0, sizeof(groups_tried));
952
953 /* check for non-default optimization group (Strategy 3A )*/
954 if ((extraInfo->OptGroup != 1) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->OptGroup)))
955 {
956 /*zhujin: upgrade, merge #39299 here (Lotus) */
957 /*To make R5 compatible translation, look for exceptional group first for non-DBCS*/
958
959 if(extraInfo->localeConverterIndex < ULMBCS_DOUBLEOPTGROUP_START)
960 {
961 bytes_written = LMBCSConversionWorker (extraInfo,
962 ULMBCS_GRP_L1, pLMBCS, &uniChar,
963 &lastConverterIndex, groups_tried);
964
965 if(!bytes_written)
966 {
967 bytes_written = LMBCSConversionWorker (extraInfo,
968 ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
969 &lastConverterIndex, groups_tried);
970 }
971 if(!bytes_written)
972 {
973 bytes_written = LMBCSConversionWorker (extraInfo,
974 extraInfo->localeConverterIndex, pLMBCS, &uniChar,
975 &lastConverterIndex, groups_tried);
976 }
977 }
978 else
979 {
980 bytes_written = LMBCSConversionWorker (extraInfo,
981 extraInfo->localeConverterIndex, pLMBCS, &uniChar,
982 &lastConverterIndex, groups_tried);
983 }
984 }
985 /* check for locale optimization group (Strategy 3B) */
986 if (!bytes_written && (extraInfo->localeConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->localeConverterIndex)))
987 {
988 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
989 extraInfo->localeConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
990 }
991 /* check for last optimization group used for this string (Strategy 3C) */
992 if (!bytes_written && (lastConverterIndex) && (ULMBCS_AMBIGUOUS_MATCH(group, lastConverterIndex)))
993 {
994 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
995 lastConverterIndex, pLMBCS, &uniChar, &lastConverterIndex, groups_tried);
996 }
997 if (!bytes_written)
998 {
999 /* just check every possible matching converter (Strategy 3D) */
1000 ulmbcs_byte_t grp_start;
1001 ulmbcs_byte_t grp_end;
1002 ulmbcs_byte_t grp_ix;
1003 grp_start = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
1004 ? ULMBCS_DOUBLEOPTGROUP_START
1005 : ULMBCS_GRP_L1);
1006 grp_end = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS)
1007 ? ULMBCS_GRP_LAST
1008 : ULMBCS_GRP_TH);
1009 if(group == ULMBCS_AMBIGUOUS_ALL)
1010 {
1011 grp_start = ULMBCS_GRP_L1;
1012 grp_end = ULMBCS_GRP_LAST;
1013 }
1014 for (grp_ix = grp_start;
1015 grp_ix <= grp_end && !bytes_written;
1016 grp_ix++)
1017 {
1018 if (extraInfo->OptGrpConverter [grp_ix] && !groups_tried [grp_ix])
1019 {
1020 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1021 grp_ix, pLMBCS, &uniChar,
1022 &lastConverterIndex, groups_tried);
1023 }
1024 }
1025 /* a final conversion fallback to the exceptions group if its likely
1026 to be single byte (Strategy 3E) */
1027 if (!bytes_written && grp_start == ULMBCS_GRP_L1)
1028 {
1029 bytes_written = (int32_t)LMBCSConversionWorker (extraInfo,
1030 ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar,
1031 &lastConverterIndex, groups_tried);
1032 }
1033 }
1034 /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/
1035 if (!bytes_written)
1036 {
1037
1038 pLMBCS += LMBCSConvertUni(pLMBCS, uniChar);
1039 bytes_written = (int32_t)(pLMBCS - LMBCS);
1040 }
1041 }
1042 }
1043
1044 /* we have a translation. increment source and write as much as posible to target */
1045 args->source++;
1046 pLMBCS = LMBCS;
1047 while (args->target < args->targetLimit && bytes_written--)
1048 {
1049 *(args->target)++ = *pLMBCS++;
1050 if (args->offsets)
1051 {
1052 *(args->offsets)++ = sourceIndex;
1053 }
1054 }
1055 sourceIndex++;
1056 if (bytes_written > 0)
1057 {
1058 /* write any bytes that didn't fit in target to the error buffer,
1059 common code will move this to target if we get called back with
1060 enough target room
1061 */
1062 uint8_t * pErrorBuffer = args->converter->charErrorBuffer;
1063 *err = U_BUFFER_OVERFLOW_ERROR;
1064 args->converter->charErrorBufferLength = (int8_t)bytes_written;
1065 while (bytes_written--)
1066 {
1067 *pErrorBuffer++ = *pLMBCS++;
1068 }
1069 }
1070 /*Fix for SPR#DJOE66JFN3 (Lotus)*/
1071 extraInfo->localeConverterIndex = OldConverterIndex;
1072 }
1073 }
1074
1075
1076 /* Now, the Unicode from LMBCS section */
1077
1078
1079 /* A function to call when we are looking at the Unicode group byte in LMBCS */
1080 static UChar
1081 GetUniFromLMBCSUni(char const ** ppLMBCSin) /* Called with LMBCS-style Unicode byte stream */
1082 {
1083 uint8_t HighCh = *(*ppLMBCSin)++; /* Big-endian Unicode in LMBCS compatibility group*/
1084 uint8_t LowCh = *(*ppLMBCSin)++;
1085
1086 if (HighCh == ULMBCS_UNICOMPATZERO )
1087 {
1088 HighCh = LowCh;
1089 LowCh = 0; /* zero-byte in LSB special character */
1090 }
1091 return (UChar)((HighCh << 8) | LowCh);
1092 }
1093
1094
1095
1096 /* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index'
1097 bytes left in source up to sourceLimit.Errors appropriately if not.
1098 If we reach the limit, then update the source pointer to there to consume
1099 all input as required by ICU converter semantics.
1100 */
1101
1102 #define CHECK_SOURCE_LIMIT(index) \
1103 if (args->source+index > args->sourceLimit){\
1104 *err = U_TRUNCATED_CHAR_FOUND;\
1105 args->source = args->sourceLimit;\
1106 return 0xffff;}
1107
1108 /* Return the Unicode representation for the current LMBCS character */
1109
1110 static UChar32
1111 _LMBCSGetNextUCharWorker(UConverterToUnicodeArgs* args,
1112 UErrorCode* err)
1113 {
1114 UChar32 uniChar = 0; /* an output UNICODE char */
1115 ulmbcs_byte_t CurByte; /* A byte from the input stream */
1116
1117 /* error check */
1118 if (args->source >= args->sourceLimit)
1119 {
1120 *err = U_ILLEGAL_ARGUMENT_ERROR;
1121 return 0xffff;
1122 }
1123 /* Grab first byte & save address for error recovery */
1124 CurByte = *((ulmbcs_byte_t *) (args->source++));
1125
1126 /*
1127 * at entry of each if clause:
1128 * 1. 'CurByte' points at the first byte of a LMBCS character
1129 * 2. '*source'points to the next byte of the source stream after 'CurByte'
1130 *
1131 * the job of each if clause is:
1132 * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte)
1133 * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately
1134 */
1135
1136 /* First lets check the simple fixed values. */
1137
1138 if(((CurByte > ULMBCS_C0END) && (CurByte < ULMBCS_C1START)) /* ascii range */
1139 || (CurByte == 0)
1140 || CurByte == ULMBCS_HT || CurByte == ULMBCS_CR
1141 || CurByte == ULMBCS_LF || CurByte == ULMBCS_123SYSTEMRANGE)
1142 {
1143 uniChar = CurByte;
1144 }
1145 else
1146 {
1147 UConverterDataLMBCS * extraInfo;
1148 ulmbcs_byte_t group;
1149 UConverterSharedData *cnv;
1150
1151 if (CurByte == ULMBCS_GRP_CTRL) /* Control character group - no opt group update */
1152 {
1153 ulmbcs_byte_t C0C1byte;
1154 CHECK_SOURCE_LIMIT(1);
1155 C0C1byte = *(args->source)++;
1156 uniChar = (C0C1byte < ULMBCS_C1START) ? C0C1byte - ULMBCS_CTRLOFFSET : C0C1byte;
1157 }
1158 else
1159 if (CurByte == ULMBCS_GRP_UNICODE) /* Unicode compatibility group: BigEndian UTF16 */
1160 {
1161 CHECK_SOURCE_LIMIT(2);
1162
1163 /* don't check for error indicators fffe/ffff below */
1164 return GetUniFromLMBCSUni(&(args->source));
1165 }
1166 else if (CurByte <= ULMBCS_CTRLOFFSET)
1167 {
1168 group = CurByte; /* group byte is in the source */
1169 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1170 if (group > ULMBCS_GRP_LAST || (cnv = extraInfo->OptGrpConverter[group]) == NULL)
1171 {
1172 /* this is not a valid group byte - no converter*/
1173 *err = U_INVALID_CHAR_FOUND;
1174 }
1175 else if (group >= ULMBCS_DOUBLEOPTGROUP_START) /* double byte conversion */
1176 {
1177
1178 CHECK_SOURCE_LIMIT(2);
1179
1180 /* check for LMBCS doubled-group-byte case */
1181 if (*args->source == group) {
1182 /* single byte */
1183 ++args->source;
1184 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 1, FALSE);
1185 ++args->source;
1186 } else {
1187 /* double byte */
1188 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source, 2, FALSE);
1189 args->source += 2;
1190 }
1191 }
1192 else { /* single byte conversion */
1193 CHECK_SOURCE_LIMIT(1);
1194 CurByte = *(args->source)++;
1195
1196 if (CurByte >= ULMBCS_C1START)
1197 {
1198 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1199 }
1200 else
1201 {
1202 /* The non-optimizable oddballs where there is an explicit byte
1203 * AND the second byte is not in the upper ascii range
1204 */
1205 char bytes[2];
1206
1207 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1208 cnv = extraInfo->OptGrpConverter [ULMBCS_GRP_EXCEPT];
1209
1210 /* Lookup value must include opt group */
1211 bytes[0] = group;
1212 bytes[1] = CurByte;
1213 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, bytes, 2, FALSE);
1214 }
1215 }
1216 }
1217 else if (CurByte >= ULMBCS_C1START) /* group byte is implicit */
1218 {
1219 extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo;
1220 group = extraInfo->OptGroup;
1221 cnv = extraInfo->OptGrpConverter[group];
1222 if (group >= ULMBCS_DOUBLEOPTGROUP_START) /* double byte conversion */
1223 {
1224 if (!ucnv_MBCSIsLeadByte(cnv, CurByte))
1225 {
1226 CHECK_SOURCE_LIMIT(0);
1227
1228 /* let the MBCS conversion consume CurByte again */
1229 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 1, FALSE);
1230 }
1231 else
1232 {
1233 CHECK_SOURCE_LIMIT(1);
1234 /* let the MBCS conversion consume CurByte again */
1235 uniChar = ucnv_MBCSSimpleGetNextUChar(cnv, args->source - 1, 2, FALSE);
1236 ++args->source;
1237 }
1238 }
1239 else /* single byte conversion */
1240 {
1241 uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv, CurByte);
1242 }
1243 }
1244 }
1245 return uniChar;
1246 }
1247
1248
1249 /* The exported function that converts lmbcs to one or more
1250 UChars - currently UTF-16
1251 */
1252 static void
1253 _LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs* args,
1254 UErrorCode* err)
1255 {
1256 char LMBCS [ULMBCS_CHARSIZE_MAX];
1257 UChar uniChar; /* one output UNICODE char */
1258 const char * saveSource; /* beginning of current code point */
1259 const char * pStartLMBCS = args->source; /* beginning of whole string */
1260 const char * errSource = NULL; /* pointer to actual input in case an error occurs */
1261 int8_t savebytes = 0;
1262
1263 /* Process from source to limit, or until error */
1264 while (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit > args->target)
1265 {
1266 saveSource = args->source; /* beginning of current code point */
1267
1268 if (args->converter->toULength) /* reassemble char from previous call */
1269 {
1270 const char *saveSourceLimit;
1271 size_t size_old = args->converter->toULength;
1272
1273 /* limit from source is either remainder of temp buffer, or user limit on source */
1274 size_t size_new_maybe_1 = sizeof(LMBCS) - size_old;
1275 size_t size_new_maybe_2 = args->sourceLimit - args->source;
1276 size_t size_new = (size_new_maybe_1 < size_new_maybe_2) ? size_new_maybe_1 : size_new_maybe_2;
1277
1278
1279 uprv_memcpy(LMBCS, args->converter->toUBytes, size_old);
1280 uprv_memcpy(LMBCS + size_old, args->source, size_new);
1281 saveSourceLimit = args->sourceLimit;
1282 args->source = errSource = LMBCS;
1283 args->sourceLimit = LMBCS+size_old+size_new;
1284 savebytes = (int8_t)(size_old+size_new);
1285 uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1286 args->source = saveSource + ((args->source - LMBCS) - size_old);
1287 args->sourceLimit = saveSourceLimit;
1288
1289 if (*err == U_TRUNCATED_CHAR_FOUND)
1290 {
1291 /* evil special case: source buffers so small a char spans more than 2 buffers */
1292 args->converter->toULength = savebytes;
1293 uprv_memcpy(args->converter->toUBytes, LMBCS, savebytes);
1294 args->source = args->sourceLimit;
1295 *err = U_ZERO_ERROR;
1296 return;
1297 }
1298 else
1299 {
1300 /* clear the partial-char marker */
1301 args->converter->toULength = 0;
1302 }
1303 }
1304 else
1305 {
1306 errSource = saveSource;
1307 uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err);
1308 savebytes = (int8_t)(args->source - saveSource);
1309 }
1310 if (U_SUCCESS(*err))
1311 {
1312 if (uniChar < 0xfffe)
1313 {
1314 *(args->target)++ = uniChar;
1315 if(args->offsets)
1316 {
1317 *(args->offsets)++ = (int32_t)(saveSource - pStartLMBCS);
1318 }
1319 }
1320 else if (uniChar == 0xfffe)
1321 {
1322 *err = U_INVALID_CHAR_FOUND;
1323 }
1324 else /* if (uniChar == 0xffff) */
1325 {
1326 *err = U_ILLEGAL_CHAR_FOUND;
1327 }
1328 }
1329 }
1330 /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */
1331 if (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit <= args->target)
1332 {
1333 *err = U_BUFFER_OVERFLOW_ERROR;
1334 }
1335 else if (U_FAILURE(*err))
1336 {
1337 /* If character incomplete or unmappable/illegal, store it in toUBytes[] */
1338 args->converter->toULength = savebytes;
1339 if (savebytes > 0) {
1340 uprv_memcpy(args->converter->toUBytes, errSource, savebytes);
1341 }
1342 if (*err == U_TRUNCATED_CHAR_FOUND) {
1343 *err = U_ZERO_ERROR;
1344 }
1345 }
1346 }
1347
1348 /* And now, the macroized declarations of data & functions: */
1349 DEFINE_LMBCS_OPEN(1)
1350 DEFINE_LMBCS_OPEN(2)
1351 DEFINE_LMBCS_OPEN(3)
1352 DEFINE_LMBCS_OPEN(4)
1353 DEFINE_LMBCS_OPEN(5)
1354 DEFINE_LMBCS_OPEN(6)
1355 DEFINE_LMBCS_OPEN(8)
1356 DEFINE_LMBCS_OPEN(11)
1357 DEFINE_LMBCS_OPEN(16)
1358 DEFINE_LMBCS_OPEN(17)
1359 DEFINE_LMBCS_OPEN(18)
1360 DEFINE_LMBCS_OPEN(19)
1361
1362
1363 DECLARE_LMBCS_DATA(1)
1364 DECLARE_LMBCS_DATA(2)
1365 DECLARE_LMBCS_DATA(3)
1366 DECLARE_LMBCS_DATA(4)
1367 DECLARE_LMBCS_DATA(5)
1368 DECLARE_LMBCS_DATA(6)
1369 DECLARE_LMBCS_DATA(8)
1370 DECLARE_LMBCS_DATA(11)
1371 DECLARE_LMBCS_DATA(16)
1372 DECLARE_LMBCS_DATA(17)
1373 DECLARE_LMBCS_DATA(18)
1374 DECLARE_LMBCS_DATA(19)
1375
1376 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */