]>
git.saurik.com Git - apple/icu.git/blob - icuSources/i18n/decNumberLocal.h
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /* ------------------------------------------------------------------ */
4 /* decNumber package local type, tuning, and macro definitions */
5 /* ------------------------------------------------------------------ */
6 /* Copyright (c) IBM Corporation, 2000-2016. All rights reserved. */
8 /* This software is made available under the terms of the */
9 /* ICU License -- ICU 1.8.1 and later. */
11 /* The description and User's Guide ("The decNumber C Library") for */
12 /* this software is called decNumber.pdf. This document is */
13 /* available, together with arithmetic and format specifications, */
14 /* testcases, and Web links, on the General Decimal Arithmetic page. */
16 /* Please send comments, suggestions, and corrections to the author: */
18 /* Mike Cowlishaw, IBM Fellow */
19 /* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */
20 /* ------------------------------------------------------------------ */
21 /* This header file is included by all modules in the decNumber */
22 /* library, and contains local type definitions, tuning parameters, */
23 /* etc. It should not need to be used by application programs. */
24 /* decNumber.h or one of decDouble (etc.) must be included first. */
25 /* ------------------------------------------------------------------ */
27 #if !defined(DECNUMBERLOC)
29 #define DECVERSION "decNumber 3.61" /* Package Version [16 max.] */
30 #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */
32 #include <stdlib.h> /* for abs */
33 #include <string.h> /* for memset, strcpy */
34 #include "decContext.h"
36 /* Conditional code flag -- set this to match hardware platform */
37 #if !defined(DECLITEND)
38 #define DECLITEND 1 /* 1=little-endian, 0=big-endian */
41 /* Conditional code flag -- set this to 1 for best performance */
42 #if !defined(DECUSE64)
43 #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */
46 /* Conditional check flags -- set these to 0 for best performance */
47 #if !defined(DECCHECK)
48 #define DECCHECK 0 /* 1 to enable robust checking */
50 #if !defined(DECALLOC)
51 #define DECALLOC 0 /* 1 to enable memory accounting */
53 #if !defined(DECTRACE)
54 #define DECTRACE 0 /* 1 to trace certain internals, etc. */
57 /* Tuning parameter for decNumber (arbitrary precision) module */
58 #if !defined(DECBUFFER)
59 #define DECBUFFER 36 /* Size basis for local buffers. This */
60 /* should be a common maximum precision */
61 /* rounded up to a multiple of 4; must */
62 /* be zero or positive. */
65 /* ---------------------------------------------------------------- */
66 /* Definitions for all modules (general-purpose) */
67 /* ---------------------------------------------------------------- */
69 /* Local names for common types -- for safety, decNumber modules do */
70 /* not use int or long directly. */
75 #define uShort uint16_t
78 #define Unit decNumberUnit
81 #define uLong uint64_t
84 /* Development-use definitions */
85 typedef long int LI
; /* for printf arguments only */
86 #define DECNOINT 0 /* 1 to check no internal use of 'int' */
89 /* if these interfere with your C includes, do not set DECNOINT */
90 #define int ? /* enable to ensure that plain C 'int' */
91 #define long ?? /* .. or 'long' types are not used */
94 /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */
95 /* (that is, sets w to be the high-order word of the 64-bit result; */
96 /* the low-order word is simply u*v.) */
97 /* This version is derived from Knuth via Hacker's Delight; */
98 /* it seems to optimize better than some others tried */
99 #define LONGMUL32HI(w, u, v) { \
100 uInt u0, u1, v0, v1, w0, w1, w2, t; \
101 u0=u & 0xffff; u1=u>>16; \
102 v0=v & 0xffff; v1=v>>16; \
104 t=u1*v0 + (w0>>16); \
105 w1=t & 0xffff; w2=t>>16; \
107 (w)=u1*v1 + w2 + (w1>>16);}
109 /* ROUNDUP -- round an integer up to a multiple of n */
110 #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n)
111 #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */
113 /* ROUNDDOWN -- round an integer down to a multiple of n */
114 #define ROUNDDOWN(i, n) (((i)/n)*n)
115 #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */
117 /* References to multi-byte sequences under different sizes; these */
118 /* require locally declared variables, but do not violate strict */
119 /* aliasing or alignment (as did the UINTAT simple cast to uInt). */
120 /* Variables needed are uswork, uiwork, etc. [so do not use at same */
121 /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */
123 /* Return a uInt, etc., from bytes starting at a char* or uByte* */
124 #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork)
125 #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork)
127 /* Store a uInt, etc., into bytes starting at a char* or uByte*. */
128 /* Returns i, evaluated, for convenience; has to use uiwork because */
129 /* i may be an expression. */
130 #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2), uswork)
131 #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4), uiwork)
133 /* X10 and X100 -- multiply integer i by 10 or 100 */
134 /* [shifts are usually faster than multiply; could be conditional] */
135 #define X10(i) (((i)<<1)+((i)<<3))
136 #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6))
138 /* MAXI and MINI -- general max & min (not in ANSI) for integers */
139 #define MAXI(x,y) ((x)<(y)?(y):(x))
140 #define MINI(x,y) ((x)>(y)?(y):(x))
142 /* Useful constants */
143 #define BILLION 1000000000 /* 10**9 */
144 /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */
145 #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0')
148 /* ---------------------------------------------------------------- */
149 /* Definitions for arbitary-precision modules (only valid after */
150 /* decNumber.h has been included) */
151 /* ---------------------------------------------------------------- */
153 /* Limits and constants */
154 #define DECNUMMAXP 999999999 /* maximum precision code can handle */
155 #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */
156 #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */
157 #if (DECNUMMAXP != DEC_MAX_DIGITS)
158 #error Maximum digits mismatch
160 #if (DECNUMMAXE != DEC_MAX_EMAX)
161 #error Maximum exponent mismatch
163 #if (DECNUMMINE != DEC_MIN_EMIN)
164 #error Minimum exponent mismatch
167 /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */
168 /* digits, and D2UTABLE -- the initializer for the D2U table */
171 #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \
172 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \
173 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \
176 #define DECDPUNMAX 99
177 #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \
178 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \
179 18,19,19,20,20,21,21,22,22,23,23,24,24,25}
181 #define DECDPUNMAX 999
182 #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \
183 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \
184 13,14,14,14,15,15,15,16,16,16,17}
186 #define DECDPUNMAX 9999
187 #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \
188 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \
189 11,11,11,12,12,12,12,13}
191 #define DECDPUNMAX 99999
192 #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \
193 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \
196 #define DECDPUNMAX 999999
197 #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \
198 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \
201 #define DECDPUNMAX 9999999
202 #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \
203 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \
206 #define DECDPUNMAX 99999999
207 #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \
208 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \
211 #define DECDPUNMAX 999999999
212 #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \
213 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \
215 #elif defined(DECDPUN)
216 #error DECDPUN must be in the range 1-9
219 /* ----- Shared data (in decNumber.c) ----- */
220 /* Public lookup table used by the D2U macro (see below) */
222 /*extern const uByte d2utable[DECMAXD2U+1];*/
224 /* ----- Macros ----- */
225 /* ISZERO -- return true if decNumber dn is a zero */
226 /* [performance-critical in some situations] */
227 #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */
229 /* D2U -- return the number of Units needed to hold d digits */
230 /* (runtime version, with table lookaside for small d) */
232 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3))
234 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2))
236 #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN)
238 /* SD2U -- static D2U macro (for compile-time calculation) */
239 #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN)
241 /* MSUDIGITS -- returns digits in msu, from digits, calculated */
243 #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN)
245 /* D2N -- return the number of decNumber structs that would be */
246 /* needed to contain that number of digits (and the initial */
247 /* decNumber struct) safely. Note that one Unit is included in the */
248 /* initial structure. Used for allocating space that is aligned on */
249 /* a decNumber struct boundary. */
251 ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber))
253 /* TODIGIT -- macro to remove the leading digit from the unsigned */
254 /* integer u at column cut (counting from the right, LSD=0) and */
255 /* place it as an ASCII character into the character pointed to by */
256 /* c. Note that cut must be <= 9, and the maximum value for u is */
257 /* 2,000,000,000 (as is needed for negative exponents of */
258 /* subnormals). The unsigned integer pow is used as a temporary */
260 #define TODIGIT(u, cut, c, pow) { \
262 pow=DECPOWERS[cut]*2; \
265 if ((u)>=pow) {(u)-=pow; *(c)+=8;} \
267 if ((u)>=pow) {(u)-=pow; *(c)+=4;} \
270 if ((u)>=pow) {(u)-=pow; *(c)+=2;} \
272 if ((u)>=pow) {(u)-=pow; *(c)+=1;} \
275 /* ---------------------------------------------------------------- */
276 /* Definitions for fixed-precision modules (only valid after */
277 /* decSingle.h, decDouble.h, or decQuad.h has been included) */
278 /* ---------------------------------------------------------------- */
280 /* bcdnum -- a structure describing a format-independent finite */
281 /* number, whose coefficient is a string of bcd8 uBytes */
283 uByte
*msd
; /* -> most significant digit */
284 uByte
*lsd
; /* -> least ditto */
285 uInt sign
; /* 0=positive, DECFLOAT_Sign=negative */
286 Int exponent
; /* Unadjusted signed exponent (q), or */
287 /* DECFLOAT_NaN etc. for a special */
290 /* Test if exponent or bcdnum exponent must be a special, etc. */
291 #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp)
292 #define EXPISINF(exp) (exp==DECFLOAT_Inf)
293 #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN)
294 #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent))
296 /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */
297 /* (array) notation (the 0 word or byte contains the sign bit), */
298 /* automatically adjusting for endianness; similarly address a word */
299 /* in the next-wider format (decFloatWider, or dfw) */
300 #define DECWORDS (DECBYTES/4)
301 #define DECWWORDS (DECWBYTES/4)
303 #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)])
304 #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)])
305 #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)])
307 #define DFBYTE(df, off) ((df)->bytes[off])
308 #define DFWORD(df, off) ((df)->words[off])
309 #define DFWWORD(dfw, off) ((dfw)->words[off])
312 /* Tests for sign or specials, directly on DECFLOATs */
313 #define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000)
314 #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000)
315 #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000)
316 #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000)
317 #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000)
318 #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000)
320 /* Shared lookup tables */
321 extern const uInt DECCOMBMSD
[64]; /* Combination field -> MSD */
322 extern const uInt DECCOMBFROM
[48]; /* exp+msd -> Combination */
324 /* Private generic (utility) routine */
325 #if DECCHECK || DECTRACE
326 extern void decShowNum(const bcdnum
*, const char *);
329 /* Format-dependent macros and constants */
332 /* Useful constants */
333 #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */
334 /* Top words for a zero */
335 #define SINGLEZERO 0x22500000
336 #define DOUBLEZERO 0x22380000
337 #define QUADZERO 0x22080000
338 /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */
340 /* Format-dependent common tests: */
341 /* DFISZERO -- test for (any) zero */
342 /* DFISCCZERO -- test for coefficient continuation being zero */
343 /* DFISCC01 -- test for coefficient contains only 0s and 1s */
344 /* DFISINT -- test for finite and exponent q=0 */
345 /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */
347 /* ZEROWORD is also defined here. */
348 /* In DFISZERO the first test checks the least-significant word */
349 /* (most likely to be non-zero); the penultimate tests MSD and */
350 /* DPDs in the signword, and the final test excludes specials and */
351 /* MSD>7. DFISINT similarly has to allow for the two forms of */
352 /* MSD codes. DFISUINT01 only has to allow for one form of MSD */
355 #define ZEROWORD SINGLEZERO
356 /* [test macros not needed except for Zero] */
357 #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \
358 && (DFWORD(df, 0)&0x60000000)!=0x60000000)
360 #define ZEROWORD DOUBLEZERO
361 #define DFISZERO(df) ((DFWORD(df, 1)==0 \
362 && (DFWORD(df, 0)&0x1c03ffff)==0 \
363 && (DFWORD(df, 0)&0x60000000)!=0x60000000))
364 #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \
365 ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000)
366 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000)
367 #define DFISCCZERO(df) (DFWORD(df, 1)==0 \
368 && (DFWORD(df, 0)&0x0003ffff)==0)
369 #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \
370 && (DFWORD(df, 1)&~0x49124491)==0)
372 #define ZEROWORD QUADZERO
373 #define DFISZERO(df) ((DFWORD(df, 3)==0 \
374 && DFWORD(df, 2)==0 \
375 && DFWORD(df, 1)==0 \
376 && (DFWORD(df, 0)&0x1c003fff)==0 \
377 && (DFWORD(df, 0)&0x60000000)!=0x60000000))
378 #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \
379 ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000)
380 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000)
381 #define DFISCCZERO(df) (DFWORD(df, 3)==0 \
382 && DFWORD(df, 2)==0 \
383 && DFWORD(df, 1)==0 \
384 && (DFWORD(df, 0)&0x00003fff)==0)
386 #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \
387 && (DFWORD(df, 1)&~0x44912449)==0 \
388 && (DFWORD(df, 2)&~0x12449124)==0 \
389 && (DFWORD(df, 3)&~0x49124491)==0)
392 /* Macros to test if a certain 10 bits of a uInt or pair of uInts */
393 /* are a canonical declet [higher or lower bits are ignored]. */
394 /* declet is at offset 0 (from the right) in a uInt: */
395 #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e)
396 /* declet is at offset k (a multiple of 2) in a uInt: */
397 #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \
398 || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
399 /* declet is at offset k (a multiple of 2) in a pair of uInts: */
400 /* [the top 2 bits will always be in the more-significant uInt] */
401 #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \
402 || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \
403 || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
405 /* Macro to test whether a full-length (length DECPMAX) BCD8 */
406 /* coefficient, starting at uByte u, is all zeros */
407 /* Test just the LSWord first, then the remainder as a sequence */
408 /* of tests in order to avoid same-level use of UBTOUI */
410 #define ISCOEFFZERO(u) ( \
411 UBTOUI((u)+DECPMAX-4)==0 \
412 && UBTOUS((u)+DECPMAX-6)==0 \
415 #define ISCOEFFZERO(u) ( \
416 UBTOUI((u)+DECPMAX-4)==0 \
417 && UBTOUI((u)+DECPMAX-8)==0 \
418 && UBTOUI((u)+DECPMAX-12)==0 \
421 #define ISCOEFFZERO(u) ( \
422 UBTOUI((u)+DECPMAX-4)==0 \
423 && UBTOUI((u)+DECPMAX-8)==0 \
424 && UBTOUI((u)+DECPMAX-12)==0 \
425 && UBTOUI((u)+DECPMAX-16)==0 \
426 && UBTOUI((u)+DECPMAX-20)==0 \
427 && UBTOUI((u)+DECPMAX-24)==0 \
428 && UBTOUI((u)+DECPMAX-28)==0 \
429 && UBTOUI((u)+DECPMAX-32)==0 \
433 /* Macros and masks for the exponent continuation field and MSD */
434 /* Get the exponent continuation from a decFloat *df as an Int */
435 #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL)))
436 /* Ditto, from the next-wider format */
437 #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL)))
438 /* Get the biased exponent similarly */
439 #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df)))
440 /* Get the unbiased exponent similarly */
441 #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS)
442 /* Get the MSD similarly (as uInt) */
443 #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26])
445 /* Compile-time computes of the exponent continuation field masks */
446 /* full exponent continuation field: */
447 #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
448 /* same, not including its first digit (the qNaN/sNaN selector): */
449 #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
451 /* Macros to decode the coefficient in a finite decFloat *df into */
452 /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */
454 /* In-line sequence to convert least significant 10 bits of uInt */
455 /* dpd to three BCD8 digits starting at uByte u. Note that an */
456 /* extra byte is written to the right of the three digits because */
457 /* four bytes are moved at a time for speed; the alternative */
458 /* macro moves exactly three bytes (usually slower). */
459 #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4)
460 #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3)
462 /* Decode the declets. After extracting each one, it is decoded */
463 /* to BCD8 using a table lookup (also used for variable-length */
464 /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */
465 /* length which is not used, here). Fixed-length 4-byte moves */
466 /* are fast, however, almost everywhere, and so are used except */
467 /* for the final three bytes (to avoid overrun). The code below */
468 /* is 36 instructions for Doubles and about 70 for Quads, even */
471 /* Two macros are defined for each format: */
472 /* GETCOEFF extracts the coefficient of the current format */
473 /* GETWCOEFF extracts the coefficient of the next-wider format. */
474 /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */
477 #define GETCOEFF(df, bcd) { \
478 uInt sourhi=DFWORD(df, 0); \
479 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
480 dpd2bcd8(bcd+1, sourhi>>10); \
481 dpd2bcd83(bcd+4, sourhi);}
482 #define GETWCOEFF(df, bcd) { \
483 uInt sourhi=DFWWORD(df, 0); \
484 uInt sourlo=DFWWORD(df, 1); \
485 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
486 dpd2bcd8(bcd+1, sourhi>>8); \
487 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
488 dpd2bcd8(bcd+7, sourlo>>20); \
489 dpd2bcd8(bcd+10, sourlo>>10); \
490 dpd2bcd83(bcd+13, sourlo);}
493 #define GETCOEFF(df, bcd) { \
494 uInt sourhi=DFWORD(df, 0); \
495 uInt sourlo=DFWORD(df, 1); \
496 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
497 dpd2bcd8(bcd+1, sourhi>>8); \
498 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
499 dpd2bcd8(bcd+7, sourlo>>20); \
500 dpd2bcd8(bcd+10, sourlo>>10); \
501 dpd2bcd83(bcd+13, sourlo);}
502 #define GETWCOEFF(df, bcd) { \
503 uInt sourhi=DFWWORD(df, 0); \
504 uInt sourmh=DFWWORD(df, 1); \
505 uInt sourml=DFWWORD(df, 2); \
506 uInt sourlo=DFWWORD(df, 3); \
507 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
508 dpd2bcd8(bcd+1, sourhi>>4); \
509 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
510 dpd2bcd8(bcd+7, sourmh>>16); \
511 dpd2bcd8(bcd+10, sourmh>>6); \
512 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
513 dpd2bcd8(bcd+16, sourml>>18); \
514 dpd2bcd8(bcd+19, sourml>>8); \
515 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
516 dpd2bcd8(bcd+25, sourlo>>20); \
517 dpd2bcd8(bcd+28, sourlo>>10); \
518 dpd2bcd83(bcd+31, sourlo);}
521 #define GETCOEFF(df, bcd) { \
522 uInt sourhi=DFWORD(df, 0); \
523 uInt sourmh=DFWORD(df, 1); \
524 uInt sourml=DFWORD(df, 2); \
525 uInt sourlo=DFWORD(df, 3); \
526 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
527 dpd2bcd8(bcd+1, sourhi>>4); \
528 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
529 dpd2bcd8(bcd+7, sourmh>>16); \
530 dpd2bcd8(bcd+10, sourmh>>6); \
531 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
532 dpd2bcd8(bcd+16, sourml>>18); \
533 dpd2bcd8(bcd+19, sourml>>8); \
534 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
535 dpd2bcd8(bcd+25, sourlo>>20); \
536 dpd2bcd8(bcd+28, sourlo>>10); \
537 dpd2bcd83(bcd+31, sourlo);}
539 #define GETWCOEFF(df, bcd) {??} /* [should never be used] */
542 /* Macros to decode the coefficient in a finite decFloat *df into */
543 /* a base-billion uInt array, with the least-significant */
544 /* 0-999999999 'digit' at offset 0. */
546 /* Decode the declets. After extracting each one, it is decoded */
547 /* to binary using a table lookup. Three tables are used; one */
548 /* the usual DPD to binary, the other two pre-multiplied by 1000 */
549 /* and 1000000 to avoid multiplication during decode. These */
550 /* tables can also be used for multiplying up the MSD as the DPD */
551 /* code for 0 through 9 is the identity. */
552 #define DPD2BIN0 DPD2BIN /* for prettier code */
555 #define GETCOEFFBILL(df, buf) { \
556 uInt sourhi=DFWORD(df, 0); \
557 (buf)[0]=DPD2BIN0[sourhi&0x3ff] \
558 +DPD2BINK[(sourhi>>10)&0x3ff] \
559 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
562 #define GETCOEFFBILL(df, buf) { \
563 uInt sourhi, sourlo; \
564 sourlo=DFWORD(df, 1); \
565 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
566 +DPD2BINK[(sourlo>>10)&0x3ff] \
567 +DPD2BINM[(sourlo>>20)&0x3ff]; \
568 sourhi=DFWORD(df, 0); \
569 (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \
570 +DPD2BINK[(sourhi>>8)&0x3ff] \
571 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
574 #define GETCOEFFBILL(df, buf) { \
575 uInt sourhi, sourmh, sourml, sourlo; \
576 sourlo=DFWORD(df, 3); \
577 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
578 +DPD2BINK[(sourlo>>10)&0x3ff] \
579 +DPD2BINM[(sourlo>>20)&0x3ff]; \
580 sourml=DFWORD(df, 2); \
581 (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \
582 +DPD2BINK[(sourml>>8)&0x3ff] \
583 +DPD2BINM[(sourml>>18)&0x3ff]; \
584 sourmh=DFWORD(df, 1); \
585 (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \
586 +DPD2BINK[(sourmh>>6)&0x3ff] \
587 +DPD2BINM[(sourmh>>16)&0x3ff]; \
588 sourhi=DFWORD(df, 0); \
589 (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \
590 +DPD2BINK[(sourhi>>4)&0x3ff] \
591 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
595 /* Macros to decode the coefficient in a finite decFloat *df into */
596 /* a base-thousand uInt array (of size DECLETS+1, to allow for */
597 /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/
599 /* Decode the declets. After extracting each one, it is decoded */
600 /* to binary using a table lookup. */
602 #define GETCOEFFTHOU(df, buf) { \
603 uInt sourhi=DFWORD(df, 0); \
604 (buf)[0]=DPD2BIN[sourhi&0x3ff]; \
605 (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \
606 (buf)[2]=DECCOMBMSD[sourhi>>26];}
609 #define GETCOEFFTHOU(df, buf) { \
610 uInt sourhi, sourlo; \
611 sourlo=DFWORD(df, 1); \
612 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
613 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
614 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
615 sourhi=DFWORD(df, 0); \
616 (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
617 (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \
618 (buf)[5]=DECCOMBMSD[sourhi>>26];}
621 #define GETCOEFFTHOU(df, buf) { \
622 uInt sourhi, sourmh, sourml, sourlo; \
623 sourlo=DFWORD(df, 3); \
624 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
625 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
626 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
627 sourml=DFWORD(df, 2); \
628 (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
629 (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \
630 (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \
631 sourmh=DFWORD(df, 1); \
632 (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
633 (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \
634 (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \
635 sourhi=DFWORD(df, 0); \
636 (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
637 (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \
638 (buf)[11]=DECCOMBMSD[sourhi>>26];}
642 /* Macros to decode the coefficient in a finite decFloat *df and */
643 /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */
644 /* After the addition then most significant 'digit' in the array */
645 /* might have a value larger then 10 (with a maximum of 19). */
647 #define ADDCOEFFTHOU(df, buf) { \
648 uInt sourhi=DFWORD(df, 0); \
649 (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \
650 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
651 (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \
652 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
653 (buf)[2]+=DECCOMBMSD[sourhi>>26];}
656 #define ADDCOEFFTHOU(df, buf) { \
657 uInt sourhi, sourlo; \
658 sourlo=DFWORD(df, 1); \
659 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
660 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
661 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
662 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
663 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
664 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
665 sourhi=DFWORD(df, 0); \
666 (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
667 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
668 (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \
669 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
670 (buf)[5]+=DECCOMBMSD[sourhi>>26];}
673 #define ADDCOEFFTHOU(df, buf) { \
674 uInt sourhi, sourmh, sourml, sourlo; \
675 sourlo=DFWORD(df, 3); \
676 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
677 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
678 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
679 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
680 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
681 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
682 sourml=DFWORD(df, 2); \
683 (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
684 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
685 (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \
686 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
687 (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \
688 if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \
689 sourmh=DFWORD(df, 1); \
690 (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
691 if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \
692 (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \
693 if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \
694 (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \
695 if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \
696 sourhi=DFWORD(df, 0); \
697 (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
698 if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \
699 (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \
700 if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \
701 (buf)[11]+=DECCOMBMSD[sourhi>>26];}
705 /* Set a decFloat to the maximum positive finite number (Nmax) */
707 #define DFSETNMAX(df) \
708 {DFWORD(df, 0)=0x77f3fcff;}
710 #define DFSETNMAX(df) \
711 {DFWORD(df, 0)=0x77fcff3f; \
712 DFWORD(df, 1)=0xcff3fcff;}
714 #define DFSETNMAX(df) \
715 {DFWORD(df, 0)=0x77ffcff3; \
716 DFWORD(df, 1)=0xfcff3fcf; \
717 DFWORD(df, 2)=0xf3fcff3f; \
718 DFWORD(df, 3)=0xcff3fcff;}
721 /* [end of format-dependent macros and constants] */
725 #error decNumberLocal included more than once