]> git.saurik.com Git - apple/icu.git/blob - icuSources/i18n/collationbuilder.cpp
ICU-62141.0.1.tar.gz
[apple/icu.git] / icuSources / i18n / collationbuilder.cpp
1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 * Copyright (C) 2013-2014, International Business Machines
6 * Corporation and others. All Rights Reserved.
7 *******************************************************************************
8 * collationbuilder.cpp
9 *
10 * (replaced the former ucol_bld.cpp)
11 *
12 * created on: 2013may06
13 * created by: Markus W. Scherer
14 */
15
16 #ifdef DEBUG_COLLATION_BUILDER
17 #include <stdio.h>
18 #endif
19
20 #include "unicode/utypes.h"
21
22 #if !UCONFIG_NO_COLLATION
23
24 #include "unicode/caniter.h"
25 #include "unicode/normalizer2.h"
26 #include "unicode/tblcoll.h"
27 #include "unicode/parseerr.h"
28 #include "unicode/uchar.h"
29 #include "unicode/ucol.h"
30 #include "unicode/unistr.h"
31 #include "unicode/usetiter.h"
32 #include "unicode/utf16.h"
33 #include "unicode/uversion.h"
34 #include "cmemory.h"
35 #include "collation.h"
36 #include "collationbuilder.h"
37 #include "collationdata.h"
38 #include "collationdatabuilder.h"
39 #include "collationfastlatin.h"
40 #include "collationroot.h"
41 #include "collationrootelements.h"
42 #include "collationruleparser.h"
43 #include "collationsettings.h"
44 #include "collationtailoring.h"
45 #include "collationweights.h"
46 #include "normalizer2impl.h"
47 #include "uassert.h"
48 #include "ucol_imp.h"
49 #include "utf16collationiterator.h"
50
51 U_NAMESPACE_BEGIN
52
53 namespace {
54
55 class BundleImporter : public CollationRuleParser::Importer {
56 public:
57 BundleImporter() {}
58 virtual ~BundleImporter();
59 virtual void getRules(
60 const char *localeID, const char *collationType,
61 UnicodeString &rules,
62 const char *&errorReason, UErrorCode &errorCode);
63 };
64
65 BundleImporter::~BundleImporter() {}
66
67 void
68 BundleImporter::getRules(
69 const char *localeID, const char *collationType,
70 UnicodeString &rules,
71 const char *& /*errorReason*/, UErrorCode &errorCode) {
72 CollationLoader::loadRules(localeID, collationType, rules, errorCode);
73 }
74
75 } // namespace
76
77 // RuleBasedCollator implementation ---------------------------------------- ***
78
79 // These methods are here, rather than in rulebasedcollator.cpp,
80 // for modularization:
81 // Most code using Collator does not need to build a Collator from rules.
82 // By moving these constructors and helper methods to a separate file,
83 // most code will not have a static dependency on the builder code.
84
85 RuleBasedCollator::RuleBasedCollator()
86 : data(NULL),
87 settings(NULL),
88 tailoring(NULL),
89 cacheEntry(NULL),
90 validLocale(""),
91 explicitlySetAttributes(0),
92 actualLocaleIsSameAsValid(FALSE) {
93 }
94
95 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, UErrorCode &errorCode)
96 : data(NULL),
97 settings(NULL),
98 tailoring(NULL),
99 cacheEntry(NULL),
100 validLocale(""),
101 explicitlySetAttributes(0),
102 actualLocaleIsSameAsValid(FALSE) {
103 internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, NULL, NULL, errorCode);
104 }
105
106 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules, ECollationStrength strength,
107 UErrorCode &errorCode)
108 : data(NULL),
109 settings(NULL),
110 tailoring(NULL),
111 cacheEntry(NULL),
112 validLocale(""),
113 explicitlySetAttributes(0),
114 actualLocaleIsSameAsValid(FALSE) {
115 internalBuildTailoring(rules, strength, UCOL_DEFAULT, NULL, NULL, errorCode);
116 }
117
118 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
119 UColAttributeValue decompositionMode,
120 UErrorCode &errorCode)
121 : data(NULL),
122 settings(NULL),
123 tailoring(NULL),
124 cacheEntry(NULL),
125 validLocale(""),
126 explicitlySetAttributes(0),
127 actualLocaleIsSameAsValid(FALSE) {
128 internalBuildTailoring(rules, UCOL_DEFAULT, decompositionMode, NULL, NULL, errorCode);
129 }
130
131 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
132 ECollationStrength strength,
133 UColAttributeValue decompositionMode,
134 UErrorCode &errorCode)
135 : data(NULL),
136 settings(NULL),
137 tailoring(NULL),
138 cacheEntry(NULL),
139 validLocale(""),
140 explicitlySetAttributes(0),
141 actualLocaleIsSameAsValid(FALSE) {
142 internalBuildTailoring(rules, strength, decompositionMode, NULL, NULL, errorCode);
143 }
144
145 RuleBasedCollator::RuleBasedCollator(const UnicodeString &rules,
146 UParseError &parseError, UnicodeString &reason,
147 UErrorCode &errorCode)
148 : data(NULL),
149 settings(NULL),
150 tailoring(NULL),
151 cacheEntry(NULL),
152 validLocale(""),
153 explicitlySetAttributes(0),
154 actualLocaleIsSameAsValid(FALSE) {
155 internalBuildTailoring(rules, UCOL_DEFAULT, UCOL_DEFAULT, &parseError, &reason, errorCode);
156 }
157
158 void
159 RuleBasedCollator::internalBuildTailoring(const UnicodeString &rules,
160 int32_t strength,
161 UColAttributeValue decompositionMode,
162 UParseError *outParseError, UnicodeString *outReason,
163 UErrorCode &errorCode) {
164 const CollationTailoring *base = CollationRoot::getRoot(errorCode);
165 if(U_FAILURE(errorCode)) { return; }
166 if(outReason != NULL) { outReason->remove(); }
167 CollationBuilder builder(base, errorCode);
168 UVersionInfo noVersion = { 0, 0, 0, 0 };
169 BundleImporter importer;
170 LocalPointer<CollationTailoring> t(builder.parseAndBuild(rules, noVersion,
171 &importer,
172 outParseError, errorCode));
173 if(U_FAILURE(errorCode)) {
174 const char *reason = builder.getErrorReason();
175 if(reason != NULL && outReason != NULL) {
176 *outReason = UnicodeString(reason, -1, US_INV);
177 }
178 return;
179 }
180 t->actualLocale.setToBogus();
181 adoptTailoring(t.orphan(), errorCode);
182 // Set attributes after building the collator,
183 // to keep the default settings consistent with the rule string.
184 if(strength != UCOL_DEFAULT) {
185 setAttribute(UCOL_STRENGTH, (UColAttributeValue)strength, errorCode);
186 }
187 if(decompositionMode != UCOL_DEFAULT) {
188 setAttribute(UCOL_NORMALIZATION_MODE, decompositionMode, errorCode);
189 }
190 }
191
192 // CollationBuilder implementation ----------------------------------------- ***
193
194 // Some compilers don't care if constants are defined in the .cpp file.
195 // MS Visual C++ does not like it, but gcc requires it. clang does not care.
196 #ifndef _MSC_VER
197 const int32_t CollationBuilder::HAS_BEFORE2;
198 const int32_t CollationBuilder::HAS_BEFORE3;
199 #endif
200
201 CollationBuilder::CollationBuilder(const CollationTailoring *b, UErrorCode &errorCode)
202 : nfd(*Normalizer2::getNFDInstance(errorCode)),
203 fcd(*Normalizer2Factory::getFCDInstance(errorCode)),
204 nfcImpl(*Normalizer2Factory::getNFCImpl(errorCode)),
205 base(b),
206 baseData(b->data),
207 rootElements(b->data->rootElements, b->data->rootElementsLength),
208 variableTop(0),
209 dataBuilder(new CollationDataBuilder(errorCode)), fastLatinEnabled(TRUE),
210 errorReason(NULL),
211 cesLength(0),
212 rootPrimaryIndexes(errorCode), nodes(errorCode) {
213 nfcImpl.ensureCanonIterData(errorCode);
214 if(U_FAILURE(errorCode)) {
215 errorReason = "CollationBuilder fields initialization failed";
216 return;
217 }
218 if(dataBuilder == NULL) {
219 errorCode = U_MEMORY_ALLOCATION_ERROR;
220 return;
221 }
222 dataBuilder->initForTailoring(baseData, errorCode);
223 if(U_FAILURE(errorCode)) {
224 errorReason = "CollationBuilder initialization failed";
225 }
226 }
227
228 CollationBuilder::~CollationBuilder() {
229 delete dataBuilder;
230 }
231
232 CollationTailoring *
233 CollationBuilder::parseAndBuild(const UnicodeString &ruleString,
234 const UVersionInfo rulesVersion,
235 CollationRuleParser::Importer *importer,
236 UParseError *outParseError,
237 UErrorCode &errorCode) {
238 if(U_FAILURE(errorCode)) { return NULL; }
239 if(baseData->rootElements == NULL) {
240 errorCode = U_MISSING_RESOURCE_ERROR;
241 errorReason = "missing root elements data, tailoring not supported";
242 return NULL;
243 }
244 LocalPointer<CollationTailoring> tailoring(new CollationTailoring(base->settings));
245 if(tailoring.isNull() || tailoring->isBogus()) {
246 errorCode = U_MEMORY_ALLOCATION_ERROR;
247 return NULL;
248 }
249 CollationRuleParser parser(baseData, errorCode);
250 if(U_FAILURE(errorCode)) { return NULL; }
251 // Note: This always bases &[last variable] and &[first regular]
252 // on the root collator's maxVariable/variableTop.
253 // If we wanted this to change after [maxVariable x], then we would keep
254 // the tailoring.settings pointer here and read its variableTop when we need it.
255 // See http://unicode.org/cldr/trac/ticket/6070
256 variableTop = base->settings->variableTop;
257 parser.setSink(this);
258 parser.setImporter(importer);
259 CollationSettings &ownedSettings = *SharedObject::copyOnWrite(tailoring->settings);
260 parser.parse(ruleString, ownedSettings, outParseError, errorCode);
261 errorReason = parser.getErrorReason();
262 if(U_FAILURE(errorCode)) { return NULL; }
263 if(dataBuilder->hasMappings()) {
264 makeTailoredCEs(errorCode);
265 closeOverComposites(errorCode);
266 finalizeCEs(errorCode);
267 // Copy all of ASCII, and Latin-1 letters, into each tailoring.
268 optimizeSet.add(0, 0x7f);
269 optimizeSet.add(0xc0, 0xff);
270 // Hangul is decomposed on the fly during collation,
271 // and the tailoring data is always built with HANGUL_TAG specials.
272 optimizeSet.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
273 dataBuilder->optimize(optimizeSet, errorCode);
274 tailoring->ensureOwnedData(errorCode);
275 if(U_FAILURE(errorCode)) { return NULL; }
276 if(fastLatinEnabled) { dataBuilder->enableFastLatin(); }
277 dataBuilder->build(*tailoring->ownedData, errorCode);
278 tailoring->builder = dataBuilder;
279 dataBuilder = NULL;
280 } else {
281 tailoring->data = baseData;
282 }
283 if(U_FAILURE(errorCode)) { return NULL; }
284 ownedSettings.fastLatinOptions = CollationFastLatin::getOptions(
285 tailoring->data, ownedSettings,
286 ownedSettings.fastLatinPrimaries, UPRV_LENGTHOF(ownedSettings.fastLatinPrimaries));
287 tailoring->rules = ruleString;
288 tailoring->rules.getTerminatedBuffer(); // ensure NUL-termination
289 tailoring->setVersion(base->version, rulesVersion);
290 return tailoring.orphan();
291 }
292
293 void
294 CollationBuilder::addReset(int32_t strength, const UnicodeString &str,
295 const char *&parserErrorReason, UErrorCode &errorCode) {
296 if(U_FAILURE(errorCode)) { return; }
297 U_ASSERT(!str.isEmpty());
298 if(str.charAt(0) == CollationRuleParser::POS_LEAD) {
299 ces[0] = getSpecialResetPosition(str, parserErrorReason, errorCode);
300 cesLength = 1;
301 if(U_FAILURE(errorCode)) { return; }
302 U_ASSERT((ces[0] & Collation::CASE_AND_QUATERNARY_MASK) == 0);
303 } else {
304 // normal reset to a character or string
305 UnicodeString nfdString = nfd.normalize(str, errorCode);
306 if(U_FAILURE(errorCode)) {
307 parserErrorReason = "normalizing the reset position";
308 return;
309 }
310 cesLength = dataBuilder->getCEs(nfdString, ces, 0);
311 if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
312 errorCode = U_ILLEGAL_ARGUMENT_ERROR;
313 parserErrorReason = "reset position maps to too many collation elements (more than 31)";
314 return;
315 }
316 }
317 if(strength == UCOL_IDENTICAL) { return; } // simple reset-at-position
318
319 // &[before strength]position
320 U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_TERTIARY);
321 int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
322 if(U_FAILURE(errorCode)) { return; }
323
324 int64_t node = nodes.elementAti(index);
325 // If the index is for a "weaker" node,
326 // then skip backwards over this and further "weaker" nodes.
327 while(strengthFromNode(node) > strength) {
328 index = previousIndexFromNode(node);
329 node = nodes.elementAti(index);
330 }
331
332 // Find or insert a node whose index we will put into a temporary CE.
333 if(strengthFromNode(node) == strength && isTailoredNode(node)) {
334 // Reset to just before this same-strength tailored node.
335 index = previousIndexFromNode(node);
336 } else if(strength == UCOL_PRIMARY) {
337 // root primary node (has no previous index)
338 uint32_t p = weight32FromNode(node);
339 if(p == 0) {
340 errorCode = U_UNSUPPORTED_ERROR;
341 parserErrorReason = "reset primary-before ignorable not possible";
342 return;
343 }
344 if(p <= rootElements.getFirstPrimary()) {
345 // There is no primary gap between ignorables and the space-first-primary.
346 errorCode = U_UNSUPPORTED_ERROR;
347 parserErrorReason = "reset primary-before first non-ignorable not supported";
348 return;
349 }
350 if(p == Collation::FIRST_TRAILING_PRIMARY) {
351 // We do not support tailoring to an unassigned-implicit CE.
352 errorCode = U_UNSUPPORTED_ERROR;
353 parserErrorReason = "reset primary-before [first trailing] not supported";
354 return;
355 }
356 p = rootElements.getPrimaryBefore(p, baseData->isCompressiblePrimary(p));
357 index = findOrInsertNodeForPrimary(p, errorCode);
358 // Go to the last node in this list:
359 // Tailor after the last node between adjacent root nodes.
360 for(;;) {
361 node = nodes.elementAti(index);
362 int32_t nextIndex = nextIndexFromNode(node);
363 if(nextIndex == 0) { break; }
364 index = nextIndex;
365 }
366 } else {
367 // &[before 2] or &[before 3]
368 index = findCommonNode(index, UCOL_SECONDARY);
369 if(strength >= UCOL_TERTIARY) {
370 index = findCommonNode(index, UCOL_TERTIARY);
371 }
372 // findCommonNode() stayed on the stronger node or moved to
373 // an explicit common-weight node of the reset-before strength.
374 node = nodes.elementAti(index);
375 if(strengthFromNode(node) == strength) {
376 // Found a same-strength node with an explicit weight.
377 uint32_t weight16 = weight16FromNode(node);
378 if(weight16 == 0) {
379 errorCode = U_UNSUPPORTED_ERROR;
380 if(strength == UCOL_SECONDARY) {
381 parserErrorReason = "reset secondary-before secondary ignorable not possible";
382 } else {
383 parserErrorReason = "reset tertiary-before completely ignorable not possible";
384 }
385 return;
386 }
387 U_ASSERT(weight16 > Collation::BEFORE_WEIGHT16);
388 // Reset to just before this node.
389 // Insert the preceding same-level explicit weight if it is not there already.
390 // Which explicit weight immediately precedes this one?
391 weight16 = getWeight16Before(index, node, strength);
392 // Does this preceding weight have a node?
393 uint32_t previousWeight16;
394 int32_t previousIndex = previousIndexFromNode(node);
395 for(int32_t i = previousIndex;; i = previousIndexFromNode(node)) {
396 node = nodes.elementAti(i);
397 int32_t previousStrength = strengthFromNode(node);
398 if(previousStrength < strength) {
399 U_ASSERT(weight16 >= Collation::COMMON_WEIGHT16 || i == previousIndex);
400 // Either the reset element has an above-common weight and
401 // the parent node provides the implied common weight,
402 // or the reset element has a weight<=common in the node
403 // right after the parent, and we need to insert the preceding weight.
404 previousWeight16 = Collation::COMMON_WEIGHT16;
405 break;
406 } else if(previousStrength == strength && !isTailoredNode(node)) {
407 previousWeight16 = weight16FromNode(node);
408 break;
409 }
410 // Skip weaker nodes and same-level tailored nodes.
411 }
412 if(previousWeight16 == weight16) {
413 // The preceding weight has a node,
414 // maybe with following weaker or tailored nodes.
415 // Reset to the last of them.
416 index = previousIndex;
417 } else {
418 // Insert a node with the preceding weight, reset to that.
419 node = nodeFromWeight16(weight16) | nodeFromStrength(strength);
420 index = insertNodeBetween(previousIndex, index, node, errorCode);
421 }
422 } else {
423 // Found a stronger node with implied strength-common weight.
424 uint32_t weight16 = getWeight16Before(index, node, strength);
425 index = findOrInsertWeakNode(index, weight16, strength, errorCode);
426 }
427 // Strength of the temporary CE = strength of its reset position.
428 // Code above raises an error if the before-strength is stronger.
429 strength = ceStrength(ces[cesLength - 1]);
430 }
431 if(U_FAILURE(errorCode)) {
432 parserErrorReason = "inserting reset position for &[before n]";
433 return;
434 }
435 ces[cesLength - 1] = tempCEFromIndexAndStrength(index, strength);
436 }
437
438 uint32_t
439 CollationBuilder::getWeight16Before(int32_t index, int64_t node, int32_t level) {
440 U_ASSERT(strengthFromNode(node) < level || !isTailoredNode(node));
441 // Collect the root CE weights if this node is for a root CE.
442 // If it is not, then return the low non-primary boundary for a tailored CE.
443 uint32_t t;
444 if(strengthFromNode(node) == UCOL_TERTIARY) {
445 t = weight16FromNode(node);
446 } else {
447 t = Collation::COMMON_WEIGHT16; // Stronger node with implied common weight.
448 }
449 while(strengthFromNode(node) > UCOL_SECONDARY) {
450 index = previousIndexFromNode(node);
451 node = nodes.elementAti(index);
452 }
453 if(isTailoredNode(node)) {
454 return Collation::BEFORE_WEIGHT16;
455 }
456 uint32_t s;
457 if(strengthFromNode(node) == UCOL_SECONDARY) {
458 s = weight16FromNode(node);
459 } else {
460 s = Collation::COMMON_WEIGHT16; // Stronger node with implied common weight.
461 }
462 while(strengthFromNode(node) > UCOL_PRIMARY) {
463 index = previousIndexFromNode(node);
464 node = nodes.elementAti(index);
465 }
466 if(isTailoredNode(node)) {
467 return Collation::BEFORE_WEIGHT16;
468 }
469 // [p, s, t] is a root CE. Return the preceding weight for the requested level.
470 uint32_t p = weight32FromNode(node);
471 uint32_t weight16;
472 if(level == UCOL_SECONDARY) {
473 weight16 = rootElements.getSecondaryBefore(p, s);
474 } else {
475 weight16 = rootElements.getTertiaryBefore(p, s, t);
476 U_ASSERT((weight16 & ~Collation::ONLY_TERTIARY_MASK) == 0);
477 }
478 return weight16;
479 }
480
481 int64_t
482 CollationBuilder::getSpecialResetPosition(const UnicodeString &str,
483 const char *&parserErrorReason, UErrorCode &errorCode) {
484 U_ASSERT(str.length() == 2);
485 int64_t ce;
486 int32_t strength = UCOL_PRIMARY;
487 UBool isBoundary = FALSE;
488 UChar32 pos = str.charAt(1) - CollationRuleParser::POS_BASE;
489 U_ASSERT(0 <= pos && pos <= CollationRuleParser::LAST_TRAILING);
490 switch(pos) {
491 case CollationRuleParser::FIRST_TERTIARY_IGNORABLE:
492 // Quaternary CEs are not supported.
493 // Non-zero quaternary weights are possible only on tertiary or stronger CEs.
494 return 0;
495 case CollationRuleParser::LAST_TERTIARY_IGNORABLE:
496 return 0;
497 case CollationRuleParser::FIRST_SECONDARY_IGNORABLE: {
498 // Look for a tailored tertiary node after [0, 0, 0].
499 int32_t index = findOrInsertNodeForRootCE(0, UCOL_TERTIARY, errorCode);
500 if(U_FAILURE(errorCode)) { return 0; }
501 int64_t node = nodes.elementAti(index);
502 if((index = nextIndexFromNode(node)) != 0) {
503 node = nodes.elementAti(index);
504 U_ASSERT(strengthFromNode(node) <= UCOL_TERTIARY);
505 if(isTailoredNode(node) && strengthFromNode(node) == UCOL_TERTIARY) {
506 return tempCEFromIndexAndStrength(index, UCOL_TERTIARY);
507 }
508 }
509 return rootElements.getFirstTertiaryCE();
510 // No need to look for nodeHasAnyBefore() on a tertiary node.
511 }
512 case CollationRuleParser::LAST_SECONDARY_IGNORABLE:
513 ce = rootElements.getLastTertiaryCE();
514 strength = UCOL_TERTIARY;
515 break;
516 case CollationRuleParser::FIRST_PRIMARY_IGNORABLE: {
517 // Look for a tailored secondary node after [0, 0, *].
518 int32_t index = findOrInsertNodeForRootCE(0, UCOL_SECONDARY, errorCode);
519 if(U_FAILURE(errorCode)) { return 0; }
520 int64_t node = nodes.elementAti(index);
521 while((index = nextIndexFromNode(node)) != 0) {
522 node = nodes.elementAti(index);
523 strength = strengthFromNode(node);
524 if(strength < UCOL_SECONDARY) { break; }
525 if(strength == UCOL_SECONDARY) {
526 if(isTailoredNode(node)) {
527 if(nodeHasBefore3(node)) {
528 index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
529 U_ASSERT(isTailoredNode(nodes.elementAti(index)));
530 }
531 return tempCEFromIndexAndStrength(index, UCOL_SECONDARY);
532 } else {
533 break;
534 }
535 }
536 }
537 ce = rootElements.getFirstSecondaryCE();
538 strength = UCOL_SECONDARY;
539 break;
540 }
541 case CollationRuleParser::LAST_PRIMARY_IGNORABLE:
542 ce = rootElements.getLastSecondaryCE();
543 strength = UCOL_SECONDARY;
544 break;
545 case CollationRuleParser::FIRST_VARIABLE:
546 ce = rootElements.getFirstPrimaryCE();
547 isBoundary = TRUE; // FractionalUCA.txt: FDD1 00A0, SPACE first primary
548 break;
549 case CollationRuleParser::LAST_VARIABLE:
550 ce = rootElements.lastCEWithPrimaryBefore(variableTop + 1);
551 break;
552 case CollationRuleParser::FIRST_REGULAR:
553 ce = rootElements.firstCEWithPrimaryAtLeast(variableTop + 1);
554 isBoundary = TRUE; // FractionalUCA.txt: FDD1 263A, SYMBOL first primary
555 break;
556 case CollationRuleParser::LAST_REGULAR:
557 // Use the Hani-first-primary rather than the actual last "regular" CE before it,
558 // for backward compatibility with behavior before the introduction of
559 // script-first-primary CEs in the root collator.
560 ce = rootElements.firstCEWithPrimaryAtLeast(
561 baseData->getFirstPrimaryForGroup(USCRIPT_HAN));
562 break;
563 case CollationRuleParser::FIRST_IMPLICIT:
564 ce = baseData->getSingleCE(0x4e00, errorCode);
565 break;
566 case CollationRuleParser::LAST_IMPLICIT:
567 // We do not support tailoring to an unassigned-implicit CE.
568 errorCode = U_UNSUPPORTED_ERROR;
569 parserErrorReason = "reset to [last implicit] not supported";
570 return 0;
571 case CollationRuleParser::FIRST_TRAILING:
572 ce = Collation::makeCE(Collation::FIRST_TRAILING_PRIMARY);
573 isBoundary = TRUE; // trailing first primary (there is no mapping for it)
574 break;
575 case CollationRuleParser::LAST_TRAILING:
576 errorCode = U_ILLEGAL_ARGUMENT_ERROR;
577 parserErrorReason = "LDML forbids tailoring to U+FFFF";
578 return 0;
579 default:
580 U_ASSERT(FALSE);
581 return 0;
582 }
583
584 int32_t index = findOrInsertNodeForRootCE(ce, strength, errorCode);
585 if(U_FAILURE(errorCode)) { return 0; }
586 int64_t node = nodes.elementAti(index);
587 if((pos & 1) == 0) {
588 // even pos = [first xyz]
589 if(!nodeHasAnyBefore(node) && isBoundary) {
590 // A <group> first primary boundary is artificially added to FractionalUCA.txt.
591 // It is reachable via its special contraction, but is not normally used.
592 // Find the first character tailored after the boundary CE,
593 // or the first real root CE after it.
594 if((index = nextIndexFromNode(node)) != 0) {
595 // If there is a following node, then it must be tailored
596 // because there are no root CEs with a boundary primary
597 // and non-common secondary/tertiary weights.
598 node = nodes.elementAti(index);
599 U_ASSERT(isTailoredNode(node));
600 ce = tempCEFromIndexAndStrength(index, strength);
601 } else {
602 U_ASSERT(strength == UCOL_PRIMARY);
603 uint32_t p = (uint32_t)(ce >> 32);
604 int32_t pIndex = rootElements.findPrimary(p);
605 UBool isCompressible = baseData->isCompressiblePrimary(p);
606 p = rootElements.getPrimaryAfter(p, pIndex, isCompressible);
607 ce = Collation::makeCE(p);
608 index = findOrInsertNodeForRootCE(ce, UCOL_PRIMARY, errorCode);
609 if(U_FAILURE(errorCode)) { return 0; }
610 node = nodes.elementAti(index);
611 }
612 }
613 if(nodeHasAnyBefore(node)) {
614 // Get the first node that was tailored before this one at a weaker strength.
615 if(nodeHasBefore2(node)) {
616 index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
617 node = nodes.elementAti(index);
618 }
619 if(nodeHasBefore3(node)) {
620 index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
621 }
622 U_ASSERT(isTailoredNode(nodes.elementAti(index)));
623 ce = tempCEFromIndexAndStrength(index, strength);
624 }
625 } else {
626 // odd pos = [last xyz]
627 // Find the last node that was tailored after the [last xyz]
628 // at a strength no greater than the position's strength.
629 for(;;) {
630 int32_t nextIndex = nextIndexFromNode(node);
631 if(nextIndex == 0) { break; }
632 int64_t nextNode = nodes.elementAti(nextIndex);
633 if(strengthFromNode(nextNode) < strength) { break; }
634 index = nextIndex;
635 node = nextNode;
636 }
637 // Do not make a temporary CE for a root node.
638 // This last node might be the node for the root CE itself,
639 // or a node with a common secondary or tertiary weight.
640 if(isTailoredNode(node)) {
641 ce = tempCEFromIndexAndStrength(index, strength);
642 }
643 }
644 return ce;
645 }
646
647 void
648 CollationBuilder::addRelation(int32_t strength, const UnicodeString &prefix,
649 const UnicodeString &str, const UnicodeString &extension,
650 const char *&parserErrorReason, UErrorCode &errorCode) {
651 if(U_FAILURE(errorCode)) { return; }
652 UnicodeString nfdPrefix;
653 if(!prefix.isEmpty()) {
654 nfd.normalize(prefix, nfdPrefix, errorCode);
655 if(U_FAILURE(errorCode)) {
656 parserErrorReason = "normalizing the relation prefix";
657 return;
658 }
659 }
660 UnicodeString nfdString = nfd.normalize(str, errorCode);
661 if(U_FAILURE(errorCode)) {
662 parserErrorReason = "normalizing the relation string";
663 return;
664 }
665
666 // The runtime code decomposes Hangul syllables on the fly,
667 // with recursive processing but without making the Jamo pieces visible for matching.
668 // It does not work with certain types of contextual mappings.
669 int32_t nfdLength = nfdString.length();
670 if(nfdLength >= 2) {
671 UChar c = nfdString.charAt(0);
672 if(Hangul::isJamoL(c) || Hangul::isJamoV(c)) {
673 // While handling a Hangul syllable, contractions starting with Jamo L or V
674 // would not see the following Jamo of that syllable.
675 errorCode = U_UNSUPPORTED_ERROR;
676 parserErrorReason = "contractions starting with conjoining Jamo L or V not supported";
677 return;
678 }
679 c = nfdString.charAt(nfdLength - 1);
680 if(Hangul::isJamoL(c) ||
681 (Hangul::isJamoV(c) && Hangul::isJamoL(nfdString.charAt(nfdLength - 2)))) {
682 // A contraction ending with Jamo L or L+V would require
683 // generating Hangul syllables in addTailComposites() (588 for a Jamo L),
684 // or decomposing a following Hangul syllable on the fly, during contraction matching.
685 errorCode = U_UNSUPPORTED_ERROR;
686 parserErrorReason = "contractions ending with conjoining Jamo L or L+V not supported";
687 return;
688 }
689 // A Hangul syllable completely inside a contraction is ok.
690 }
691 // Note: If there is a prefix, then the parser checked that
692 // both the prefix and the string beging with NFC boundaries (not Jamo V or T).
693 // Therefore: prefix.isEmpty() || !isJamoVOrT(nfdString.charAt(0))
694 // (While handling a Hangul syllable, prefixes on Jamo V or T
695 // would not see the previous Jamo of that syllable.)
696
697 if(strength != UCOL_IDENTICAL) {
698 // Find the node index after which we insert the new tailored node.
699 int32_t index = findOrInsertNodeForCEs(strength, parserErrorReason, errorCode);
700 U_ASSERT(cesLength > 0);
701 int64_t ce = ces[cesLength - 1];
702 if(strength == UCOL_PRIMARY && !isTempCE(ce) && (uint32_t)(ce >> 32) == 0) {
703 // There is no primary gap between ignorables and the space-first-primary.
704 errorCode = U_UNSUPPORTED_ERROR;
705 parserErrorReason = "tailoring primary after ignorables not supported";
706 return;
707 }
708 if(strength == UCOL_QUATERNARY && ce == 0) {
709 // The CE data structure does not support non-zero quaternary weights
710 // on tertiary ignorables.
711 errorCode = U_UNSUPPORTED_ERROR;
712 parserErrorReason = "tailoring quaternary after tertiary ignorables not supported";
713 return;
714 }
715 // Insert the new tailored node.
716 index = insertTailoredNodeAfter(index, strength, errorCode);
717 if(U_FAILURE(errorCode)) {
718 parserErrorReason = "modifying collation elements";
719 return;
720 }
721 // Strength of the temporary CE:
722 // The new relation may yield a stronger CE but not a weaker one.
723 int32_t tempStrength = ceStrength(ce);
724 if(strength < tempStrength) { tempStrength = strength; }
725 ces[cesLength - 1] = tempCEFromIndexAndStrength(index, tempStrength);
726 }
727
728 setCaseBits(nfdString, parserErrorReason, errorCode);
729 if(U_FAILURE(errorCode)) { return; }
730
731 int32_t cesLengthBeforeExtension = cesLength;
732 if(!extension.isEmpty()) {
733 UnicodeString nfdExtension = nfd.normalize(extension, errorCode);
734 if(U_FAILURE(errorCode)) {
735 parserErrorReason = "normalizing the relation extension";
736 return;
737 }
738 cesLength = dataBuilder->getCEs(nfdExtension, ces, cesLength);
739 if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
740 errorCode = U_ILLEGAL_ARGUMENT_ERROR;
741 parserErrorReason =
742 "extension string adds too many collation elements (more than 31 total)";
743 return;
744 }
745 }
746 uint32_t ce32 = Collation::UNASSIGNED_CE32;
747 if((prefix != nfdPrefix || str != nfdString) &&
748 !ignorePrefix(prefix, errorCode) && !ignoreString(str, errorCode)) {
749 // Map from the original input to the CEs.
750 // We do this in case the canonical closure is incomplete,
751 // so that it is possible to explicitly provide the missing mappings.
752 ce32 = addIfDifferent(prefix, str, ces, cesLength, ce32, errorCode);
753 }
754 addWithClosure(nfdPrefix, nfdString, ces, cesLength, ce32, errorCode);
755 if(U_FAILURE(errorCode)) {
756 parserErrorReason = "writing collation elements";
757 return;
758 }
759 cesLength = cesLengthBeforeExtension;
760 }
761
762 int32_t
763 CollationBuilder::findOrInsertNodeForCEs(int32_t strength, const char *&parserErrorReason,
764 UErrorCode &errorCode) {
765 if(U_FAILURE(errorCode)) { return 0; }
766 U_ASSERT(UCOL_PRIMARY <= strength && strength <= UCOL_QUATERNARY);
767
768 // Find the last CE that is at least as "strong" as the requested difference.
769 // Note: Stronger is smaller (UCOL_PRIMARY=0).
770 int64_t ce;
771 for(;; --cesLength) {
772 if(cesLength == 0) {
773 ce = ces[0] = 0;
774 cesLength = 1;
775 break;
776 } else {
777 ce = ces[cesLength - 1];
778 }
779 if(ceStrength(ce) <= strength) { break; }
780 }
781
782 if(isTempCE(ce)) {
783 // No need to findCommonNode() here for lower levels
784 // because insertTailoredNodeAfter() will do that anyway.
785 return indexFromTempCE(ce);
786 }
787
788 // root CE
789 if((uint8_t)(ce >> 56) == Collation::UNASSIGNED_IMPLICIT_BYTE) {
790 errorCode = U_UNSUPPORTED_ERROR;
791 parserErrorReason = "tailoring relative to an unassigned code point not supported";
792 return 0;
793 }
794 return findOrInsertNodeForRootCE(ce, strength, errorCode);
795 }
796
797 int32_t
798 CollationBuilder::findOrInsertNodeForRootCE(int64_t ce, int32_t strength, UErrorCode &errorCode) {
799 if(U_FAILURE(errorCode)) { return 0; }
800 U_ASSERT((uint8_t)(ce >> 56) != Collation::UNASSIGNED_IMPLICIT_BYTE);
801
802 // Find or insert the node for each of the root CE's weights,
803 // down to the requested level/strength.
804 // Root CEs must have common=zero quaternary weights (for which we never insert any nodes).
805 U_ASSERT((ce & 0xc0) == 0);
806 int32_t index = findOrInsertNodeForPrimary((uint32_t)(ce >> 32), errorCode);
807 if(strength >= UCOL_SECONDARY) {
808 uint32_t lower32 = (uint32_t)ce;
809 index = findOrInsertWeakNode(index, lower32 >> 16, UCOL_SECONDARY, errorCode);
810 if(strength >= UCOL_TERTIARY) {
811 index = findOrInsertWeakNode(index, lower32 & Collation::ONLY_TERTIARY_MASK,
812 UCOL_TERTIARY, errorCode);
813 }
814 }
815 return index;
816 }
817
818 namespace {
819
820 /**
821 * Like Java Collections.binarySearch(List, key, Comparator).
822 *
823 * @return the index>=0 where the item was found,
824 * or the index<0 for inserting the string at ~index in sorted order
825 * (index into rootPrimaryIndexes)
826 */
827 int32_t
828 binarySearchForRootPrimaryNode(const int32_t *rootPrimaryIndexes, int32_t length,
829 const int64_t *nodes, uint32_t p) {
830 if(length == 0) { return ~0; }
831 int32_t start = 0;
832 int32_t limit = length;
833 for (;;) {
834 int32_t i = (start + limit) / 2;
835 int64_t node = nodes[rootPrimaryIndexes[i]];
836 uint32_t nodePrimary = (uint32_t)(node >> 32); // weight32FromNode(node)
837 if (p == nodePrimary) {
838 return i;
839 } else if (p < nodePrimary) {
840 if (i == start) {
841 return ~start; // insert s before i
842 }
843 limit = i;
844 } else {
845 if (i == start) {
846 return ~(start + 1); // insert s after i
847 }
848 start = i;
849 }
850 }
851 }
852
853 } // namespace
854
855 int32_t
856 CollationBuilder::findOrInsertNodeForPrimary(uint32_t p, UErrorCode &errorCode) {
857 if(U_FAILURE(errorCode)) { return 0; }
858
859 int32_t rootIndex = binarySearchForRootPrimaryNode(
860 rootPrimaryIndexes.getBuffer(), rootPrimaryIndexes.size(), nodes.getBuffer(), p);
861 if(rootIndex >= 0) {
862 return rootPrimaryIndexes.elementAti(rootIndex);
863 } else {
864 // Start a new list of nodes with this primary.
865 int32_t index = nodes.size();
866 nodes.addElement(nodeFromWeight32(p), errorCode);
867 rootPrimaryIndexes.insertElementAt(index, ~rootIndex, errorCode);
868 return index;
869 }
870 }
871
872 int32_t
873 CollationBuilder::findOrInsertWeakNode(int32_t index, uint32_t weight16, int32_t level, UErrorCode &errorCode) {
874 if(U_FAILURE(errorCode)) { return 0; }
875 U_ASSERT(0 <= index && index < nodes.size());
876 U_ASSERT(UCOL_SECONDARY <= level && level <= UCOL_TERTIARY);
877
878 if(weight16 == Collation::COMMON_WEIGHT16) {
879 return findCommonNode(index, level);
880 }
881
882 // If this will be the first below-common weight for the parent node,
883 // then we will also need to insert a common weight after it.
884 int64_t node = nodes.elementAti(index);
885 U_ASSERT(strengthFromNode(node) < level); // parent node is stronger
886 if(weight16 != 0 && weight16 < Collation::COMMON_WEIGHT16) {
887 int32_t hasThisLevelBefore = level == UCOL_SECONDARY ? HAS_BEFORE2 : HAS_BEFORE3;
888 if((node & hasThisLevelBefore) == 0) {
889 // The parent node has an implied level-common weight.
890 int64_t commonNode =
891 nodeFromWeight16(Collation::COMMON_WEIGHT16) | nodeFromStrength(level);
892 if(level == UCOL_SECONDARY) {
893 // Move the HAS_BEFORE3 flag from the parent node
894 // to the new secondary common node.
895 commonNode |= node & HAS_BEFORE3;
896 node &= ~(int64_t)HAS_BEFORE3;
897 }
898 nodes.setElementAt(node | hasThisLevelBefore, index);
899 // Insert below-common-weight node.
900 int32_t nextIndex = nextIndexFromNode(node);
901 node = nodeFromWeight16(weight16) | nodeFromStrength(level);
902 index = insertNodeBetween(index, nextIndex, node, errorCode);
903 // Insert common-weight node.
904 insertNodeBetween(index, nextIndex, commonNode, errorCode);
905 // Return index of below-common-weight node.
906 return index;
907 }
908 }
909
910 // Find the root CE's weight for this level.
911 // Postpone insertion if not found:
912 // Insert the new root node before the next stronger node,
913 // or before the next root node with the same strength and a larger weight.
914 int32_t nextIndex;
915 while((nextIndex = nextIndexFromNode(node)) != 0) {
916 node = nodes.elementAti(nextIndex);
917 int32_t nextStrength = strengthFromNode(node);
918 if(nextStrength <= level) {
919 // Insert before a stronger node.
920 if(nextStrength < level) { break; }
921 // nextStrength == level
922 if(!isTailoredNode(node)) {
923 uint32_t nextWeight16 = weight16FromNode(node);
924 if(nextWeight16 == weight16) {
925 // Found the node for the root CE up to this level.
926 return nextIndex;
927 }
928 // Insert before a node with a larger same-strength weight.
929 if(nextWeight16 > weight16) { break; }
930 }
931 }
932 // Skip the next node.
933 index = nextIndex;
934 }
935 node = nodeFromWeight16(weight16) | nodeFromStrength(level);
936 return insertNodeBetween(index, nextIndex, node, errorCode);
937 }
938
939 int32_t
940 CollationBuilder::insertTailoredNodeAfter(int32_t index, int32_t strength, UErrorCode &errorCode) {
941 if(U_FAILURE(errorCode)) { return 0; }
942 U_ASSERT(0 <= index && index < nodes.size());
943 if(strength >= UCOL_SECONDARY) {
944 index = findCommonNode(index, UCOL_SECONDARY);
945 if(strength >= UCOL_TERTIARY) {
946 index = findCommonNode(index, UCOL_TERTIARY);
947 }
948 }
949 // Postpone insertion:
950 // Insert the new node before the next one with a strength at least as strong.
951 int64_t node = nodes.elementAti(index);
952 int32_t nextIndex;
953 while((nextIndex = nextIndexFromNode(node)) != 0) {
954 node = nodes.elementAti(nextIndex);
955 if(strengthFromNode(node) <= strength) { break; }
956 // Skip the next node which has a weaker (larger) strength than the new one.
957 index = nextIndex;
958 }
959 node = IS_TAILORED | nodeFromStrength(strength);
960 return insertNodeBetween(index, nextIndex, node, errorCode);
961 }
962
963 int32_t
964 CollationBuilder::insertNodeBetween(int32_t index, int32_t nextIndex, int64_t node,
965 UErrorCode &errorCode) {
966 if(U_FAILURE(errorCode)) { return 0; }
967 U_ASSERT(previousIndexFromNode(node) == 0);
968 U_ASSERT(nextIndexFromNode(node) == 0);
969 U_ASSERT(nextIndexFromNode(nodes.elementAti(index)) == nextIndex);
970 // Append the new node and link it to the existing nodes.
971 int32_t newIndex = nodes.size();
972 node |= nodeFromPreviousIndex(index) | nodeFromNextIndex(nextIndex);
973 nodes.addElement(node, errorCode);
974 if(U_FAILURE(errorCode)) { return 0; }
975 // nodes[index].nextIndex = newIndex
976 node = nodes.elementAti(index);
977 nodes.setElementAt(changeNodeNextIndex(node, newIndex), index);
978 // nodes[nextIndex].previousIndex = newIndex
979 if(nextIndex != 0) {
980 node = nodes.elementAti(nextIndex);
981 nodes.setElementAt(changeNodePreviousIndex(node, newIndex), nextIndex);
982 }
983 return newIndex;
984 }
985
986 int32_t
987 CollationBuilder::findCommonNode(int32_t index, int32_t strength) const {
988 U_ASSERT(UCOL_SECONDARY <= strength && strength <= UCOL_TERTIARY);
989 int64_t node = nodes.elementAti(index);
990 if(strengthFromNode(node) >= strength) {
991 // The current node is no stronger.
992 return index;
993 }
994 if(strength == UCOL_SECONDARY ? !nodeHasBefore2(node) : !nodeHasBefore3(node)) {
995 // The current node implies the strength-common weight.
996 return index;
997 }
998 index = nextIndexFromNode(node);
999 node = nodes.elementAti(index);
1000 U_ASSERT(!isTailoredNode(node) && strengthFromNode(node) == strength &&
1001 weight16FromNode(node) < Collation::COMMON_WEIGHT16);
1002 // Skip to the explicit common node.
1003 do {
1004 index = nextIndexFromNode(node);
1005 node = nodes.elementAti(index);
1006 U_ASSERT(strengthFromNode(node) >= strength);
1007 } while(isTailoredNode(node) || strengthFromNode(node) > strength ||
1008 weight16FromNode(node) < Collation::COMMON_WEIGHT16);
1009 U_ASSERT(weight16FromNode(node) == Collation::COMMON_WEIGHT16);
1010 return index;
1011 }
1012
1013 void
1014 CollationBuilder::setCaseBits(const UnicodeString &nfdString,
1015 const char *&parserErrorReason, UErrorCode &errorCode) {
1016 if(U_FAILURE(errorCode)) { return; }
1017 int32_t numTailoredPrimaries = 0;
1018 for(int32_t i = 0; i < cesLength; ++i) {
1019 if(ceStrength(ces[i]) == UCOL_PRIMARY) { ++numTailoredPrimaries; }
1020 }
1021 // We should not be able to get too many case bits because
1022 // cesLength<=31==MAX_EXPANSION_LENGTH.
1023 // 31 pairs of case bits fit into an int64_t without setting its sign bit.
1024 U_ASSERT(numTailoredPrimaries <= 31);
1025
1026 int64_t cases = 0;
1027 if(numTailoredPrimaries > 0) {
1028 const UChar *s = nfdString.getBuffer();
1029 UTF16CollationIterator baseCEs(baseData, FALSE, s, s, s + nfdString.length());
1030 int32_t baseCEsLength = baseCEs.fetchCEs(errorCode) - 1;
1031 if(U_FAILURE(errorCode)) {
1032 parserErrorReason = "fetching root CEs for tailored string";
1033 return;
1034 }
1035 U_ASSERT(baseCEsLength >= 0 && baseCEs.getCE(baseCEsLength) == Collation::NO_CE);
1036
1037 uint32_t lastCase = 0;
1038 int32_t numBasePrimaries = 0;
1039 for(int32_t i = 0; i < baseCEsLength; ++i) {
1040 int64_t ce = baseCEs.getCE(i);
1041 if((ce >> 32) != 0) {
1042 ++numBasePrimaries;
1043 uint32_t c = ((uint32_t)ce >> 14) & 3;
1044 U_ASSERT(c == 0 || c == 2); // lowercase or uppercase, no mixed case in any base CE
1045 if(numBasePrimaries < numTailoredPrimaries) {
1046 cases |= (int64_t)c << ((numBasePrimaries - 1) * 2);
1047 } else if(numBasePrimaries == numTailoredPrimaries) {
1048 lastCase = c;
1049 } else if(c != lastCase) {
1050 // There are more base primary CEs than tailored primaries.
1051 // Set mixed case if the case bits of the remainder differ.
1052 lastCase = 1;
1053 // Nothing more can change.
1054 break;
1055 }
1056 }
1057 }
1058 if(numBasePrimaries >= numTailoredPrimaries) {
1059 cases |= (int64_t)lastCase << ((numTailoredPrimaries - 1) * 2);
1060 }
1061 }
1062
1063 for(int32_t i = 0; i < cesLength; ++i) {
1064 int64_t ce = ces[i] & INT64_C(0xffffffffffff3fff); // clear old case bits
1065 int32_t strength = ceStrength(ce);
1066 if(strength == UCOL_PRIMARY) {
1067 ce |= (cases & 3) << 14;
1068 cases >>= 2;
1069 } else if(strength == UCOL_TERTIARY) {
1070 // Tertiary CEs must have uppercase bits.
1071 // See the LDML spec, and comments in class CollationCompare.
1072 ce |= 0x8000;
1073 }
1074 // Tertiary ignorable CEs must have 0 case bits.
1075 // We set 0 case bits for secondary CEs too
1076 // since currently only U+0345 is cased and maps to a secondary CE,
1077 // and it is lowercase. Other secondaries are uncased.
1078 // See [[:Cased:]&[:uca1=:]] where uca1 queries the root primary weight.
1079 ces[i] = ce;
1080 }
1081 }
1082
1083 void
1084 CollationBuilder::suppressContractions(const UnicodeSet &set, const char *&parserErrorReason,
1085 UErrorCode &errorCode) {
1086 if(U_FAILURE(errorCode)) { return; }
1087 dataBuilder->suppressContractions(set, errorCode);
1088 if(U_FAILURE(errorCode)) {
1089 parserErrorReason = "application of [suppressContractions [set]] failed";
1090 }
1091 }
1092
1093 void
1094 CollationBuilder::optimize(const UnicodeSet &set, const char *& /* parserErrorReason */,
1095 UErrorCode &errorCode) {
1096 if(U_FAILURE(errorCode)) { return; }
1097 optimizeSet.addAll(set);
1098 }
1099
1100 uint32_t
1101 CollationBuilder::addWithClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1102 const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1103 UErrorCode &errorCode) {
1104 // Map from the NFD input to the CEs.
1105 ce32 = addIfDifferent(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
1106 ce32 = addOnlyClosure(nfdPrefix, nfdString, newCEs, newCEsLength, ce32, errorCode);
1107 addTailComposites(nfdPrefix, nfdString, errorCode);
1108 return ce32;
1109 }
1110
1111 uint32_t
1112 CollationBuilder::addOnlyClosure(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1113 const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1114 UErrorCode &errorCode) {
1115 if(U_FAILURE(errorCode)) { return ce32; }
1116
1117 // Map from canonically equivalent input to the CEs. (But not from the all-NFD input.)
1118 if(nfdPrefix.isEmpty()) {
1119 CanonicalIterator stringIter(nfdString, errorCode);
1120 if(U_FAILURE(errorCode)) { return ce32; }
1121 UnicodeString prefix;
1122 for(;;) {
1123 UnicodeString str = stringIter.next();
1124 if(str.isBogus()) { break; }
1125 if(ignoreString(str, errorCode) || str == nfdString) { continue; }
1126 ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
1127 if(U_FAILURE(errorCode)) { return ce32; }
1128 }
1129 } else {
1130 CanonicalIterator prefixIter(nfdPrefix, errorCode);
1131 CanonicalIterator stringIter(nfdString, errorCode);
1132 if(U_FAILURE(errorCode)) { return ce32; }
1133 for(;;) {
1134 UnicodeString prefix = prefixIter.next();
1135 if(prefix.isBogus()) { break; }
1136 if(ignorePrefix(prefix, errorCode)) { continue; }
1137 UBool samePrefix = prefix == nfdPrefix;
1138 for(;;) {
1139 UnicodeString str = stringIter.next();
1140 if(str.isBogus()) { break; }
1141 if(ignoreString(str, errorCode) || (samePrefix && str == nfdString)) { continue; }
1142 ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32, errorCode);
1143 if(U_FAILURE(errorCode)) { return ce32; }
1144 }
1145 stringIter.reset();
1146 }
1147 }
1148 return ce32;
1149 }
1150
1151 void
1152 CollationBuilder::addTailComposites(const UnicodeString &nfdPrefix, const UnicodeString &nfdString,
1153 UErrorCode &errorCode) {
1154 if(U_FAILURE(errorCode)) { return; }
1155
1156 // Look for the last starter in the NFD string.
1157 UChar32 lastStarter;
1158 int32_t indexAfterLastStarter = nfdString.length();
1159 for(;;) {
1160 if(indexAfterLastStarter == 0) { return; } // no starter at all
1161 lastStarter = nfdString.char32At(indexAfterLastStarter - 1);
1162 if(nfd.getCombiningClass(lastStarter) == 0) { break; }
1163 indexAfterLastStarter -= U16_LENGTH(lastStarter);
1164 }
1165 // No closure to Hangul syllables since we decompose them on the fly.
1166 if(Hangul::isJamoL(lastStarter)) { return; }
1167
1168 // Are there any composites whose decomposition starts with the lastStarter?
1169 // Note: Normalizer2Impl does not currently return start sets for NFC_QC=Maybe characters.
1170 // We might find some more equivalent mappings here if it did.
1171 UnicodeSet composites;
1172 if(!nfcImpl.getCanonStartSet(lastStarter, composites)) { return; }
1173
1174 UnicodeString decomp;
1175 UnicodeString newNFDString, newString;
1176 int64_t newCEs[Collation::MAX_EXPANSION_LENGTH];
1177 UnicodeSetIterator iter(composites);
1178 while(iter.next()) {
1179 U_ASSERT(!iter.isString());
1180 UChar32 composite = iter.getCodepoint();
1181 nfd.getDecomposition(composite, decomp);
1182 if(!mergeCompositeIntoString(nfdString, indexAfterLastStarter, composite, decomp,
1183 newNFDString, newString, errorCode)) {
1184 continue;
1185 }
1186 int32_t newCEsLength = dataBuilder->getCEs(nfdPrefix, newNFDString, newCEs, 0);
1187 if(newCEsLength > Collation::MAX_EXPANSION_LENGTH) {
1188 // Ignore mappings that we cannot store.
1189 continue;
1190 }
1191 // Note: It is possible that the newCEs do not make use of the mapping
1192 // for which we are adding the tail composites, in which case we might be adding
1193 // unnecessary mappings.
1194 // For example, when we add tail composites for ae^ (^=combining circumflex),
1195 // UCA discontiguous-contraction matching does not find any matches
1196 // for ae_^ (_=any combining diacritic below) *unless* there is also
1197 // a contraction mapping for ae.
1198 // Thus, if there is no ae contraction, then the ae^ mapping is ignored
1199 // while fetching the newCEs for ae_^.
1200 // TODO: Try to detect this effectively.
1201 // (Alternatively, print a warning when prefix contractions are missing.)
1202
1203 // We do not need an explicit mapping for the NFD strings.
1204 // It is fine if the NFD input collates like this via a sequence of mappings.
1205 // It also saves a little bit of space, and may reduce the set of characters with contractions.
1206 uint32_t ce32 = addIfDifferent(nfdPrefix, newString,
1207 newCEs, newCEsLength, Collation::UNASSIGNED_CE32, errorCode);
1208 if(ce32 != Collation::UNASSIGNED_CE32) {
1209 // was different, was added
1210 addOnlyClosure(nfdPrefix, newNFDString, newCEs, newCEsLength, ce32, errorCode);
1211 }
1212 }
1213 }
1214
1215 UBool
1216 CollationBuilder::mergeCompositeIntoString(const UnicodeString &nfdString,
1217 int32_t indexAfterLastStarter,
1218 UChar32 composite, const UnicodeString &decomp,
1219 UnicodeString &newNFDString, UnicodeString &newString,
1220 UErrorCode &errorCode) const {
1221 if(U_FAILURE(errorCode)) { return FALSE; }
1222 U_ASSERT(nfdString.char32At(indexAfterLastStarter - 1) == decomp.char32At(0));
1223 int32_t lastStarterLength = decomp.moveIndex32(0, 1);
1224 if(lastStarterLength == decomp.length()) {
1225 // Singleton decompositions should be found by addWithClosure()
1226 // and the CanonicalIterator, so we can ignore them here.
1227 return FALSE;
1228 }
1229 if(nfdString.compare(indexAfterLastStarter, 0x7fffffff,
1230 decomp, lastStarterLength, 0x7fffffff) == 0) {
1231 // same strings, nothing new to be found here
1232 return FALSE;
1233 }
1234
1235 // Make new FCD strings that combine a composite, or its decomposition,
1236 // into the nfdString's last starter and the combining marks following it.
1237 // Make an NFD version, and a version with the composite.
1238 newNFDString.setTo(nfdString, 0, indexAfterLastStarter);
1239 newString.setTo(nfdString, 0, indexAfterLastStarter - lastStarterLength).append(composite);
1240
1241 // The following is related to discontiguous contraction matching,
1242 // but builds only FCD strings (or else returns FALSE).
1243 int32_t sourceIndex = indexAfterLastStarter;
1244 int32_t decompIndex = lastStarterLength;
1245 // Small optimization: We keep the source character across loop iterations
1246 // because we do not always consume it,
1247 // and then need not fetch it again nor look up its combining class again.
1248 UChar32 sourceChar = U_SENTINEL;
1249 // The cc variables need to be declared before the loop so that at the end
1250 // they are set to the last combining classes seen.
1251 uint8_t sourceCC = 0;
1252 uint8_t decompCC = 0;
1253 for(;;) {
1254 if(sourceChar < 0) {
1255 if(sourceIndex >= nfdString.length()) { break; }
1256 sourceChar = nfdString.char32At(sourceIndex);
1257 sourceCC = nfd.getCombiningClass(sourceChar);
1258 U_ASSERT(sourceCC != 0);
1259 }
1260 // We consume a decomposition character in each iteration.
1261 if(decompIndex >= decomp.length()) { break; }
1262 UChar32 decompChar = decomp.char32At(decompIndex);
1263 decompCC = nfd.getCombiningClass(decompChar);
1264 // Compare the two characters and their combining classes.
1265 if(decompCC == 0) {
1266 // Unable to merge because the source contains a non-zero combining mark
1267 // but the composite's decomposition contains another starter.
1268 // The strings would not be equivalent.
1269 return FALSE;
1270 } else if(sourceCC < decompCC) {
1271 // Composite + sourceChar would not be FCD.
1272 return FALSE;
1273 } else if(decompCC < sourceCC) {
1274 newNFDString.append(decompChar);
1275 decompIndex += U16_LENGTH(decompChar);
1276 } else if(decompChar != sourceChar) {
1277 // Blocked because same combining class.
1278 return FALSE;
1279 } else { // match: decompChar == sourceChar
1280 newNFDString.append(decompChar);
1281 decompIndex += U16_LENGTH(decompChar);
1282 sourceIndex += U16_LENGTH(decompChar);
1283 sourceChar = U_SENTINEL;
1284 }
1285 }
1286 // We are at the end of at least one of the two inputs.
1287 if(sourceChar >= 0) { // more characters from nfdString but not from decomp
1288 if(sourceCC < decompCC) {
1289 // Appending the next source character to the composite would not be FCD.
1290 return FALSE;
1291 }
1292 newNFDString.append(nfdString, sourceIndex, 0x7fffffff);
1293 newString.append(nfdString, sourceIndex, 0x7fffffff);
1294 } else if(decompIndex < decomp.length()) { // more characters from decomp, not from nfdString
1295 newNFDString.append(decomp, decompIndex, 0x7fffffff);
1296 }
1297 U_ASSERT(nfd.isNormalized(newNFDString, errorCode));
1298 U_ASSERT(fcd.isNormalized(newString, errorCode));
1299 U_ASSERT(nfd.normalize(newString, errorCode) == newNFDString); // canonically equivalent
1300 return TRUE;
1301 }
1302
1303 UBool
1304 CollationBuilder::ignorePrefix(const UnicodeString &s, UErrorCode &errorCode) const {
1305 // Do not map non-FCD prefixes.
1306 return !isFCD(s, errorCode);
1307 }
1308
1309 UBool
1310 CollationBuilder::ignoreString(const UnicodeString &s, UErrorCode &errorCode) const {
1311 // Do not map non-FCD strings.
1312 // Do not map strings that start with Hangul syllables: We decompose those on the fly.
1313 return !isFCD(s, errorCode) || Hangul::isHangul(s.charAt(0));
1314 }
1315
1316 UBool
1317 CollationBuilder::isFCD(const UnicodeString &s, UErrorCode &errorCode) const {
1318 return U_SUCCESS(errorCode) && fcd.isNormalized(s, errorCode);
1319 }
1320
1321 void
1322 CollationBuilder::closeOverComposites(UErrorCode &errorCode) {
1323 UnicodeSet composites(UNICODE_STRING_SIMPLE("[:NFD_QC=N:]"), errorCode); // Java: static final
1324 if(U_FAILURE(errorCode)) { return; }
1325 // Hangul is decomposed on the fly during collation.
1326 composites.remove(Hangul::HANGUL_BASE, Hangul::HANGUL_END);
1327 UnicodeString prefix; // empty
1328 UnicodeString nfdString;
1329 UnicodeSetIterator iter(composites);
1330 while(iter.next()) {
1331 U_ASSERT(!iter.isString());
1332 nfd.getDecomposition(iter.getCodepoint(), nfdString);
1333 cesLength = dataBuilder->getCEs(nfdString, ces, 0);
1334 if(cesLength > Collation::MAX_EXPANSION_LENGTH) {
1335 // Too many CEs from the decomposition (unusual), ignore this composite.
1336 // We could add a capacity parameter to getCEs() and reallocate if necessary.
1337 // However, this can only really happen in contrived cases.
1338 continue;
1339 }
1340 const UnicodeString &composite(iter.getString());
1341 addIfDifferent(prefix, composite, ces, cesLength, Collation::UNASSIGNED_CE32, errorCode);
1342 }
1343 }
1344
1345 uint32_t
1346 CollationBuilder::addIfDifferent(const UnicodeString &prefix, const UnicodeString &str,
1347 const int64_t newCEs[], int32_t newCEsLength, uint32_t ce32,
1348 UErrorCode &errorCode) {
1349 if(U_FAILURE(errorCode)) { return ce32; }
1350 int64_t oldCEs[Collation::MAX_EXPANSION_LENGTH];
1351 int32_t oldCEsLength = dataBuilder->getCEs(prefix, str, oldCEs, 0);
1352 if(!sameCEs(newCEs, newCEsLength, oldCEs, oldCEsLength)) {
1353 if(ce32 == Collation::UNASSIGNED_CE32) {
1354 ce32 = dataBuilder->encodeCEs(newCEs, newCEsLength, errorCode);
1355 }
1356 dataBuilder->addCE32(prefix, str, ce32, errorCode);
1357 }
1358 return ce32;
1359 }
1360
1361 UBool
1362 CollationBuilder::sameCEs(const int64_t ces1[], int32_t ces1Length,
1363 const int64_t ces2[], int32_t ces2Length) {
1364 if(ces1Length != ces2Length) {
1365 return FALSE;
1366 }
1367 U_ASSERT(ces1Length <= Collation::MAX_EXPANSION_LENGTH);
1368 for(int32_t i = 0; i < ces1Length; ++i) {
1369 if(ces1[i] != ces2[i]) { return FALSE; }
1370 }
1371 return TRUE;
1372 }
1373
1374 #ifdef DEBUG_COLLATION_BUILDER
1375
1376 uint32_t
1377 alignWeightRight(uint32_t w) {
1378 if(w != 0) {
1379 while((w & 0xff) == 0) { w >>= 8; }
1380 }
1381 return w;
1382 }
1383
1384 #endif
1385
1386 void
1387 CollationBuilder::makeTailoredCEs(UErrorCode &errorCode) {
1388 if(U_FAILURE(errorCode)) { return; }
1389
1390 CollationWeights primaries, secondaries, tertiaries;
1391 int64_t *nodesArray = nodes.getBuffer();
1392 #ifdef DEBUG_COLLATION_BUILDER
1393 puts("\nCollationBuilder::makeTailoredCEs()");
1394 #endif
1395
1396 for(int32_t rpi = 0; rpi < rootPrimaryIndexes.size(); ++rpi) {
1397 int32_t i = rootPrimaryIndexes.elementAti(rpi);
1398 int64_t node = nodesArray[i];
1399 uint32_t p = weight32FromNode(node);
1400 uint32_t s = p == 0 ? 0 : Collation::COMMON_WEIGHT16;
1401 uint32_t t = s;
1402 uint32_t q = 0;
1403 UBool pIsTailored = FALSE;
1404 UBool sIsTailored = FALSE;
1405 UBool tIsTailored = FALSE;
1406 #ifdef DEBUG_COLLATION_BUILDER
1407 printf("\nprimary %lx\n", (long)alignWeightRight(p));
1408 #endif
1409 int32_t pIndex = p == 0 ? 0 : rootElements.findPrimary(p);
1410 int32_t nextIndex = nextIndexFromNode(node);
1411 while(nextIndex != 0) {
1412 i = nextIndex;
1413 node = nodesArray[i];
1414 nextIndex = nextIndexFromNode(node);
1415 int32_t strength = strengthFromNode(node);
1416 if(strength == UCOL_QUATERNARY) {
1417 U_ASSERT(isTailoredNode(node));
1418 #ifdef DEBUG_COLLATION_BUILDER
1419 printf(" quat+ ");
1420 #endif
1421 if(q == 3) {
1422 errorCode = U_BUFFER_OVERFLOW_ERROR;
1423 errorReason = "quaternary tailoring gap too small";
1424 return;
1425 }
1426 ++q;
1427 } else {
1428 if(strength == UCOL_TERTIARY) {
1429 if(isTailoredNode(node)) {
1430 #ifdef DEBUG_COLLATION_BUILDER
1431 printf(" ter+ ");
1432 #endif
1433 if(!tIsTailored) {
1434 // First tailored tertiary node for [p, s].
1435 int32_t tCount = countTailoredNodes(nodesArray, nextIndex,
1436 UCOL_TERTIARY) + 1;
1437 uint32_t tLimit;
1438 if(t == 0) {
1439 // Gap at the beginning of the tertiary CE range.
1440 t = rootElements.getTertiaryBoundary() - 0x100;
1441 tLimit = rootElements.getFirstTertiaryCE() & Collation::ONLY_TERTIARY_MASK;
1442 } else if(!pIsTailored && !sIsTailored) {
1443 // p and s are root weights.
1444 tLimit = rootElements.getTertiaryAfter(pIndex, s, t);
1445 } else if(t == Collation::BEFORE_WEIGHT16) {
1446 tLimit = Collation::COMMON_WEIGHT16;
1447 } else {
1448 // [p, s] is tailored.
1449 U_ASSERT(t == Collation::COMMON_WEIGHT16);
1450 tLimit = rootElements.getTertiaryBoundary();
1451 }
1452 U_ASSERT(tLimit == 0x4000 || (tLimit & ~Collation::ONLY_TERTIARY_MASK) == 0);
1453 tertiaries.initForTertiary();
1454 if(!tertiaries.allocWeights(t, tLimit, tCount)) {
1455 errorCode = U_BUFFER_OVERFLOW_ERROR;
1456 errorReason = "tertiary tailoring gap too small";
1457 return;
1458 }
1459 tIsTailored = TRUE;
1460 }
1461 t = tertiaries.nextWeight();
1462 U_ASSERT(t != 0xffffffff);
1463 } else {
1464 t = weight16FromNode(node);
1465 tIsTailored = FALSE;
1466 #ifdef DEBUG_COLLATION_BUILDER
1467 printf(" ter %lx\n", (long)alignWeightRight(t));
1468 #endif
1469 }
1470 } else {
1471 if(strength == UCOL_SECONDARY) {
1472 if(isTailoredNode(node)) {
1473 #ifdef DEBUG_COLLATION_BUILDER
1474 printf(" sec+ ");
1475 #endif
1476 if(!sIsTailored) {
1477 // First tailored secondary node for p.
1478 int32_t sCount = countTailoredNodes(nodesArray, nextIndex,
1479 UCOL_SECONDARY) + 1;
1480 uint32_t sLimit;
1481 if(s == 0) {
1482 // Gap at the beginning of the secondary CE range.
1483 s = rootElements.getSecondaryBoundary() - 0x100;
1484 sLimit = rootElements.getFirstSecondaryCE() >> 16;
1485 } else if(!pIsTailored) {
1486 // p is a root primary.
1487 sLimit = rootElements.getSecondaryAfter(pIndex, s);
1488 } else if(s == Collation::BEFORE_WEIGHT16) {
1489 sLimit = Collation::COMMON_WEIGHT16;
1490 } else {
1491 // p is a tailored primary.
1492 U_ASSERT(s == Collation::COMMON_WEIGHT16);
1493 sLimit = rootElements.getSecondaryBoundary();
1494 }
1495 if(s == Collation::COMMON_WEIGHT16) {
1496 // Do not tailor into the getSortKey() range of
1497 // compressed common secondaries.
1498 s = rootElements.getLastCommonSecondary();
1499 }
1500 secondaries.initForSecondary();
1501 if(!secondaries.allocWeights(s, sLimit, sCount)) {
1502 errorCode = U_BUFFER_OVERFLOW_ERROR;
1503 errorReason = "secondary tailoring gap too small";
1504 #ifdef DEBUG_COLLATION_BUILDER
1505 printf("!secondaries.allocWeights(%lx, %lx, sCount=%ld)\n",
1506 (long)alignWeightRight(s), (long)alignWeightRight(sLimit),
1507 (long)alignWeightRight(sCount));
1508 #endif
1509 return;
1510 }
1511 sIsTailored = TRUE;
1512 }
1513 s = secondaries.nextWeight();
1514 U_ASSERT(s != 0xffffffff);
1515 } else {
1516 s = weight16FromNode(node);
1517 sIsTailored = FALSE;
1518 #ifdef DEBUG_COLLATION_BUILDER
1519 printf(" sec %lx\n", (long)alignWeightRight(s));
1520 #endif
1521 }
1522 } else /* UCOL_PRIMARY */ {
1523 U_ASSERT(isTailoredNode(node));
1524 #ifdef DEBUG_COLLATION_BUILDER
1525 printf("pri+ ");
1526 #endif
1527 if(!pIsTailored) {
1528 // First tailored primary node in this list.
1529 int32_t pCount = countTailoredNodes(nodesArray, nextIndex,
1530 UCOL_PRIMARY) + 1;
1531 UBool isCompressible = baseData->isCompressiblePrimary(p);
1532 uint32_t pLimit =
1533 rootElements.getPrimaryAfter(p, pIndex, isCompressible);
1534 primaries.initForPrimary(isCompressible);
1535 if(!primaries.allocWeights(p, pLimit, pCount)) {
1536 errorCode = U_BUFFER_OVERFLOW_ERROR; // TODO: introduce a more specific UErrorCode?
1537 errorReason = "primary tailoring gap too small";
1538 return;
1539 }
1540 pIsTailored = TRUE;
1541 }
1542 p = primaries.nextWeight();
1543 U_ASSERT(p != 0xffffffff);
1544 s = Collation::COMMON_WEIGHT16;
1545 sIsTailored = FALSE;
1546 }
1547 t = s == 0 ? 0 : Collation::COMMON_WEIGHT16;
1548 tIsTailored = FALSE;
1549 }
1550 q = 0;
1551 }
1552 if(isTailoredNode(node)) {
1553 nodesArray[i] = Collation::makeCE(p, s, t, q);
1554 #ifdef DEBUG_COLLATION_BUILDER
1555 printf("%016llx\n", (long long)nodesArray[i]);
1556 #endif
1557 }
1558 }
1559 }
1560 }
1561
1562 int32_t
1563 CollationBuilder::countTailoredNodes(const int64_t *nodesArray, int32_t i, int32_t strength) {
1564 int32_t count = 0;
1565 for(;;) {
1566 if(i == 0) { break; }
1567 int64_t node = nodesArray[i];
1568 if(strengthFromNode(node) < strength) { break; }
1569 if(strengthFromNode(node) == strength) {
1570 if(isTailoredNode(node)) {
1571 ++count;
1572 } else {
1573 break;
1574 }
1575 }
1576 i = nextIndexFromNode(node);
1577 }
1578 return count;
1579 }
1580
1581 class CEFinalizer : public CollationDataBuilder::CEModifier {
1582 public:
1583 CEFinalizer(const int64_t *ces) : finalCEs(ces) {}
1584 virtual ~CEFinalizer();
1585 virtual int64_t modifyCE32(uint32_t ce32) const {
1586 U_ASSERT(!Collation::isSpecialCE32(ce32));
1587 if(CollationBuilder::isTempCE32(ce32)) {
1588 // retain case bits
1589 return finalCEs[CollationBuilder::indexFromTempCE32(ce32)] | ((ce32 & 0xc0) << 8);
1590 } else {
1591 return Collation::NO_CE;
1592 }
1593 }
1594 virtual int64_t modifyCE(int64_t ce) const {
1595 if(CollationBuilder::isTempCE(ce)) {
1596 // retain case bits
1597 return finalCEs[CollationBuilder::indexFromTempCE(ce)] | (ce & 0xc000);
1598 } else {
1599 return Collation::NO_CE;
1600 }
1601 }
1602
1603 private:
1604 const int64_t *finalCEs;
1605 };
1606
1607 CEFinalizer::~CEFinalizer() {}
1608
1609 void
1610 CollationBuilder::finalizeCEs(UErrorCode &errorCode) {
1611 if(U_FAILURE(errorCode)) { return; }
1612 LocalPointer<CollationDataBuilder> newBuilder(new CollationDataBuilder(errorCode), errorCode);
1613 if(U_FAILURE(errorCode)) {
1614 return;
1615 }
1616 newBuilder->initForTailoring(baseData, errorCode);
1617 CEFinalizer finalizer(nodes.getBuffer());
1618 newBuilder->copyFrom(*dataBuilder, finalizer, errorCode);
1619 if(U_FAILURE(errorCode)) { return; }
1620 delete dataBuilder;
1621 dataBuilder = newBuilder.orphan();
1622 }
1623
1624 int32_t
1625 CollationBuilder::ceStrength(int64_t ce) {
1626 return
1627 isTempCE(ce) ? strengthFromTempCE(ce) :
1628 (ce & INT64_C(0xff00000000000000)) != 0 ? UCOL_PRIMARY :
1629 ((uint32_t)ce & 0xff000000) != 0 ? UCOL_SECONDARY :
1630 ce != 0 ? UCOL_TERTIARY :
1631 UCOL_IDENTICAL;
1632 }
1633
1634 U_NAMESPACE_END
1635
1636 U_NAMESPACE_USE
1637
1638 U_CAPI UCollator * U_EXPORT2
1639 ucol_openRules(const UChar *rules, int32_t rulesLength,
1640 UColAttributeValue normalizationMode, UCollationStrength strength,
1641 UParseError *parseError, UErrorCode *pErrorCode) {
1642 if(U_FAILURE(*pErrorCode)) { return NULL; }
1643 if(rules == NULL && rulesLength != 0) {
1644 *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR;
1645 return NULL;
1646 }
1647 RuleBasedCollator *coll = new RuleBasedCollator();
1648 if(coll == NULL) {
1649 *pErrorCode = U_MEMORY_ALLOCATION_ERROR;
1650 return NULL;
1651 }
1652 UnicodeString r((UBool)(rulesLength < 0), rules, rulesLength);
1653 coll->internalBuildTailoring(r, strength, normalizationMode, parseError, NULL, *pErrorCode);
1654 if(U_FAILURE(*pErrorCode)) {
1655 delete coll;
1656 return NULL;
1657 }
1658 return coll->toUCollator();
1659 }
1660
1661 static const int32_t internalBufferSize = 512;
1662
1663 // The @internal ucol_getUnsafeSet() was moved here from ucol_sit.cpp
1664 // because it calls UnicodeSet "builder" code that depends on all Unicode properties,
1665 // and the rest of the collation "runtime" code only depends on normalization.
1666 // This function is not related to the collation builder,
1667 // but it did not seem worth moving it into its own .cpp file,
1668 // nor rewriting it to use lower-level UnicodeSet and Normalizer2Impl methods.
1669 U_CAPI int32_t U_EXPORT2
1670 ucol_getUnsafeSet( const UCollator *coll,
1671 USet *unsafe,
1672 UErrorCode *status)
1673 {
1674 UChar buffer[internalBufferSize];
1675 int32_t len = 0;
1676
1677 uset_clear(unsafe);
1678
1679 // cccpattern = "[[:^tccc=0:][:^lccc=0:]]", unfortunately variant
1680 static const UChar cccpattern[25] = { 0x5b, 0x5b, 0x3a, 0x5e, 0x74, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d,
1681 0x5b, 0x3a, 0x5e, 0x6c, 0x63, 0x63, 0x63, 0x3d, 0x30, 0x3a, 0x5d, 0x5d, 0x00 };
1682
1683 // add chars that fail the fcd check
1684 uset_applyPattern(unsafe, cccpattern, 24, USET_IGNORE_SPACE, status);
1685
1686 // add lead/trail surrogates
1687 // (trail surrogates should need to be unsafe only if the caller tests for UTF-16 code *units*,
1688 // not when testing code *points*)
1689 uset_addRange(unsafe, 0xd800, 0xdfff);
1690
1691 USet *contractions = uset_open(0,0);
1692
1693 int32_t i = 0, j = 0;
1694 ucol_getContractionsAndExpansions(coll, contractions, NULL, FALSE, status);
1695 int32_t contsSize = uset_size(contractions);
1696 UChar32 c = 0;
1697 // Contraction set consists only of strings
1698 // to get unsafe code points, we need to
1699 // break the strings apart and add them to the unsafe set
1700 for(i = 0; i < contsSize; i++) {
1701 len = uset_getItem(contractions, i, NULL, NULL, buffer, internalBufferSize, status);
1702 if(len > 0) {
1703 j = 0;
1704 while(j < len) {
1705 U16_NEXT(buffer, j, len, c);
1706 if(j < len) {
1707 uset_add(unsafe, c);
1708 }
1709 }
1710 }
1711 }
1712
1713 uset_close(contractions);
1714
1715 return uset_size(unsafe);
1716 }
1717
1718 #endif // !UCONFIG_NO_COLLATION