]>
git.saurik.com Git - apple/icu.git/blob - icuSources/test/intltest/astrotst.cpp
1 /********************************************************************
3 * Copyright (c) 1996-2010, International Business Machines Corporation and
4 * others. All Rights Reserved.
5 ********************************************************************/
7 /* Test CalendarAstronomer for C++ */
9 #include "unicode/utypes.h"
11 #include "unicode/locid.h"
13 #if !UCONFIG_NO_FORMATTING
17 #include "gregoimp.h" // for Math
18 #include "unicode/simpletz.h"
21 static const double DAY_MS
= 24.*60.*60.*1000.;
23 #define CASE(id,test) case id: name = #test; if (exec) { logln(#test "---"); logln((UnicodeString)""); test(); } break
25 AstroTest::AstroTest(): astro(NULL
), gc(NULL
) {
28 void AstroTest::runIndexedTest( int32_t index
, UBool exec
, const char* &name
, char* /*par*/ )
30 if (exec
) logln("TestSuite AstroTest");
33 CASE(0,TestSolarLongitude
);
34 CASE(1,TestLunarPosition
);
35 CASE(2,TestCoordinates
);
37 CASE(4,TestSunriseTimes
);
40 default: name
= ""; break;
46 #define ASSERT_OK(x) if(U_FAILURE(x)) { dataerrln("%s:%d: %s\n", __FILE__, __LINE__, u_errorName(x)); return; }
49 void AstroTest::initAstro(UErrorCode
&status
) {
50 if(U_FAILURE(status
)) return;
52 if((astro
!= NULL
) || (gc
!= NULL
)) {
53 dataerrln("Err: initAstro() called twice!");
55 if(U_SUCCESS(status
)) {
56 status
= U_INTERNAL_PROGRAM_ERROR
;
60 if(U_FAILURE(status
)) return;
62 astro
= new CalendarAstronomer();
63 gc
= Calendar::createInstance(TimeZone::getGMT()->clone(), status
);
66 void AstroTest::closeAstro(UErrorCode
&/*status*/) {
77 void AstroTest::TestSolarLongitude(void) {
78 UErrorCode status
= U_ZERO_ERROR
;
83 int32_t d
[5]; double f
;
85 { { 1980, 7, 27, 0, 00 }, 124.114347 },
86 { { 1988, 7, 27, 00, 00 }, 124.187732 }
90 for (uint32_t i
= 0; i
< sizeof(tests
)/sizeof(tests
[0]); i
++) {
92 gc
->set(tests
[i
].d
[0], tests
[i
].d
[1]-1, tests
[i
].d
[2], tests
[i
].d
[3], tests
[i
].d
[4]);
94 astro
->setDate(gc
->getTime(status
));
96 double longitude
= astro
->getSunLongitude();
98 CalendarAstronomer::Equatorial result
;
99 astro
->getSunPosition(result
);
100 logln((UnicodeString
)"Sun position is " + result
.toString() + (UnicodeString
)"; " /* + result.toHmsString()*/ + " Sun longitude is " + longitude
);
108 void AstroTest::TestLunarPosition(void) {
109 UErrorCode status
= U_ZERO_ERROR
;
113 static const double tests
[][7] = {
114 { 1979, 2, 26, 16, 00, 0, 0 }
118 for (int32_t i
= 0; i
< (int32_t)(sizeof(tests
)/sizeof(tests
[0])); i
++) {
120 gc
->set((int32_t)tests
[i
][0], (int32_t)tests
[i
][1]-1, (int32_t)tests
[i
][2], (int32_t)tests
[i
][3], (int32_t)tests
[i
][4]);
121 astro
->setDate(gc
->getTime(status
));
123 const CalendarAstronomer::Equatorial
& result
= astro
->getMoonPosition();
124 logln((UnicodeString
)"Moon position is " + result
.toString() + (UnicodeString
)"; " /* + result->toHmsString()*/);
133 void AstroTest::TestCoordinates(void) {
134 UErrorCode status
= U_ZERO_ERROR
;
138 CalendarAstronomer::Equatorial result
;
139 astro
->eclipticToEquatorial(result
, 139.686111 * CalendarAstronomer::PI
/ 180.0, 4.875278* CalendarAstronomer::PI
/ 180.0);
140 logln((UnicodeString
)"result is " + result
.toString() + (UnicodeString
)"; " /* + result.toHmsString()*/ );
147 void AstroTest::TestCoverage(void) {
148 UErrorCode status
= U_ZERO_ERROR
;
151 GregorianCalendar
*cal
= new GregorianCalendar(1958, UCAL_AUGUST
, 15,status
);
152 UDate then
= cal
->getTime(status
);
153 CalendarAstronomer
*myastro
= new CalendarAstronomer(then
);
156 //Latitude: 34 degrees 05' North
157 //Longitude: 118 degrees 22' West
158 double laLat
= 34 + 5./60, laLong
= 360 - (118 + 22./60);
159 CalendarAstronomer
*myastro2
= new CalendarAstronomer(laLong
, laLat
);
161 double eclLat
= laLat
* CalendarAstronomer::PI
/ 360;
162 double eclLong
= laLong
* CalendarAstronomer::PI
/ 360;
164 CalendarAstronomer::Ecliptic
ecl(eclLat
, eclLong
);
165 CalendarAstronomer::Equatorial eq
;
166 CalendarAstronomer::Horizon hor
;
168 logln("ecliptic: " + ecl
.toString());
169 CalendarAstronomer
*myastro3
= new CalendarAstronomer();
170 myastro3
->setJulianDay((4713 + 2000) * 365.25);
172 CalendarAstronomer
*astronomers
[] = {
173 myastro
, myastro2
, myastro3
, myastro2
// check cache
176 for (uint32_t i
= 0; i
< sizeof(astronomers
)/sizeof(astronomers
[0]); ++i
) {
177 CalendarAstronomer
*anAstro
= astronomers
[i
];
179 //logln("astro: " + astro);
180 logln((UnicodeString
)" date: " + anAstro
->getTime());
181 logln((UnicodeString
)" cent: " + anAstro
->getJulianCentury());
182 logln((UnicodeString
)" gw sidereal: " + anAstro
->getGreenwichSidereal());
183 logln((UnicodeString
)" loc sidereal: " + anAstro
->getLocalSidereal());
184 logln((UnicodeString
)" equ ecl: " + (anAstro
->eclipticToEquatorial(eq
,ecl
)).toString());
185 logln((UnicodeString
)" equ long: " + (anAstro
->eclipticToEquatorial(eq
, eclLong
)).toString());
186 logln((UnicodeString
)" horiz: " + (anAstro
->eclipticToHorizon(hor
, eclLong
)).toString());
187 logln((UnicodeString
)" sunrise: " + (anAstro
->getSunRiseSet(TRUE
)));
188 logln((UnicodeString
)" sunset: " + (anAstro
->getSunRiseSet(FALSE
)));
189 logln((UnicodeString
)" moon phase: " + anAstro
->getMoonPhase());
190 logln((UnicodeString
)" moonrise: " + (anAstro
->getMoonRiseSet(TRUE
)));
191 logln((UnicodeString
)" moonset: " + (anAstro
->getMoonRiseSet(FALSE
)));
192 logln((UnicodeString
)" prev summer solstice: " + (anAstro
->getSunTime(CalendarAstronomer::SUMMER_SOLSTICE(), FALSE
)));
193 logln((UnicodeString
)" next summer solstice: " + (anAstro
->getSunTime(CalendarAstronomer::SUMMER_SOLSTICE(), TRUE
)));
194 logln((UnicodeString
)" prev full moon: " + (anAstro
->getMoonTime(CalendarAstronomer::FULL_MOON(), FALSE
)));
195 logln((UnicodeString
)" next full moon: " + (anAstro
->getMoonTime(CalendarAstronomer::FULL_MOON(), TRUE
)));
209 void AstroTest::TestSunriseTimes(void) {
210 UErrorCode status
= U_ZERO_ERROR
;
214 // logln("Sunrise/Sunset times for San Jose, California, USA");
215 // CalendarAstronomer *astro2 = new CalendarAstronomer(-121.55, 37.20);
216 // TimeZone *tz = TimeZone::createTimeZone("America/Los_Angeles");
218 // We'll use a table generated by the UNSO website as our reference
219 // From: http://aa.usno.navy.mil/
220 //-Location: W079 25, N43 40
221 //-Rise and Set for the Sun for 2001
222 //-Zone: 4h West of Greenwich
256 logln("Sunrise/Sunset times for Toronto, Canada");
257 // long = 79 25", lat = 43 40"
258 CalendarAstronomer
*astro3
= new CalendarAstronomer(-(79+25/60), 43+40/60);
260 // As of ICU4J 2.8 the ICU4J time zones implement pass-through
261 // to the underlying JDK. Because of variation in the
262 // underlying JDKs, we have to use a fixed-offset
263 // SimpleTimeZone to get consistent behavior between JDKs.
264 // The offset we want is [-18000000, 3600000] (raw, dst).
267 // TimeZone tz = TimeZone.getTimeZone("America/Montreal");
268 TimeZone
*tz
= new SimpleTimeZone(-18000000 + 3600000, "Montreal(FIXED)");
270 GregorianCalendar
*cal
= new GregorianCalendar(tz
->clone(), Locale::getUS(), status
);
271 GregorianCalendar
*cal2
= new GregorianCalendar(tz
->clone(), Locale::getUS(), status
);
273 cal
->set(UCAL_YEAR
, 2001);
274 cal
->set(UCAL_MONTH
, UCAL_APRIL
);
275 cal
->set(UCAL_DAY_OF_MONTH
, 1);
276 cal
->set(UCAL_HOUR_OF_DAY
, 12); // must be near local noon for getSunRiseSet to work
278 DateFormat
*df_t
= DateFormat::createTimeInstance(DateFormat::MEDIUM
,Locale::getUS());
279 DateFormat
*df_d
= DateFormat::createDateInstance(DateFormat::MEDIUM
,Locale::getUS());
280 DateFormat
*df_dt
= DateFormat::createDateTimeInstance(DateFormat::MEDIUM
, DateFormat::MEDIUM
, Locale::getUS());
281 if(!df_t
|| !df_d
|| !df_dt
) {
282 dataerrln("couldn't create dateformats.");
285 df_t
->adoptTimeZone(tz
->clone());
286 df_d
->adoptTimeZone(tz
->clone());
287 df_dt
->adoptTimeZone(tz
->clone());
289 for (int32_t i
=0; i
< 30; i
++) {
291 astro3
->setDate(cal
->getTime(status
));
292 logln("getRiseSet(TRUE)\n");
293 UDate sunrise
= astro3
->getSunRiseSet(TRUE
);
294 logln("getRiseSet(FALSE)\n");
295 UDate sunset
= astro3
->getSunRiseSet(FALSE
);
296 logln("end of getRiseSet\n");
298 cal2
->setTime(cal
->getTime(status
), status
);
299 cal2
->set(UCAL_SECOND
, 0);
300 cal2
->set(UCAL_MILLISECOND
, 0);
302 cal2
->set(UCAL_HOUR_OF_DAY
, USNO
[4*i
+0]);
303 cal2
->set(UCAL_MINUTE
, USNO
[4*i
+1]);
304 UDate exprise
= cal2
->getTime(status
);
305 cal2
->set(UCAL_HOUR_OF_DAY
, USNO
[4*i
+2]);
306 cal2
->set(UCAL_MINUTE
, USNO
[4*i
+3]);
307 UDate expset
= cal2
->getTime(status
);
308 // Compute delta of what we got to the USNO data, in seconds
309 int32_t deltarise
= (int32_t)uprv_fabs((sunrise
- exprise
) / 1000);
310 int32_t deltaset
= (int32_t)uprv_fabs((sunset
- expset
) / 1000);
312 // Allow a deviation of 0..MAX_DEV seconds
313 // It would be nice to get down to 60 seconds, but at this
314 // point that appears to be impossible without a redo of the
315 // algorithm using something more advanced than Duffett-Smith.
316 int32_t MAX_DEV
= 180;
317 UnicodeString s1
, s2
, s3
, s4
, s5
;
318 if (deltarise
> MAX_DEV
|| deltaset
> MAX_DEV
) {
319 if (deltarise
> MAX_DEV
) {
320 errln("FAIL: (rise) " + df_d
->format(cal
->getTime(status
),s1
) +
321 ", Sunrise: " + df_dt
->format(sunrise
, s2
) +
322 " (USNO " + df_t
->format(exprise
,s3
) +
323 " d=" + deltarise
+ "s)");
325 logln(df_d
->format(cal
->getTime(status
),s1
) +
326 ", Sunrise: " + df_dt
->format(sunrise
,s2
) +
327 " (USNO " + df_t
->format(exprise
,s3
) + ")");
329 s1
.remove(); s2
.remove(); s3
.remove(); s4
.remove(); s5
.remove();
330 if (deltaset
> MAX_DEV
) {
331 errln("FAIL: (set) " + df_d
->format(cal
->getTime(status
),s1
) +
332 ", Sunset: " + df_dt
->format(sunset
,s2
) +
333 " (USNO " + df_t
->format(expset
,s3
) +
334 " d=" + deltaset
+ "s)");
336 logln(df_d
->format(cal
->getTime(status
),s1
) +
337 ", Sunset: " + df_dt
->format(sunset
,s2
) +
338 " (USNO " + df_t
->format(expset
,s3
) + ")");
341 logln(df_d
->format(cal
->getTime(status
),s1
) +
342 ", Sunrise: " + df_dt
->format(sunrise
,s2
) +
343 " (USNO " + df_t
->format(exprise
,s3
) + ")" +
344 ", Sunset: " + df_dt
->format(sunset
,s4
) +
345 " (USNO " + df_t
->format(expset
,s5
) + ")");
347 cal
->add(UCAL_DATE
, 1, status
);
350 // CalendarAstronomer a = new CalendarAstronomer(-(71+5/60), 42+37/60);
352 // cal.set(cal.YEAR, 1986);
353 // cal.set(cal.MONTH, cal.MARCH);
354 // cal.set(cal.DATE, 10);
355 // cal.set(cal.YEAR, 1988);
356 // cal.set(cal.MONTH, cal.JULY);
357 // cal.set(cal.DATE, 27);
358 // a.setDate(cal.getTime());
359 // long r = a.getSunRiseSet2(true);
373 void AstroTest::TestBasics(void) {
374 UErrorCode status
= U_ZERO_ERROR
;
376 if (U_FAILURE(status
)) {
377 dataerrln("Got error: %s", u_errorName(status
));
381 // Check that our JD computation is the same as the book's (p. 88)
382 GregorianCalendar
*cal3
= new GregorianCalendar(TimeZone::getGMT()->clone(), Locale::getUS(), status
);
383 DateFormat
*d3
= DateFormat::createDateTimeInstance(DateFormat::MEDIUM
,DateFormat::MEDIUM
,Locale::getUS());
384 d3
->setTimeZone(*TimeZone::getGMT());
386 cal3
->set(UCAL_YEAR
, 1980);
387 cal3
->set(UCAL_MONTH
, UCAL_JULY
);
388 cal3
->set(UCAL_DATE
, 2);
389 logln("cal3[a]=%.1lf, d=%d\n", cal3
->getTime(status
), cal3
->get(UCAL_JULIAN_DAY
,status
));
392 logln(UnicodeString("cal3[a] = ") + d3
->format(cal3
->getTime(status
),s
));
395 cal3
->set(UCAL_YEAR
, 1980);
396 cal3
->set(UCAL_MONTH
, UCAL_JULY
);
397 cal3
->set(UCAL_DATE
, 27);
398 logln("cal3=%.1lf, d=%d\n", cal3
->getTime(status
), cal3
->get(UCAL_JULIAN_DAY
,status
));
403 logln(UnicodeString("cal3 = ") + d3
->format(cal3
->getTime(status
),s
));
405 astro
->setTime(cal3
->getTime(status
));
406 double jd
= astro
->getJulianDay() - 2447891.5;
410 logln(d3
->format(cal3
->getTime(status
),s
) + " => " + jd
);
413 errln("FAIL: " + d3
->format(cal3
->getTime(status
), s
) + " => " + jd
+
414 ", expected " + exp
);
418 // cal3.set(cal3.YEAR, 1990);
419 // cal3.set(cal3.MONTH, Calendar.JANUARY);
420 // cal3.set(cal3.DATE, 1);
421 // cal3.add(cal3.DATE, -1);
422 // astro.setDate(cal3.getTime());
433 void AstroTest::TestMoonAge(void){
434 UErrorCode status
= U_ZERO_ERROR
;
438 // more testcases are around the date 05/20/2012
439 //ticket#3785 UDate ud0 = 1337557623000.0;
440 static const double testcase
[][10] = {{2012, 5, 20 , 16 , 48, 59},
441 {2012, 5, 20 , 16 , 47, 34},
442 {2012, 5, 21, 00, 00, 00},
443 {2012, 5, 20, 14, 55, 59},
444 {2012, 5, 21, 7, 40, 40},
445 {2023, 9, 25, 10,00, 00},
446 {2008, 7, 7, 15, 00, 33},
447 {1832, 9, 24, 2, 33, 41 },
448 {2016, 1, 31, 23, 59, 59},
449 {2099, 5, 20, 14, 55, 59}
451 // Moon phase angle - Got from http://www.moonsystem.to/checkupe.htm
452 static const double angle
[] = {356.8493418421329, 356.8386760059673, 0.09625415252237701, 355.9986960782416, 3.5714026601303317, 124.26906744384183, 59.80247650195558,
453 357.54163205513123, 268.41779281511094, 4.82340276581624};
454 static const double precision
= CalendarAstronomer::PI
/32;
455 for (int32_t i
= 0; i
< (int32_t)(sizeof(testcase
)/sizeof(testcase
[0])); i
++) {
457 logln((UnicodeString
)"CASE["+i
+"]: Year "+(int32_t)testcase
[i
][0]+" Month "+(int32_t)testcase
[i
][1]+" Day "+
458 (int32_t)testcase
[i
][2]+" Hour "+(int32_t)testcase
[i
][3]+" Minutes "+(int32_t)testcase
[i
][4]+
459 " Seconds "+(int32_t)testcase
[i
][5]);
460 gc
->set((int32_t)testcase
[i
][0], (int32_t)testcase
[i
][1]-1, (int32_t)testcase
[i
][2], (int32_t)testcase
[i
][3], (int32_t)testcase
[i
][4], (int32_t)testcase
[i
][5]);
461 astro
->setDate(gc
->getTime(status
));
462 double expectedAge
= (angle
[i
]*CalendarAstronomer::PI
)/180;
463 double got
= astro
->getMoonAge();
465 if(!(got
>expectedAge
-precision
&& got
<expectedAge
+precision
)){
466 errln((UnicodeString
)"FAIL: expected " + expectedAge
+
469 logln((UnicodeString
)"PASS: expected " + expectedAge
+
478 // TODO: try finding next new moon after 07/28/1984 16:00 GMT