]> git.saurik.com Git - apple/icu.git/blob - icuSources/i18n/rbt_pars.cpp
ICU-511.34.tar.gz
[apple/icu.git] / icuSources / i18n / rbt_pars.cpp
1 /*
2 **********************************************************************
3 * Copyright (C) 1999-2011, International Business Machines
4 * Corporation and others. All Rights Reserved.
5 **********************************************************************
6 * Date Name Description
7 * 11/17/99 aliu Creation.
8 **********************************************************************
9 */
10
11 #include "unicode/utypes.h"
12
13 #if !UCONFIG_NO_TRANSLITERATION
14
15 #include "unicode/uobject.h"
16 #include "unicode/parseerr.h"
17 #include "unicode/parsepos.h"
18 #include "unicode/putil.h"
19 #include "unicode/uchar.h"
20 #include "unicode/ustring.h"
21 #include "unicode/uniset.h"
22 #include "unicode/utf16.h"
23 #include "cstring.h"
24 #include "funcrepl.h"
25 #include "hash.h"
26 #include "quant.h"
27 #include "rbt.h"
28 #include "rbt_data.h"
29 #include "rbt_pars.h"
30 #include "rbt_rule.h"
31 #include "strmatch.h"
32 #include "strrepl.h"
33 #include "unicode/symtable.h"
34 #include "tridpars.h"
35 #include "uvector.h"
36 #include "hash.h"
37 #include "patternprops.h"
38 #include "util.h"
39 #include "cmemory.h"
40 #include "uprops.h"
41 #include "putilimp.h"
42
43 // Operators
44 #define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/
45 #define FORWARD_RULE_OP ((UChar)0x003E) /*>*/
46 #define REVERSE_RULE_OP ((UChar)0x003C) /*<*/
47 #define FWDREV_RULE_OP ((UChar)0x007E) /*~*/ // internal rep of <> op
48
49 // Other special characters
50 #define QUOTE ((UChar)0x0027) /*'*/
51 #define ESCAPE ((UChar)0x005C) /*\*/
52 #define END_OF_RULE ((UChar)0x003B) /*;*/
53 #define RULE_COMMENT_CHAR ((UChar)0x0023) /*#*/
54
55 #define SEGMENT_OPEN ((UChar)0x0028) /*(*/
56 #define SEGMENT_CLOSE ((UChar)0x0029) /*)*/
57 #define CONTEXT_ANTE ((UChar)0x007B) /*{*/
58 #define CONTEXT_POST ((UChar)0x007D) /*}*/
59 #define CURSOR_POS ((UChar)0x007C) /*|*/
60 #define CURSOR_OFFSET ((UChar)0x0040) /*@*/
61 #define ANCHOR_START ((UChar)0x005E) /*^*/
62 #define KLEENE_STAR ((UChar)0x002A) /***/
63 #define ONE_OR_MORE ((UChar)0x002B) /*+*/
64 #define ZERO_OR_ONE ((UChar)0x003F) /*?*/
65
66 #define DOT ((UChar)46) /*.*/
67
68 static const UChar DOT_SET[] = { // "[^[:Zp:][:Zl:]\r\n$]";
69 91, 94, 91, 58, 90, 112, 58, 93, 91, 58, 90,
70 108, 58, 93, 92, 114, 92, 110, 36, 93, 0
71 };
72
73 // A function is denoted &Source-Target/Variant(text)
74 #define FUNCTION ((UChar)38) /*&*/
75
76 // Aliases for some of the syntax characters. These are provided so
77 // transliteration rules can be expressed in XML without clashing with
78 // XML syntax characters '<', '>', and '&'.
79 #define ALT_REVERSE_RULE_OP ((UChar)0x2190) // Left Arrow
80 #define ALT_FORWARD_RULE_OP ((UChar)0x2192) // Right Arrow
81 #define ALT_FWDREV_RULE_OP ((UChar)0x2194) // Left Right Arrow
82 #define ALT_FUNCTION ((UChar)0x2206) // Increment (~Greek Capital Delta)
83
84 // Special characters disallowed at the top level
85 static const UChar ILLEGAL_TOP[] = {41,0}; // ")"
86
87 // Special characters disallowed within a segment
88 static const UChar ILLEGAL_SEG[] = {123,125,124,64,0}; // "{}|@"
89
90 // Special characters disallowed within a function argument
91 static const UChar ILLEGAL_FUNC[] = {94,40,46,42,43,63,123,125,124,64,0}; // "^(.*+?{}|@"
92
93 // By definition, the ANCHOR_END special character is a
94 // trailing SymbolTable.SYMBOL_REF character.
95 // private static final char ANCHOR_END = '$';
96
97 static const UChar gOPERATORS[] = { // "=><"
98 VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP,
99 ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP,
100 0
101 };
102
103 static const UChar HALF_ENDERS[] = { // "=><;"
104 VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP,
105 ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP,
106 END_OF_RULE,
107 0
108 };
109
110 // These are also used in Transliterator::toRules()
111 static const int32_t ID_TOKEN_LEN = 2;
112 static const UChar ID_TOKEN[] = { 0x3A, 0x3A }; // ':', ':'
113
114 /*
115 commented out until we do real ::BEGIN/::END functionality
116 static const int32_t BEGIN_TOKEN_LEN = 5;
117 static const UChar BEGIN_TOKEN[] = { 0x42, 0x45, 0x47, 0x49, 0x4e }; // 'BEGIN'
118
119 static const int32_t END_TOKEN_LEN = 3;
120 static const UChar END_TOKEN[] = { 0x45, 0x4e, 0x44 }; // 'END'
121 */
122
123 U_NAMESPACE_BEGIN
124
125 //----------------------------------------------------------------------
126 // BEGIN ParseData
127 //----------------------------------------------------------------------
128
129 /**
130 * This class implements the SymbolTable interface. It is used
131 * during parsing to give UnicodeSet access to variables that
132 * have been defined so far. Note that it uses variablesVector,
133 * _not_ data.setVariables.
134 */
135 class ParseData : public UMemory, public SymbolTable {
136 public:
137 const TransliterationRuleData* data; // alias
138
139 const UVector* variablesVector; // alias
140
141 const Hashtable* variableNames; // alias
142
143 ParseData(const TransliterationRuleData* data = 0,
144 const UVector* variablesVector = 0,
145 const Hashtable* variableNames = 0);
146
147 virtual ~ParseData();
148
149 virtual const UnicodeString* lookup(const UnicodeString& s) const;
150
151 virtual const UnicodeFunctor* lookupMatcher(UChar32 ch) const;
152
153 virtual UnicodeString parseReference(const UnicodeString& text,
154 ParsePosition& pos, int32_t limit) const;
155 /**
156 * Return true if the given character is a matcher standin or a plain
157 * character (non standin).
158 */
159 UBool isMatcher(UChar32 ch);
160
161 /**
162 * Return true if the given character is a replacer standin or a plain
163 * character (non standin).
164 */
165 UBool isReplacer(UChar32 ch);
166
167 private:
168 ParseData(const ParseData &other); // forbid copying of this class
169 ParseData &operator=(const ParseData &other); // forbid copying of this class
170 };
171
172 ParseData::ParseData(const TransliterationRuleData* d,
173 const UVector* sets,
174 const Hashtable* vNames) :
175 data(d), variablesVector(sets), variableNames(vNames) {}
176
177 ParseData::~ParseData() {}
178
179 /**
180 * Implement SymbolTable API.
181 */
182 const UnicodeString* ParseData::lookup(const UnicodeString& name) const {
183 return (const UnicodeString*) variableNames->get(name);
184 }
185
186 /**
187 * Implement SymbolTable API.
188 */
189 const UnicodeFunctor* ParseData::lookupMatcher(UChar32 ch) const {
190 // Note that we cannot use data.lookupSet() because the
191 // set array has not been constructed yet.
192 const UnicodeFunctor* set = NULL;
193 int32_t i = ch - data->variablesBase;
194 if (i >= 0 && i < variablesVector->size()) {
195 int32_t i = ch - data->variablesBase;
196 set = (i < variablesVector->size()) ?
197 (UnicodeFunctor*) variablesVector->elementAt(i) : 0;
198 }
199 return set;
200 }
201
202 /**
203 * Implement SymbolTable API. Parse out a symbol reference
204 * name.
205 */
206 UnicodeString ParseData::parseReference(const UnicodeString& text,
207 ParsePosition& pos, int32_t limit) const {
208 int32_t start = pos.getIndex();
209 int32_t i = start;
210 UnicodeString result;
211 while (i < limit) {
212 UChar c = text.charAt(i);
213 if ((i==start && !u_isIDStart(c)) || !u_isIDPart(c)) {
214 break;
215 }
216 ++i;
217 }
218 if (i == start) { // No valid name chars
219 return result; // Indicate failure with empty string
220 }
221 pos.setIndex(i);
222 text.extractBetween(start, i, result);
223 return result;
224 }
225
226 UBool ParseData::isMatcher(UChar32 ch) {
227 // Note that we cannot use data.lookup() because the
228 // set array has not been constructed yet.
229 int32_t i = ch - data->variablesBase;
230 if (i >= 0 && i < variablesVector->size()) {
231 UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i);
232 return f != NULL && f->toMatcher() != NULL;
233 }
234 return TRUE;
235 }
236
237 /**
238 * Return true if the given character is a replacer standin or a plain
239 * character (non standin).
240 */
241 UBool ParseData::isReplacer(UChar32 ch) {
242 // Note that we cannot use data.lookup() because the
243 // set array has not been constructed yet.
244 int i = ch - data->variablesBase;
245 if (i >= 0 && i < variablesVector->size()) {
246 UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i);
247 return f != NULL && f->toReplacer() != NULL;
248 }
249 return TRUE;
250 }
251
252 //----------------------------------------------------------------------
253 // BEGIN RuleHalf
254 //----------------------------------------------------------------------
255
256 /**
257 * A class representing one side of a rule. This class knows how to
258 * parse half of a rule. It is tightly coupled to the method
259 * RuleBasedTransliterator.Parser.parseRule().
260 */
261 class RuleHalf : public UMemory {
262
263 public:
264
265 UnicodeString text;
266
267 int32_t cursor; // position of cursor in text
268 int32_t ante; // position of ante context marker '{' in text
269 int32_t post; // position of post context marker '}' in text
270
271 // Record the offset to the cursor either to the left or to the
272 // right of the key. This is indicated by characters on the output
273 // side that allow the cursor to be positioned arbitrarily within
274 // the matching text. For example, abc{def} > | @@@ xyz; changes
275 // def to xyz and moves the cursor to before abc. Offset characters
276 // must be at the start or end, and they cannot move the cursor past
277 // the ante- or postcontext text. Placeholders are only valid in
278 // output text. The length of the ante and post context is
279 // determined at runtime, because of supplementals and quantifiers.
280 int32_t cursorOffset; // only nonzero on output side
281
282 // Position of first CURSOR_OFFSET on _right_. This will be -1
283 // for |@, -2 for |@@, etc., and 1 for @|, 2 for @@|, etc.
284 int32_t cursorOffsetPos;
285
286 UBool anchorStart;
287 UBool anchorEnd;
288
289 /**
290 * The segment number from 1..n of the next '(' we see
291 * during parsing; 1-based.
292 */
293 int32_t nextSegmentNumber;
294
295 TransliteratorParser& parser;
296
297 //--------------------------------------------------
298 // Methods
299
300 RuleHalf(TransliteratorParser& parser);
301 ~RuleHalf();
302
303 int32_t parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status);
304
305 int32_t parseSection(const UnicodeString& rule, int32_t pos, int32_t limit,
306 UnicodeString& buf,
307 const UnicodeString& illegal,
308 UBool isSegment,
309 UErrorCode& status);
310
311 /**
312 * Remove context.
313 */
314 void removeContext();
315
316 /**
317 * Return true if this half looks like valid output, that is, does not
318 * contain quantifiers or other special input-only elements.
319 */
320 UBool isValidOutput(TransliteratorParser& parser);
321
322 /**
323 * Return true if this half looks like valid input, that is, does not
324 * contain functions or other special output-only elements.
325 */
326 UBool isValidInput(TransliteratorParser& parser);
327
328 int syntaxError(UErrorCode code,
329 const UnicodeString& rule,
330 int32_t start,
331 UErrorCode& status) {
332 return parser.syntaxError(code, rule, start, status);
333 }
334
335 private:
336 // Disallowed methods; no impl.
337 RuleHalf(const RuleHalf&);
338 RuleHalf& operator=(const RuleHalf&);
339 };
340
341 RuleHalf::RuleHalf(TransliteratorParser& p) :
342 parser(p)
343 {
344 cursor = -1;
345 ante = -1;
346 post = -1;
347 cursorOffset = 0;
348 cursorOffsetPos = 0;
349 anchorStart = anchorEnd = FALSE;
350 nextSegmentNumber = 1;
351 }
352
353 RuleHalf::~RuleHalf() {
354 }
355
356 /**
357 * Parse one side of a rule, stopping at either the limit,
358 * the END_OF_RULE character, or an operator.
359 * @return the index after the terminating character, or
360 * if limit was reached, limit
361 */
362 int32_t RuleHalf::parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) {
363 int32_t start = pos;
364 text.truncate(0);
365 pos = parseSection(rule, pos, limit, text, UnicodeString(TRUE, ILLEGAL_TOP, -1), FALSE, status);
366
367 if (cursorOffset > 0 && cursor != cursorOffsetPos) {
368 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
369 }
370
371 return pos;
372 }
373
374 /**
375 * Parse a section of one side of a rule, stopping at either
376 * the limit, the END_OF_RULE character, an operator, or a
377 * segment close character. This method parses both a
378 * top-level rule half and a segment within such a rule half.
379 * It calls itself recursively to parse segments and nested
380 * segments.
381 * @param buf buffer into which to accumulate the rule pattern
382 * characters, either literal characters from the rule or
383 * standins for UnicodeMatcher objects including segments.
384 * @param illegal the set of special characters that is illegal during
385 * this parse.
386 * @param isSegment if true, then we've already seen a '(' and
387 * pos on entry points right after it. Accumulate everything
388 * up to the closing ')', put it in a segment matcher object,
389 * generate a standin for it, and add the standin to buf. As
390 * a side effect, update the segments vector with a reference
391 * to the segment matcher. This works recursively for nested
392 * segments. If isSegment is false, just accumulate
393 * characters into buf.
394 * @return the index after the terminating character, or
395 * if limit was reached, limit
396 */
397 int32_t RuleHalf::parseSection(const UnicodeString& rule, int32_t pos, int32_t limit,
398 UnicodeString& buf,
399 const UnicodeString& illegal,
400 UBool isSegment, UErrorCode& status) {
401 int32_t start = pos;
402 ParsePosition pp;
403 UnicodeString scratch;
404 UBool done = FALSE;
405 int32_t quoteStart = -1; // Most recent 'single quoted string'
406 int32_t quoteLimit = -1;
407 int32_t varStart = -1; // Most recent $variableReference
408 int32_t varLimit = -1;
409 int32_t bufStart = buf.length();
410
411 while (pos < limit && !done) {
412 // Since all syntax characters are in the BMP, fetching
413 // 16-bit code units suffices here.
414 UChar c = rule.charAt(pos++);
415 if (PatternProps::isWhiteSpace(c)) {
416 // Ignore whitespace. Note that this is not Unicode
417 // spaces, but Java spaces -- a subset, representing
418 // whitespace likely to be seen in code.
419 continue;
420 }
421 if (u_strchr(HALF_ENDERS, c) != NULL) {
422 if (isSegment) {
423 // Unclosed segment
424 return syntaxError(U_UNCLOSED_SEGMENT, rule, start, status);
425 }
426 break;
427 }
428 if (anchorEnd) {
429 // Text after a presumed end anchor is a syntax err
430 return syntaxError(U_MALFORMED_VARIABLE_REFERENCE, rule, start, status);
431 }
432 if (UnicodeSet::resemblesPattern(rule, pos-1)) {
433 pp.setIndex(pos-1); // Backup to opening '['
434 buf.append(parser.parseSet(rule, pp, status));
435 if (U_FAILURE(status)) {
436 return syntaxError(U_MALFORMED_SET, rule, start, status);
437 }
438 pos = pp.getIndex();
439 continue;
440 }
441 // Handle escapes
442 if (c == ESCAPE) {
443 if (pos == limit) {
444 return syntaxError(U_TRAILING_BACKSLASH, rule, start, status);
445 }
446 UChar32 escaped = rule.unescapeAt(pos); // pos is already past '\\'
447 if (escaped == (UChar32) -1) {
448 return syntaxError(U_MALFORMED_UNICODE_ESCAPE, rule, start, status);
449 }
450 if (!parser.checkVariableRange(escaped)) {
451 return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status);
452 }
453 buf.append(escaped);
454 continue;
455 }
456 // Handle quoted matter
457 if (c == QUOTE) {
458 int32_t iq = rule.indexOf(QUOTE, pos);
459 if (iq == pos) {
460 buf.append(c); // Parse [''] outside quotes as [']
461 ++pos;
462 } else {
463 /* This loop picks up a run of quoted text of the
464 * form 'aaaa' each time through. If this run
465 * hasn't really ended ('aaaa''bbbb') then it keeps
466 * looping, each time adding on a new run. When it
467 * reaches the final quote it breaks.
468 */
469 quoteStart = buf.length();
470 for (;;) {
471 if (iq < 0) {
472 return syntaxError(U_UNTERMINATED_QUOTE, rule, start, status);
473 }
474 scratch.truncate(0);
475 rule.extractBetween(pos, iq, scratch);
476 buf.append(scratch);
477 pos = iq+1;
478 if (pos < limit && rule.charAt(pos) == QUOTE) {
479 // Parse [''] inside quotes as [']
480 iq = rule.indexOf(QUOTE, pos+1);
481 // Continue looping
482 } else {
483 break;
484 }
485 }
486 quoteLimit = buf.length();
487
488 for (iq=quoteStart; iq<quoteLimit; ++iq) {
489 if (!parser.checkVariableRange(buf.charAt(iq))) {
490 return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status);
491 }
492 }
493 }
494 continue;
495 }
496
497 if (!parser.checkVariableRange(c)) {
498 return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status);
499 }
500
501 if (illegal.indexOf(c) >= 0) {
502 syntaxError(U_ILLEGAL_CHARACTER, rule, start, status);
503 }
504
505 switch (c) {
506
507 //------------------------------------------------------
508 // Elements allowed within and out of segments
509 //------------------------------------------------------
510 case ANCHOR_START:
511 if (buf.length() == 0 && !anchorStart) {
512 anchorStart = TRUE;
513 } else {
514 return syntaxError(U_MISPLACED_ANCHOR_START,
515 rule, start, status);
516 }
517 break;
518 case SEGMENT_OPEN:
519 {
520 // bufSegStart is the offset in buf to the first
521 // character of the segment we are parsing.
522 int32_t bufSegStart = buf.length();
523
524 // Record segment number now, since nextSegmentNumber
525 // will be incremented during the call to parseSection
526 // if there are nested segments.
527 int32_t segmentNumber = nextSegmentNumber++; // 1-based
528
529 // Parse the segment
530 pos = parseSection(rule, pos, limit, buf, UnicodeString(TRUE, ILLEGAL_SEG, -1), TRUE, status);
531
532 // After parsing a segment, the relevant characters are
533 // in buf, starting at offset bufSegStart. Extract them
534 // into a string matcher, and replace them with a
535 // standin for that matcher.
536 StringMatcher* m =
537 new StringMatcher(buf, bufSegStart, buf.length(),
538 segmentNumber, *parser.curData);
539 if (m == NULL) {
540 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
541 }
542
543 // Record and associate object and segment number
544 parser.setSegmentObject(segmentNumber, m, status);
545 buf.truncate(bufSegStart);
546 buf.append(parser.getSegmentStandin(segmentNumber, status));
547 }
548 break;
549 case FUNCTION:
550 case ALT_FUNCTION:
551 {
552 int32_t iref = pos;
553 TransliteratorIDParser::SingleID* single =
554 TransliteratorIDParser::parseFilterID(rule, iref);
555 // The next character MUST be a segment open
556 if (single == NULL ||
557 !ICU_Utility::parseChar(rule, iref, SEGMENT_OPEN)) {
558 return syntaxError(U_INVALID_FUNCTION, rule, start, status);
559 }
560
561 Transliterator *t = single->createInstance();
562 delete single;
563 if (t == NULL) {
564 return syntaxError(U_INVALID_FUNCTION, rule, start, status);
565 }
566
567 // bufSegStart is the offset in buf to the first
568 // character of the segment we are parsing.
569 int32_t bufSegStart = buf.length();
570
571 // Parse the segment
572 pos = parseSection(rule, iref, limit, buf, UnicodeString(TRUE, ILLEGAL_FUNC, -1), TRUE, status);
573
574 // After parsing a segment, the relevant characters are
575 // in buf, starting at offset bufSegStart.
576 UnicodeString output;
577 buf.extractBetween(bufSegStart, buf.length(), output);
578 FunctionReplacer *r =
579 new FunctionReplacer(t, new StringReplacer(output, parser.curData));
580 if (r == NULL) {
581 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
582 }
583
584 // Replace the buffer contents with a stand-in
585 buf.truncate(bufSegStart);
586 buf.append(parser.generateStandInFor(r, status));
587 }
588 break;
589 case SymbolTable::SYMBOL_REF:
590 // Handle variable references and segment references "$1" .. "$9"
591 {
592 // A variable reference must be followed immediately
593 // by a Unicode identifier start and zero or more
594 // Unicode identifier part characters, or by a digit
595 // 1..9 if it is a segment reference.
596 if (pos == limit) {
597 // A variable ref character at the end acts as
598 // an anchor to the context limit, as in perl.
599 anchorEnd = TRUE;
600 break;
601 }
602 // Parse "$1" "$2" .. "$9" .. (no upper limit)
603 c = rule.charAt(pos);
604 int32_t r = u_digit(c, 10);
605 if (r >= 1 && r <= 9) {
606 r = ICU_Utility::parseNumber(rule, pos, 10);
607 if (r < 0) {
608 return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE,
609 rule, start, status);
610 }
611 buf.append(parser.getSegmentStandin(r, status));
612 } else {
613 pp.setIndex(pos);
614 UnicodeString name = parser.parseData->
615 parseReference(rule, pp, limit);
616 if (name.length() == 0) {
617 // This means the '$' was not followed by a
618 // valid name. Try to interpret it as an
619 // end anchor then. If this also doesn't work
620 // (if we see a following character) then signal
621 // an error.
622 anchorEnd = TRUE;
623 break;
624 }
625 pos = pp.getIndex();
626 // If this is a variable definition statement,
627 // then the LHS variable will be undefined. In
628 // that case appendVariableDef() will append the
629 // special placeholder char variableLimit-1.
630 varStart = buf.length();
631 parser.appendVariableDef(name, buf, status);
632 varLimit = buf.length();
633 }
634 }
635 break;
636 case DOT:
637 buf.append(parser.getDotStandIn(status));
638 break;
639 case KLEENE_STAR:
640 case ONE_OR_MORE:
641 case ZERO_OR_ONE:
642 // Quantifiers. We handle single characters, quoted strings,
643 // variable references, and segments.
644 // a+ matches aaa
645 // 'foo'+ matches foofoofoo
646 // $v+ matches xyxyxy if $v == xy
647 // (seg)+ matches segsegseg
648 {
649 if (isSegment && buf.length() == bufStart) {
650 // The */+ immediately follows '('
651 return syntaxError(U_MISPLACED_QUANTIFIER, rule, start, status);
652 }
653
654 int32_t qstart, qlimit;
655 // The */+ follows an isolated character or quote
656 // or variable reference
657 if (buf.length() == quoteLimit) {
658 // The */+ follows a 'quoted string'
659 qstart = quoteStart;
660 qlimit = quoteLimit;
661 } else if (buf.length() == varLimit) {
662 // The */+ follows a $variableReference
663 qstart = varStart;
664 qlimit = varLimit;
665 } else {
666 // The */+ follows a single character, possibly
667 // a segment standin
668 qstart = buf.length() - 1;
669 qlimit = qstart + 1;
670 }
671
672 UnicodeFunctor *m =
673 new StringMatcher(buf, qstart, qlimit, 0, *parser.curData);
674 if (m == NULL) {
675 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
676 }
677 int32_t min = 0;
678 int32_t max = Quantifier::MAX;
679 switch (c) {
680 case ONE_OR_MORE:
681 min = 1;
682 break;
683 case ZERO_OR_ONE:
684 min = 0;
685 max = 1;
686 break;
687 // case KLEENE_STAR:
688 // do nothing -- min, max already set
689 }
690 m = new Quantifier(m, min, max);
691 if (m == NULL) {
692 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
693 }
694 buf.truncate(qstart);
695 buf.append(parser.generateStandInFor(m, status));
696 }
697 break;
698
699 //------------------------------------------------------
700 // Elements allowed ONLY WITHIN segments
701 //------------------------------------------------------
702 case SEGMENT_CLOSE:
703 // assert(isSegment);
704 // We're done parsing a segment.
705 done = TRUE;
706 break;
707
708 //------------------------------------------------------
709 // Elements allowed ONLY OUTSIDE segments
710 //------------------------------------------------------
711 case CONTEXT_ANTE:
712 if (ante >= 0) {
713 return syntaxError(U_MULTIPLE_ANTE_CONTEXTS, rule, start, status);
714 }
715 ante = buf.length();
716 break;
717 case CONTEXT_POST:
718 if (post >= 0) {
719 return syntaxError(U_MULTIPLE_POST_CONTEXTS, rule, start, status);
720 }
721 post = buf.length();
722 break;
723 case CURSOR_POS:
724 if (cursor >= 0) {
725 return syntaxError(U_MULTIPLE_CURSORS, rule, start, status);
726 }
727 cursor = buf.length();
728 break;
729 case CURSOR_OFFSET:
730 if (cursorOffset < 0) {
731 if (buf.length() > 0) {
732 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
733 }
734 --cursorOffset;
735 } else if (cursorOffset > 0) {
736 if (buf.length() != cursorOffsetPos || cursor >= 0) {
737 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
738 }
739 ++cursorOffset;
740 } else {
741 if (cursor == 0 && buf.length() == 0) {
742 cursorOffset = -1;
743 } else if (cursor < 0) {
744 cursorOffsetPos = buf.length();
745 cursorOffset = 1;
746 } else {
747 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status);
748 }
749 }
750 break;
751
752
753 //------------------------------------------------------
754 // Non-special characters
755 //------------------------------------------------------
756 default:
757 // Disallow unquoted characters other than [0-9A-Za-z]
758 // in the printable ASCII range. These characters are
759 // reserved for possible future use.
760 if (c >= 0x0021 && c <= 0x007E &&
761 !((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) ||
762 (c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) ||
763 (c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) {
764 return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status);
765 }
766 buf.append(c);
767 break;
768 }
769 }
770
771 return pos;
772 }
773
774 /**
775 * Remove context.
776 */
777 void RuleHalf::removeContext() {
778 //text = text.substring(ante < 0 ? 0 : ante,
779 // post < 0 ? text.length() : post);
780 if (post >= 0) {
781 text.remove(post);
782 }
783 if (ante >= 0) {
784 text.removeBetween(0, ante);
785 }
786 ante = post = -1;
787 anchorStart = anchorEnd = FALSE;
788 }
789
790 /**
791 * Return true if this half looks like valid output, that is, does not
792 * contain quantifiers or other special input-only elements.
793 */
794 UBool RuleHalf::isValidOutput(TransliteratorParser& transParser) {
795 for (int32_t i=0; i<text.length(); ) {
796 UChar32 c = text.char32At(i);
797 i += U16_LENGTH(c);
798 if (!transParser.parseData->isReplacer(c)) {
799 return FALSE;
800 }
801 }
802 return TRUE;
803 }
804
805 /**
806 * Return true if this half looks like valid input, that is, does not
807 * contain functions or other special output-only elements.
808 */
809 UBool RuleHalf::isValidInput(TransliteratorParser& transParser) {
810 for (int32_t i=0; i<text.length(); ) {
811 UChar32 c = text.char32At(i);
812 i += U16_LENGTH(c);
813 if (!transParser.parseData->isMatcher(c)) {
814 return FALSE;
815 }
816 }
817 return TRUE;
818 }
819
820 //----------------------------------------------------------------------
821 // PUBLIC API
822 //----------------------------------------------------------------------
823
824 /**
825 * Constructor.
826 */
827 TransliteratorParser::TransliteratorParser(UErrorCode &statusReturn) :
828 dataVector(statusReturn),
829 idBlockVector(statusReturn),
830 variablesVector(statusReturn),
831 segmentObjects(statusReturn)
832 {
833 idBlockVector.setDeleter(uprv_deleteUObject);
834 curData = NULL;
835 compoundFilter = NULL;
836 parseData = NULL;
837 variableNames.setValueDeleter(uprv_deleteUObject);
838 }
839
840 /**
841 * Destructor.
842 */
843 TransliteratorParser::~TransliteratorParser() {
844 while (!dataVector.isEmpty())
845 delete (TransliterationRuleData*)(dataVector.orphanElementAt(0));
846 delete compoundFilter;
847 delete parseData;
848 while (!variablesVector.isEmpty())
849 delete (UnicodeFunctor*)variablesVector.orphanElementAt(0);
850 }
851
852 void
853 TransliteratorParser::parse(const UnicodeString& rules,
854 UTransDirection transDirection,
855 UParseError& pe,
856 UErrorCode& ec) {
857 if (U_SUCCESS(ec)) {
858 parseRules(rules, transDirection, ec);
859 pe = parseError;
860 }
861 }
862
863 /**
864 * Return the compound filter parsed by parse(). Caller owns result.
865 */
866 UnicodeSet* TransliteratorParser::orphanCompoundFilter() {
867 UnicodeSet* f = compoundFilter;
868 compoundFilter = NULL;
869 return f;
870 }
871
872 //----------------------------------------------------------------------
873 // Private implementation
874 //----------------------------------------------------------------------
875
876 /**
877 * Parse the given string as a sequence of rules, separated by newline
878 * characters ('\n'), and cause this object to implement those rules. Any
879 * previous rules are discarded. Typically this method is called exactly
880 * once, during construction.
881 * @exception IllegalArgumentException if there is a syntax error in the
882 * rules
883 */
884 void TransliteratorParser::parseRules(const UnicodeString& rule,
885 UTransDirection theDirection,
886 UErrorCode& status)
887 {
888 // Clear error struct
889 uprv_memset(&parseError, 0, sizeof(parseError));
890 parseError.line = parseError.offset = -1;
891
892 UBool parsingIDs = TRUE;
893 int32_t ruleCount = 0;
894
895 while (!dataVector.isEmpty()) {
896 delete (TransliterationRuleData*)(dataVector.orphanElementAt(0));
897 }
898 if (U_FAILURE(status)) {
899 return;
900 }
901
902 idBlockVector.removeAllElements();
903 curData = NULL;
904 direction = theDirection;
905 ruleCount = 0;
906
907 delete compoundFilter;
908 compoundFilter = NULL;
909
910 while (!variablesVector.isEmpty()) {
911 delete (UnicodeFunctor*)variablesVector.orphanElementAt(0);
912 }
913 variableNames.removeAll();
914 parseData = new ParseData(0, &variablesVector, &variableNames);
915 if (parseData == NULL) {
916 status = U_MEMORY_ALLOCATION_ERROR;
917 return;
918 }
919
920 dotStandIn = (UChar) -1;
921
922 UnicodeString *tempstr = NULL; // used for memory allocation error checking
923 UnicodeString str; // scratch
924 UnicodeString idBlockResult;
925 int32_t pos = 0;
926 int32_t limit = rule.length();
927
928 // The compound filter offset is an index into idBlockResult.
929 // If it is 0, then the compound filter occurred at the start,
930 // and it is the offset to the _start_ of the compound filter
931 // pattern. Otherwise it is the offset to the _limit_ of the
932 // compound filter pattern within idBlockResult.
933 compoundFilter = NULL;
934 int32_t compoundFilterOffset = -1;
935
936 while (pos < limit && U_SUCCESS(status)) {
937 UChar c = rule.charAt(pos++);
938 if (PatternProps::isWhiteSpace(c)) {
939 // Ignore leading whitespace.
940 continue;
941 }
942 // Skip lines starting with the comment character
943 if (c == RULE_COMMENT_CHAR) {
944 pos = rule.indexOf((UChar)0x000A /*\n*/, pos) + 1;
945 if (pos == 0) {
946 break; // No "\n" found; rest of rule is a commnet
947 }
948 continue; // Either fall out or restart with next line
949 }
950
951 // skip empty rules
952 if (c == END_OF_RULE)
953 continue;
954
955 // keep track of how many rules we've seen
956 ++ruleCount;
957
958 // We've found the start of a rule or ID. c is its first
959 // character, and pos points past c.
960 --pos;
961 // Look for an ID token. Must have at least ID_TOKEN_LEN + 1
962 // chars left.
963 if ((pos + ID_TOKEN_LEN + 1) <= limit &&
964 rule.compare(pos, ID_TOKEN_LEN, ID_TOKEN) == 0) {
965 pos += ID_TOKEN_LEN;
966 c = rule.charAt(pos);
967 while (PatternProps::isWhiteSpace(c) && pos < limit) {
968 ++pos;
969 c = rule.charAt(pos);
970 }
971
972 int32_t p = pos;
973
974 if (!parsingIDs) {
975 if (curData != NULL) {
976 if (direction == UTRANS_FORWARD)
977 dataVector.addElement(curData, status);
978 else
979 dataVector.insertElementAt(curData, 0, status);
980 curData = NULL;
981 }
982 parsingIDs = TRUE;
983 }
984
985 TransliteratorIDParser::SingleID* id =
986 TransliteratorIDParser::parseSingleID(rule, p, direction, status);
987 if (p != pos && ICU_Utility::parseChar(rule, p, END_OF_RULE)) {
988 // Successful ::ID parse.
989
990 if (direction == UTRANS_FORWARD) {
991 idBlockResult.append(id->canonID).append(END_OF_RULE);
992 } else {
993 idBlockResult.insert(0, END_OF_RULE);
994 idBlockResult.insert(0, id->canonID);
995 }
996
997 } else {
998 // Couldn't parse an ID. Try to parse a global filter
999 int32_t withParens = -1;
1000 UnicodeSet* f = TransliteratorIDParser::parseGlobalFilter(rule, p, direction, withParens, NULL);
1001 if (f != NULL) {
1002 if (ICU_Utility::parseChar(rule, p, END_OF_RULE)
1003 && (direction == UTRANS_FORWARD) == (withParens == 0))
1004 {
1005 if (compoundFilter != NULL) {
1006 // Multiple compound filters
1007 syntaxError(U_MULTIPLE_COMPOUND_FILTERS, rule, pos, status);
1008 delete f;
1009 } else {
1010 compoundFilter = f;
1011 compoundFilterOffset = ruleCount;
1012 }
1013 } else {
1014 delete f;
1015 }
1016 } else {
1017 // Invalid ::id
1018 // Can be parsed as neither an ID nor a global filter
1019 syntaxError(U_INVALID_ID, rule, pos, status);
1020 }
1021 }
1022 delete id;
1023 pos = p;
1024 } else {
1025 if (parsingIDs) {
1026 tempstr = new UnicodeString(idBlockResult);
1027 // NULL pointer check
1028 if (tempstr == NULL) {
1029 status = U_MEMORY_ALLOCATION_ERROR;
1030 return;
1031 }
1032 if (direction == UTRANS_FORWARD)
1033 idBlockVector.addElement(tempstr, status);
1034 else
1035 idBlockVector.insertElementAt(tempstr, 0, status);
1036 idBlockResult.remove();
1037 parsingIDs = FALSE;
1038 curData = new TransliterationRuleData(status);
1039 // NULL pointer check
1040 if (curData == NULL) {
1041 status = U_MEMORY_ALLOCATION_ERROR;
1042 return;
1043 }
1044 parseData->data = curData;
1045
1046 // By default, rules use part of the private use area
1047 // E000..F8FF for variables and other stand-ins. Currently
1048 // the range F000..F8FF is typically sufficient. The 'use
1049 // variable range' pragma allows rule sets to modify this.
1050 setVariableRange(0xF000, 0xF8FF, status);
1051 }
1052
1053 if (resemblesPragma(rule, pos, limit)) {
1054 int32_t ppp = parsePragma(rule, pos, limit, status);
1055 if (ppp < 0) {
1056 syntaxError(U_MALFORMED_PRAGMA, rule, pos, status);
1057 }
1058 pos = ppp;
1059 // Parse a rule
1060 } else {
1061 pos = parseRule(rule, pos, limit, status);
1062 }
1063 }
1064 }
1065
1066 if (parsingIDs && idBlockResult.length() > 0) {
1067 tempstr = new UnicodeString(idBlockResult);
1068 // NULL pointer check
1069 if (tempstr == NULL) {
1070 status = U_MEMORY_ALLOCATION_ERROR;
1071 return;
1072 }
1073 if (direction == UTRANS_FORWARD)
1074 idBlockVector.addElement(tempstr, status);
1075 else
1076 idBlockVector.insertElementAt(tempstr, 0, status);
1077 }
1078 else if (!parsingIDs && curData != NULL) {
1079 if (direction == UTRANS_FORWARD)
1080 dataVector.addElement(curData, status);
1081 else
1082 dataVector.insertElementAt(curData, 0, status);
1083 }
1084
1085 if (U_SUCCESS(status)) {
1086 // Convert the set vector to an array
1087 int32_t i, dataVectorSize = dataVector.size();
1088 for (i = 0; i < dataVectorSize; i++) {
1089 TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i);
1090 data->variablesLength = variablesVector.size();
1091 if (data->variablesLength == 0) {
1092 data->variables = 0;
1093 } else {
1094 data->variables = (UnicodeFunctor**)uprv_malloc(data->variablesLength * sizeof(UnicodeFunctor*));
1095 // NULL pointer check
1096 if (data->variables == NULL) {
1097 status = U_MEMORY_ALLOCATION_ERROR;
1098 return;
1099 }
1100 data->variablesAreOwned = (i == 0);
1101 }
1102
1103 for (int32_t j = 0; j < data->variablesLength; j++) {
1104 data->variables[j] =
1105 ((UnicodeSet*)variablesVector.elementAt(j));
1106 }
1107
1108 data->variableNames.removeAll();
1109 int32_t pos = -1;
1110 const UHashElement* he = variableNames.nextElement(pos);
1111 while (he != NULL) {
1112 UnicodeString* tempus = (UnicodeString*)(((UnicodeString*)(he->value.pointer))->clone());
1113 if (tempus == NULL) {
1114 status = U_MEMORY_ALLOCATION_ERROR;
1115 return;
1116 }
1117 data->variableNames.put(*((UnicodeString*)(he->key.pointer)),
1118 tempus, status);
1119 he = variableNames.nextElement(pos);
1120 }
1121 }
1122 variablesVector.removeAllElements(); // keeps them from getting deleted when we succeed
1123
1124 // Index the rules
1125 if (compoundFilter != NULL) {
1126 if ((direction == UTRANS_FORWARD && compoundFilterOffset != 1) ||
1127 (direction == UTRANS_REVERSE && compoundFilterOffset != ruleCount)) {
1128 status = U_MISPLACED_COMPOUND_FILTER;
1129 }
1130 }
1131
1132 for (i = 0; i < dataVectorSize; i++) {
1133 TransliterationRuleData* data = (TransliterationRuleData*)dataVector.elementAt(i);
1134 data->ruleSet.freeze(parseError, status);
1135 }
1136 if (idBlockVector.size() == 1 && ((UnicodeString*)idBlockVector.elementAt(0))->isEmpty()) {
1137 idBlockVector.removeElementAt(0);
1138 }
1139 }
1140 }
1141
1142 /**
1143 * Set the variable range to [start, end] (inclusive).
1144 */
1145 void TransliteratorParser::setVariableRange(int32_t start, int32_t end, UErrorCode& status) {
1146 if (start > end || start < 0 || end > 0xFFFF) {
1147 status = U_MALFORMED_PRAGMA;
1148 return;
1149 }
1150
1151 curData->variablesBase = (UChar) start;
1152 if (dataVector.size() == 0) {
1153 variableNext = (UChar) start;
1154 variableLimit = (UChar) (end + 1);
1155 }
1156 }
1157
1158 /**
1159 * Assert that the given character is NOT within the variable range.
1160 * If it is, return FALSE. This is neccesary to ensure that the
1161 * variable range does not overlap characters used in a rule.
1162 */
1163 UBool TransliteratorParser::checkVariableRange(UChar32 ch) const {
1164 return !(ch >= curData->variablesBase && ch < variableLimit);
1165 }
1166
1167 /**
1168 * Set the maximum backup to 'backup', in response to a pragma
1169 * statement.
1170 */
1171 void TransliteratorParser::pragmaMaximumBackup(int32_t /*backup*/) {
1172 //TODO Finish
1173 }
1174
1175 /**
1176 * Begin normalizing all rules using the given mode, in response
1177 * to a pragma statement.
1178 */
1179 void TransliteratorParser::pragmaNormalizeRules(UNormalizationMode /*mode*/) {
1180 //TODO Finish
1181 }
1182
1183 static const UChar PRAGMA_USE[] = {0x75,0x73,0x65,0x20,0}; // "use "
1184
1185 static const UChar PRAGMA_VARIABLE_RANGE[] = {0x7E,0x76,0x61,0x72,0x69,0x61,0x62,0x6C,0x65,0x20,0x72,0x61,0x6E,0x67,0x65,0x20,0x23,0x20,0x23,0x7E,0x3B,0}; // "~variable range # #~;"
1186
1187 static const UChar PRAGMA_MAXIMUM_BACKUP[] = {0x7E,0x6D,0x61,0x78,0x69,0x6D,0x75,0x6D,0x20,0x62,0x61,0x63,0x6B,0x75,0x70,0x20,0x23,0x7E,0x3B,0}; // "~maximum backup #~;"
1188
1189 static const UChar PRAGMA_NFD_RULES[] = {0x7E,0x6E,0x66,0x64,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfd rules~;"
1190
1191 static const UChar PRAGMA_NFC_RULES[] = {0x7E,0x6E,0x66,0x63,0x20,0x72,0x75,0x6C,0x65,0x73,0x7E,0x3B,0}; // "~nfc rules~;"
1192
1193 /**
1194 * Return true if the given rule looks like a pragma.
1195 * @param pos offset to the first non-whitespace character
1196 * of the rule.
1197 * @param limit pointer past the last character of the rule.
1198 */
1199 UBool TransliteratorParser::resemblesPragma(const UnicodeString& rule, int32_t pos, int32_t limit) {
1200 // Must start with /use\s/i
1201 return ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_USE, 4), NULL) >= 0;
1202 }
1203
1204 /**
1205 * Parse a pragma. This method assumes resemblesPragma() has
1206 * already returned true.
1207 * @param pos offset to the first non-whitespace character
1208 * of the rule.
1209 * @param limit pointer past the last character of the rule.
1210 * @return the position index after the final ';' of the pragma,
1211 * or -1 on failure.
1212 */
1213 int32_t TransliteratorParser::parsePragma(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) {
1214 int32_t array[2];
1215
1216 // resemblesPragma() has already returned true, so we
1217 // know that pos points to /use\s/i; we can skip 4 characters
1218 // immediately
1219 pos += 4;
1220
1221 // Here are the pragmas we recognize:
1222 // use variable range 0xE000 0xEFFF;
1223 // use maximum backup 16;
1224 // use nfd rules;
1225 // use nfc rules;
1226 int p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_VARIABLE_RANGE, -1), array);
1227 if (p >= 0) {
1228 setVariableRange(array[0], array[1], status);
1229 return p;
1230 }
1231
1232 p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_MAXIMUM_BACKUP, -1), array);
1233 if (p >= 0) {
1234 pragmaMaximumBackup(array[0]);
1235 return p;
1236 }
1237
1238 p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_NFD_RULES, -1), NULL);
1239 if (p >= 0) {
1240 pragmaNormalizeRules(UNORM_NFD);
1241 return p;
1242 }
1243
1244 p = ICU_Utility::parsePattern(rule, pos, limit, UnicodeString(TRUE, PRAGMA_NFC_RULES, -1), NULL);
1245 if (p >= 0) {
1246 pragmaNormalizeRules(UNORM_NFC);
1247 return p;
1248 }
1249
1250 // Syntax error: unable to parse pragma
1251 return -1;
1252 }
1253
1254 /**
1255 * MAIN PARSER. Parse the next rule in the given rule string, starting
1256 * at pos. Return the index after the last character parsed. Do not
1257 * parse characters at or after limit.
1258 *
1259 * Important: The character at pos must be a non-whitespace character
1260 * that is not the comment character.
1261 *
1262 * This method handles quoting, escaping, and whitespace removal. It
1263 * parses the end-of-rule character. It recognizes context and cursor
1264 * indicators. Once it does a lexical breakdown of the rule at pos, it
1265 * creates a rule object and adds it to our rule list.
1266 */
1267 int32_t TransliteratorParser::parseRule(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorCode& status) {
1268 // Locate the left side, operator, and right side
1269 int32_t start = pos;
1270 UChar op = 0;
1271 int32_t i;
1272
1273 // Set up segments data
1274 segmentStandins.truncate(0);
1275 segmentObjects.removeAllElements();
1276
1277 // Use pointers to automatics to make swapping possible.
1278 RuleHalf _left(*this), _right(*this);
1279 RuleHalf* left = &_left;
1280 RuleHalf* right = &_right;
1281
1282 undefinedVariableName.remove();
1283 pos = left->parse(rule, pos, limit, status);
1284 if (U_FAILURE(status)) {
1285 return start;
1286 }
1287
1288 if (pos == limit || u_strchr(gOPERATORS, (op = rule.charAt(--pos))) == NULL) {
1289 return syntaxError(U_MISSING_OPERATOR, rule, start, status);
1290 }
1291 ++pos;
1292
1293 // Found an operator char. Check for forward-reverse operator.
1294 if (op == REVERSE_RULE_OP &&
1295 (pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) {
1296 ++pos;
1297 op = FWDREV_RULE_OP;
1298 }
1299
1300 // Translate alternate op characters.
1301 switch (op) {
1302 case ALT_FORWARD_RULE_OP:
1303 op = FORWARD_RULE_OP;
1304 break;
1305 case ALT_REVERSE_RULE_OP:
1306 op = REVERSE_RULE_OP;
1307 break;
1308 case ALT_FWDREV_RULE_OP:
1309 op = FWDREV_RULE_OP;
1310 break;
1311 }
1312
1313 pos = right->parse(rule, pos, limit, status);
1314 if (U_FAILURE(status)) {
1315 return start;
1316 }
1317
1318 if (pos < limit) {
1319 if (rule.charAt(--pos) == END_OF_RULE) {
1320 ++pos;
1321 } else {
1322 // RuleHalf parser must have terminated at an operator
1323 return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status);
1324 }
1325 }
1326
1327 if (op == VARIABLE_DEF_OP) {
1328 // LHS is the name. RHS is a single character, either a literal
1329 // or a set (already parsed). If RHS is longer than one
1330 // character, it is either a multi-character string, or multiple
1331 // sets, or a mixture of chars and sets -- syntax error.
1332
1333 // We expect to see a single undefined variable (the one being
1334 // defined).
1335 if (undefinedVariableName.length() == 0) {
1336 // "Missing '$' or duplicate definition"
1337 return syntaxError(U_BAD_VARIABLE_DEFINITION, rule, start, status);
1338 }
1339 if (left->text.length() != 1 || left->text.charAt(0) != variableLimit) {
1340 // "Malformed LHS"
1341 return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status);
1342 }
1343 if (left->anchorStart || left->anchorEnd ||
1344 right->anchorStart || right->anchorEnd) {
1345 return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, status);
1346 }
1347 // We allow anything on the right, including an empty string.
1348 UnicodeString* value = new UnicodeString(right->text);
1349 // NULL pointer check
1350 if (value == NULL) {
1351 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
1352 }
1353 variableNames.put(undefinedVariableName, value, status);
1354 ++variableLimit;
1355 return pos;
1356 }
1357
1358 // If this is not a variable definition rule, we shouldn't have
1359 // any undefined variable names.
1360 if (undefinedVariableName.length() != 0) {
1361 return syntaxError(// "Undefined variable $" + undefinedVariableName,
1362 U_UNDEFINED_VARIABLE,
1363 rule, start, status);
1364 }
1365
1366 // Verify segments
1367 if (segmentStandins.length() > segmentObjects.size()) {
1368 syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, rule, start, status);
1369 }
1370 for (i=0; i<segmentStandins.length(); ++i) {
1371 if (segmentStandins.charAt(i) == 0) {
1372 syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen
1373 }
1374 }
1375 for (i=0; i<segmentObjects.size(); ++i) {
1376 if (segmentObjects.elementAt(i) == NULL) {
1377 syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); // will never happen
1378 }
1379 }
1380
1381 // If the direction we want doesn't match the rule
1382 // direction, do nothing.
1383 if (op != FWDREV_RULE_OP &&
1384 ((direction == UTRANS_FORWARD) != (op == FORWARD_RULE_OP))) {
1385 return pos;
1386 }
1387
1388 // Transform the rule into a forward rule by swapping the
1389 // sides if necessary.
1390 if (direction == UTRANS_REVERSE) {
1391 left = &_right;
1392 right = &_left;
1393 }
1394
1395 // Remove non-applicable elements in forward-reverse
1396 // rules. Bidirectional rules ignore elements that do not
1397 // apply.
1398 if (op == FWDREV_RULE_OP) {
1399 right->removeContext();
1400 left->cursor = -1;
1401 left->cursorOffset = 0;
1402 }
1403
1404 // Normalize context
1405 if (left->ante < 0) {
1406 left->ante = 0;
1407 }
1408 if (left->post < 0) {
1409 left->post = left->text.length();
1410 }
1411
1412 // Context is only allowed on the input side. Cursors are only
1413 // allowed on the output side. Segment delimiters can only appear
1414 // on the left, and references on the right. Cursor offset
1415 // cannot appear without an explicit cursor. Cursor offset
1416 // cannot place the cursor outside the limits of the context.
1417 // Anchors are only allowed on the input side.
1418 if (right->ante >= 0 || right->post >= 0 || left->cursor >= 0 ||
1419 (right->cursorOffset != 0 && right->cursor < 0) ||
1420 // - The following two checks were used to ensure that the
1421 // - the cursor offset stayed within the ante- or postcontext.
1422 // - However, with the addition of quantifiers, we have to
1423 // - allow arbitrary cursor offsets and do runtime checking.
1424 //(right->cursorOffset > (left->text.length() - left->post)) ||
1425 //(-right->cursorOffset > left->ante) ||
1426 right->anchorStart || right->anchorEnd ||
1427 !left->isValidInput(*this) || !right->isValidOutput(*this) ||
1428 left->ante > left->post) {
1429
1430 return syntaxError(U_MALFORMED_RULE, rule, start, status);
1431 }
1432
1433 // Flatten segment objects vector to an array
1434 UnicodeFunctor** segmentsArray = NULL;
1435 if (segmentObjects.size() > 0) {
1436 segmentsArray = (UnicodeFunctor **)uprv_malloc(segmentObjects.size() * sizeof(UnicodeFunctor *));
1437 // Null pointer check
1438 if (segmentsArray == NULL) {
1439 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
1440 }
1441 segmentObjects.toArray((void**) segmentsArray);
1442 }
1443 TransliterationRule* temptr = new TransliterationRule(
1444 left->text, left->ante, left->post,
1445 right->text, right->cursor, right->cursorOffset,
1446 segmentsArray,
1447 segmentObjects.size(),
1448 left->anchorStart, left->anchorEnd,
1449 curData,
1450 status);
1451 //Null pointer check
1452 if (temptr == NULL) {
1453 uprv_free(segmentsArray);
1454 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status);
1455 }
1456
1457 curData->ruleSet.addRule(temptr, status);
1458
1459 return pos;
1460 }
1461
1462 /**
1463 * Called by main parser upon syntax error. Search the rule string
1464 * for the probable end of the rule. Of course, if the error is that
1465 * the end of rule marker is missing, then the rule end will not be found.
1466 * In any case the rule start will be correctly reported.
1467 * @param msg error description
1468 * @param rule pattern string
1469 * @param start position of first character of current rule
1470 */
1471 int32_t TransliteratorParser::syntaxError(UErrorCode parseErrorCode,
1472 const UnicodeString& rule,
1473 int32_t pos,
1474 UErrorCode& status)
1475 {
1476 parseError.offset = pos;
1477 parseError.line = 0 ; /* we are not using line numbers */
1478
1479 // for pre-context
1480 const int32_t LEN = U_PARSE_CONTEXT_LEN - 1;
1481 int32_t start = uprv_max(pos - LEN, 0);
1482 int32_t stop = pos;
1483
1484 rule.extract(start,stop-start,parseError.preContext);
1485 //null terminate the buffer
1486 parseError.preContext[stop-start] = 0;
1487
1488 //for post-context
1489 start = pos;
1490 stop = uprv_min(pos + LEN, rule.length());
1491
1492 rule.extract(start,stop-start,parseError.postContext);
1493 //null terminate the buffer
1494 parseError.postContext[stop-start]= 0;
1495
1496 status = (UErrorCode)parseErrorCode;
1497 return pos;
1498
1499 }
1500
1501 /**
1502 * Parse a UnicodeSet out, store it, and return the stand-in character
1503 * used to represent it.
1504 */
1505 UChar TransliteratorParser::parseSet(const UnicodeString& rule,
1506 ParsePosition& pos,
1507 UErrorCode& status) {
1508 UnicodeSet* set = new UnicodeSet(rule, pos, USET_IGNORE_SPACE, parseData, status);
1509 // Null pointer check
1510 if (set == NULL) {
1511 status = U_MEMORY_ALLOCATION_ERROR;
1512 return (UChar)0x0000; // Return empty character with error.
1513 }
1514 set->compact();
1515 return generateStandInFor(set, status);
1516 }
1517
1518 /**
1519 * Generate and return a stand-in for a new UnicodeFunctor. Store
1520 * the matcher (adopt it).
1521 */
1522 UChar TransliteratorParser::generateStandInFor(UnicodeFunctor* adopted, UErrorCode& status) {
1523 // assert(obj != null);
1524
1525 // Look up previous stand-in, if any. This is a short list
1526 // (typical n is 0, 1, or 2); linear search is optimal.
1527 for (int32_t i=0; i<variablesVector.size(); ++i) {
1528 if (variablesVector.elementAt(i) == adopted) { // [sic] pointer comparison
1529 return (UChar) (curData->variablesBase + i);
1530 }
1531 }
1532
1533 if (variableNext >= variableLimit) {
1534 delete adopted;
1535 status = U_VARIABLE_RANGE_EXHAUSTED;
1536 return 0;
1537 }
1538 variablesVector.addElement(adopted, status);
1539 return variableNext++;
1540 }
1541
1542 /**
1543 * Return the standin for segment seg (1-based).
1544 */
1545 UChar TransliteratorParser::getSegmentStandin(int32_t seg, UErrorCode& status) {
1546 // Special character used to indicate an empty spot
1547 UChar empty = curData->variablesBase - 1;
1548 while (segmentStandins.length() < seg) {
1549 segmentStandins.append(empty);
1550 }
1551 UChar c = segmentStandins.charAt(seg-1);
1552 if (c == empty) {
1553 if (variableNext >= variableLimit) {
1554 status = U_VARIABLE_RANGE_EXHAUSTED;
1555 return 0;
1556 }
1557 c = variableNext++;
1558 // Set a placeholder in the master variables vector that will be
1559 // filled in later by setSegmentObject(). We know that we will get
1560 // called first because setSegmentObject() will call us.
1561 variablesVector.addElement((void*) NULL, status);
1562 segmentStandins.setCharAt(seg-1, c);
1563 }
1564 return c;
1565 }
1566
1567 /**
1568 * Set the object for segment seg (1-based).
1569 */
1570 void TransliteratorParser::setSegmentObject(int32_t seg, StringMatcher* adopted, UErrorCode& status) {
1571 // Since we call parseSection() recursively, nested
1572 // segments will result in segment i+1 getting parsed
1573 // and stored before segment i; be careful with the
1574 // vector handling here.
1575 if (segmentObjects.size() < seg) {
1576 segmentObjects.setSize(seg, status);
1577 }
1578 int32_t index = getSegmentStandin(seg, status) - curData->variablesBase;
1579 if (segmentObjects.elementAt(seg-1) != NULL ||
1580 variablesVector.elementAt(index) != NULL) {
1581 // should never happen
1582 status = U_INTERNAL_TRANSLITERATOR_ERROR;
1583 return;
1584 }
1585 segmentObjects.setElementAt(adopted, seg-1);
1586 variablesVector.setElementAt(adopted, index);
1587 }
1588
1589 /**
1590 * Return the stand-in for the dot set. It is allocated the first
1591 * time and reused thereafter.
1592 */
1593 UChar TransliteratorParser::getDotStandIn(UErrorCode& status) {
1594 if (dotStandIn == (UChar) -1) {
1595 UnicodeSet* tempus = new UnicodeSet(UnicodeString(TRUE, DOT_SET, -1), status);
1596 // Null pointer check.
1597 if (tempus == NULL) {
1598 status = U_MEMORY_ALLOCATION_ERROR;
1599 return (UChar)0x0000;
1600 }
1601 dotStandIn = generateStandInFor(tempus, status);
1602 }
1603 return dotStandIn;
1604 }
1605
1606 /**
1607 * Append the value of the given variable name to the given
1608 * UnicodeString.
1609 */
1610 void TransliteratorParser::appendVariableDef(const UnicodeString& name,
1611 UnicodeString& buf,
1612 UErrorCode& status) {
1613 const UnicodeString* s = (const UnicodeString*) variableNames.get(name);
1614 if (s == NULL) {
1615 // We allow one undefined variable so that variable definition
1616 // statements work. For the first undefined variable we return
1617 // the special placeholder variableLimit-1, and save the variable
1618 // name.
1619 if (undefinedVariableName.length() == 0) {
1620 undefinedVariableName = name;
1621 if (variableNext >= variableLimit) {
1622 // throw new RuntimeException("Private use variables exhausted");
1623 status = U_ILLEGAL_ARGUMENT_ERROR;
1624 return;
1625 }
1626 buf.append((UChar) --variableLimit);
1627 } else {
1628 //throw new IllegalArgumentException("Undefined variable $"
1629 // + name);
1630 status = U_ILLEGAL_ARGUMENT_ERROR;
1631 return;
1632 }
1633 } else {
1634 buf.append(*s);
1635 }
1636 }
1637
1638 /**
1639 * Glue method to get around access restrictions in C++.
1640 */
1641 /*Transliterator* TransliteratorParser::createBasicInstance(const UnicodeString& id, const UnicodeString* canonID) {
1642 return Transliterator::createBasicInstance(id, canonID);
1643 }*/
1644
1645 U_NAMESPACE_END
1646
1647 U_CAPI int32_t
1648 utrans_stripRules(const UChar *source, int32_t sourceLen, UChar *target, UErrorCode *status) {
1649 U_NAMESPACE_USE
1650
1651 //const UChar *sourceStart = source;
1652 const UChar *targetStart = target;
1653 const UChar *sourceLimit = source+sourceLen;
1654 UChar *targetLimit = target+sourceLen;
1655 UChar32 c = 0;
1656 UBool quoted = FALSE;
1657 int32_t index;
1658
1659 uprv_memset(target, 0, sourceLen*U_SIZEOF_UCHAR);
1660
1661 /* read the rules into the buffer */
1662 while (source < sourceLimit)
1663 {
1664 index=0;
1665 U16_NEXT_UNSAFE(source, index, c);
1666 source+=index;
1667 if(c == QUOTE) {
1668 quoted = (UBool)!quoted;
1669 }
1670 else if (!quoted) {
1671 if (c == RULE_COMMENT_CHAR) {
1672 /* skip comments and all preceding spaces */
1673 while (targetStart < target && *(target - 1) == 0x0020) {
1674 target--;
1675 }
1676 do {
1677 c = *(source++);
1678 }
1679 while (c != CR && c != LF);
1680 }
1681 else if (c == ESCAPE) {
1682 UChar32 c2 = *source;
1683 if (c2 == CR || c2 == LF) {
1684 /* A backslash at the end of a line. */
1685 /* Since we're stripping lines, ignore the backslash. */
1686 source++;
1687 continue;
1688 }
1689 if (c2 == 0x0075 && source+5 < sourceLimit) { /* \u seen. \U isn't unescaped. */
1690 int32_t escapeOffset = 0;
1691 UnicodeString escapedStr(source, 5);
1692 c2 = escapedStr.unescapeAt(escapeOffset);
1693
1694 if (c2 == (UChar32)0xFFFFFFFF || escapeOffset == 0)
1695 {
1696 *status = U_PARSE_ERROR;
1697 return 0;
1698 }
1699 if (!PatternProps::isWhiteSpace(c2) && !u_iscntrl(c2) && !u_ispunct(c2)) {
1700 /* It was escaped for a reason. Write what it was suppose to be. */
1701 source+=5;
1702 c = c2;
1703 }
1704 }
1705 else if (c2 == QUOTE) {
1706 /* \' seen. Make sure we don't do anything when we see it again. */
1707 quoted = (UBool)!quoted;
1708 }
1709 }
1710 }
1711 if (c == CR || c == LF)
1712 {
1713 /* ignore spaces carriage returns, and all leading spaces on the next line.
1714 * and line feed unless in the form \uXXXX
1715 */
1716 quoted = FALSE;
1717 while (source < sourceLimit) {
1718 c = *(source);
1719 if (c != CR && c != LF && c != 0x0020) {
1720 break;
1721 }
1722 source++;
1723 }
1724 continue;
1725 }
1726
1727 /* Append UChar * after dissembling if c > 0xffff*/
1728 index=0;
1729 U16_APPEND_UNSAFE(target, index, c);
1730 target+=index;
1731 }
1732 if (target < targetLimit) {
1733 *target = 0;
1734 }
1735 return (int32_t)(target-targetStart);
1736 }
1737
1738 #endif /* #if !UCONFIG_NO_TRANSLITERATION */