]>
Commit | Line | Data |
---|---|---|
1 | // © 2016 and later: Unicode, Inc. and others. | |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
3 | /* | |
4 | ********************************************************************** | |
5 | * Copyright (c) 2003-2008, International Business Machines | |
6 | * Corporation and others. All Rights Reserved. | |
7 | ********************************************************************** | |
8 | * Author: Alan Liu | |
9 | * Created: September 2 2003 | |
10 | * Since: ICU 2.8 | |
11 | ********************************************************************** | |
12 | */ | |
13 | ||
14 | #include "gregoimp.h" | |
15 | ||
16 | #if !UCONFIG_NO_FORMATTING | |
17 | ||
18 | #include "unicode/ucal.h" | |
19 | #include "uresimp.h" | |
20 | #include "cstring.h" | |
21 | #include "uassert.h" | |
22 | ||
23 | U_NAMESPACE_BEGIN | |
24 | ||
25 | int32_t ClockMath::floorDivide(int32_t numerator, int32_t denominator) { | |
26 | return (numerator >= 0) ? | |
27 | numerator / denominator : ((numerator + 1) / denominator) - 1; | |
28 | } | |
29 | ||
30 | int32_t ClockMath::floorDivide(double numerator, int32_t denominator, | |
31 | int32_t& remainder) { | |
32 | double quotient; | |
33 | quotient = uprv_floor(numerator / denominator); | |
34 | remainder = (int32_t) (numerator - (quotient * denominator)); | |
35 | return (int32_t) quotient; | |
36 | } | |
37 | ||
38 | double ClockMath::floorDivide(double dividend, double divisor, | |
39 | double& remainder) { | |
40 | // Only designed to work for positive divisors | |
41 | U_ASSERT(divisor > 0); | |
42 | double quotient = floorDivide(dividend, divisor); | |
43 | remainder = dividend - (quotient * divisor); | |
44 | // N.B. For certain large dividends, on certain platforms, there | |
45 | // is a bug such that the quotient is off by one. If you doubt | |
46 | // this to be true, set a breakpoint below and run cintltst. | |
47 | if (remainder < 0 || remainder >= divisor) { | |
48 | // E.g. 6.7317038241449352e+022 / 86400000.0 is wrong on my | |
49 | // machine (too high by one). 4.1792057231752762e+024 / | |
50 | // 86400000.0 is wrong the other way (too low). | |
51 | double q = quotient; | |
52 | quotient += (remainder < 0) ? -1 : +1; | |
53 | if (q == quotient) { | |
54 | // For quotients > ~2^53, we won't be able to add or | |
55 | // subtract one, since the LSB of the mantissa will be > | |
56 | // 2^0; that is, the exponent (base 2) will be larger than | |
57 | // the length, in bits, of the mantissa. In that case, we | |
58 | // can't give a correct answer, so we set the remainder to | |
59 | // zero. This has the desired effect of making extreme | |
60 | // values give back an approximate answer rather than | |
61 | // crashing. For example, UDate values above a ~10^25 | |
62 | // might all have a time of midnight. | |
63 | remainder = 0; | |
64 | } else { | |
65 | remainder = dividend - (quotient * divisor); | |
66 | } | |
67 | } | |
68 | U_ASSERT(0 <= remainder && remainder < divisor); | |
69 | return quotient; | |
70 | } | |
71 | ||
72 | const int32_t JULIAN_1_CE = 1721426; // January 1, 1 CE Gregorian | |
73 | const int32_t JULIAN_1970_CE = 2440588; // January 1, 1970 CE Gregorian | |
74 | ||
75 | const int16_t Grego::DAYS_BEFORE[24] = | |
76 | {0,31,59,90,120,151,181,212,243,273,304,334, | |
77 | 0,31,60,91,121,152,182,213,244,274,305,335}; | |
78 | ||
79 | const int8_t Grego::MONTH_LENGTH[24] = | |
80 | {31,28,31,30,31,30,31,31,30,31,30,31, | |
81 | 31,29,31,30,31,30,31,31,30,31,30,31}; | |
82 | ||
83 | double Grego::fieldsToDay(int32_t year, int32_t month, int32_t dom) { | |
84 | ||
85 | int32_t y = year - 1; | |
86 | ||
87 | double julian = 365 * y + ClockMath::floorDivide(y, 4) + (JULIAN_1_CE - 3) + // Julian cal | |
88 | ClockMath::floorDivide(y, 400) - ClockMath::floorDivide(y, 100) + 2 + // => Gregorian cal | |
89 | DAYS_BEFORE[month + (isLeapYear(year) ? 12 : 0)] + dom; // => month/dom | |
90 | ||
91 | return julian - JULIAN_1970_CE; // JD => epoch day | |
92 | } | |
93 | ||
94 | void Grego::dayToFields(double day, int32_t& year, int32_t& month, | |
95 | int32_t& dom, int32_t& dow, int32_t& doy) { | |
96 | ||
97 | // Convert from 1970 CE epoch to 1 CE epoch (Gregorian calendar) | |
98 | day += JULIAN_1970_CE - JULIAN_1_CE; | |
99 | ||
100 | // Convert from the day number to the multiple radix | |
101 | // representation. We use 400-year, 100-year, and 4-year cycles. | |
102 | // For example, the 4-year cycle has 4 years + 1 leap day; giving | |
103 | // 1461 == 365*4 + 1 days. | |
104 | int32_t n400 = ClockMath::floorDivide(day, 146097, doy); // 400-year cycle length | |
105 | int32_t n100 = ClockMath::floorDivide(doy, 36524, doy); // 100-year cycle length | |
106 | int32_t n4 = ClockMath::floorDivide(doy, 1461, doy); // 4-year cycle length | |
107 | int32_t n1 = ClockMath::floorDivide(doy, 365, doy); | |
108 | year = 400*n400 + 100*n100 + 4*n4 + n1; | |
109 | if (n100 == 4 || n1 == 4) { | |
110 | doy = 365; // Dec 31 at end of 4- or 400-year cycle | |
111 | } else { | |
112 | ++year; | |
113 | } | |
114 | ||
115 | UBool isLeap = isLeapYear(year); | |
116 | ||
117 | // Gregorian day zero is a Monday. | |
118 | dow = (int32_t) uprv_fmod(day + 1, 7); | |
119 | dow += (dow < 0) ? (UCAL_SUNDAY + 7) : UCAL_SUNDAY; | |
120 | ||
121 | // Common Julian/Gregorian calculation | |
122 | int32_t correction = 0; | |
123 | int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1 | |
124 | if (doy >= march1) { | |
125 | correction = isLeap ? 1 : 2; | |
126 | } | |
127 | month = (12 * (doy + correction) + 6) / 367; // zero-based month | |
128 | dom = doy - DAYS_BEFORE[month + (isLeap ? 12 : 0)] + 1; // one-based DOM | |
129 | doy++; // one-based doy | |
130 | } | |
131 | ||
132 | void Grego::timeToFields(UDate time, int32_t& year, int32_t& month, | |
133 | int32_t& dom, int32_t& dow, int32_t& doy, int32_t& mid) { | |
134 | double millisInDay; | |
135 | double day = ClockMath::floorDivide((double)time, (double)U_MILLIS_PER_DAY, millisInDay); | |
136 | mid = (int32_t)millisInDay; | |
137 | dayToFields(day, year, month, dom, dow, doy); | |
138 | } | |
139 | ||
140 | int32_t Grego::dayOfWeek(double day) { | |
141 | int32_t dow; | |
142 | ClockMath::floorDivide(day + UCAL_THURSDAY, 7, dow); | |
143 | return (dow == 0) ? UCAL_SATURDAY : dow; | |
144 | } | |
145 | ||
146 | int32_t Grego::dayOfWeekInMonth(int32_t year, int32_t month, int32_t dom) { | |
147 | int32_t weekInMonth = (dom + 6)/7; | |
148 | if (weekInMonth == 4) { | |
149 | if (dom + 7 > monthLength(year, month)) { | |
150 | weekInMonth = -1; | |
151 | } | |
152 | } else if (weekInMonth == 5) { | |
153 | weekInMonth = -1; | |
154 | } | |
155 | return weekInMonth; | |
156 | } | |
157 | ||
158 | U_NAMESPACE_END | |
159 | ||
160 | #endif | |
161 | //eof |