]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | // |
2 | // file: rbbiscan.cpp | |
3 | // | |
2ca993e8 | 4 | // Copyright (C) 2002-2016, International Business Machines Corporation and others. |
b75a7d8f A |
5 | // All Rights Reserved. |
6 | // | |
7 | // This file contains the Rule Based Break Iterator Rule Builder functions for | |
8 | // scanning the rules and assembling a parse tree. This is the first phase | |
9 | // of compiling the rules. | |
10 | // | |
11 | // The overall of the rules is managed by class RBBIRuleBuilder, which will | |
12 | // create and use an instance of this class as part of the process. | |
13 | // | |
14 | ||
15 | #include "unicode/utypes.h" | |
16 | ||
17 | #if !UCONFIG_NO_BREAK_ITERATION | |
18 | ||
19 | #include "unicode/unistr.h" | |
20 | #include "unicode/uniset.h" | |
21 | #include "unicode/uchar.h" | |
22 | #include "unicode/uchriter.h" | |
23 | #include "unicode/parsepos.h" | |
24 | #include "unicode/parseerr.h" | |
b75a7d8f A |
25 | #include "cmemory.h" |
26 | #include "cstring.h" | |
27 | ||
28 | #include "rbbirpt.h" // Contains state table for the rbbi rules parser. | |
29 | // generated by a Perl script. | |
30 | #include "rbbirb.h" | |
31 | #include "rbbinode.h" | |
32 | #include "rbbiscan.h" | |
374ca955 | 33 | #include "rbbitblb.h" |
b75a7d8f A |
34 | |
35 | #include "uassert.h" | |
36 | ||
46f4442e | 37 | //------------------------------------------------------------------------------ |
b75a7d8f A |
38 | // |
39 | // Unicode Set init strings for each of the character classes needed for parsing a rule file. | |
40 | // (Initialized with hex values for portability to EBCDIC based machines. | |
41 | // Really ugly, but there's no good way to avoid it.) | |
42 | // | |
43 | // The sets are referred to by name in the rbbirpt.txt, which is the | |
44 | // source form of the state transition table for the RBBI rule parser. | |
45 | // | |
46f4442e | 46 | //------------------------------------------------------------------------------ |
b75a7d8f A |
47 | static const UChar gRuleSet_rule_char_pattern[] = { |
48 | // [ ^ [ \ p { Z } \ u 0 0 2 0 | |
49 | 0x5b, 0x5e, 0x5b, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5c, 0x75, 0x30, 0x30, 0x32, 0x30, | |
50 | // - \ u 0 0 7 f ] - [ \ p | |
51 | 0x2d, 0x5c, 0x75, 0x30, 0x30, 0x37, 0x66, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, | |
52 | // { L } ] - [ \ p { N } ] ] | |
53 | 0x7b, 0x4c, 0x7d, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0x5d, 0}; | |
54 | ||
55 | static const UChar gRuleSet_name_char_pattern[] = { | |
56 | // [ _ \ p { L } \ p { N } ] | |
57 | 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0}; | |
58 | ||
59 | static const UChar gRuleSet_digit_char_pattern[] = { | |
60 | // [ 0 - 9 ] | |
61 | 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0}; | |
62 | ||
63 | static const UChar gRuleSet_name_start_char_pattern[] = { | |
64 | // [ _ \ p { L } ] | |
65 | 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5d, 0 }; | |
66 | ||
67 | static const UChar kAny[] = {0x61, 0x6e, 0x79, 0x00}; // "any" | |
68 | ||
69 | ||
70 | U_CDECL_BEGIN | |
73c04bcf | 71 | static void U_CALLCONV RBBISetTable_deleter(void *p) { |
4388f060 | 72 | icu::RBBISetTableEl *px = (icu::RBBISetTableEl *)p; |
b75a7d8f A |
73 | delete px->key; |
74 | // Note: px->val is owned by the linked list "fSetsListHead" in scanner. | |
75 | // Don't delete the value nodes here. | |
76 | uprv_free(px); | |
77 | } | |
78 | U_CDECL_END | |
79 | ||
80 | U_NAMESPACE_BEGIN | |
81 | ||
46f4442e | 82 | //------------------------------------------------------------------------------ |
b75a7d8f A |
83 | // |
84 | // Constructor. | |
85 | // | |
46f4442e | 86 | //------------------------------------------------------------------------------ |
b75a7d8f A |
87 | RBBIRuleScanner::RBBIRuleScanner(RBBIRuleBuilder *rb) |
88 | { | |
89 | fRB = rb; | |
2ca993e8 A |
90 | fScanIndex = 0; |
91 | fNextIndex = 0; | |
92 | fQuoteMode = FALSE; | |
93 | fLineNum = 1; | |
94 | fCharNum = 0; | |
95 | fLastChar = 0; | |
96 | ||
97 | fStateTable = NULL; | |
98 | fStack[0] = 0; | |
b75a7d8f | 99 | fStackPtr = 0; |
b75a7d8f | 100 | fNodeStack[0] = NULL; |
2ca993e8 | 101 | fNodeStackPtr = 0; |
b75a7d8f A |
102 | |
103 | fReverseRule = FALSE; | |
104 | fLookAheadRule = FALSE; | |
2ca993e8 | 105 | fNoChainInRule = FALSE; |
b75a7d8f | 106 | |
2ca993e8 A |
107 | fSymbolTable = NULL; |
108 | fSetTable = NULL; | |
109 | fRuleNum = 0; | |
110 | fOptionStart = 0; | |
b75a7d8f | 111 | |
374ca955 A |
112 | // Do not check status until after all critical fields are sufficiently initialized |
113 | // that the destructor can run cleanly. | |
b75a7d8f A |
114 | if (U_FAILURE(*rb->fStatus)) { |
115 | return; | |
116 | } | |
117 | ||
118 | // | |
119 | // Set up the constant Unicode Sets. | |
120 | // Note: These could be made static, lazily initialized, and shared among | |
121 | // all instances of RBBIRuleScanners. BUT this is quite a bit simpler, | |
122 | // and the time to build these few sets should be small compared to a | |
123 | // full break iterator build. | |
4388f060 A |
124 | fRuleSets[kRuleSet_rule_char-128] |
125 | = UnicodeSet(UnicodeString(gRuleSet_rule_char_pattern), *rb->fStatus); | |
126 | // fRuleSets[kRuleSet_white_space-128] = [:Pattern_White_Space:] | |
127 | fRuleSets[kRuleSet_white_space-128]. | |
128 | add(9, 0xd).add(0x20).add(0x85).add(0x200e, 0x200f).add(0x2028, 0x2029); | |
129 | fRuleSets[kRuleSet_name_char-128] | |
130 | = UnicodeSet(UnicodeString(gRuleSet_name_char_pattern), *rb->fStatus); | |
131 | fRuleSets[kRuleSet_name_start_char-128] | |
132 | = UnicodeSet(UnicodeString(gRuleSet_name_start_char_pattern), *rb->fStatus); | |
133 | fRuleSets[kRuleSet_digit_char-128] | |
134 | = UnicodeSet(UnicodeString(gRuleSet_digit_char_pattern), *rb->fStatus); | |
b75a7d8f A |
135 | if (*rb->fStatus == U_ILLEGAL_ARGUMENT_ERROR) { |
136 | // This case happens if ICU's data is missing. UnicodeSet tries to look up property | |
4388f060 | 137 | // names from the init string, can't find them, and claims an illegal argument. |
b75a7d8f A |
138 | // Change the error so that the actual problem will be clearer to users. |
139 | *rb->fStatus = U_BRK_INIT_ERROR; | |
140 | } | |
141 | if (U_FAILURE(*rb->fStatus)) { | |
142 | return; | |
143 | } | |
144 | ||
145 | fSymbolTable = new RBBISymbolTable(this, rb->fRules, *rb->fStatus); | |
46f4442e A |
146 | if (fSymbolTable == NULL) { |
147 | *rb->fStatus = U_MEMORY_ALLOCATION_ERROR; | |
148 | return; | |
149 | } | |
73c04bcf | 150 | fSetTable = uhash_open(uhash_hashUnicodeString, uhash_compareUnicodeString, NULL, rb->fStatus); |
46f4442e A |
151 | if (U_FAILURE(*rb->fStatus)) { |
152 | return; | |
153 | } | |
b75a7d8f A |
154 | uhash_setValueDeleter(fSetTable, RBBISetTable_deleter); |
155 | } | |
156 | ||
157 | ||
158 | ||
46f4442e | 159 | //------------------------------------------------------------------------------ |
b75a7d8f A |
160 | // |
161 | // Destructor | |
162 | // | |
46f4442e | 163 | //------------------------------------------------------------------------------ |
b75a7d8f | 164 | RBBIRuleScanner::~RBBIRuleScanner() { |
b75a7d8f A |
165 | delete fSymbolTable; |
166 | if (fSetTable != NULL) { | |
167 | uhash_close(fSetTable); | |
168 | fSetTable = NULL; | |
169 | ||
170 | } | |
171 | ||
172 | ||
173 | // Node Stack. | |
174 | // Normally has one entry, which is the entire parse tree for the rules. | |
175 | // If errors occured, there may be additional subtrees left on the stack. | |
176 | while (fNodeStackPtr > 0) { | |
177 | delete fNodeStack[fNodeStackPtr]; | |
178 | fNodeStackPtr--; | |
179 | } | |
180 | ||
181 | } | |
182 | ||
46f4442e | 183 | //------------------------------------------------------------------------------ |
b75a7d8f A |
184 | // |
185 | // doParseAction Do some action during rule parsing. | |
186 | // Called by the parse state machine. | |
187 | // Actions build the parse tree and Unicode Sets, | |
188 | // and maintain the parse stack for nested expressions. | |
189 | // | |
190 | // TODO: unify EParseAction and RBBI_RuleParseAction enum types. | |
191 | // They represent exactly the same thing. They're separate | |
192 | // only to work around enum forward declaration restrictions | |
193 | // in some compilers, while at the same time avoiding multiple | |
194 | // definitions problems. I'm sure that there's a better way. | |
195 | // | |
46f4442e A |
196 | //------------------------------------------------------------------------------ |
197 | UBool RBBIRuleScanner::doParseActions(int32_t action) | |
b75a7d8f A |
198 | { |
199 | RBBINode *n = NULL; | |
200 | ||
201 | UBool returnVal = TRUE; | |
202 | ||
46f4442e | 203 | switch (action) { |
b75a7d8f A |
204 | |
205 | case doExprStart: | |
206 | pushNewNode(RBBINode::opStart); | |
207 | fRuleNum++; | |
208 | break; | |
209 | ||
210 | ||
2ca993e8 A |
211 | case doNoChain: |
212 | // Scanned a '^' while on the rule start state. | |
213 | fNoChainInRule = TRUE; | |
214 | break; | |
215 | ||
216 | ||
b75a7d8f A |
217 | case doExprOrOperator: |
218 | { | |
219 | fixOpStack(RBBINode::precOpCat); | |
220 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; | |
221 | RBBINode *orNode = pushNewNode(RBBINode::opOr); | |
2ca993e8 A |
222 | if (U_FAILURE(*fRB->fStatus)) { |
223 | break; | |
224 | } | |
b75a7d8f A |
225 | orNode->fLeftChild = operandNode; |
226 | operandNode->fParent = orNode; | |
227 | } | |
228 | break; | |
229 | ||
230 | case doExprCatOperator: | |
231 | // concatenation operator. | |
232 | // For the implicit concatenation of adjacent terms in an expression that are | |
233 | // not separated by any other operator. Action is invoked between the | |
234 | // actions for the two terms. | |
235 | { | |
236 | fixOpStack(RBBINode::precOpCat); | |
237 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; | |
238 | RBBINode *catNode = pushNewNode(RBBINode::opCat); | |
2ca993e8 A |
239 | if (U_FAILURE(*fRB->fStatus)) { |
240 | break; | |
241 | } | |
b75a7d8f A |
242 | catNode->fLeftChild = operandNode; |
243 | operandNode->fParent = catNode; | |
244 | } | |
245 | break; | |
246 | ||
247 | case doLParen: | |
248 | // Open Paren. | |
249 | // The openParen node is a dummy operation type with a low precedence, | |
250 | // which has the affect of ensuring that any real binary op that | |
251 | // follows within the parens binds more tightly to the operands than | |
252 | // stuff outside of the parens. | |
253 | pushNewNode(RBBINode::opLParen); | |
254 | break; | |
255 | ||
256 | case doExprRParen: | |
257 | fixOpStack(RBBINode::precLParen); | |
258 | break; | |
259 | ||
260 | case doNOP: | |
261 | break; | |
262 | ||
263 | case doStartAssign: | |
264 | // We've just scanned "$variable = " | |
265 | // The top of the node stack has the $variable ref node. | |
266 | ||
267 | // Save the start position of the RHS text in the StartExpression node | |
268 | // that precedes the $variableReference node on the stack. | |
269 | // This will eventually be used when saving the full $variable replacement | |
270 | // text as a string. | |
271 | n = fNodeStack[fNodeStackPtr-1]; | |
272 | n->fFirstPos = fNextIndex; // move past the '=' | |
273 | ||
274 | // Push a new start-of-expression node; needed to keep parse of the | |
275 | // RHS expression happy. | |
276 | pushNewNode(RBBINode::opStart); | |
277 | break; | |
278 | ||
279 | ||
280 | ||
281 | ||
282 | case doEndAssign: | |
283 | { | |
284 | // We have reached the end of an assignement statement. | |
285 | // Current scan char is the ';' that terminates the assignment. | |
286 | ||
287 | // Terminate expression, leaves expression parse tree rooted in TOS node. | |
288 | fixOpStack(RBBINode::precStart); | |
289 | ||
290 | RBBINode *startExprNode = fNodeStack[fNodeStackPtr-2]; | |
291 | RBBINode *varRefNode = fNodeStack[fNodeStackPtr-1]; | |
292 | RBBINode *RHSExprNode = fNodeStack[fNodeStackPtr]; | |
293 | ||
294 | // Save original text of right side of assignment, excluding the terminating ';' | |
295 | // in the root of the node for the right-hand-side expression. | |
296 | RHSExprNode->fFirstPos = startExprNode->fFirstPos; | |
297 | RHSExprNode->fLastPos = fScanIndex; | |
298 | fRB->fRules.extractBetween(RHSExprNode->fFirstPos, RHSExprNode->fLastPos, RHSExprNode->fText); | |
299 | ||
300 | // Expression parse tree becomes l. child of the $variable reference node. | |
301 | varRefNode->fLeftChild = RHSExprNode; | |
302 | RHSExprNode->fParent = varRefNode; | |
303 | ||
304 | // Make a symbol table entry for the $variableRef node. | |
305 | fSymbolTable->addEntry(varRefNode->fText, varRefNode, *fRB->fStatus); | |
73c04bcf A |
306 | if (U_FAILURE(*fRB->fStatus)) { |
307 | // This is a round-about way to get the parse position set | |
308 | // so that duplicate symbols error messages include a line number. | |
309 | UErrorCode t = *fRB->fStatus; | |
310 | *fRB->fStatus = U_ZERO_ERROR; | |
311 | error(t); | |
312 | } | |
b75a7d8f A |
313 | |
314 | // Clean up the stack. | |
315 | delete startExprNode; | |
316 | fNodeStackPtr-=3; | |
317 | break; | |
318 | } | |
319 | ||
320 | case doEndOfRule: | |
321 | { | |
322 | fixOpStack(RBBINode::precStart); // Terminate expression, leaves expression | |
323 | if (U_FAILURE(*fRB->fStatus)) { // parse tree rooted in TOS node. | |
324 | break; | |
325 | } | |
73c04bcf | 326 | #ifdef RBBI_DEBUG |
b75a7d8f | 327 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rtree")) {printNodeStack("end of rule");} |
73c04bcf | 328 | #endif |
b75a7d8f | 329 | U_ASSERT(fNodeStackPtr == 1); |
2ca993e8 | 330 | RBBINode *thisRule = fNodeStack[fNodeStackPtr]; |
b75a7d8f A |
331 | |
332 | // If this rule includes a look-ahead '/', add a endMark node to the | |
333 | // expression tree. | |
334 | if (fLookAheadRule) { | |
b75a7d8f A |
335 | RBBINode *endNode = pushNewNode(RBBINode::endMark); |
336 | RBBINode *catNode = pushNewNode(RBBINode::opCat); | |
2ca993e8 A |
337 | if (U_FAILURE(*fRB->fStatus)) { |
338 | break; | |
339 | } | |
b75a7d8f A |
340 | fNodeStackPtr -= 2; |
341 | catNode->fLeftChild = thisRule; | |
342 | catNode->fRightChild = endNode; | |
343 | fNodeStack[fNodeStackPtr] = catNode; | |
344 | endNode->fVal = fRuleNum; | |
345 | endNode->fLookAheadEnd = TRUE; | |
2ca993e8 A |
346 | thisRule = catNode; |
347 | ||
348 | // TODO: Disable chaining out of look-ahead (hard break) rules. | |
349 | // The break on rule match is forced, so there is no point in building up | |
350 | // the state table to chain into another rule for a longer match. | |
351 | } | |
352 | ||
353 | // Mark this node as being the root of a rule. | |
354 | thisRule->fRuleRoot = TRUE; | |
355 | ||
356 | // Flag if chaining into this rule is wanted. | |
357 | // | |
358 | if (fRB->fChainRules && // If rule chaining is enabled globally via !!chain | |
359 | !fNoChainInRule) { // and no '^' chain-in inhibit was on this rule | |
360 | thisRule->fChainIn = TRUE; | |
b75a7d8f A |
361 | } |
362 | ||
2ca993e8 | 363 | |
b75a7d8f A |
364 | // All rule expressions are ORed together. |
365 | // The ';' that terminates an expression really just functions as a '|' with | |
366 | // a low operator prededence. | |
367 | // | |
374ca955 A |
368 | // Each of the four sets of rules are collected separately. |
369 | // (forward, reverse, safe_forward, safe_reverse) | |
370 | // OR this rule into the appropriate group of them. | |
b75a7d8f | 371 | // |
374ca955 | 372 | RBBINode **destRules = (fReverseRule? &fRB->fReverseTree : fRB->fDefaultTree); |
b75a7d8f A |
373 | |
374 | if (*destRules != NULL) { | |
375 | // This is not the first rule encounted. | |
376 | // OR previous stuff (from *destRules) | |
377 | // with the current rule expression (on the Node Stack) | |
378 | // with the resulting OR expression going to *destRules | |
379 | // | |
380 | RBBINode *thisRule = fNodeStack[fNodeStackPtr]; | |
381 | RBBINode *prevRules = *destRules; | |
382 | RBBINode *orNode = pushNewNode(RBBINode::opOr); | |
2ca993e8 A |
383 | if (U_FAILURE(*fRB->fStatus)) { |
384 | break; | |
385 | } | |
b75a7d8f A |
386 | orNode->fLeftChild = prevRules; |
387 | prevRules->fParent = orNode; | |
388 | orNode->fRightChild = thisRule; | |
389 | thisRule->fParent = orNode; | |
390 | *destRules = orNode; | |
391 | } | |
392 | else | |
393 | { | |
394 | // This is the first rule encountered (for this direction). | |
395 | // Just move its parse tree from the stack to *destRules. | |
396 | *destRules = fNodeStack[fNodeStackPtr]; | |
397 | } | |
398 | fReverseRule = FALSE; // in preparation for the next rule. | |
399 | fLookAheadRule = FALSE; | |
2ca993e8 | 400 | fNoChainInRule = FALSE; |
b75a7d8f A |
401 | fNodeStackPtr = 0; |
402 | } | |
403 | break; | |
404 | ||
405 | ||
406 | case doRuleError: | |
407 | error(U_BRK_RULE_SYNTAX); | |
408 | returnVal = FALSE; | |
409 | break; | |
410 | ||
411 | ||
412 | case doVariableNameExpectedErr: | |
413 | error(U_BRK_RULE_SYNTAX); | |
414 | break; | |
415 | ||
416 | ||
417 | // | |
418 | // Unary operands + ? * | |
419 | // These all appear after the operand to which they apply. | |
420 | // When we hit one, the operand (may be a whole sub expression) | |
421 | // will be on the top of the stack. | |
422 | // Unary Operator becomes TOS, with the old TOS as its one child. | |
423 | case doUnaryOpPlus: | |
424 | { | |
425 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; | |
426 | RBBINode *plusNode = pushNewNode(RBBINode::opPlus); | |
2ca993e8 A |
427 | if (U_FAILURE(*fRB->fStatus)) { |
428 | break; | |
429 | } | |
b75a7d8f A |
430 | plusNode->fLeftChild = operandNode; |
431 | operandNode->fParent = plusNode; | |
432 | } | |
433 | break; | |
434 | ||
435 | case doUnaryOpQuestion: | |
436 | { | |
437 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; | |
438 | RBBINode *qNode = pushNewNode(RBBINode::opQuestion); | |
2ca993e8 A |
439 | if (U_FAILURE(*fRB->fStatus)) { |
440 | break; | |
441 | } | |
b75a7d8f A |
442 | qNode->fLeftChild = operandNode; |
443 | operandNode->fParent = qNode; | |
444 | } | |
445 | break; | |
446 | ||
447 | case doUnaryOpStar: | |
448 | { | |
449 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; | |
450 | RBBINode *starNode = pushNewNode(RBBINode::opStar); | |
2ca993e8 A |
451 | if (U_FAILURE(*fRB->fStatus)) { |
452 | break; | |
453 | } | |
b75a7d8f A |
454 | starNode->fLeftChild = operandNode; |
455 | operandNode->fParent = starNode; | |
456 | } | |
457 | break; | |
458 | ||
459 | case doRuleChar: | |
460 | // A "Rule Character" is any single character that is a literal part | |
461 | // of the regular expression. Like a, b and c in the expression "(abc*) | [:L:]" | |
462 | // These are pretty uncommon in break rules; the terms are more commonly | |
463 | // sets. To keep things uniform, treat these characters like as | |
464 | // sets that just happen to contain only one character. | |
465 | { | |
466 | n = pushNewNode(RBBINode::setRef); | |
2ca993e8 A |
467 | if (U_FAILURE(*fRB->fStatus)) { |
468 | break; | |
469 | } | |
4388f060 | 470 | findSetFor(UnicodeString(fC.fChar), n); |
b75a7d8f A |
471 | n->fFirstPos = fScanIndex; |
472 | n->fLastPos = fNextIndex; | |
473 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); | |
474 | break; | |
475 | } | |
476 | ||
477 | case doDotAny: | |
478 | // scanned a ".", meaning match any single character. | |
479 | { | |
480 | n = pushNewNode(RBBINode::setRef); | |
2ca993e8 A |
481 | if (U_FAILURE(*fRB->fStatus)) { |
482 | break; | |
483 | } | |
4388f060 | 484 | findSetFor(UnicodeString(TRUE, kAny, 3), n); |
b75a7d8f A |
485 | n->fFirstPos = fScanIndex; |
486 | n->fLastPos = fNextIndex; | |
487 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); | |
488 | break; | |
489 | } | |
b75a7d8f A |
490 | |
491 | case doSlash: | |
492 | // Scanned a '/', which identifies a look-ahead break position in a rule. | |
493 | n = pushNewNode(RBBINode::lookAhead); | |
2ca993e8 A |
494 | if (U_FAILURE(*fRB->fStatus)) { |
495 | break; | |
496 | } | |
b75a7d8f A |
497 | n->fVal = fRuleNum; |
498 | n->fFirstPos = fScanIndex; | |
499 | n->fLastPos = fNextIndex; | |
500 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); | |
501 | fLookAheadRule = TRUE; | |
502 | break; | |
503 | ||
504 | ||
505 | case doStartTagValue: | |
506 | // Scanned a '{', the opening delimiter for a tag value within a rule. | |
507 | n = pushNewNode(RBBINode::tag); | |
2ca993e8 A |
508 | if (U_FAILURE(*fRB->fStatus)) { |
509 | break; | |
510 | } | |
b75a7d8f A |
511 | n->fVal = 0; |
512 | n->fFirstPos = fScanIndex; | |
513 | n->fLastPos = fNextIndex; | |
514 | break; | |
515 | ||
516 | case doTagDigit: | |
517 | // Just scanned a decimal digit that's part of a tag value | |
518 | { | |
519 | n = fNodeStack[fNodeStackPtr]; | |
520 | uint32_t v = u_charDigitValue(fC.fChar); | |
521 | U_ASSERT(v < 10); | |
522 | n->fVal = n->fVal*10 + v; | |
523 | break; | |
524 | } | |
525 | ||
526 | case doTagValue: | |
527 | n = fNodeStack[fNodeStackPtr]; | |
528 | n->fLastPos = fNextIndex; | |
529 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); | |
530 | break; | |
531 | ||
374ca955 A |
532 | case doTagExpectedError: |
533 | error(U_BRK_MALFORMED_RULE_TAG); | |
534 | returnVal = FALSE; | |
535 | break; | |
536 | ||
537 | case doOptionStart: | |
538 | // Scanning a !!option. At the start of string. | |
539 | fOptionStart = fScanIndex; | |
540 | break; | |
b75a7d8f | 541 | |
374ca955 A |
542 | case doOptionEnd: |
543 | { | |
544 | UnicodeString opt(fRB->fRules, fOptionStart, fScanIndex-fOptionStart); | |
545 | if (opt == UNICODE_STRING("chain", 5)) { | |
546 | fRB->fChainRules = TRUE; | |
547 | } else if (opt == UNICODE_STRING("LBCMNoChain", 11)) { | |
548 | fRB->fLBCMNoChain = TRUE; | |
b331163b A |
549 | } else if (opt == UNICODE_STRING("RINoChain", 9)) { |
550 | fRB->fRINoChain = TRUE; | |
374ca955 A |
551 | } else if (opt == UNICODE_STRING("forward", 7)) { |
552 | fRB->fDefaultTree = &fRB->fForwardTree; | |
553 | } else if (opt == UNICODE_STRING("reverse", 7)) { | |
554 | fRB->fDefaultTree = &fRB->fReverseTree; | |
555 | } else if (opt == UNICODE_STRING("safe_forward", 12)) { | |
556 | fRB->fDefaultTree = &fRB->fSafeFwdTree; | |
557 | } else if (opt == UNICODE_STRING("safe_reverse", 12)) { | |
558 | fRB->fDefaultTree = &fRB->fSafeRevTree; | |
559 | } else if (opt == UNICODE_STRING("lookAheadHardBreak", 18)) { | |
560 | fRB->fLookAheadHardBreak = TRUE; | |
561 | } else { | |
562 | error(U_BRK_UNRECOGNIZED_OPTION); | |
563 | } | |
564 | } | |
565 | break; | |
b75a7d8f A |
566 | |
567 | case doReverseDir: | |
568 | fReverseRule = TRUE; | |
569 | break; | |
570 | ||
571 | case doStartVariableName: | |
572 | n = pushNewNode(RBBINode::varRef); | |
573 | if (U_FAILURE(*fRB->fStatus)) { | |
574 | break; | |
575 | } | |
576 | n->fFirstPos = fScanIndex; | |
577 | break; | |
578 | ||
579 | case doEndVariableName: | |
580 | n = fNodeStack[fNodeStackPtr]; | |
581 | if (n==NULL || n->fType != RBBINode::varRef) { | |
582 | error(U_BRK_INTERNAL_ERROR); | |
583 | break; | |
584 | } | |
585 | n->fLastPos = fScanIndex; | |
586 | fRB->fRules.extractBetween(n->fFirstPos+1, n->fLastPos, n->fText); | |
587 | // Look the newly scanned name up in the symbol table | |
588 | // If there's an entry, set the l. child of the var ref to the replacement expression. | |
589 | // (We also pass through here when scanning assignments, but no harm is done, other | |
590 | // than a slight wasted effort that seems hard to avoid. Lookup will be null) | |
591 | n->fLeftChild = fSymbolTable->lookupNode(n->fText); | |
592 | break; | |
593 | ||
594 | case doCheckVarDef: | |
595 | n = fNodeStack[fNodeStackPtr]; | |
596 | if (n->fLeftChild == NULL) { | |
597 | error(U_BRK_UNDEFINED_VARIABLE); | |
598 | returnVal = FALSE; | |
599 | } | |
600 | break; | |
601 | ||
602 | case doExprFinished: | |
603 | break; | |
604 | ||
605 | case doRuleErrorAssignExpr: | |
606 | error(U_BRK_ASSIGN_ERROR); | |
607 | returnVal = FALSE; | |
608 | break; | |
609 | ||
610 | case doExit: | |
611 | returnVal = FALSE; | |
612 | break; | |
613 | ||
614 | case doScanUnicodeSet: | |
615 | scanSet(); | |
616 | break; | |
617 | ||
618 | default: | |
619 | error(U_BRK_INTERNAL_ERROR); | |
620 | returnVal = FALSE; | |
621 | break; | |
622 | } | |
2ca993e8 | 623 | return returnVal && U_SUCCESS(*fRB->fStatus); |
b75a7d8f A |
624 | } |
625 | ||
626 | ||
627 | ||
628 | ||
46f4442e | 629 | //------------------------------------------------------------------------------ |
b75a7d8f A |
630 | // |
631 | // Error Report a rule parse error. | |
632 | // Only report it if no previous error has been recorded. | |
633 | // | |
46f4442e | 634 | //------------------------------------------------------------------------------ |
b75a7d8f A |
635 | void RBBIRuleScanner::error(UErrorCode e) { |
636 | if (U_SUCCESS(*fRB->fStatus)) { | |
637 | *fRB->fStatus = e; | |
46f4442e A |
638 | if (fRB->fParseError) { |
639 | fRB->fParseError->line = fLineNum; | |
640 | fRB->fParseError->offset = fCharNum; | |
641 | fRB->fParseError->preContext[0] = 0; | |
b331163b | 642 | fRB->fParseError->postContext[0] = 0; |
46f4442e | 643 | } |
b75a7d8f A |
644 | } |
645 | } | |
646 | ||
647 | ||
648 | ||
649 | ||
46f4442e | 650 | //------------------------------------------------------------------------------ |
b75a7d8f A |
651 | // |
652 | // fixOpStack The parse stack holds partially assembled chunks of the parse tree. | |
653 | // An entry on the stack may be as small as a single setRef node, | |
654 | // or as large as the parse tree | |
655 | // for an entire expression (this will be the one item left on the stack | |
656 | // when the parsing of an RBBI rule completes. | |
657 | // | |
658 | // This function is called when a binary operator is encountered. | |
659 | // It looks back up the stack for operators that are not yet associated | |
660 | // with a right operand, and if the precedence of the stacked operator >= | |
661 | // the precedence of the current operator, binds the operand left, | |
662 | // to the previously encountered operator. | |
663 | // | |
46f4442e | 664 | //------------------------------------------------------------------------------ |
b75a7d8f A |
665 | void RBBIRuleScanner::fixOpStack(RBBINode::OpPrecedence p) { |
666 | RBBINode *n; | |
667 | // printNodeStack("entering fixOpStack()"); | |
668 | for (;;) { | |
669 | n = fNodeStack[fNodeStackPtr-1]; // an operator node | |
670 | if (n->fPrecedence == 0) { | |
374ca955 | 671 | RBBIDebugPuts("RBBIRuleScanner::fixOpStack, bad operator node"); |
b75a7d8f A |
672 | error(U_BRK_INTERNAL_ERROR); |
673 | return; | |
674 | } | |
675 | ||
676 | if (n->fPrecedence < p || n->fPrecedence <= RBBINode::precLParen) { | |
677 | // The most recent operand goes with the current operator, | |
678 | // not with the previously stacked one. | |
679 | break; | |
680 | } | |
681 | // Stack operator is a binary op ( '|' or concatenation) | |
682 | // TOS operand becomes right child of this operator. | |
683 | // Resulting subexpression becomes the TOS operand. | |
684 | n->fRightChild = fNodeStack[fNodeStackPtr]; | |
685 | fNodeStack[fNodeStackPtr]->fParent = n; | |
686 | fNodeStackPtr--; | |
687 | // printNodeStack("looping in fixOpStack() "); | |
688 | } | |
689 | ||
690 | if (p <= RBBINode::precLParen) { | |
691 | // Scan is at a right paren or end of expression. | |
692 | // The scanned item must match the stack, or else there was an error. | |
693 | // Discard the left paren (or start expr) node from the stack, | |
694 | // leaving the completed (sub)expression as TOS. | |
695 | if (n->fPrecedence != p) { | |
696 | // Right paren encountered matched start of expression node, or | |
697 | // end of expression matched with a left paren node. | |
698 | error(U_BRK_MISMATCHED_PAREN); | |
699 | } | |
700 | fNodeStack[fNodeStackPtr-1] = fNodeStack[fNodeStackPtr]; | |
701 | fNodeStackPtr--; | |
702 | // Delete the now-discarded LParen or Start node. | |
703 | delete n; | |
704 | } | |
705 | // printNodeStack("leaving fixOpStack()"); | |
706 | } | |
707 | ||
708 | ||
709 | ||
710 | ||
46f4442e | 711 | //------------------------------------------------------------------------------ |
b75a7d8f A |
712 | // |
713 | // findSetFor given a UnicodeString, | |
714 | // - find the corresponding Unicode Set (uset node) | |
715 | // (create one if necessary) | |
716 | // - Set fLeftChild of the caller's node (should be a setRef node) | |
717 | // to the uset node | |
718 | // Maintain a hash table of uset nodes, so the same one is always used | |
719 | // for the same string. | |
720 | // If a "to adopt" set is provided and we haven't seen this key before, | |
721 | // add the provided set to the hash table. | |
722 | // If the string is one (32 bit) char in length, the set contains | |
723 | // just one element which is the char in question. | |
724 | // If the string is "any", return a set containing all chars. | |
725 | // | |
46f4442e | 726 | //------------------------------------------------------------------------------ |
b75a7d8f A |
727 | void RBBIRuleScanner::findSetFor(const UnicodeString &s, RBBINode *node, UnicodeSet *setToAdopt) { |
728 | ||
729 | RBBISetTableEl *el; | |
730 | ||
731 | // First check whether we've already cached a set for this string. | |
732 | // If so, just use the cached set in the new node. | |
733 | // delete any set provided by the caller, since we own it. | |
734 | el = (RBBISetTableEl *)uhash_get(fSetTable, &s); | |
735 | if (el != NULL) { | |
736 | delete setToAdopt; | |
737 | node->fLeftChild = el->val; | |
738 | U_ASSERT(node->fLeftChild->fType == RBBINode::uset); | |
739 | return; | |
740 | } | |
741 | ||
742 | // Haven't seen this set before. | |
743 | // If the caller didn't provide us with a prebuilt set, | |
744 | // create a new UnicodeSet now. | |
745 | if (setToAdopt == NULL) { | |
746 | if (s.compare(kAny, -1) == 0) { | |
747 | setToAdopt = new UnicodeSet(0x000000, 0x10ffff); | |
748 | } else { | |
749 | UChar32 c; | |
750 | c = s.char32At(0); | |
751 | setToAdopt = new UnicodeSet(c, c); | |
752 | } | |
753 | } | |
754 | ||
755 | // | |
756 | // Make a new uset node to refer to this UnicodeSet | |
757 | // This new uset node becomes the child of the caller's setReference node. | |
758 | // | |
759 | RBBINode *usetNode = new RBBINode(RBBINode::uset); | |
46f4442e A |
760 | if (usetNode == NULL) { |
761 | error(U_MEMORY_ALLOCATION_ERROR); | |
762 | return; | |
763 | } | |
b75a7d8f A |
764 | usetNode->fInputSet = setToAdopt; |
765 | usetNode->fParent = node; | |
766 | node->fLeftChild = usetNode; | |
767 | usetNode->fText = s; | |
768 | ||
769 | ||
770 | // | |
771 | // Add the new uset node to the list of all uset nodes. | |
772 | // | |
773 | fRB->fUSetNodes->addElement(usetNode, *fRB->fStatus); | |
774 | ||
775 | ||
776 | // | |
777 | // Add the new set to the set hash table. | |
778 | // | |
779 | el = (RBBISetTableEl *)uprv_malloc(sizeof(RBBISetTableEl)); | |
780 | UnicodeString *tkey = new UnicodeString(s); | |
781 | if (tkey == NULL || el == NULL || setToAdopt == NULL) { | |
46f4442e A |
782 | // Delete to avoid memory leak |
783 | delete tkey; | |
784 | tkey = NULL; | |
785 | uprv_free(el); | |
786 | el = NULL; | |
787 | delete setToAdopt; | |
788 | setToAdopt = NULL; | |
789 | ||
b75a7d8f A |
790 | error(U_MEMORY_ALLOCATION_ERROR); |
791 | return; | |
792 | } | |
793 | el->key = tkey; | |
794 | el->val = usetNode; | |
795 | uhash_put(fSetTable, el->key, el, fRB->fStatus); | |
796 | ||
797 | return; | |
798 | } | |
799 | ||
800 | ||
801 | ||
802 | // | |
803 | // Assorted Unicode character constants. | |
804 | // Numeric because there is no portable way to enter them as literals. | |
805 | // (Think EBCDIC). | |
806 | // | |
807 | static const UChar chCR = 0x0d; // New lines, for terminating comments. | |
808 | static const UChar chLF = 0x0a; | |
809 | static const UChar chNEL = 0x85; // NEL newline variant | |
810 | static const UChar chLS = 0x2028; // Unicode Line Separator | |
811 | static const UChar chApos = 0x27; // single quote, for quoted chars. | |
812 | static const UChar chPound = 0x23; // '#', introduces a comment. | |
813 | static const UChar chBackSlash = 0x5c; // '\' introduces a char escape | |
814 | static const UChar chLParen = 0x28; | |
815 | static const UChar chRParen = 0x29; | |
816 | ||
817 | ||
46f4442e | 818 | //------------------------------------------------------------------------------ |
b75a7d8f A |
819 | // |
820 | // stripRules Return a rules string without unnecessary | |
821 | // characters. | |
822 | // | |
46f4442e | 823 | //------------------------------------------------------------------------------ |
b75a7d8f A |
824 | UnicodeString RBBIRuleScanner::stripRules(const UnicodeString &rules) { |
825 | UnicodeString strippedRules; | |
826 | int rulesLength = rules.length(); | |
827 | for (int idx = 0; idx < rulesLength; ) { | |
828 | UChar ch = rules[idx++]; | |
829 | if (ch == chPound) { | |
830 | while (idx < rulesLength | |
831 | && ch != chCR && ch != chLF && ch != chNEL) | |
832 | { | |
833 | ch = rules[idx++]; | |
834 | } | |
835 | } | |
836 | if (!u_isISOControl(ch)) { | |
837 | strippedRules.append(ch); | |
838 | } | |
839 | } | |
840 | // strippedRules = strippedRules.unescape(); | |
841 | return strippedRules; | |
842 | } | |
843 | ||
844 | ||
46f4442e | 845 | //------------------------------------------------------------------------------ |
b75a7d8f A |
846 | // |
847 | // nextCharLL Low Level Next Char from rule input source. | |
848 | // Get a char from the input character iterator, | |
849 | // keep track of input position for error reporting. | |
850 | // | |
46f4442e | 851 | //------------------------------------------------------------------------------ |
b75a7d8f A |
852 | UChar32 RBBIRuleScanner::nextCharLL() { |
853 | UChar32 ch; | |
854 | ||
855 | if (fNextIndex >= fRB->fRules.length()) { | |
856 | return (UChar32)-1; | |
857 | } | |
858 | ch = fRB->fRules.char32At(fNextIndex); | |
859 | fNextIndex = fRB->fRules.moveIndex32(fNextIndex, 1); | |
860 | ||
861 | if (ch == chCR || | |
862 | ch == chNEL || | |
863 | ch == chLS || | |
729e4ab9 | 864 | (ch == chLF && fLastChar != chCR)) { |
b75a7d8f A |
865 | // Character is starting a new line. Bump up the line number, and |
866 | // reset the column to 0. | |
867 | fLineNum++; | |
868 | fCharNum=0; | |
869 | if (fQuoteMode) { | |
870 | error(U_BRK_NEW_LINE_IN_QUOTED_STRING); | |
871 | fQuoteMode = FALSE; | |
872 | } | |
873 | } | |
874 | else { | |
875 | // Character is not starting a new line. Except in the case of a | |
876 | // LF following a CR, increment the column position. | |
877 | if (ch != chLF) { | |
878 | fCharNum++; | |
879 | } | |
880 | } | |
881 | fLastChar = ch; | |
882 | return ch; | |
883 | } | |
884 | ||
885 | ||
46f4442e | 886 | //------------------------------------------------------------------------------ |
b75a7d8f A |
887 | // |
888 | // nextChar for rules scanning. At this level, we handle stripping | |
889 | // out comments and processing backslash character escapes. | |
890 | // The rest of the rules grammar is handled at the next level up. | |
891 | // | |
46f4442e | 892 | //------------------------------------------------------------------------------ |
b75a7d8f A |
893 | void RBBIRuleScanner::nextChar(RBBIRuleChar &c) { |
894 | ||
895 | // Unicode Character constants needed for the processing done by nextChar(), | |
896 | // in hex because literals wont work on EBCDIC machines. | |
897 | ||
898 | fScanIndex = fNextIndex; | |
899 | c.fChar = nextCharLL(); | |
900 | c.fEscaped = FALSE; | |
901 | ||
902 | // | |
903 | // check for '' sequence. | |
904 | // These are recognized in all contexts, whether in quoted text or not. | |
905 | // | |
906 | if (c.fChar == chApos) { | |
907 | if (fRB->fRules.char32At(fNextIndex) == chApos) { | |
908 | c.fChar = nextCharLL(); // get nextChar officially so character counts | |
909 | c.fEscaped = TRUE; // stay correct. | |
910 | } | |
911 | else | |
912 | { | |
913 | // Single quote, by itself. | |
914 | // Toggle quoting mode. | |
915 | // Return either '(' or ')', because quotes cause a grouping of the quoted text. | |
916 | fQuoteMode = !fQuoteMode; | |
917 | if (fQuoteMode == TRUE) { | |
918 | c.fChar = chLParen; | |
919 | } else { | |
920 | c.fChar = chRParen; | |
921 | } | |
922 | c.fEscaped = FALSE; // The paren that we return is not escaped. | |
923 | return; | |
924 | } | |
925 | } | |
926 | ||
927 | if (fQuoteMode) { | |
928 | c.fEscaped = TRUE; | |
929 | } | |
930 | else | |
931 | { | |
932 | // We are not in a 'quoted region' of the source. | |
933 | // | |
934 | if (c.fChar == chPound) { | |
935 | // Start of a comment. Consume the rest of it. | |
936 | // The new-line char that terminates the comment is always returned. | |
937 | // It will be treated as white-space, and serves to break up anything | |
938 | // that might otherwise incorrectly clump together with a comment in | |
939 | // the middle (a variable name, for example.) | |
940 | for (;;) { | |
941 | c.fChar = nextCharLL(); | |
942 | if (c.fChar == (UChar32)-1 || // EOF | |
943 | c.fChar == chCR || | |
944 | c.fChar == chLF || | |
945 | c.fChar == chNEL || | |
946 | c.fChar == chLS) {break;} | |
947 | } | |
948 | } | |
949 | if (c.fChar == (UChar32)-1) { | |
950 | return; | |
951 | } | |
952 | ||
953 | // | |
954 | // check for backslash escaped characters. | |
955 | // Use UnicodeString::unescapeAt() to handle them. | |
956 | // | |
957 | if (c.fChar == chBackSlash) { | |
958 | c.fEscaped = TRUE; | |
959 | int32_t startX = fNextIndex; | |
960 | c.fChar = fRB->fRules.unescapeAt(fNextIndex); | |
961 | if (fNextIndex == startX) { | |
962 | error(U_BRK_HEX_DIGITS_EXPECTED); | |
963 | } | |
964 | fCharNum += fNextIndex-startX; | |
965 | } | |
966 | } | |
967 | // putc(c.fChar, stdout); | |
968 | } | |
969 | ||
46f4442e | 970 | //------------------------------------------------------------------------------ |
b75a7d8f A |
971 | // |
972 | // Parse RBBI rules. The state machine for rules parsing is here. | |
374ca955 | 973 | // The state tables are hand-written in the file rbbirpt.txt, |
b75a7d8f A |
974 | // and converted to the form used here by a perl |
975 | // script rbbicst.pl | |
976 | // | |
46f4442e | 977 | //------------------------------------------------------------------------------ |
b75a7d8f A |
978 | void RBBIRuleScanner::parse() { |
979 | uint16_t state; | |
980 | const RBBIRuleTableEl *tableEl; | |
981 | ||
982 | if (U_FAILURE(*fRB->fStatus)) { | |
983 | return; | |
984 | } | |
985 | ||
986 | state = 1; | |
987 | nextChar(fC); | |
988 | // | |
989 | // Main loop for the rule parsing state machine. | |
990 | // Runs once per state transition. | |
991 | // Each time through optionally performs, depending on the state table, | |
992 | // - an advance to the the next input char | |
993 | // - an action to be performed. | |
994 | // - pushing or popping a state to/from the local state return stack. | |
995 | // | |
996 | for (;;) { | |
997 | // Bail out if anything has gone wrong. | |
998 | // RBBI rule file parsing stops on the first error encountered. | |
999 | if (U_FAILURE(*fRB->fStatus)) { | |
1000 | break; | |
1001 | } | |
1002 | ||
1003 | // Quit if state == 0. This is the normal way to exit the state machine. | |
1004 | // | |
1005 | if (state == 0) { | |
1006 | break; | |
1007 | } | |
1008 | ||
1009 | // Find the state table element that matches the input char from the rule, or the | |
1010 | // class of the input character. Start with the first table row for this | |
1011 | // state, then linearly scan forward until we find a row that matches the | |
1012 | // character. The last row for each state always matches all characters, so | |
1013 | // the search will stop there, if not before. | |
1014 | // | |
1015 | tableEl = &gRuleParseStateTable[state]; | |
374ca955 A |
1016 | #ifdef RBBI_DEBUG |
1017 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { | |
1018 | RBBIDebugPrintf("char, line, col = (\'%c\', %d, %d) state=%s ", | |
1019 | fC.fChar, fLineNum, fCharNum, RBBIRuleStateNames[state]); | |
1020 | } | |
1021 | #endif | |
b75a7d8f A |
1022 | |
1023 | for (;;) { | |
73c04bcf | 1024 | #ifdef RBBI_DEBUG |
2ca993e8 | 1025 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf("."); fflush(stdout);} |
73c04bcf | 1026 | #endif |
b75a7d8f A |
1027 | if (tableEl->fCharClass < 127 && fC.fEscaped == FALSE && tableEl->fCharClass == fC.fChar) { |
1028 | // Table row specified an individual character, not a set, and | |
1029 | // the input character is not escaped, and | |
1030 | // the input character matched it. | |
1031 | break; | |
1032 | } | |
1033 | if (tableEl->fCharClass == 255) { | |
1034 | // Table row specified default, match anything character class. | |
1035 | break; | |
1036 | } | |
1037 | if (tableEl->fCharClass == 254 && fC.fEscaped) { | |
1038 | // Table row specified "escaped" and the char was escaped. | |
1039 | break; | |
1040 | } | |
1041 | if (tableEl->fCharClass == 253 && fC.fEscaped && | |
1042 | (fC.fChar == 0x50 || fC.fChar == 0x70 )) { | |
1043 | // Table row specified "escaped P" and the char is either 'p' or 'P'. | |
1044 | break; | |
1045 | } | |
1046 | if (tableEl->fCharClass == 252 && fC.fChar == (UChar32)-1) { | |
1047 | // Table row specified eof and we hit eof on the input. | |
1048 | break; | |
1049 | } | |
1050 | ||
1051 | if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class && | |
1052 | fC.fEscaped == FALSE && // char is not escaped && | |
1053 | fC.fChar != (UChar32)-1) { // char is not EOF | |
b331163b | 1054 | U_ASSERT((tableEl->fCharClass-128) < UPRV_LENGTHOF(fRuleSets)); |
46f4442e | 1055 | if (fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) { |
b75a7d8f A |
1056 | // Table row specified a character class, or set of characters, |
1057 | // and the current char matches it. | |
1058 | break; | |
1059 | } | |
1060 | } | |
1061 | ||
1062 | // No match on this row, advance to the next row for this state, | |
1063 | tableEl++; | |
1064 | } | |
73c04bcf | 1065 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPuts("");} |
b75a7d8f A |
1066 | |
1067 | // | |
1068 | // We've found the row of the state table that matches the current input | |
1069 | // character from the rules string. | |
1070 | // Perform any action specified by this row in the state table. | |
46f4442e | 1071 | if (doParseActions((int32_t)tableEl->fAction) == FALSE) { |
b75a7d8f A |
1072 | // Break out of the state machine loop if the |
1073 | // the action signalled some kind of error, or | |
1074 | // the action was to exit, occurs on normal end-of-rules-input. | |
1075 | break; | |
1076 | } | |
1077 | ||
1078 | if (tableEl->fPushState != 0) { | |
1079 | fStackPtr++; | |
1080 | if (fStackPtr >= kStackSize) { | |
1081 | error(U_BRK_INTERNAL_ERROR); | |
374ca955 | 1082 | RBBIDebugPuts("RBBIRuleScanner::parse() - state stack overflow."); |
b75a7d8f A |
1083 | fStackPtr--; |
1084 | } | |
1085 | fStack[fStackPtr] = tableEl->fPushState; | |
1086 | } | |
1087 | ||
1088 | if (tableEl->fNextChar) { | |
1089 | nextChar(fC); | |
1090 | } | |
1091 | ||
1092 | // Get the next state from the table entry, or from the | |
1093 | // state stack if the next state was specified as "pop". | |
1094 | if (tableEl->fNextState != 255) { | |
1095 | state = tableEl->fNextState; | |
1096 | } else { | |
1097 | state = fStack[fStackPtr]; | |
1098 | fStackPtr--; | |
1099 | if (fStackPtr < 0) { | |
1100 | error(U_BRK_INTERNAL_ERROR); | |
374ca955 | 1101 | RBBIDebugPuts("RBBIRuleScanner::parse() - state stack underflow."); |
b75a7d8f A |
1102 | fStackPtr++; |
1103 | } | |
1104 | } | |
1105 | ||
1106 | } | |
1107 | ||
1108 | // | |
1109 | // If there were NO user specified reverse rules, set up the equivalent of ".*;" | |
1110 | // | |
1111 | if (fRB->fReverseTree == NULL) { | |
1112 | fRB->fReverseTree = pushNewNode(RBBINode::opStar); | |
1113 | RBBINode *operand = pushNewNode(RBBINode::setRef); | |
2ca993e8 A |
1114 | if (U_FAILURE(*fRB->fStatus)) { |
1115 | return; | |
1116 | } | |
4388f060 | 1117 | findSetFor(UnicodeString(TRUE, kAny, 3), operand); |
b75a7d8f A |
1118 | fRB->fReverseTree->fLeftChild = operand; |
1119 | operand->fParent = fRB->fReverseTree; | |
1120 | fNodeStackPtr -= 2; | |
1121 | } | |
1122 | ||
1123 | ||
1124 | // | |
1125 | // Parsing of the input RBBI rules is complete. | |
1126 | // We now have a parse tree for the rule expressions | |
1127 | // and a list of all UnicodeSets that are referenced. | |
1128 | // | |
374ca955 A |
1129 | #ifdef RBBI_DEBUG |
1130 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "symbols")) {fSymbolTable->rbbiSymtablePrint();} | |
b75a7d8f A |
1131 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ptree")) |
1132 | { | |
1133 | RBBIDebugPrintf("Completed Forward Rules Parse Tree...\n"); | |
374ca955 | 1134 | fRB->fForwardTree->printTree(TRUE); |
b75a7d8f | 1135 | RBBIDebugPrintf("\nCompleted Reverse Rules Parse Tree...\n"); |
374ca955 A |
1136 | fRB->fReverseTree->printTree(TRUE); |
1137 | RBBIDebugPrintf("\nCompleted Safe Point Forward Rules Parse Tree...\n"); | |
1138 | fRB->fSafeFwdTree->printTree(TRUE); | |
1139 | RBBIDebugPrintf("\nCompleted Safe Point Reverse Rules Parse Tree...\n"); | |
1140 | fRB->fSafeRevTree->printTree(TRUE); | |
b75a7d8f | 1141 | } |
374ca955 | 1142 | #endif |
b75a7d8f A |
1143 | } |
1144 | ||
1145 | ||
46f4442e | 1146 | //------------------------------------------------------------------------------ |
b75a7d8f A |
1147 | // |
1148 | // printNodeStack for debugging... | |
1149 | // | |
46f4442e | 1150 | //------------------------------------------------------------------------------ |
374ca955 | 1151 | #ifdef RBBI_DEBUG |
b75a7d8f A |
1152 | void RBBIRuleScanner::printNodeStack(const char *title) { |
1153 | int i; | |
1154 | RBBIDebugPrintf("%s. Dumping node stack...\n", title); | |
374ca955 | 1155 | for (i=fNodeStackPtr; i>0; i--) {fNodeStack[i]->printTree(TRUE);} |
b75a7d8f | 1156 | } |
374ca955 | 1157 | #endif |
b75a7d8f A |
1158 | |
1159 | ||
1160 | ||
1161 | ||
46f4442e | 1162 | //------------------------------------------------------------------------------ |
b75a7d8f A |
1163 | // |
1164 | // pushNewNode create a new RBBINode of the specified type and push it | |
1165 | // onto the stack of nodes. | |
1166 | // | |
46f4442e | 1167 | //------------------------------------------------------------------------------ |
b75a7d8f | 1168 | RBBINode *RBBIRuleScanner::pushNewNode(RBBINode::NodeType t) { |
2ca993e8 A |
1169 | if (U_FAILURE(*fRB->fStatus)) { |
1170 | return NULL; | |
1171 | } | |
b75a7d8f A |
1172 | fNodeStackPtr++; |
1173 | if (fNodeStackPtr >= kStackSize) { | |
1174 | error(U_BRK_INTERNAL_ERROR); | |
374ca955 | 1175 | RBBIDebugPuts("RBBIRuleScanner::pushNewNode - stack overflow."); |
b75a7d8f A |
1176 | *fRB->fStatus = U_BRK_INTERNAL_ERROR; |
1177 | return NULL; | |
1178 | } | |
1179 | fNodeStack[fNodeStackPtr] = new RBBINode(t); | |
1180 | if (fNodeStack[fNodeStackPtr] == NULL) { | |
1181 | *fRB->fStatus = U_MEMORY_ALLOCATION_ERROR; | |
1182 | } | |
1183 | return fNodeStack[fNodeStackPtr]; | |
1184 | } | |
1185 | ||
1186 | ||
1187 | ||
46f4442e | 1188 | //------------------------------------------------------------------------------ |
b75a7d8f A |
1189 | // |
1190 | // scanSet Construct a UnicodeSet from the text at the current scan | |
1191 | // position. Advance the scan position to the first character | |
1192 | // after the set. | |
1193 | // | |
1194 | // A new RBBI setref node referring to the set is pushed onto the node | |
1195 | // stack. | |
1196 | // | |
1197 | // The scan position is normally under the control of the state machine | |
1198 | // that controls rule parsing. UnicodeSets, however, are parsed by | |
1199 | // the UnicodeSet constructor, not by the RBBI rule parser. | |
1200 | // | |
46f4442e | 1201 | //------------------------------------------------------------------------------ |
b75a7d8f A |
1202 | void RBBIRuleScanner::scanSet() { |
1203 | UnicodeSet *uset; | |
1204 | ParsePosition pos; | |
1205 | int startPos; | |
1206 | int i; | |
1207 | ||
1208 | if (U_FAILURE(*fRB->fStatus)) { | |
1209 | return; | |
1210 | } | |
1211 | ||
1212 | pos.setIndex(fScanIndex); | |
1213 | startPos = fScanIndex; | |
1214 | UErrorCode localStatus = U_ZERO_ERROR; | |
4388f060 | 1215 | uset = new UnicodeSet(); |
46f4442e A |
1216 | if (uset == NULL) { |
1217 | localStatus = U_MEMORY_ALLOCATION_ERROR; | |
4388f060 A |
1218 | } else { |
1219 | uset->applyPatternIgnoreSpace(fRB->fRules, pos, fSymbolTable, localStatus); | |
46f4442e | 1220 | } |
b75a7d8f A |
1221 | if (U_FAILURE(localStatus)) { |
1222 | // TODO: Get more accurate position of the error from UnicodeSet's return info. | |
1223 | // UnicodeSet appears to not be reporting correctly at this time. | |
73c04bcf A |
1224 | #ifdef RBBI_DEBUG |
1225 | RBBIDebugPrintf("UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex()); | |
1226 | #endif | |
b75a7d8f A |
1227 | error(localStatus); |
1228 | delete uset; | |
1229 | return; | |
1230 | } | |
1231 | ||
1232 | // Verify that the set contains at least one code point. | |
1233 | // | |
4388f060 | 1234 | U_ASSERT(uset!=NULL); |
73c04bcf | 1235 | if (uset->isEmpty()) { |
b75a7d8f A |
1236 | // This set is empty. |
1237 | // Make it an error, because it almost certainly is not what the user wanted. | |
1238 | // Also, avoids having to think about corner cases in the tree manipulation code | |
1239 | // that occurs later on. | |
1240 | error(U_BRK_RULE_EMPTY_SET); | |
1241 | delete uset; | |
1242 | return; | |
1243 | } | |
1244 | ||
1245 | ||
1246 | // Advance the RBBI parse postion over the UnicodeSet pattern. | |
1247 | // Don't just set fScanIndex because the line/char positions maintained | |
1248 | // for error reporting would be thrown off. | |
1249 | i = pos.getIndex(); | |
1250 | for (;;) { | |
1251 | if (fNextIndex >= i) { | |
1252 | break; | |
1253 | } | |
1254 | nextCharLL(); | |
1255 | } | |
1256 | ||
1257 | if (U_SUCCESS(*fRB->fStatus)) { | |
1258 | RBBINode *n; | |
1259 | ||
1260 | n = pushNewNode(RBBINode::setRef); | |
2ca993e8 A |
1261 | if (U_FAILURE(*fRB->fStatus)) { |
1262 | return; | |
1263 | } | |
b75a7d8f A |
1264 | n->fFirstPos = startPos; |
1265 | n->fLastPos = fNextIndex; | |
1266 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); | |
1267 | // findSetFor() serves several purposes here: | |
1268 | // - Adopts storage for the UnicodeSet, will be responsible for deleting. | |
1269 | // - Mantains collection of all sets in use, needed later for establishing | |
1270 | // character categories for run time engine. | |
1271 | // - Eliminates mulitiple instances of the same set. | |
1272 | // - Creates a new uset node if necessary (if this isn't a duplicate.) | |
1273 | findSetFor(n->fText, n, uset); | |
1274 | } | |
1275 | ||
1276 | } | |
1277 | ||
1278 | U_NAMESPACE_END | |
1279 | ||
1280 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |