]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | |
2 | // | |
3 | // file: rbbiscan.cpp | |
4 | // | |
5 | // Copyright (C) 2002-2003, International Business Machines Corporation and others. | |
6 | // All Rights Reserved. | |
7 | // | |
8 | // This file contains the Rule Based Break Iterator Rule Builder functions for | |
9 | // scanning the rules and assembling a parse tree. This is the first phase | |
10 | // of compiling the rules. | |
11 | // | |
12 | // The overall of the rules is managed by class RBBIRuleBuilder, which will | |
13 | // create and use an instance of this class as part of the process. | |
14 | // | |
15 | ||
16 | #include "unicode/utypes.h" | |
17 | ||
18 | #if !UCONFIG_NO_BREAK_ITERATION | |
19 | ||
20 | #include "unicode/unistr.h" | |
21 | #include "unicode/uniset.h" | |
22 | #include "unicode/uchar.h" | |
23 | #include "unicode/uchriter.h" | |
24 | #include "unicode/parsepos.h" | |
25 | #include "unicode/parseerr.h" | |
26 | #include "uprops.h" | |
27 | #include "cmemory.h" | |
28 | #include "cstring.h" | |
29 | ||
30 | #include "rbbirpt.h" // Contains state table for the rbbi rules parser. | |
31 | // generated by a Perl script. | |
32 | #include "rbbirb.h" | |
33 | #include "rbbinode.h" | |
34 | #include "rbbiscan.h" | |
35 | ||
36 | #include "uassert.h" | |
37 | ||
38 | ||
39 | //---------------------------------------------------------------------------------------- | |
40 | // | |
41 | // Unicode Set init strings for each of the character classes needed for parsing a rule file. | |
42 | // (Initialized with hex values for portability to EBCDIC based machines. | |
43 | // Really ugly, but there's no good way to avoid it.) | |
44 | // | |
45 | // The sets are referred to by name in the rbbirpt.txt, which is the | |
46 | // source form of the state transition table for the RBBI rule parser. | |
47 | // | |
48 | //---------------------------------------------------------------------------------------- | |
49 | static const UChar gRuleSet_rule_char_pattern[] = { | |
50 | // [ ^ [ \ p { Z } \ u 0 0 2 0 | |
51 | 0x5b, 0x5e, 0x5b, 0x5c, 0x70, 0x7b, 0x5a, 0x7d, 0x5c, 0x75, 0x30, 0x30, 0x32, 0x30, | |
52 | // - \ u 0 0 7 f ] - [ \ p | |
53 | 0x2d, 0x5c, 0x75, 0x30, 0x30, 0x37, 0x66, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, | |
54 | // { L } ] - [ \ p { N } ] ] | |
55 | 0x7b, 0x4c, 0x7d, 0x5d, 0x2d, 0x5b, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0x5d, 0}; | |
56 | ||
57 | static const UChar gRuleSet_name_char_pattern[] = { | |
58 | // [ _ \ p { L } \ p { N } ] | |
59 | 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5c, 0x70, 0x7b, 0x4e, 0x7d, 0x5d, 0}; | |
60 | ||
61 | static const UChar gRuleSet_digit_char_pattern[] = { | |
62 | // [ 0 - 9 ] | |
63 | 0x5b, 0x30, 0x2d, 0x39, 0x5d, 0}; | |
64 | ||
65 | static const UChar gRuleSet_name_start_char_pattern[] = { | |
66 | // [ _ \ p { L } ] | |
67 | 0x5b, 0x5f, 0x5c, 0x70, 0x7b, 0x4c, 0x7d, 0x5d, 0 }; | |
68 | ||
69 | static const UChar kAny[] = {0x61, 0x6e, 0x79, 0x00}; // "any" | |
70 | ||
71 | ||
72 | U_CDECL_BEGIN | |
73 | static void U_EXPORT2 U_CALLCONV RBBISetTable_deleter(void *p) { | |
74 | RBBISetTableEl *px = (RBBISetTableEl *)p; | |
75 | delete px->key; | |
76 | // Note: px->val is owned by the linked list "fSetsListHead" in scanner. | |
77 | // Don't delete the value nodes here. | |
78 | uprv_free(px); | |
79 | } | |
80 | U_CDECL_END | |
81 | ||
82 | U_NAMESPACE_BEGIN | |
83 | ||
84 | //---------------------------------------------------------------------------------------- | |
85 | // | |
86 | // Constructor. | |
87 | // | |
88 | //---------------------------------------------------------------------------------------- | |
89 | RBBIRuleScanner::RBBIRuleScanner(RBBIRuleBuilder *rb) | |
90 | { | |
91 | fRB = rb; | |
92 | fStackPtr = 0; | |
93 | fStack[fStackPtr] = 0; | |
94 | fNodeStackPtr = 0; | |
95 | fRuleNum = 0; | |
96 | fNodeStack[0] = NULL; | |
97 | ||
98 | fRuleSets[kRuleSet_rule_char-128] = NULL; | |
99 | fRuleSets[kRuleSet_white_space-128] = NULL; | |
100 | fRuleSets[kRuleSet_name_char-128] = NULL; | |
101 | fRuleSets[kRuleSet_name_start_char-128] = NULL; | |
102 | fRuleSets[kRuleSet_digit_char-128] = NULL; | |
103 | fSymbolTable = NULL; | |
104 | fSetTable = NULL; | |
105 | ||
106 | fScanIndex = 0; | |
107 | fNextIndex = 0; | |
108 | ||
109 | fReverseRule = FALSE; | |
110 | fLookAheadRule = FALSE; | |
111 | ||
112 | fLineNum = 1; | |
113 | fCharNum = 0; | |
114 | fQuoteMode = FALSE; | |
115 | ||
116 | if (U_FAILURE(*rb->fStatus)) { | |
117 | return; | |
118 | } | |
119 | ||
120 | // | |
121 | // Set up the constant Unicode Sets. | |
122 | // Note: These could be made static, lazily initialized, and shared among | |
123 | // all instances of RBBIRuleScanners. BUT this is quite a bit simpler, | |
124 | // and the time to build these few sets should be small compared to a | |
125 | // full break iterator build. | |
126 | fRuleSets[kRuleSet_rule_char-128] = new UnicodeSet(gRuleSet_rule_char_pattern, *rb->fStatus); | |
127 | fRuleSets[kRuleSet_white_space-128] = (UnicodeSet*) uprv_openRuleWhiteSpaceSet(rb->fStatus); | |
128 | fRuleSets[kRuleSet_name_char-128] = new UnicodeSet(gRuleSet_name_char_pattern, *rb->fStatus); | |
129 | fRuleSets[kRuleSet_name_start_char-128] = new UnicodeSet(gRuleSet_name_start_char_pattern, *rb->fStatus); | |
130 | fRuleSets[kRuleSet_digit_char-128] = new UnicodeSet(gRuleSet_digit_char_pattern, *rb->fStatus); | |
131 | if (*rb->fStatus == U_ILLEGAL_ARGUMENT_ERROR) { | |
132 | // This case happens if ICU's data is missing. UnicodeSet tries to look up property | |
133 | // names from the init string, can't find them, and claims an illegal arguement. | |
134 | // Change the error so that the actual problem will be clearer to users. | |
135 | *rb->fStatus = U_BRK_INIT_ERROR; | |
136 | } | |
137 | if (U_FAILURE(*rb->fStatus)) { | |
138 | return; | |
139 | } | |
140 | ||
141 | fSymbolTable = new RBBISymbolTable(this, rb->fRules, *rb->fStatus); | |
142 | fSetTable = uhash_open(uhash_hashUnicodeString, uhash_compareUnicodeString, rb->fStatus); | |
143 | uhash_setValueDeleter(fSetTable, RBBISetTable_deleter); | |
144 | } | |
145 | ||
146 | ||
147 | ||
148 | //---------------------------------------------------------------------------------------- | |
149 | // | |
150 | // Destructor | |
151 | // | |
152 | //---------------------------------------------------------------------------------------- | |
153 | RBBIRuleScanner::~RBBIRuleScanner() { | |
154 | delete fRuleSets[kRuleSet_rule_char-128]; | |
155 | delete fRuleSets[kRuleSet_white_space-128]; | |
156 | delete fRuleSets[kRuleSet_name_char-128]; | |
157 | delete fRuleSets[kRuleSet_name_start_char-128]; | |
158 | delete fRuleSets[kRuleSet_digit_char-128]; | |
159 | ||
160 | delete fSymbolTable; | |
161 | if (fSetTable != NULL) { | |
162 | uhash_close(fSetTable); | |
163 | fSetTable = NULL; | |
164 | ||
165 | } | |
166 | ||
167 | ||
168 | // Node Stack. | |
169 | // Normally has one entry, which is the entire parse tree for the rules. | |
170 | // If errors occured, there may be additional subtrees left on the stack. | |
171 | while (fNodeStackPtr > 0) { | |
172 | delete fNodeStack[fNodeStackPtr]; | |
173 | fNodeStackPtr--; | |
174 | } | |
175 | ||
176 | } | |
177 | ||
178 | //---------------------------------------------------------------------------------------- | |
179 | // | |
180 | // doParseAction Do some action during rule parsing. | |
181 | // Called by the parse state machine. | |
182 | // Actions build the parse tree and Unicode Sets, | |
183 | // and maintain the parse stack for nested expressions. | |
184 | // | |
185 | // TODO: unify EParseAction and RBBI_RuleParseAction enum types. | |
186 | // They represent exactly the same thing. They're separate | |
187 | // only to work around enum forward declaration restrictions | |
188 | // in some compilers, while at the same time avoiding multiple | |
189 | // definitions problems. I'm sure that there's a better way. | |
190 | // | |
191 | //---------------------------------------------------------------------------------------- | |
192 | UBool RBBIRuleScanner::doParseActions(EParseAction action) | |
193 | { | |
194 | RBBINode *n = NULL; | |
195 | ||
196 | UBool returnVal = TRUE; | |
197 | ||
198 | switch ((RBBI_RuleParseAction)action) { | |
199 | ||
200 | case doExprStart: | |
201 | pushNewNode(RBBINode::opStart); | |
202 | fRuleNum++; | |
203 | break; | |
204 | ||
205 | ||
206 | case doExprOrOperator: | |
207 | { | |
208 | fixOpStack(RBBINode::precOpCat); | |
209 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; | |
210 | RBBINode *orNode = pushNewNode(RBBINode::opOr); | |
211 | orNode->fLeftChild = operandNode; | |
212 | operandNode->fParent = orNode; | |
213 | } | |
214 | break; | |
215 | ||
216 | case doExprCatOperator: | |
217 | // concatenation operator. | |
218 | // For the implicit concatenation of adjacent terms in an expression that are | |
219 | // not separated by any other operator. Action is invoked between the | |
220 | // actions for the two terms. | |
221 | { | |
222 | fixOpStack(RBBINode::precOpCat); | |
223 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; | |
224 | RBBINode *catNode = pushNewNode(RBBINode::opCat); | |
225 | catNode->fLeftChild = operandNode; | |
226 | operandNode->fParent = catNode; | |
227 | } | |
228 | break; | |
229 | ||
230 | case doLParen: | |
231 | // Open Paren. | |
232 | // The openParen node is a dummy operation type with a low precedence, | |
233 | // which has the affect of ensuring that any real binary op that | |
234 | // follows within the parens binds more tightly to the operands than | |
235 | // stuff outside of the parens. | |
236 | pushNewNode(RBBINode::opLParen); | |
237 | break; | |
238 | ||
239 | case doExprRParen: | |
240 | fixOpStack(RBBINode::precLParen); | |
241 | break; | |
242 | ||
243 | case doNOP: | |
244 | break; | |
245 | ||
246 | case doStartAssign: | |
247 | // We've just scanned "$variable = " | |
248 | // The top of the node stack has the $variable ref node. | |
249 | ||
250 | // Save the start position of the RHS text in the StartExpression node | |
251 | // that precedes the $variableReference node on the stack. | |
252 | // This will eventually be used when saving the full $variable replacement | |
253 | // text as a string. | |
254 | n = fNodeStack[fNodeStackPtr-1]; | |
255 | n->fFirstPos = fNextIndex; // move past the '=' | |
256 | ||
257 | // Push a new start-of-expression node; needed to keep parse of the | |
258 | // RHS expression happy. | |
259 | pushNewNode(RBBINode::opStart); | |
260 | break; | |
261 | ||
262 | ||
263 | ||
264 | ||
265 | case doEndAssign: | |
266 | { | |
267 | // We have reached the end of an assignement statement. | |
268 | // Current scan char is the ';' that terminates the assignment. | |
269 | ||
270 | // Terminate expression, leaves expression parse tree rooted in TOS node. | |
271 | fixOpStack(RBBINode::precStart); | |
272 | ||
273 | RBBINode *startExprNode = fNodeStack[fNodeStackPtr-2]; | |
274 | RBBINode *varRefNode = fNodeStack[fNodeStackPtr-1]; | |
275 | RBBINode *RHSExprNode = fNodeStack[fNodeStackPtr]; | |
276 | ||
277 | // Save original text of right side of assignment, excluding the terminating ';' | |
278 | // in the root of the node for the right-hand-side expression. | |
279 | RHSExprNode->fFirstPos = startExprNode->fFirstPos; | |
280 | RHSExprNode->fLastPos = fScanIndex; | |
281 | fRB->fRules.extractBetween(RHSExprNode->fFirstPos, RHSExprNode->fLastPos, RHSExprNode->fText); | |
282 | ||
283 | // Expression parse tree becomes l. child of the $variable reference node. | |
284 | varRefNode->fLeftChild = RHSExprNode; | |
285 | RHSExprNode->fParent = varRefNode; | |
286 | ||
287 | // Make a symbol table entry for the $variableRef node. | |
288 | fSymbolTable->addEntry(varRefNode->fText, varRefNode, *fRB->fStatus); | |
289 | ||
290 | // Clean up the stack. | |
291 | delete startExprNode; | |
292 | fNodeStackPtr-=3; | |
293 | break; | |
294 | } | |
295 | ||
296 | case doEndOfRule: | |
297 | { | |
298 | fixOpStack(RBBINode::precStart); // Terminate expression, leaves expression | |
299 | if (U_FAILURE(*fRB->fStatus)) { // parse tree rooted in TOS node. | |
300 | break; | |
301 | } | |
302 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "rtree")) {printNodeStack("end of rule");} | |
303 | U_ASSERT(fNodeStackPtr == 1); | |
304 | ||
305 | // If this rule includes a look-ahead '/', add a endMark node to the | |
306 | // expression tree. | |
307 | if (fLookAheadRule) { | |
308 | RBBINode *thisRule = fNodeStack[fNodeStackPtr]; | |
309 | RBBINode *endNode = pushNewNode(RBBINode::endMark); | |
310 | RBBINode *catNode = pushNewNode(RBBINode::opCat); | |
311 | fNodeStackPtr -= 2; | |
312 | catNode->fLeftChild = thisRule; | |
313 | catNode->fRightChild = endNode; | |
314 | fNodeStack[fNodeStackPtr] = catNode; | |
315 | endNode->fVal = fRuleNum; | |
316 | endNode->fLookAheadEnd = TRUE; | |
317 | } | |
318 | ||
319 | // All rule expressions are ORed together. | |
320 | // The ';' that terminates an expression really just functions as a '|' with | |
321 | // a low operator prededence. | |
322 | // | |
323 | // Forward and reverse rules are collected separately. Or this rule into | |
324 | // the appropriate group of them. | |
325 | // | |
326 | RBBINode **destRules = (fReverseRule? &fRB->fReverseTree : &fRB->fForwardTree); | |
327 | ||
328 | if (*destRules != NULL) { | |
329 | // This is not the first rule encounted. | |
330 | // OR previous stuff (from *destRules) | |
331 | // with the current rule expression (on the Node Stack) | |
332 | // with the resulting OR expression going to *destRules | |
333 | // | |
334 | RBBINode *thisRule = fNodeStack[fNodeStackPtr]; | |
335 | RBBINode *prevRules = *destRules; | |
336 | RBBINode *orNode = pushNewNode(RBBINode::opOr); | |
337 | orNode->fLeftChild = prevRules; | |
338 | prevRules->fParent = orNode; | |
339 | orNode->fRightChild = thisRule; | |
340 | thisRule->fParent = orNode; | |
341 | *destRules = orNode; | |
342 | } | |
343 | else | |
344 | { | |
345 | // This is the first rule encountered (for this direction). | |
346 | // Just move its parse tree from the stack to *destRules. | |
347 | *destRules = fNodeStack[fNodeStackPtr]; | |
348 | } | |
349 | fReverseRule = FALSE; // in preparation for the next rule. | |
350 | fLookAheadRule = FALSE; | |
351 | fNodeStackPtr = 0; | |
352 | } | |
353 | break; | |
354 | ||
355 | ||
356 | case doRuleError: | |
357 | error(U_BRK_RULE_SYNTAX); | |
358 | returnVal = FALSE; | |
359 | break; | |
360 | ||
361 | ||
362 | case doVariableNameExpectedErr: | |
363 | error(U_BRK_RULE_SYNTAX); | |
364 | break; | |
365 | ||
366 | ||
367 | // | |
368 | // Unary operands + ? * | |
369 | // These all appear after the operand to which they apply. | |
370 | // When we hit one, the operand (may be a whole sub expression) | |
371 | // will be on the top of the stack. | |
372 | // Unary Operator becomes TOS, with the old TOS as its one child. | |
373 | case doUnaryOpPlus: | |
374 | { | |
375 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; | |
376 | RBBINode *plusNode = pushNewNode(RBBINode::opPlus); | |
377 | plusNode->fLeftChild = operandNode; | |
378 | operandNode->fParent = plusNode; | |
379 | } | |
380 | break; | |
381 | ||
382 | case doUnaryOpQuestion: | |
383 | { | |
384 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; | |
385 | RBBINode *qNode = pushNewNode(RBBINode::opQuestion); | |
386 | qNode->fLeftChild = operandNode; | |
387 | operandNode->fParent = qNode; | |
388 | } | |
389 | break; | |
390 | ||
391 | case doUnaryOpStar: | |
392 | { | |
393 | RBBINode *operandNode = fNodeStack[fNodeStackPtr--]; | |
394 | RBBINode *starNode = pushNewNode(RBBINode::opStar); | |
395 | starNode->fLeftChild = operandNode; | |
396 | operandNode->fParent = starNode; | |
397 | } | |
398 | break; | |
399 | ||
400 | case doRuleChar: | |
401 | // A "Rule Character" is any single character that is a literal part | |
402 | // of the regular expression. Like a, b and c in the expression "(abc*) | [:L:]" | |
403 | // These are pretty uncommon in break rules; the terms are more commonly | |
404 | // sets. To keep things uniform, treat these characters like as | |
405 | // sets that just happen to contain only one character. | |
406 | { | |
407 | n = pushNewNode(RBBINode::setRef); | |
408 | findSetFor(fC.fChar, n); | |
409 | n->fFirstPos = fScanIndex; | |
410 | n->fLastPos = fNextIndex; | |
411 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); | |
412 | break; | |
413 | } | |
414 | ||
415 | case doDotAny: | |
416 | // scanned a ".", meaning match any single character. | |
417 | { | |
418 | n = pushNewNode(RBBINode::setRef); | |
419 | findSetFor(kAny, n); | |
420 | n->fFirstPos = fScanIndex; | |
421 | n->fLastPos = fNextIndex; | |
422 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); | |
423 | break; | |
424 | } | |
425 | break; | |
426 | ||
427 | case doSlash: | |
428 | // Scanned a '/', which identifies a look-ahead break position in a rule. | |
429 | n = pushNewNode(RBBINode::lookAhead); | |
430 | n->fVal = fRuleNum; | |
431 | n->fFirstPos = fScanIndex; | |
432 | n->fLastPos = fNextIndex; | |
433 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); | |
434 | fLookAheadRule = TRUE; | |
435 | break; | |
436 | ||
437 | ||
438 | case doStartTagValue: | |
439 | // Scanned a '{', the opening delimiter for a tag value within a rule. | |
440 | n = pushNewNode(RBBINode::tag); | |
441 | n->fVal = 0; | |
442 | n->fFirstPos = fScanIndex; | |
443 | n->fLastPos = fNextIndex; | |
444 | break; | |
445 | ||
446 | case doTagDigit: | |
447 | // Just scanned a decimal digit that's part of a tag value | |
448 | { | |
449 | n = fNodeStack[fNodeStackPtr]; | |
450 | uint32_t v = u_charDigitValue(fC.fChar); | |
451 | U_ASSERT(v < 10); | |
452 | n->fVal = n->fVal*10 + v; | |
453 | break; | |
454 | } | |
455 | ||
456 | case doTagValue: | |
457 | n = fNodeStack[fNodeStackPtr]; | |
458 | n->fLastPos = fNextIndex; | |
459 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); | |
460 | break; | |
461 | ||
462 | ||
463 | ||
464 | case doReverseDir: | |
465 | fReverseRule = TRUE; | |
466 | break; | |
467 | ||
468 | case doStartVariableName: | |
469 | n = pushNewNode(RBBINode::varRef); | |
470 | if (U_FAILURE(*fRB->fStatus)) { | |
471 | break; | |
472 | } | |
473 | n->fFirstPos = fScanIndex; | |
474 | break; | |
475 | ||
476 | case doEndVariableName: | |
477 | n = fNodeStack[fNodeStackPtr]; | |
478 | if (n==NULL || n->fType != RBBINode::varRef) { | |
479 | error(U_BRK_INTERNAL_ERROR); | |
480 | break; | |
481 | } | |
482 | n->fLastPos = fScanIndex; | |
483 | fRB->fRules.extractBetween(n->fFirstPos+1, n->fLastPos, n->fText); | |
484 | // Look the newly scanned name up in the symbol table | |
485 | // If there's an entry, set the l. child of the var ref to the replacement expression. | |
486 | // (We also pass through here when scanning assignments, but no harm is done, other | |
487 | // than a slight wasted effort that seems hard to avoid. Lookup will be null) | |
488 | n->fLeftChild = fSymbolTable->lookupNode(n->fText); | |
489 | break; | |
490 | ||
491 | case doCheckVarDef: | |
492 | n = fNodeStack[fNodeStackPtr]; | |
493 | if (n->fLeftChild == NULL) { | |
494 | error(U_BRK_UNDEFINED_VARIABLE); | |
495 | returnVal = FALSE; | |
496 | } | |
497 | break; | |
498 | ||
499 | case doExprFinished: | |
500 | break; | |
501 | ||
502 | case doRuleErrorAssignExpr: | |
503 | error(U_BRK_ASSIGN_ERROR); | |
504 | returnVal = FALSE; | |
505 | break; | |
506 | ||
507 | case doExit: | |
508 | returnVal = FALSE; | |
509 | break; | |
510 | ||
511 | case doScanUnicodeSet: | |
512 | scanSet(); | |
513 | break; | |
514 | ||
515 | default: | |
516 | error(U_BRK_INTERNAL_ERROR); | |
517 | returnVal = FALSE; | |
518 | break; | |
519 | } | |
520 | return returnVal; | |
521 | } | |
522 | ||
523 | ||
524 | ||
525 | ||
526 | //---------------------------------------------------------------------------------------- | |
527 | // | |
528 | // Error Report a rule parse error. | |
529 | // Only report it if no previous error has been recorded. | |
530 | // | |
531 | //---------------------------------------------------------------------------------------- | |
532 | void RBBIRuleScanner::error(UErrorCode e) { | |
533 | if (U_SUCCESS(*fRB->fStatus)) { | |
534 | *fRB->fStatus = e; | |
535 | fRB->fParseError->line = fLineNum; | |
536 | fRB->fParseError->offset = fCharNum; | |
537 | fRB->fParseError->preContext[0] = 0; | |
538 | fRB->fParseError->preContext[0] = 0; | |
539 | } | |
540 | } | |
541 | ||
542 | ||
543 | ||
544 | ||
545 | //---------------------------------------------------------------------------------------- | |
546 | // | |
547 | // fixOpStack The parse stack holds partially assembled chunks of the parse tree. | |
548 | // An entry on the stack may be as small as a single setRef node, | |
549 | // or as large as the parse tree | |
550 | // for an entire expression (this will be the one item left on the stack | |
551 | // when the parsing of an RBBI rule completes. | |
552 | // | |
553 | // This function is called when a binary operator is encountered. | |
554 | // It looks back up the stack for operators that are not yet associated | |
555 | // with a right operand, and if the precedence of the stacked operator >= | |
556 | // the precedence of the current operator, binds the operand left, | |
557 | // to the previously encountered operator. | |
558 | // | |
559 | //---------------------------------------------------------------------------------------- | |
560 | void RBBIRuleScanner::fixOpStack(RBBINode::OpPrecedence p) { | |
561 | RBBINode *n; | |
562 | // printNodeStack("entering fixOpStack()"); | |
563 | for (;;) { | |
564 | n = fNodeStack[fNodeStackPtr-1]; // an operator node | |
565 | if (n->fPrecedence == 0) { | |
566 | RBBIDebugPrintf("RBBIRuleScanner::fixOpStack, bad operator node\n"); | |
567 | error(U_BRK_INTERNAL_ERROR); | |
568 | return; | |
569 | } | |
570 | ||
571 | if (n->fPrecedence < p || n->fPrecedence <= RBBINode::precLParen) { | |
572 | // The most recent operand goes with the current operator, | |
573 | // not with the previously stacked one. | |
574 | break; | |
575 | } | |
576 | // Stack operator is a binary op ( '|' or concatenation) | |
577 | // TOS operand becomes right child of this operator. | |
578 | // Resulting subexpression becomes the TOS operand. | |
579 | n->fRightChild = fNodeStack[fNodeStackPtr]; | |
580 | fNodeStack[fNodeStackPtr]->fParent = n; | |
581 | fNodeStackPtr--; | |
582 | // printNodeStack("looping in fixOpStack() "); | |
583 | } | |
584 | ||
585 | if (p <= RBBINode::precLParen) { | |
586 | // Scan is at a right paren or end of expression. | |
587 | // The scanned item must match the stack, or else there was an error. | |
588 | // Discard the left paren (or start expr) node from the stack, | |
589 | // leaving the completed (sub)expression as TOS. | |
590 | if (n->fPrecedence != p) { | |
591 | // Right paren encountered matched start of expression node, or | |
592 | // end of expression matched with a left paren node. | |
593 | error(U_BRK_MISMATCHED_PAREN); | |
594 | } | |
595 | fNodeStack[fNodeStackPtr-1] = fNodeStack[fNodeStackPtr]; | |
596 | fNodeStackPtr--; | |
597 | // Delete the now-discarded LParen or Start node. | |
598 | delete n; | |
599 | } | |
600 | // printNodeStack("leaving fixOpStack()"); | |
601 | } | |
602 | ||
603 | ||
604 | ||
605 | ||
606 | //---------------------------------------------------------------------------------------- | |
607 | // | |
608 | // findSetFor given a UnicodeString, | |
609 | // - find the corresponding Unicode Set (uset node) | |
610 | // (create one if necessary) | |
611 | // - Set fLeftChild of the caller's node (should be a setRef node) | |
612 | // to the uset node | |
613 | // Maintain a hash table of uset nodes, so the same one is always used | |
614 | // for the same string. | |
615 | // If a "to adopt" set is provided and we haven't seen this key before, | |
616 | // add the provided set to the hash table. | |
617 | // If the string is one (32 bit) char in length, the set contains | |
618 | // just one element which is the char in question. | |
619 | // If the string is "any", return a set containing all chars. | |
620 | // | |
621 | //---------------------------------------------------------------------------------------- | |
622 | void RBBIRuleScanner::findSetFor(const UnicodeString &s, RBBINode *node, UnicodeSet *setToAdopt) { | |
623 | ||
624 | RBBISetTableEl *el; | |
625 | ||
626 | // First check whether we've already cached a set for this string. | |
627 | // If so, just use the cached set in the new node. | |
628 | // delete any set provided by the caller, since we own it. | |
629 | el = (RBBISetTableEl *)uhash_get(fSetTable, &s); | |
630 | if (el != NULL) { | |
631 | delete setToAdopt; | |
632 | node->fLeftChild = el->val; | |
633 | U_ASSERT(node->fLeftChild->fType == RBBINode::uset); | |
634 | return; | |
635 | } | |
636 | ||
637 | // Haven't seen this set before. | |
638 | // If the caller didn't provide us with a prebuilt set, | |
639 | // create a new UnicodeSet now. | |
640 | if (setToAdopt == NULL) { | |
641 | if (s.compare(kAny, -1) == 0) { | |
642 | setToAdopt = new UnicodeSet(0x000000, 0x10ffff); | |
643 | } else { | |
644 | UChar32 c; | |
645 | c = s.char32At(0); | |
646 | setToAdopt = new UnicodeSet(c, c); | |
647 | } | |
648 | } | |
649 | ||
650 | // | |
651 | // Make a new uset node to refer to this UnicodeSet | |
652 | // This new uset node becomes the child of the caller's setReference node. | |
653 | // | |
654 | RBBINode *usetNode = new RBBINode(RBBINode::uset); | |
655 | usetNode->fInputSet = setToAdopt; | |
656 | usetNode->fParent = node; | |
657 | node->fLeftChild = usetNode; | |
658 | usetNode->fText = s; | |
659 | ||
660 | ||
661 | // | |
662 | // Add the new uset node to the list of all uset nodes. | |
663 | // | |
664 | fRB->fUSetNodes->addElement(usetNode, *fRB->fStatus); | |
665 | ||
666 | ||
667 | // | |
668 | // Add the new set to the set hash table. | |
669 | // | |
670 | el = (RBBISetTableEl *)uprv_malloc(sizeof(RBBISetTableEl)); | |
671 | UnicodeString *tkey = new UnicodeString(s); | |
672 | if (tkey == NULL || el == NULL || setToAdopt == NULL) { | |
673 | error(U_MEMORY_ALLOCATION_ERROR); | |
674 | return; | |
675 | } | |
676 | el->key = tkey; | |
677 | el->val = usetNode; | |
678 | uhash_put(fSetTable, el->key, el, fRB->fStatus); | |
679 | ||
680 | return; | |
681 | } | |
682 | ||
683 | ||
684 | ||
685 | // | |
686 | // Assorted Unicode character constants. | |
687 | // Numeric because there is no portable way to enter them as literals. | |
688 | // (Think EBCDIC). | |
689 | // | |
690 | static const UChar chCR = 0x0d; // New lines, for terminating comments. | |
691 | static const UChar chLF = 0x0a; | |
692 | static const UChar chNEL = 0x85; // NEL newline variant | |
693 | static const UChar chLS = 0x2028; // Unicode Line Separator | |
694 | static const UChar chApos = 0x27; // single quote, for quoted chars. | |
695 | static const UChar chPound = 0x23; // '#', introduces a comment. | |
696 | static const UChar chBackSlash = 0x5c; // '\' introduces a char escape | |
697 | static const UChar chLParen = 0x28; | |
698 | static const UChar chRParen = 0x29; | |
699 | ||
700 | ||
701 | //---------------------------------------------------------------------------------------- | |
702 | // | |
703 | // stripRules Return a rules string without unnecessary | |
704 | // characters. | |
705 | // | |
706 | //---------------------------------------------------------------------------------------- | |
707 | UnicodeString RBBIRuleScanner::stripRules(const UnicodeString &rules) { | |
708 | UnicodeString strippedRules; | |
709 | int rulesLength = rules.length(); | |
710 | for (int idx = 0; idx < rulesLength; ) { | |
711 | UChar ch = rules[idx++]; | |
712 | if (ch == chPound) { | |
713 | while (idx < rulesLength | |
714 | && ch != chCR && ch != chLF && ch != chNEL) | |
715 | { | |
716 | ch = rules[idx++]; | |
717 | } | |
718 | } | |
719 | if (!u_isISOControl(ch)) { | |
720 | strippedRules.append(ch); | |
721 | } | |
722 | } | |
723 | // strippedRules = strippedRules.unescape(); | |
724 | return strippedRules; | |
725 | } | |
726 | ||
727 | ||
728 | //---------------------------------------------------------------------------------------- | |
729 | // | |
730 | // nextCharLL Low Level Next Char from rule input source. | |
731 | // Get a char from the input character iterator, | |
732 | // keep track of input position for error reporting. | |
733 | // | |
734 | //---------------------------------------------------------------------------------------- | |
735 | UChar32 RBBIRuleScanner::nextCharLL() { | |
736 | UChar32 ch; | |
737 | ||
738 | if (fNextIndex >= fRB->fRules.length()) { | |
739 | return (UChar32)-1; | |
740 | } | |
741 | ch = fRB->fRules.char32At(fNextIndex); | |
742 | fNextIndex = fRB->fRules.moveIndex32(fNextIndex, 1); | |
743 | ||
744 | if (ch == chCR || | |
745 | ch == chNEL || | |
746 | ch == chLS || | |
747 | ch == chLF && fLastChar != chCR) { | |
748 | // Character is starting a new line. Bump up the line number, and | |
749 | // reset the column to 0. | |
750 | fLineNum++; | |
751 | fCharNum=0; | |
752 | if (fQuoteMode) { | |
753 | error(U_BRK_NEW_LINE_IN_QUOTED_STRING); | |
754 | fQuoteMode = FALSE; | |
755 | } | |
756 | } | |
757 | else { | |
758 | // Character is not starting a new line. Except in the case of a | |
759 | // LF following a CR, increment the column position. | |
760 | if (ch != chLF) { | |
761 | fCharNum++; | |
762 | } | |
763 | } | |
764 | fLastChar = ch; | |
765 | return ch; | |
766 | } | |
767 | ||
768 | ||
769 | //--------------------------------------------------------------------------------- | |
770 | // | |
771 | // nextChar for rules scanning. At this level, we handle stripping | |
772 | // out comments and processing backslash character escapes. | |
773 | // The rest of the rules grammar is handled at the next level up. | |
774 | // | |
775 | //--------------------------------------------------------------------------------- | |
776 | void RBBIRuleScanner::nextChar(RBBIRuleChar &c) { | |
777 | ||
778 | // Unicode Character constants needed for the processing done by nextChar(), | |
779 | // in hex because literals wont work on EBCDIC machines. | |
780 | ||
781 | fScanIndex = fNextIndex; | |
782 | c.fChar = nextCharLL(); | |
783 | c.fEscaped = FALSE; | |
784 | ||
785 | // | |
786 | // check for '' sequence. | |
787 | // These are recognized in all contexts, whether in quoted text or not. | |
788 | // | |
789 | if (c.fChar == chApos) { | |
790 | if (fRB->fRules.char32At(fNextIndex) == chApos) { | |
791 | c.fChar = nextCharLL(); // get nextChar officially so character counts | |
792 | c.fEscaped = TRUE; // stay correct. | |
793 | } | |
794 | else | |
795 | { | |
796 | // Single quote, by itself. | |
797 | // Toggle quoting mode. | |
798 | // Return either '(' or ')', because quotes cause a grouping of the quoted text. | |
799 | fQuoteMode = !fQuoteMode; | |
800 | if (fQuoteMode == TRUE) { | |
801 | c.fChar = chLParen; | |
802 | } else { | |
803 | c.fChar = chRParen; | |
804 | } | |
805 | c.fEscaped = FALSE; // The paren that we return is not escaped. | |
806 | return; | |
807 | } | |
808 | } | |
809 | ||
810 | if (fQuoteMode) { | |
811 | c.fEscaped = TRUE; | |
812 | } | |
813 | else | |
814 | { | |
815 | // We are not in a 'quoted region' of the source. | |
816 | // | |
817 | if (c.fChar == chPound) { | |
818 | // Start of a comment. Consume the rest of it. | |
819 | // The new-line char that terminates the comment is always returned. | |
820 | // It will be treated as white-space, and serves to break up anything | |
821 | // that might otherwise incorrectly clump together with a comment in | |
822 | // the middle (a variable name, for example.) | |
823 | for (;;) { | |
824 | c.fChar = nextCharLL(); | |
825 | if (c.fChar == (UChar32)-1 || // EOF | |
826 | c.fChar == chCR || | |
827 | c.fChar == chLF || | |
828 | c.fChar == chNEL || | |
829 | c.fChar == chLS) {break;} | |
830 | } | |
831 | } | |
832 | if (c.fChar == (UChar32)-1) { | |
833 | return; | |
834 | } | |
835 | ||
836 | // | |
837 | // check for backslash escaped characters. | |
838 | // Use UnicodeString::unescapeAt() to handle them. | |
839 | // | |
840 | if (c.fChar == chBackSlash) { | |
841 | c.fEscaped = TRUE; | |
842 | int32_t startX = fNextIndex; | |
843 | c.fChar = fRB->fRules.unescapeAt(fNextIndex); | |
844 | if (fNextIndex == startX) { | |
845 | error(U_BRK_HEX_DIGITS_EXPECTED); | |
846 | } | |
847 | fCharNum += fNextIndex-startX; | |
848 | } | |
849 | } | |
850 | // putc(c.fChar, stdout); | |
851 | } | |
852 | ||
853 | //--------------------------------------------------------------------------------- | |
854 | // | |
855 | // Parse RBBI rules. The state machine for rules parsing is here. | |
856 | // The state tables are hand-written in the file TODO.txt, | |
857 | // and converted to the form used here by a perl | |
858 | // script rbbicst.pl | |
859 | // | |
860 | //--------------------------------------------------------------------------------- | |
861 | void RBBIRuleScanner::parse() { | |
862 | uint16_t state; | |
863 | const RBBIRuleTableEl *tableEl; | |
864 | ||
865 | if (U_FAILURE(*fRB->fStatus)) { | |
866 | return; | |
867 | } | |
868 | ||
869 | state = 1; | |
870 | nextChar(fC); | |
871 | // | |
872 | // Main loop for the rule parsing state machine. | |
873 | // Runs once per state transition. | |
874 | // Each time through optionally performs, depending on the state table, | |
875 | // - an advance to the the next input char | |
876 | // - an action to be performed. | |
877 | // - pushing or popping a state to/from the local state return stack. | |
878 | // | |
879 | for (;;) { | |
880 | // Bail out if anything has gone wrong. | |
881 | // RBBI rule file parsing stops on the first error encountered. | |
882 | if (U_FAILURE(*fRB->fStatus)) { | |
883 | break; | |
884 | } | |
885 | ||
886 | // Quit if state == 0. This is the normal way to exit the state machine. | |
887 | // | |
888 | if (state == 0) { | |
889 | break; | |
890 | } | |
891 | ||
892 | // Find the state table element that matches the input char from the rule, or the | |
893 | // class of the input character. Start with the first table row for this | |
894 | // state, then linearly scan forward until we find a row that matches the | |
895 | // character. The last row for each state always matches all characters, so | |
896 | // the search will stop there, if not before. | |
897 | // | |
898 | tableEl = &gRuleParseStateTable[state]; | |
899 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { | |
900 | RBBIDebugPrintf("char, line, col = (\'%c\', %d, %d) state=%s ", | |
901 | fC.fChar, fLineNum, fCharNum, RBBIRuleStateNames[state]); | |
902 | } | |
903 | ||
904 | for (;;) { | |
905 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf(".");} | |
906 | if (tableEl->fCharClass < 127 && fC.fEscaped == FALSE && tableEl->fCharClass == fC.fChar) { | |
907 | // Table row specified an individual character, not a set, and | |
908 | // the input character is not escaped, and | |
909 | // the input character matched it. | |
910 | break; | |
911 | } | |
912 | if (tableEl->fCharClass == 255) { | |
913 | // Table row specified default, match anything character class. | |
914 | break; | |
915 | } | |
916 | if (tableEl->fCharClass == 254 && fC.fEscaped) { | |
917 | // Table row specified "escaped" and the char was escaped. | |
918 | break; | |
919 | } | |
920 | if (tableEl->fCharClass == 253 && fC.fEscaped && | |
921 | (fC.fChar == 0x50 || fC.fChar == 0x70 )) { | |
922 | // Table row specified "escaped P" and the char is either 'p' or 'P'. | |
923 | break; | |
924 | } | |
925 | if (tableEl->fCharClass == 252 && fC.fChar == (UChar32)-1) { | |
926 | // Table row specified eof and we hit eof on the input. | |
927 | break; | |
928 | } | |
929 | ||
930 | if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class && | |
931 | fC.fEscaped == FALSE && // char is not escaped && | |
932 | fC.fChar != (UChar32)-1) { // char is not EOF | |
933 | UnicodeSet *uniset = fRuleSets[tableEl->fCharClass-128]; | |
934 | if (uniset->contains(fC.fChar)) { | |
935 | // Table row specified a character class, or set of characters, | |
936 | // and the current char matches it. | |
937 | break; | |
938 | } | |
939 | } | |
940 | ||
941 | // No match on this row, advance to the next row for this state, | |
942 | tableEl++; | |
943 | } | |
944 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "scan")) { RBBIDebugPrintf("\n");} | |
945 | ||
946 | // | |
947 | // We've found the row of the state table that matches the current input | |
948 | // character from the rules string. | |
949 | // Perform any action specified by this row in the state table. | |
950 | if (doParseActions((EParseAction)tableEl->fAction) == FALSE) { | |
951 | // Break out of the state machine loop if the | |
952 | // the action signalled some kind of error, or | |
953 | // the action was to exit, occurs on normal end-of-rules-input. | |
954 | break; | |
955 | } | |
956 | ||
957 | if (tableEl->fPushState != 0) { | |
958 | fStackPtr++; | |
959 | if (fStackPtr >= kStackSize) { | |
960 | error(U_BRK_INTERNAL_ERROR); | |
961 | RBBIDebugPrintf("RBBIRuleScanner::parse() - state stack overflow.\n"); | |
962 | fStackPtr--; | |
963 | } | |
964 | fStack[fStackPtr] = tableEl->fPushState; | |
965 | } | |
966 | ||
967 | if (tableEl->fNextChar) { | |
968 | nextChar(fC); | |
969 | } | |
970 | ||
971 | // Get the next state from the table entry, or from the | |
972 | // state stack if the next state was specified as "pop". | |
973 | if (tableEl->fNextState != 255) { | |
974 | state = tableEl->fNextState; | |
975 | } else { | |
976 | state = fStack[fStackPtr]; | |
977 | fStackPtr--; | |
978 | if (fStackPtr < 0) { | |
979 | error(U_BRK_INTERNAL_ERROR); | |
980 | RBBIDebugPrintf("RBBIRuleScanner::parse() - state stack underflow.\n"); | |
981 | fStackPtr++; | |
982 | } | |
983 | } | |
984 | ||
985 | } | |
986 | ||
987 | // | |
988 | // If there were NO user specified reverse rules, set up the equivalent of ".*;" | |
989 | // | |
990 | if (fRB->fReverseTree == NULL) { | |
991 | fRB->fReverseTree = pushNewNode(RBBINode::opStar); | |
992 | RBBINode *operand = pushNewNode(RBBINode::setRef); | |
993 | findSetFor(kAny, operand); | |
994 | fRB->fReverseTree->fLeftChild = operand; | |
995 | operand->fParent = fRB->fReverseTree; | |
996 | fNodeStackPtr -= 2; | |
997 | } | |
998 | ||
999 | ||
1000 | // | |
1001 | // Parsing of the input RBBI rules is complete. | |
1002 | // We now have a parse tree for the rule expressions | |
1003 | // and a list of all UnicodeSets that are referenced. | |
1004 | // | |
1005 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "symbols")) {fSymbolTable->print();} | |
1006 | if (fRB->fDebugEnv && uprv_strstr(fRB->fDebugEnv, "ptree")) | |
1007 | { | |
1008 | RBBIDebugPrintf("Completed Forward Rules Parse Tree...\n"); | |
1009 | fRB->fForwardTree->printTree(); | |
1010 | RBBIDebugPrintf("\nCompleted Reverse Rules Parse Tree...\n"); | |
1011 | fRB->fReverseTree->printTree(); | |
1012 | } | |
1013 | ||
1014 | } | |
1015 | ||
1016 | ||
1017 | //--------------------------------------------------------------------------------- | |
1018 | // | |
1019 | // printNodeStack for debugging... | |
1020 | // | |
1021 | //--------------------------------------------------------------------------------- | |
1022 | void RBBIRuleScanner::printNodeStack(const char *title) { | |
1023 | int i; | |
1024 | RBBIDebugPrintf("%s. Dumping node stack...\n", title); | |
1025 | for (i=fNodeStackPtr; i>0; i--) {fNodeStack[i]->printTree();} | |
1026 | } | |
1027 | ||
1028 | ||
1029 | ||
1030 | ||
1031 | //--------------------------------------------------------------------------------- | |
1032 | // | |
1033 | // pushNewNode create a new RBBINode of the specified type and push it | |
1034 | // onto the stack of nodes. | |
1035 | // | |
1036 | //--------------------------------------------------------------------------------- | |
1037 | RBBINode *RBBIRuleScanner::pushNewNode(RBBINode::NodeType t) { | |
1038 | fNodeStackPtr++; | |
1039 | if (fNodeStackPtr >= kStackSize) { | |
1040 | error(U_BRK_INTERNAL_ERROR); | |
1041 | RBBIDebugPrintf("RBBIRuleScanner::pushNewNode - stack overflow.\n"); | |
1042 | *fRB->fStatus = U_BRK_INTERNAL_ERROR; | |
1043 | return NULL; | |
1044 | } | |
1045 | fNodeStack[fNodeStackPtr] = new RBBINode(t); | |
1046 | if (fNodeStack[fNodeStackPtr] == NULL) { | |
1047 | *fRB->fStatus = U_MEMORY_ALLOCATION_ERROR; | |
1048 | } | |
1049 | return fNodeStack[fNodeStackPtr]; | |
1050 | } | |
1051 | ||
1052 | ||
1053 | ||
1054 | //--------------------------------------------------------------------------------- | |
1055 | // | |
1056 | // scanSet Construct a UnicodeSet from the text at the current scan | |
1057 | // position. Advance the scan position to the first character | |
1058 | // after the set. | |
1059 | // | |
1060 | // A new RBBI setref node referring to the set is pushed onto the node | |
1061 | // stack. | |
1062 | // | |
1063 | // The scan position is normally under the control of the state machine | |
1064 | // that controls rule parsing. UnicodeSets, however, are parsed by | |
1065 | // the UnicodeSet constructor, not by the RBBI rule parser. | |
1066 | // | |
1067 | //--------------------------------------------------------------------------------- | |
1068 | void RBBIRuleScanner::scanSet() { | |
1069 | UnicodeSet *uset; | |
1070 | ParsePosition pos; | |
1071 | int startPos; | |
1072 | int i; | |
1073 | ||
1074 | if (U_FAILURE(*fRB->fStatus)) { | |
1075 | return; | |
1076 | } | |
1077 | ||
1078 | pos.setIndex(fScanIndex); | |
1079 | startPos = fScanIndex; | |
1080 | UErrorCode localStatus = U_ZERO_ERROR; | |
1081 | uset = new UnicodeSet(fRB->fRules, pos, | |
1082 | *fSymbolTable, | |
1083 | localStatus); | |
1084 | if (U_FAILURE(localStatus)) { | |
1085 | // TODO: Get more accurate position of the error from UnicodeSet's return info. | |
1086 | // UnicodeSet appears to not be reporting correctly at this time. | |
1087 | RBBIDebugPrintf("UnicodeSet parse postion.ErrorIndex = %d\n", pos.getIndex()); | |
1088 | error(localStatus); | |
1089 | delete uset; | |
1090 | return; | |
1091 | } | |
1092 | ||
1093 | // Verify that the set contains at least one code point. | |
1094 | // | |
1095 | if (uset->charAt(0) == -1) { | |
1096 | // This set is empty. | |
1097 | // Make it an error, because it almost certainly is not what the user wanted. | |
1098 | // Also, avoids having to think about corner cases in the tree manipulation code | |
1099 | // that occurs later on. | |
1100 | error(U_BRK_RULE_EMPTY_SET); | |
1101 | delete uset; | |
1102 | return; | |
1103 | } | |
1104 | ||
1105 | ||
1106 | // Advance the RBBI parse postion over the UnicodeSet pattern. | |
1107 | // Don't just set fScanIndex because the line/char positions maintained | |
1108 | // for error reporting would be thrown off. | |
1109 | i = pos.getIndex(); | |
1110 | for (;;) { | |
1111 | if (fNextIndex >= i) { | |
1112 | break; | |
1113 | } | |
1114 | nextCharLL(); | |
1115 | } | |
1116 | ||
1117 | if (U_SUCCESS(*fRB->fStatus)) { | |
1118 | RBBINode *n; | |
1119 | ||
1120 | n = pushNewNode(RBBINode::setRef); | |
1121 | n->fFirstPos = startPos; | |
1122 | n->fLastPos = fNextIndex; | |
1123 | fRB->fRules.extractBetween(n->fFirstPos, n->fLastPos, n->fText); | |
1124 | // findSetFor() serves several purposes here: | |
1125 | // - Adopts storage for the UnicodeSet, will be responsible for deleting. | |
1126 | // - Mantains collection of all sets in use, needed later for establishing | |
1127 | // character categories for run time engine. | |
1128 | // - Eliminates mulitiple instances of the same set. | |
1129 | // - Creates a new uset node if necessary (if this isn't a duplicate.) | |
1130 | findSetFor(n->fText, n, uset); | |
1131 | } | |
1132 | ||
1133 | } | |
1134 | ||
1135 | U_NAMESPACE_END | |
1136 | ||
1137 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |