]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | /* |
2 | ****************************************************************************** | |
4388f060 | 3 | * Copyright (C) 1997-2011, International Business Machines |
b75a7d8f A |
4 | * Corporation and others. All Rights Reserved. |
5 | ****************************************************************************** | |
6 | * Date Name Description | |
7 | * 03/22/00 aliu Adapted from original C++ ICU Hashtable. | |
8 | * 07/06/01 aliu Modified to support int32_t keys on | |
9 | * platforms with sizeof(void*) < 32. | |
10 | ****************************************************************************** | |
11 | */ | |
12 | ||
13 | #include "uhash.h" | |
14 | #include "unicode/ustring.h" | |
15 | #include "cstring.h" | |
16 | #include "cmemory.h" | |
17 | #include "uassert.h" | |
4388f060 | 18 | #include "ustr_imp.h" |
b75a7d8f A |
19 | |
20 | /* This hashtable is implemented as a double hash. All elements are | |
21 | * stored in a single array with no secondary storage for collision | |
22 | * resolution (no linked list, etc.). When there is a hash collision | |
23 | * (when two unequal keys have the same hashcode) we resolve this by | |
24 | * using a secondary hash. The secondary hash is an increment | |
25 | * computed as a hash function (a different one) of the primary | |
26 | * hashcode. This increment is added to the initial hash value to | |
27 | * obtain further slots assigned to the same hash code. For this to | |
28 | * work, the length of the array and the increment must be relatively | |
29 | * prime. The easiest way to achieve this is to have the length of | |
30 | * the array be prime, and the increment be any value from | |
31 | * 1..length-1. | |
32 | * | |
33 | * Hashcodes are 32-bit integers. We make sure all hashcodes are | |
34 | * non-negative by masking off the top bit. This has two effects: (1) | |
35 | * modulo arithmetic is simplified. If we allowed negative hashcodes, | |
36 | * then when we computed hashcode % length, we could get a negative | |
37 | * result, which we would then have to adjust back into range. It's | |
38 | * simpler to just make hashcodes non-negative. (2) It makes it easy | |
39 | * to check for empty vs. occupied slots in the table. We just mark | |
40 | * empty or deleted slots with a negative hashcode. | |
41 | * | |
42 | * The central function is _uhash_find(). This function looks for a | |
43 | * slot matching the given key and hashcode. If one is found, it | |
44 | * returns a pointer to that slot. If the table is full, and no match | |
45 | * is found, it returns NULL -- in theory. This would make the code | |
46 | * more complicated, since all callers of _uhash_find() would then | |
47 | * have to check for a NULL result. To keep this from happening, we | |
48 | * don't allow the table to fill. When there is only one | |
49 | * empty/deleted slot left, uhash_put() will refuse to increase the | |
50 | * count, and fail. This simplifies the code. In practice, one will | |
51 | * seldom encounter this using default UHashtables. However, if a | |
52 | * hashtable is set to a U_FIXED resize policy, or if memory is | |
53 | * exhausted, then the table may fill. | |
54 | * | |
55 | * High and low water ratios control rehashing. They establish levels | |
56 | * of fullness (from 0 to 1) outside of which the data array is | |
57 | * reallocated and repopulated. Setting the low water ratio to zero | |
58 | * means the table will never shrink. Setting the high water ratio to | |
59 | * one means the table will never grow. The ratios should be | |
60 | * coordinated with the ratio between successive elements of the | |
61 | * PRIMES table, so that when the primeIndex is incremented or | |
62 | * decremented during rehashing, it brings the ratio of count / length | |
63 | * back into the desired range (between low and high water ratios). | |
64 | */ | |
65 | ||
66 | /******************************************************************** | |
67 | * PRIVATE Constants, Macros | |
68 | ********************************************************************/ | |
69 | ||
70 | /* This is a list of non-consecutive primes chosen such that | |
71 | * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81 | |
72 | * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this | |
73 | * ratio is changed, the low and high water ratios should also be | |
74 | * adjusted to suit. | |
374ca955 A |
75 | * |
76 | * These prime numbers were also chosen so that they are the largest | |
77 | * prime number while being less than a power of two. | |
b75a7d8f A |
78 | */ |
79 | static const int32_t PRIMES[] = { | |
374ca955 A |
80 | 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, |
81 | 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593, | |
82 | 16777213, 33554393, 67108859, 134217689, 268435399, 536870909, | |
83 | 1073741789, 2147483647 /*, 4294967291 */ | |
b75a7d8f A |
84 | }; |
85 | ||
86 | #define PRIMES_LENGTH (sizeof(PRIMES) / sizeof(PRIMES[0])) | |
73c04bcf | 87 | #define DEFAULT_PRIME_INDEX 3 |
b75a7d8f A |
88 | |
89 | /* These ratios are tuned to the PRIMES array such that a resize | |
90 | * places the table back into the zone of non-resizing. That is, | |
91 | * after a call to _uhash_rehash(), a subsequent call to | |
92 | * _uhash_rehash() should do nothing (should not churn). This is only | |
93 | * a potential problem with U_GROW_AND_SHRINK. | |
94 | */ | |
95 | static const float RESIZE_POLICY_RATIO_TABLE[6] = { | |
96 | /* low, high water ratio */ | |
97 | 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */ | |
98 | 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */ | |
99 | 0.0F, 1.0F /* U_FIXED: Never change size */ | |
100 | }; | |
101 | ||
102 | /* | |
103 | Invariants for hashcode values: | |
104 | ||
105 | * DELETED < 0 | |
106 | * EMPTY < 0 | |
107 | * Real hashes >= 0 | |
108 | ||
109 | Hashcodes may not start out this way, but internally they are | |
110 | adjusted so that they are always positive. We assume 32-bit | |
111 | hashcodes; adjust these constants for other hashcode sizes. | |
112 | */ | |
113 | #define HASH_DELETED ((int32_t) 0x80000000) | |
114 | #define HASH_EMPTY ((int32_t) HASH_DELETED + 1) | |
115 | ||
116 | #define IS_EMPTY_OR_DELETED(x) ((x) < 0) | |
117 | ||
118 | /* This macro expects a UHashTok.pointer as its keypointer and | |
119 | valuepointer parameters */ | |
120 | #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \ | |
121 | if (hash->keyDeleter != NULL && keypointer != NULL) { \ | |
122 | (*hash->keyDeleter)(keypointer); \ | |
123 | } \ | |
124 | if (hash->valueDeleter != NULL && valuepointer != NULL) { \ | |
125 | (*hash->valueDeleter)(valuepointer); \ | |
126 | } | |
127 | ||
128 | /* | |
129 | * Constants for hinting whether a key or value is an integer | |
130 | * or a pointer. If a hint bit is zero, then the associated | |
131 | * token is assumed to be an integer. | |
132 | */ | |
133 | #define HINT_KEY_POINTER (1) | |
134 | #define HINT_VALUE_POINTER (2) | |
135 | ||
136 | /******************************************************************** | |
73c04bcf | 137 | * PRIVATE Implementation |
b75a7d8f A |
138 | ********************************************************************/ |
139 | ||
73c04bcf A |
140 | static UHashTok |
141 | _uhash_setElement(UHashtable *hash, UHashElement* e, | |
142 | int32_t hashcode, | |
143 | UHashTok key, UHashTok value, int8_t hint) { | |
b75a7d8f | 144 | |
73c04bcf A |
145 | UHashTok oldValue = e->value; |
146 | if (hash->keyDeleter != NULL && e->key.pointer != NULL && | |
147 | e->key.pointer != key.pointer) { /* Avoid double deletion */ | |
148 | (*hash->keyDeleter)(e->key.pointer); | |
149 | } | |
150 | if (hash->valueDeleter != NULL) { | |
151 | if (oldValue.pointer != NULL && | |
152 | oldValue.pointer != value.pointer) { /* Avoid double deletion */ | |
153 | (*hash->valueDeleter)(oldValue.pointer); | |
154 | } | |
155 | oldValue.pointer = NULL; | |
156 | } | |
157 | /* Compilers should copy the UHashTok union correctly, but even if | |
158 | * they do, memory heap tools (e.g. BoundsChecker) can get | |
159 | * confused when a pointer is cloaked in a union and then copied. | |
160 | * TO ALLEVIATE THIS, we use hints (based on what API the user is | |
161 | * calling) to copy pointers when we know the user thinks | |
162 | * something is a pointer. */ | |
163 | if (hint & HINT_KEY_POINTER) { | |
164 | e->key.pointer = key.pointer; | |
165 | } else { | |
166 | e->key = key; | |
167 | } | |
168 | if (hint & HINT_VALUE_POINTER) { | |
169 | e->value.pointer = value.pointer; | |
170 | } else { | |
171 | e->value = value; | |
172 | } | |
173 | e->hashcode = hashcode; | |
174 | return oldValue; | |
175 | } | |
b75a7d8f | 176 | |
73c04bcf A |
177 | /** |
178 | * Assumes that the given element is not empty or deleted. | |
179 | */ | |
180 | static UHashTok | |
181 | _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) { | |
182 | UHashTok empty; | |
183 | U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode)); | |
184 | --hash->count; | |
185 | empty.pointer = NULL; empty.integer = 0; | |
186 | return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0); | |
187 | } | |
b75a7d8f | 188 | |
73c04bcf A |
189 | static void |
190 | _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { | |
191 | U_ASSERT(hash != NULL); | |
192 | U_ASSERT(((int32_t)policy) >= 0); | |
193 | U_ASSERT(((int32_t)policy) < 3); | |
194 | hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2]; | |
195 | hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1]; | |
196 | } | |
b75a7d8f | 197 | |
73c04bcf A |
198 | /** |
199 | * Allocate internal data array of a size determined by the given | |
200 | * prime index. If the index is out of range it is pinned into range. | |
201 | * If the allocation fails the status is set to | |
202 | * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In | |
203 | * either case the previous array pointer is overwritten. | |
204 | * | |
205 | * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1. | |
206 | */ | |
207 | static void | |
208 | _uhash_allocate(UHashtable *hash, | |
209 | int32_t primeIndex, | |
210 | UErrorCode *status) { | |
b75a7d8f | 211 | |
73c04bcf A |
212 | UHashElement *p, *limit; |
213 | UHashTok emptytok; | |
b75a7d8f | 214 | |
73c04bcf | 215 | if (U_FAILURE(*status)) return; |
b75a7d8f | 216 | |
73c04bcf | 217 | U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH); |
b75a7d8f | 218 | |
73c04bcf A |
219 | hash->primeIndex = primeIndex; |
220 | hash->length = PRIMES[primeIndex]; | |
b75a7d8f | 221 | |
73c04bcf A |
222 | p = hash->elements = (UHashElement*) |
223 | uprv_malloc(sizeof(UHashElement) * hash->length); | |
b75a7d8f | 224 | |
73c04bcf A |
225 | if (hash->elements == NULL) { |
226 | *status = U_MEMORY_ALLOCATION_ERROR; | |
227 | return; | |
228 | } | |
b75a7d8f | 229 | |
73c04bcf A |
230 | emptytok.pointer = NULL; /* Only one of these two is needed */ |
231 | emptytok.integer = 0; /* but we don't know which one. */ | |
232 | ||
233 | limit = p + hash->length; | |
234 | while (p < limit) { | |
235 | p->key = emptytok; | |
236 | p->value = emptytok; | |
237 | p->hashcode = HASH_EMPTY; | |
238 | ++p; | |
239 | } | |
b75a7d8f | 240 | |
73c04bcf A |
241 | hash->count = 0; |
242 | hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); | |
243 | hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); | |
b75a7d8f A |
244 | } |
245 | ||
73c04bcf A |
246 | static UHashtable* |
247 | _uhash_init(UHashtable *result, | |
248 | UHashFunction *keyHash, | |
249 | UKeyComparator *keyComp, | |
250 | UValueComparator *valueComp, | |
251 | int32_t primeIndex, | |
252 | UErrorCode *status) | |
253 | { | |
254 | if (U_FAILURE(*status)) return NULL; | |
255 | U_ASSERT(keyHash != NULL); | |
256 | U_ASSERT(keyComp != NULL); | |
b75a7d8f | 257 | |
73c04bcf A |
258 | result->keyHasher = keyHash; |
259 | result->keyComparator = keyComp; | |
260 | result->valueComparator = valueComp; | |
261 | result->keyDeleter = NULL; | |
262 | result->valueDeleter = NULL; | |
263 | result->allocated = FALSE; | |
264 | _uhash_internalSetResizePolicy(result, U_GROW); | |
b75a7d8f | 265 | |
73c04bcf | 266 | _uhash_allocate(result, primeIndex, status); |
b75a7d8f | 267 | |
73c04bcf A |
268 | if (U_FAILURE(*status)) { |
269 | return NULL; | |
b75a7d8f | 270 | } |
b75a7d8f | 271 | |
b75a7d8f A |
272 | return result; |
273 | } | |
274 | ||
73c04bcf A |
275 | static UHashtable* |
276 | _uhash_create(UHashFunction *keyHash, | |
277 | UKeyComparator *keyComp, | |
278 | UValueComparator *valueComp, | |
279 | int32_t primeIndex, | |
280 | UErrorCode *status) { | |
281 | UHashtable *result; | |
b75a7d8f | 282 | |
73c04bcf | 283 | if (U_FAILURE(*status)) return NULL; |
b75a7d8f | 284 | |
73c04bcf A |
285 | result = (UHashtable*) uprv_malloc(sizeof(UHashtable)); |
286 | if (result == NULL) { | |
287 | *status = U_MEMORY_ALLOCATION_ERROR; | |
288 | return NULL; | |
289 | } | |
b75a7d8f | 290 | |
73c04bcf A |
291 | _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status); |
292 | result->allocated = TRUE; | |
b75a7d8f | 293 | |
73c04bcf A |
294 | if (U_FAILURE(*status)) { |
295 | uprv_free(result); | |
296 | return NULL; | |
297 | } | |
b75a7d8f | 298 | |
73c04bcf | 299 | return result; |
b75a7d8f A |
300 | } |
301 | ||
73c04bcf A |
302 | /** |
303 | * Look for a key in the table, or if no such key exists, the first | |
304 | * empty slot matching the given hashcode. Keys are compared using | |
305 | * the keyComparator function. | |
306 | * | |
307 | * First find the start position, which is the hashcode modulo | |
308 | * the length. Test it to see if it is: | |
309 | * | |
310 | * a. identical: First check the hash values for a quick check, | |
311 | * then compare keys for equality using keyComparator. | |
312 | * b. deleted | |
313 | * c. empty | |
314 | * | |
315 | * Stop if it is identical or empty, otherwise continue by adding a | |
316 | * "jump" value (moduloing by the length again to keep it within | |
317 | * range) and retesting. For efficiency, there need enough empty | |
318 | * values so that the searchs stop within a reasonable amount of time. | |
319 | * This can be changed by changing the high/low water marks. | |
320 | * | |
321 | * In theory, this function can return NULL, if it is full (no empty | |
322 | * or deleted slots) and if no matching key is found. In practice, we | |
323 | * prevent this elsewhere (in uhash_put) by making sure the last slot | |
324 | * in the table is never filled. | |
325 | * | |
326 | * The size of the table should be prime for this algorithm to work; | |
327 | * otherwise we are not guaranteed that the jump value (the secondary | |
328 | * hash) is relatively prime to the table length. | |
329 | */ | |
330 | static UHashElement* | |
331 | _uhash_find(const UHashtable *hash, UHashTok key, | |
332 | int32_t hashcode) { | |
b75a7d8f | 333 | |
73c04bcf A |
334 | int32_t firstDeleted = -1; /* assume invalid index */ |
335 | int32_t theIndex, startIndex; | |
336 | int32_t jump = 0; /* lazy evaluate */ | |
337 | int32_t tableHash; | |
338 | UHashElement *elements = hash->elements; | |
b75a7d8f | 339 | |
73c04bcf A |
340 | hashcode &= 0x7FFFFFFF; /* must be positive */ |
341 | startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length; | |
374ca955 | 342 | |
73c04bcf A |
343 | do { |
344 | tableHash = elements[theIndex].hashcode; | |
345 | if (tableHash == hashcode) { /* quick check */ | |
346 | if ((*hash->keyComparator)(key, elements[theIndex].key)) { | |
347 | return &(elements[theIndex]); | |
348 | } | |
349 | } else if (!IS_EMPTY_OR_DELETED(tableHash)) { | |
350 | /* We have hit a slot which contains a key-value pair, | |
351 | * but for which the hash code does not match. Keep | |
352 | * looking. | |
353 | */ | |
354 | } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */ | |
355 | break; | |
356 | } else if (firstDeleted < 0) { /* remember first deleted */ | |
357 | firstDeleted = theIndex; | |
358 | } | |
359 | if (jump == 0) { /* lazy compute jump */ | |
360 | /* The jump value must be relatively prime to the table | |
361 | * length. As long as the length is prime, then any value | |
362 | * 1..length-1 will be relatively prime to it. | |
363 | */ | |
364 | jump = (hashcode % (hash->length - 1)) + 1; | |
365 | } | |
366 | theIndex = (theIndex + jump) % hash->length; | |
367 | } while (theIndex != startIndex); | |
b75a7d8f | 368 | |
73c04bcf A |
369 | if (firstDeleted >= 0) { |
370 | theIndex = firstDeleted; /* reset if had deleted slot */ | |
371 | } else if (tableHash != HASH_EMPTY) { | |
372 | /* We get to this point if the hashtable is full (no empty or | |
373 | * deleted slots), and we've failed to find a match. THIS | |
374 | * WILL NEVER HAPPEN as long as uhash_put() makes sure that | |
375 | * count is always < length. | |
376 | */ | |
377 | U_ASSERT(FALSE); | |
378 | return NULL; /* Never happens if uhash_put() behaves */ | |
379 | } | |
380 | return &(elements[theIndex]); | |
b75a7d8f A |
381 | } |
382 | ||
73c04bcf A |
383 | /** |
384 | * Attempt to grow or shrink the data arrays in order to make the | |
385 | * count fit between the high and low water marks. hash_put() and | |
386 | * hash_remove() call this method when the count exceeds the high or | |
387 | * low water marks. This method may do nothing, if memory allocation | |
388 | * fails, or if the count is already in range, or if the length is | |
389 | * already at the low or high limit. In any case, upon return the | |
390 | * arrays will be valid. | |
391 | */ | |
392 | static void | |
46f4442e | 393 | _uhash_rehash(UHashtable *hash, UErrorCode *status) { |
b75a7d8f | 394 | |
73c04bcf A |
395 | UHashElement *old = hash->elements; |
396 | int32_t oldLength = hash->length; | |
397 | int32_t newPrimeIndex = hash->primeIndex; | |
398 | int32_t i; | |
374ca955 | 399 | |
73c04bcf A |
400 | if (hash->count > hash->highWaterMark) { |
401 | if (++newPrimeIndex >= PRIMES_LENGTH) { | |
402 | return; | |
403 | } | |
404 | } else if (hash->count < hash->lowWaterMark) { | |
405 | if (--newPrimeIndex < 0) { | |
406 | return; | |
407 | } | |
408 | } else { | |
409 | return; | |
410 | } | |
374ca955 | 411 | |
46f4442e | 412 | _uhash_allocate(hash, newPrimeIndex, status); |
b75a7d8f | 413 | |
46f4442e | 414 | if (U_FAILURE(*status)) { |
73c04bcf A |
415 | hash->elements = old; |
416 | hash->length = oldLength; | |
417 | return; | |
418 | } | |
b75a7d8f | 419 | |
73c04bcf A |
420 | for (i = oldLength - 1; i >= 0; --i) { |
421 | if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) { | |
422 | UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode); | |
423 | U_ASSERT(e != NULL); | |
424 | U_ASSERT(e->hashcode == HASH_EMPTY); | |
425 | e->key = old[i].key; | |
426 | e->value = old[i].value; | |
427 | e->hashcode = old[i].hashcode; | |
428 | ++hash->count; | |
429 | } | |
430 | } | |
b75a7d8f | 431 | |
73c04bcf | 432 | uprv_free(old); |
374ca955 A |
433 | } |
434 | ||
73c04bcf A |
435 | static UHashTok |
436 | _uhash_remove(UHashtable *hash, | |
437 | UHashTok key) { | |
438 | /* First find the position of the key in the table. If the object | |
439 | * has not been removed already, remove it. If the user wanted | |
440 | * keys deleted, then delete it also. We have to put a special | |
441 | * hashcode in that position that means that something has been | |
442 | * deleted, since when we do a find, we have to continue PAST any | |
443 | * deleted values. | |
444 | */ | |
445 | UHashTok result; | |
446 | UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key)); | |
447 | U_ASSERT(e != NULL); | |
46f4442e A |
448 | result.pointer = NULL; |
449 | result.integer = 0; | |
73c04bcf A |
450 | if (!IS_EMPTY_OR_DELETED(e->hashcode)) { |
451 | result = _uhash_internalRemoveElement(hash, e); | |
452 | if (hash->count < hash->lowWaterMark) { | |
46f4442e A |
453 | UErrorCode status = U_ZERO_ERROR; |
454 | _uhash_rehash(hash, &status); | |
b75a7d8f A |
455 | } |
456 | } | |
73c04bcf | 457 | return result; |
b75a7d8f A |
458 | } |
459 | ||
73c04bcf A |
460 | static UHashTok |
461 | _uhash_put(UHashtable *hash, | |
462 | UHashTok key, | |
463 | UHashTok value, | |
464 | int8_t hint, | |
465 | UErrorCode *status) { | |
b75a7d8f | 466 | |
73c04bcf A |
467 | /* Put finds the position in the table for the new value. If the |
468 | * key is already in the table, it is deleted, if there is a | |
469 | * non-NULL keyDeleter. Then the key, the hash and the value are | |
470 | * all put at the position in their respective arrays. | |
b75a7d8f | 471 | */ |
73c04bcf A |
472 | int32_t hashcode; |
473 | UHashElement* e; | |
474 | UHashTok emptytok; | |
475 | ||
476 | if (U_FAILURE(*status)) { | |
477 | goto err; | |
478 | } | |
b75a7d8f | 479 | U_ASSERT(hash != NULL); |
73c04bcf A |
480 | /* Cannot always check pointer here or iSeries sees NULL every time. */ |
481 | if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) { | |
482 | /* Disallow storage of NULL values, since NULL is returned by | |
483 | * get() to indicate an absent key. Storing NULL == removing. | |
484 | */ | |
485 | return _uhash_remove(hash, key); | |
486 | } | |
487 | if (hash->count > hash->highWaterMark) { | |
46f4442e A |
488 | _uhash_rehash(hash, status); |
489 | if (U_FAILURE(*status)) { | |
490 | goto err; | |
491 | } | |
b75a7d8f A |
492 | } |
493 | ||
73c04bcf A |
494 | hashcode = (*hash->keyHasher)(key); |
495 | e = _uhash_find(hash, key, hashcode); | |
b75a7d8f | 496 | U_ASSERT(e != NULL); |
73c04bcf A |
497 | |
498 | if (IS_EMPTY_OR_DELETED(e->hashcode)) { | |
499 | /* Important: We must never actually fill the table up. If we | |
500 | * do so, then _uhash_find() will return NULL, and we'll have | |
501 | * to check for NULL after every call to _uhash_find(). To | |
502 | * avoid this we make sure there is always at least one empty | |
503 | * or deleted slot in the table. This only is a problem if we | |
504 | * are out of memory and rehash isn't working. | |
505 | */ | |
506 | ++hash->count; | |
507 | if (hash->count == hash->length) { | |
508 | /* Don't allow count to reach length */ | |
509 | --hash->count; | |
510 | *status = U_MEMORY_ALLOCATION_ERROR; | |
511 | goto err; | |
512 | } | |
b75a7d8f | 513 | } |
b75a7d8f | 514 | |
73c04bcf A |
515 | /* We must in all cases handle storage properly. If there was an |
516 | * old key, then it must be deleted (if the deleter != NULL). | |
517 | * Make hashcodes stored in table positive. | |
518 | */ | |
519 | return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint); | |
b75a7d8f | 520 | |
73c04bcf A |
521 | err: |
522 | /* If the deleters are non-NULL, this method adopts its key and/or | |
523 | * value arguments, and we must be sure to delete the key and/or | |
524 | * value in all cases, even upon failure. | |
525 | */ | |
526 | HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer); | |
527 | emptytok.pointer = NULL; emptytok.integer = 0; | |
528 | return emptytok; | |
b75a7d8f A |
529 | } |
530 | ||
b75a7d8f A |
531 | |
532 | /******************************************************************** | |
73c04bcf | 533 | * PUBLIC API |
b75a7d8f A |
534 | ********************************************************************/ |
535 | ||
73c04bcf A |
536 | U_CAPI UHashtable* U_EXPORT2 |
537 | uhash_open(UHashFunction *keyHash, | |
538 | UKeyComparator *keyComp, | |
539 | UValueComparator *valueComp, | |
540 | UErrorCode *status) { | |
b75a7d8f | 541 | |
73c04bcf | 542 | return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); |
b75a7d8f A |
543 | } |
544 | ||
73c04bcf A |
545 | U_CAPI UHashtable* U_EXPORT2 |
546 | uhash_openSize(UHashFunction *keyHash, | |
547 | UKeyComparator *keyComp, | |
548 | UValueComparator *valueComp, | |
549 | int32_t size, | |
550 | UErrorCode *status) { | |
b75a7d8f | 551 | |
73c04bcf A |
552 | /* Find the smallest index i for which PRIMES[i] >= size. */ |
553 | int32_t i = 0; | |
554 | while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { | |
555 | ++i; | |
556 | } | |
b75a7d8f | 557 | |
73c04bcf | 558 | return _uhash_create(keyHash, keyComp, valueComp, i, status); |
b75a7d8f A |
559 | } |
560 | ||
73c04bcf A |
561 | U_CAPI UHashtable* U_EXPORT2 |
562 | uhash_init(UHashtable *fillinResult, | |
563 | UHashFunction *keyHash, | |
564 | UKeyComparator *keyComp, | |
565 | UValueComparator *valueComp, | |
566 | UErrorCode *status) { | |
b75a7d8f | 567 | |
73c04bcf | 568 | return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); |
b75a7d8f A |
569 | } |
570 | ||
73c04bcf A |
571 | U_CAPI void U_EXPORT2 |
572 | uhash_close(UHashtable *hash) { | |
729e4ab9 A |
573 | if (hash == NULL) { |
574 | return; | |
575 | } | |
73c04bcf A |
576 | if (hash->elements != NULL) { |
577 | if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) { | |
578 | int32_t pos=-1; | |
579 | UHashElement *e; | |
580 | while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) { | |
581 | HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer); | |
582 | } | |
583 | } | |
584 | uprv_free(hash->elements); | |
585 | hash->elements = NULL; | |
b75a7d8f | 586 | } |
73c04bcf A |
587 | if (hash->allocated) { |
588 | uprv_free(hash); | |
b75a7d8f | 589 | } |
b75a7d8f A |
590 | } |
591 | ||
73c04bcf A |
592 | U_CAPI UHashFunction *U_EXPORT2 |
593 | uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) { | |
594 | UHashFunction *result = hash->keyHasher; | |
595 | hash->keyHasher = fn; | |
596 | return result; | |
b75a7d8f A |
597 | } |
598 | ||
73c04bcf A |
599 | U_CAPI UKeyComparator *U_EXPORT2 |
600 | uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) { | |
601 | UKeyComparator *result = hash->keyComparator; | |
602 | hash->keyComparator = fn; | |
603 | return result; | |
604 | } | |
605 | U_CAPI UValueComparator *U_EXPORT2 | |
606 | uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){ | |
607 | UValueComparator *result = hash->valueComparator; | |
608 | hash->valueComparator = fn; | |
609 | return result; | |
b75a7d8f A |
610 | } |
611 | ||
73c04bcf A |
612 | U_CAPI UObjectDeleter *U_EXPORT2 |
613 | uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) { | |
614 | UObjectDeleter *result = hash->keyDeleter; | |
615 | hash->keyDeleter = fn; | |
616 | return result; | |
b75a7d8f A |
617 | } |
618 | ||
73c04bcf A |
619 | U_CAPI UObjectDeleter *U_EXPORT2 |
620 | uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) { | |
621 | UObjectDeleter *result = hash->valueDeleter; | |
622 | hash->valueDeleter = fn; | |
623 | return result; | |
624 | } | |
b75a7d8f A |
625 | |
626 | U_CAPI void U_EXPORT2 | |
73c04bcf | 627 | uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { |
46f4442e | 628 | UErrorCode status = U_ZERO_ERROR; |
73c04bcf A |
629 | _uhash_internalSetResizePolicy(hash, policy); |
630 | hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); | |
631 | hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); | |
46f4442e | 632 | _uhash_rehash(hash, &status); |
b75a7d8f A |
633 | } |
634 | ||
73c04bcf A |
635 | U_CAPI int32_t U_EXPORT2 |
636 | uhash_count(const UHashtable *hash) { | |
637 | return hash->count; | |
638 | } | |
b75a7d8f | 639 | |
73c04bcf A |
640 | U_CAPI void* U_EXPORT2 |
641 | uhash_get(const UHashtable *hash, | |
642 | const void* key) { | |
643 | UHashTok keyholder; | |
644 | keyholder.pointer = (void*) key; | |
645 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; | |
646 | } | |
b75a7d8f | 647 | |
73c04bcf A |
648 | U_CAPI void* U_EXPORT2 |
649 | uhash_iget(const UHashtable *hash, | |
650 | int32_t key) { | |
651 | UHashTok keyholder; | |
652 | keyholder.integer = key; | |
653 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; | |
654 | } | |
b75a7d8f | 655 | |
73c04bcf A |
656 | U_CAPI int32_t U_EXPORT2 |
657 | uhash_geti(const UHashtable *hash, | |
658 | const void* key) { | |
659 | UHashTok keyholder; | |
660 | keyholder.pointer = (void*) key; | |
661 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; | |
662 | } | |
b75a7d8f | 663 | |
73c04bcf A |
664 | U_CAPI int32_t U_EXPORT2 |
665 | uhash_igeti(const UHashtable *hash, | |
666 | int32_t key) { | |
667 | UHashTok keyholder; | |
668 | keyholder.integer = key; | |
669 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; | |
670 | } | |
b75a7d8f | 671 | |
73c04bcf A |
672 | U_CAPI void* U_EXPORT2 |
673 | uhash_put(UHashtable *hash, | |
674 | void* key, | |
675 | void* value, | |
676 | UErrorCode *status) { | |
677 | UHashTok keyholder, valueholder; | |
678 | keyholder.pointer = key; | |
679 | valueholder.pointer = value; | |
680 | return _uhash_put(hash, keyholder, valueholder, | |
681 | HINT_KEY_POINTER | HINT_VALUE_POINTER, | |
682 | status).pointer; | |
683 | } | |
b75a7d8f | 684 | |
73c04bcf A |
685 | U_CAPI void* U_EXPORT2 |
686 | uhash_iput(UHashtable *hash, | |
687 | int32_t key, | |
688 | void* value, | |
689 | UErrorCode *status) { | |
690 | UHashTok keyholder, valueholder; | |
691 | keyholder.integer = key; | |
692 | valueholder.pointer = value; | |
693 | return _uhash_put(hash, keyholder, valueholder, | |
694 | HINT_VALUE_POINTER, | |
695 | status).pointer; | |
b75a7d8f A |
696 | } |
697 | ||
73c04bcf A |
698 | U_CAPI int32_t U_EXPORT2 |
699 | uhash_puti(UHashtable *hash, | |
700 | void* key, | |
701 | int32_t value, | |
702 | UErrorCode *status) { | |
703 | UHashTok keyholder, valueholder; | |
704 | keyholder.pointer = key; | |
705 | valueholder.integer = value; | |
706 | return _uhash_put(hash, keyholder, valueholder, | |
707 | HINT_KEY_POINTER, | |
708 | status).integer; | |
709 | } | |
b75a7d8f | 710 | |
b75a7d8f | 711 | |
73c04bcf A |
712 | U_CAPI int32_t U_EXPORT2 |
713 | uhash_iputi(UHashtable *hash, | |
714 | int32_t key, | |
715 | int32_t value, | |
716 | UErrorCode *status) { | |
717 | UHashTok keyholder, valueholder; | |
718 | keyholder.integer = key; | |
719 | valueholder.integer = value; | |
720 | return _uhash_put(hash, keyholder, valueholder, | |
721 | 0, /* neither is a ptr */ | |
722 | status).integer; | |
723 | } | |
b75a7d8f | 724 | |
73c04bcf A |
725 | U_CAPI void* U_EXPORT2 |
726 | uhash_remove(UHashtable *hash, | |
727 | const void* key) { | |
728 | UHashTok keyholder; | |
729 | keyholder.pointer = (void*) key; | |
730 | return _uhash_remove(hash, keyholder).pointer; | |
731 | } | |
b75a7d8f | 732 | |
73c04bcf A |
733 | U_CAPI void* U_EXPORT2 |
734 | uhash_iremove(UHashtable *hash, | |
735 | int32_t key) { | |
736 | UHashTok keyholder; | |
737 | keyholder.integer = key; | |
738 | return _uhash_remove(hash, keyholder).pointer; | |
739 | } | |
b75a7d8f | 740 | |
73c04bcf A |
741 | U_CAPI int32_t U_EXPORT2 |
742 | uhash_removei(UHashtable *hash, | |
743 | const void* key) { | |
744 | UHashTok keyholder; | |
745 | keyholder.pointer = (void*) key; | |
746 | return _uhash_remove(hash, keyholder).integer; | |
747 | } | |
b75a7d8f | 748 | |
73c04bcf A |
749 | U_CAPI int32_t U_EXPORT2 |
750 | uhash_iremovei(UHashtable *hash, | |
751 | int32_t key) { | |
752 | UHashTok keyholder; | |
753 | keyholder.integer = key; | |
754 | return _uhash_remove(hash, keyholder).integer; | |
755 | } | |
b75a7d8f | 756 | |
73c04bcf A |
757 | U_CAPI void U_EXPORT2 |
758 | uhash_removeAll(UHashtable *hash) { | |
759 | int32_t pos = -1; | |
760 | const UHashElement *e; | |
761 | U_ASSERT(hash != NULL); | |
762 | if (hash->count != 0) { | |
763 | while ((e = uhash_nextElement(hash, &pos)) != NULL) { | |
764 | uhash_removeElement(hash, e); | |
765 | } | |
b75a7d8f | 766 | } |
73c04bcf | 767 | U_ASSERT(hash->count == 0); |
b75a7d8f A |
768 | } |
769 | ||
73c04bcf A |
770 | U_CAPI const UHashElement* U_EXPORT2 |
771 | uhash_find(const UHashtable *hash, const void* key) { | |
772 | UHashTok keyholder; | |
773 | const UHashElement *e; | |
774 | keyholder.pointer = (void*) key; | |
775 | e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); | |
776 | return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e; | |
777 | } | |
b75a7d8f | 778 | |
73c04bcf A |
779 | U_CAPI const UHashElement* U_EXPORT2 |
780 | uhash_nextElement(const UHashtable *hash, int32_t *pos) { | |
781 | /* Walk through the array until we find an element that is not | |
782 | * EMPTY and not DELETED. | |
783 | */ | |
b75a7d8f | 784 | int32_t i; |
73c04bcf A |
785 | U_ASSERT(hash != NULL); |
786 | for (i = *pos + 1; i < hash->length; ++i) { | |
787 | if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) { | |
788 | *pos = i; | |
789 | return &(hash->elements[i]); | |
b75a7d8f | 790 | } |
b75a7d8f A |
791 | } |
792 | ||
73c04bcf A |
793 | /* No more elements */ |
794 | return NULL; | |
795 | } | |
b75a7d8f | 796 | |
73c04bcf A |
797 | U_CAPI void* U_EXPORT2 |
798 | uhash_removeElement(UHashtable *hash, const UHashElement* e) { | |
799 | U_ASSERT(hash != NULL); | |
800 | U_ASSERT(e != NULL); | |
801 | if (!IS_EMPTY_OR_DELETED(e->hashcode)) { | |
729e4ab9 A |
802 | UHashElement *nce = (UHashElement *)e; |
803 | return _uhash_internalRemoveElement(hash, nce).pointer; | |
b75a7d8f | 804 | } |
73c04bcf A |
805 | return NULL; |
806 | } | |
b75a7d8f | 807 | |
73c04bcf A |
808 | /******************************************************************** |
809 | * UHashTok convenience | |
810 | ********************************************************************/ | |
b75a7d8f | 811 | |
73c04bcf A |
812 | /** |
813 | * Return a UHashTok for an integer. | |
814 | */ | |
815 | /*U_CAPI UHashTok U_EXPORT2 | |
816 | uhash_toki(int32_t i) { | |
817 | UHashTok tok; | |
818 | tok.integer = i; | |
819 | return tok; | |
820 | }*/ | |
b75a7d8f A |
821 | |
822 | /** | |
73c04bcf | 823 | * Return a UHashTok for a pointer. |
b75a7d8f | 824 | */ |
73c04bcf A |
825 | /*U_CAPI UHashTok U_EXPORT2 |
826 | uhash_tokp(void* p) { | |
827 | UHashTok tok; | |
828 | tok.pointer = p; | |
829 | return tok; | |
830 | }*/ | |
b75a7d8f | 831 | |
73c04bcf A |
832 | /******************************************************************** |
833 | * PUBLIC Key Hash Functions | |
834 | ********************************************************************/ | |
835 | ||
73c04bcf A |
836 | U_CAPI int32_t U_EXPORT2 |
837 | uhash_hashUChars(const UHashTok key) { | |
4388f060 A |
838 | const UChar *s = (const UChar *)key.pointer; |
839 | return s == NULL ? 0 : ustr_hashUCharsN(s, u_strlen(s)); | |
73c04bcf | 840 | } |
b75a7d8f | 841 | |
73c04bcf A |
842 | U_CAPI int32_t U_EXPORT2 |
843 | uhash_hashChars(const UHashTok key) { | |
4388f060 A |
844 | const char *s = (const char *)key.pointer; |
845 | return s == NULL ? 0 : ustr_hashCharsN(s, uprv_strlen(s)); | |
b75a7d8f A |
846 | } |
847 | ||
73c04bcf A |
848 | U_CAPI int32_t U_EXPORT2 |
849 | uhash_hashIChars(const UHashTok key) { | |
4388f060 A |
850 | const char *s = (const char *)key.pointer; |
851 | return s == NULL ? 0 : ustr_hashICharsN(s, uprv_strlen(s)); | |
73c04bcf | 852 | } |
b75a7d8f | 853 | |
73c04bcf A |
854 | U_CAPI UBool U_EXPORT2 |
855 | uhash_equals(const UHashtable* hash1, const UHashtable* hash2){ | |
73c04bcf | 856 | int32_t count1, count2, pos, i; |
b75a7d8f | 857 | |
73c04bcf A |
858 | if(hash1==hash2){ |
859 | return TRUE; | |
b75a7d8f | 860 | } |
73c04bcf | 861 | |
46f4442e A |
862 | /* |
863 | * Make sure that we are comparing 2 valid hashes of the same type | |
864 | * with valid comparison functions. | |
865 | * Without valid comparison functions, a binary comparison | |
866 | * of the hash values will yield random results on machines | |
867 | * with 64-bit pointers and 32-bit integer hashes. | |
868 | * A valueComparator is normally optional. | |
869 | */ | |
870 | if (hash1==NULL || hash2==NULL || | |
871 | hash1->keyComparator != hash2->keyComparator || | |
872 | hash1->valueComparator != hash2->valueComparator || | |
873 | hash1->valueComparator == NULL) | |
874 | { | |
875 | /* | |
876 | Normally we would return an error here about incompatible hash tables, | |
877 | but we return FALSE instead. | |
878 | */ | |
73c04bcf | 879 | return FALSE; |
b75a7d8f A |
880 | } |
881 | ||
73c04bcf A |
882 | count1 = uhash_count(hash1); |
883 | count2 = uhash_count(hash2); | |
884 | if(count1!=count2){ | |
885 | return FALSE; | |
886 | } | |
887 | ||
888 | pos=-1; | |
889 | for(i=0; i<count1; i++){ | |
890 | const UHashElement* elem1 = uhash_nextElement(hash1, &pos); | |
891 | const UHashTok key1 = elem1->key; | |
892 | const UHashTok val1 = elem1->value; | |
893 | /* here the keys are not compared, instead the key form hash1 is used to fetch | |
894 | * value from hash2. If the hashes are equal then then both hashes should | |
895 | * contain equal values for the same key! | |
b75a7d8f | 896 | */ |
73c04bcf A |
897 | const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1)); |
898 | const UHashTok val2 = elem2->value; | |
899 | if(hash1->valueComparator(val1, val2)==FALSE){ | |
900 | return FALSE; | |
b75a7d8f A |
901 | } |
902 | } | |
73c04bcf A |
903 | return TRUE; |
904 | } | |
b75a7d8f | 905 | |
73c04bcf A |
906 | /******************************************************************** |
907 | * PUBLIC Comparator Functions | |
908 | ********************************************************************/ | |
b75a7d8f | 909 | |
73c04bcf A |
910 | U_CAPI UBool U_EXPORT2 |
911 | uhash_compareUChars(const UHashTok key1, const UHashTok key2) { | |
912 | const UChar *p1 = (const UChar*) key1.pointer; | |
913 | const UChar *p2 = (const UChar*) key2.pointer; | |
914 | if (p1 == p2) { | |
915 | return TRUE; | |
916 | } | |
917 | if (p1 == NULL || p2 == NULL) { | |
918 | return FALSE; | |
919 | } | |
920 | while (*p1 != 0 && *p1 == *p2) { | |
921 | ++p1; | |
922 | ++p2; | |
923 | } | |
924 | return (UBool)(*p1 == *p2); | |
b75a7d8f A |
925 | } |
926 | ||
73c04bcf A |
927 | U_CAPI UBool U_EXPORT2 |
928 | uhash_compareChars(const UHashTok key1, const UHashTok key2) { | |
929 | const char *p1 = (const char*) key1.pointer; | |
930 | const char *p2 = (const char*) key2.pointer; | |
931 | if (p1 == p2) { | |
932 | return TRUE; | |
b75a7d8f | 933 | } |
73c04bcf A |
934 | if (p1 == NULL || p2 == NULL) { |
935 | return FALSE; | |
936 | } | |
937 | while (*p1 != 0 && *p1 == *p2) { | |
938 | ++p1; | |
939 | ++p2; | |
940 | } | |
941 | return (UBool)(*p1 == *p2); | |
b75a7d8f A |
942 | } |
943 | ||
73c04bcf A |
944 | U_CAPI UBool U_EXPORT2 |
945 | uhash_compareIChars(const UHashTok key1, const UHashTok key2) { | |
946 | const char *p1 = (const char*) key1.pointer; | |
947 | const char *p2 = (const char*) key2.pointer; | |
948 | if (p1 == p2) { | |
949 | return TRUE; | |
b75a7d8f | 950 | } |
73c04bcf A |
951 | if (p1 == NULL || p2 == NULL) { |
952 | return FALSE; | |
b75a7d8f | 953 | } |
73c04bcf A |
954 | while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) { |
955 | ++p1; | |
956 | ++p2; | |
b75a7d8f | 957 | } |
73c04bcf | 958 | return (UBool)(*p1 == *p2); |
b75a7d8f A |
959 | } |
960 | ||
73c04bcf A |
961 | /******************************************************************** |
962 | * PUBLIC int32_t Support Functions | |
963 | ********************************************************************/ | |
964 | ||
965 | U_CAPI int32_t U_EXPORT2 | |
966 | uhash_hashLong(const UHashTok key) { | |
967 | return key.integer; | |
b75a7d8f A |
968 | } |
969 | ||
73c04bcf A |
970 | U_CAPI UBool U_EXPORT2 |
971 | uhash_compareLong(const UHashTok key1, const UHashTok key2) { | |
972 | return (UBool)(key1.integer == key2.integer); | |
973 | } |