]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | /* |
2 | ****************************************************************************** | |
46f4442e | 3 | * Copyright (C) 1997-2008, International Business Machines |
b75a7d8f A |
4 | * Corporation and others. All Rights Reserved. |
5 | ****************************************************************************** | |
6 | * Date Name Description | |
7 | * 03/22/00 aliu Adapted from original C++ ICU Hashtable. | |
8 | * 07/06/01 aliu Modified to support int32_t keys on | |
9 | * platforms with sizeof(void*) < 32. | |
10 | ****************************************************************************** | |
11 | */ | |
12 | ||
13 | #include "uhash.h" | |
14 | #include "unicode/ustring.h" | |
15 | #include "cstring.h" | |
16 | #include "cmemory.h" | |
17 | #include "uassert.h" | |
18 | ||
19 | /* This hashtable is implemented as a double hash. All elements are | |
20 | * stored in a single array with no secondary storage for collision | |
21 | * resolution (no linked list, etc.). When there is a hash collision | |
22 | * (when two unequal keys have the same hashcode) we resolve this by | |
23 | * using a secondary hash. The secondary hash is an increment | |
24 | * computed as a hash function (a different one) of the primary | |
25 | * hashcode. This increment is added to the initial hash value to | |
26 | * obtain further slots assigned to the same hash code. For this to | |
27 | * work, the length of the array and the increment must be relatively | |
28 | * prime. The easiest way to achieve this is to have the length of | |
29 | * the array be prime, and the increment be any value from | |
30 | * 1..length-1. | |
31 | * | |
32 | * Hashcodes are 32-bit integers. We make sure all hashcodes are | |
33 | * non-negative by masking off the top bit. This has two effects: (1) | |
34 | * modulo arithmetic is simplified. If we allowed negative hashcodes, | |
35 | * then when we computed hashcode % length, we could get a negative | |
36 | * result, which we would then have to adjust back into range. It's | |
37 | * simpler to just make hashcodes non-negative. (2) It makes it easy | |
38 | * to check for empty vs. occupied slots in the table. We just mark | |
39 | * empty or deleted slots with a negative hashcode. | |
40 | * | |
41 | * The central function is _uhash_find(). This function looks for a | |
42 | * slot matching the given key and hashcode. If one is found, it | |
43 | * returns a pointer to that slot. If the table is full, and no match | |
44 | * is found, it returns NULL -- in theory. This would make the code | |
45 | * more complicated, since all callers of _uhash_find() would then | |
46 | * have to check for a NULL result. To keep this from happening, we | |
47 | * don't allow the table to fill. When there is only one | |
48 | * empty/deleted slot left, uhash_put() will refuse to increase the | |
49 | * count, and fail. This simplifies the code. In practice, one will | |
50 | * seldom encounter this using default UHashtables. However, if a | |
51 | * hashtable is set to a U_FIXED resize policy, or if memory is | |
52 | * exhausted, then the table may fill. | |
53 | * | |
54 | * High and low water ratios control rehashing. They establish levels | |
55 | * of fullness (from 0 to 1) outside of which the data array is | |
56 | * reallocated and repopulated. Setting the low water ratio to zero | |
57 | * means the table will never shrink. Setting the high water ratio to | |
58 | * one means the table will never grow. The ratios should be | |
59 | * coordinated with the ratio between successive elements of the | |
60 | * PRIMES table, so that when the primeIndex is incremented or | |
61 | * decremented during rehashing, it brings the ratio of count / length | |
62 | * back into the desired range (between low and high water ratios). | |
63 | */ | |
64 | ||
65 | /******************************************************************** | |
66 | * PRIVATE Constants, Macros | |
67 | ********************************************************************/ | |
68 | ||
69 | /* This is a list of non-consecutive primes chosen such that | |
70 | * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81 | |
71 | * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this | |
72 | * ratio is changed, the low and high water ratios should also be | |
73 | * adjusted to suit. | |
374ca955 A |
74 | * |
75 | * These prime numbers were also chosen so that they are the largest | |
76 | * prime number while being less than a power of two. | |
b75a7d8f A |
77 | */ |
78 | static const int32_t PRIMES[] = { | |
374ca955 A |
79 | 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, |
80 | 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593, | |
81 | 16777213, 33554393, 67108859, 134217689, 268435399, 536870909, | |
82 | 1073741789, 2147483647 /*, 4294967291 */ | |
b75a7d8f A |
83 | }; |
84 | ||
85 | #define PRIMES_LENGTH (sizeof(PRIMES) / sizeof(PRIMES[0])) | |
73c04bcf | 86 | #define DEFAULT_PRIME_INDEX 3 |
b75a7d8f A |
87 | |
88 | /* These ratios are tuned to the PRIMES array such that a resize | |
89 | * places the table back into the zone of non-resizing. That is, | |
90 | * after a call to _uhash_rehash(), a subsequent call to | |
91 | * _uhash_rehash() should do nothing (should not churn). This is only | |
92 | * a potential problem with U_GROW_AND_SHRINK. | |
93 | */ | |
94 | static const float RESIZE_POLICY_RATIO_TABLE[6] = { | |
95 | /* low, high water ratio */ | |
96 | 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */ | |
97 | 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */ | |
98 | 0.0F, 1.0F /* U_FIXED: Never change size */ | |
99 | }; | |
100 | ||
101 | /* | |
102 | Invariants for hashcode values: | |
103 | ||
104 | * DELETED < 0 | |
105 | * EMPTY < 0 | |
106 | * Real hashes >= 0 | |
107 | ||
108 | Hashcodes may not start out this way, but internally they are | |
109 | adjusted so that they are always positive. We assume 32-bit | |
110 | hashcodes; adjust these constants for other hashcode sizes. | |
111 | */ | |
112 | #define HASH_DELETED ((int32_t) 0x80000000) | |
113 | #define HASH_EMPTY ((int32_t) HASH_DELETED + 1) | |
114 | ||
115 | #define IS_EMPTY_OR_DELETED(x) ((x) < 0) | |
116 | ||
117 | /* This macro expects a UHashTok.pointer as its keypointer and | |
118 | valuepointer parameters */ | |
119 | #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \ | |
120 | if (hash->keyDeleter != NULL && keypointer != NULL) { \ | |
121 | (*hash->keyDeleter)(keypointer); \ | |
122 | } \ | |
123 | if (hash->valueDeleter != NULL && valuepointer != NULL) { \ | |
124 | (*hash->valueDeleter)(valuepointer); \ | |
125 | } | |
126 | ||
127 | /* | |
128 | * Constants for hinting whether a key or value is an integer | |
129 | * or a pointer. If a hint bit is zero, then the associated | |
130 | * token is assumed to be an integer. | |
131 | */ | |
132 | #define HINT_KEY_POINTER (1) | |
133 | #define HINT_VALUE_POINTER (2) | |
134 | ||
135 | /******************************************************************** | |
73c04bcf | 136 | * PRIVATE Implementation |
b75a7d8f A |
137 | ********************************************************************/ |
138 | ||
73c04bcf A |
139 | static UHashTok |
140 | _uhash_setElement(UHashtable *hash, UHashElement* e, | |
141 | int32_t hashcode, | |
142 | UHashTok key, UHashTok value, int8_t hint) { | |
b75a7d8f | 143 | |
73c04bcf A |
144 | UHashTok oldValue = e->value; |
145 | if (hash->keyDeleter != NULL && e->key.pointer != NULL && | |
146 | e->key.pointer != key.pointer) { /* Avoid double deletion */ | |
147 | (*hash->keyDeleter)(e->key.pointer); | |
148 | } | |
149 | if (hash->valueDeleter != NULL) { | |
150 | if (oldValue.pointer != NULL && | |
151 | oldValue.pointer != value.pointer) { /* Avoid double deletion */ | |
152 | (*hash->valueDeleter)(oldValue.pointer); | |
153 | } | |
154 | oldValue.pointer = NULL; | |
155 | } | |
156 | /* Compilers should copy the UHashTok union correctly, but even if | |
157 | * they do, memory heap tools (e.g. BoundsChecker) can get | |
158 | * confused when a pointer is cloaked in a union and then copied. | |
159 | * TO ALLEVIATE THIS, we use hints (based on what API the user is | |
160 | * calling) to copy pointers when we know the user thinks | |
161 | * something is a pointer. */ | |
162 | if (hint & HINT_KEY_POINTER) { | |
163 | e->key.pointer = key.pointer; | |
164 | } else { | |
165 | e->key = key; | |
166 | } | |
167 | if (hint & HINT_VALUE_POINTER) { | |
168 | e->value.pointer = value.pointer; | |
169 | } else { | |
170 | e->value = value; | |
171 | } | |
172 | e->hashcode = hashcode; | |
173 | return oldValue; | |
174 | } | |
b75a7d8f | 175 | |
73c04bcf A |
176 | /** |
177 | * Assumes that the given element is not empty or deleted. | |
178 | */ | |
179 | static UHashTok | |
180 | _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) { | |
181 | UHashTok empty; | |
182 | U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode)); | |
183 | --hash->count; | |
184 | empty.pointer = NULL; empty.integer = 0; | |
185 | return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0); | |
186 | } | |
b75a7d8f | 187 | |
73c04bcf A |
188 | static void |
189 | _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { | |
190 | U_ASSERT(hash != NULL); | |
191 | U_ASSERT(((int32_t)policy) >= 0); | |
192 | U_ASSERT(((int32_t)policy) < 3); | |
193 | hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2]; | |
194 | hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1]; | |
195 | } | |
b75a7d8f | 196 | |
73c04bcf A |
197 | /** |
198 | * Allocate internal data array of a size determined by the given | |
199 | * prime index. If the index is out of range it is pinned into range. | |
200 | * If the allocation fails the status is set to | |
201 | * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In | |
202 | * either case the previous array pointer is overwritten. | |
203 | * | |
204 | * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1. | |
205 | */ | |
206 | static void | |
207 | _uhash_allocate(UHashtable *hash, | |
208 | int32_t primeIndex, | |
209 | UErrorCode *status) { | |
b75a7d8f | 210 | |
73c04bcf A |
211 | UHashElement *p, *limit; |
212 | UHashTok emptytok; | |
b75a7d8f | 213 | |
73c04bcf | 214 | if (U_FAILURE(*status)) return; |
b75a7d8f | 215 | |
73c04bcf | 216 | U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH); |
b75a7d8f | 217 | |
73c04bcf A |
218 | hash->primeIndex = primeIndex; |
219 | hash->length = PRIMES[primeIndex]; | |
b75a7d8f | 220 | |
73c04bcf A |
221 | p = hash->elements = (UHashElement*) |
222 | uprv_malloc(sizeof(UHashElement) * hash->length); | |
b75a7d8f | 223 | |
73c04bcf A |
224 | if (hash->elements == NULL) { |
225 | *status = U_MEMORY_ALLOCATION_ERROR; | |
226 | return; | |
227 | } | |
b75a7d8f | 228 | |
73c04bcf A |
229 | emptytok.pointer = NULL; /* Only one of these two is needed */ |
230 | emptytok.integer = 0; /* but we don't know which one. */ | |
231 | ||
232 | limit = p + hash->length; | |
233 | while (p < limit) { | |
234 | p->key = emptytok; | |
235 | p->value = emptytok; | |
236 | p->hashcode = HASH_EMPTY; | |
237 | ++p; | |
238 | } | |
b75a7d8f | 239 | |
73c04bcf A |
240 | hash->count = 0; |
241 | hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); | |
242 | hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); | |
b75a7d8f A |
243 | } |
244 | ||
73c04bcf A |
245 | static UHashtable* |
246 | _uhash_init(UHashtable *result, | |
247 | UHashFunction *keyHash, | |
248 | UKeyComparator *keyComp, | |
249 | UValueComparator *valueComp, | |
250 | int32_t primeIndex, | |
251 | UErrorCode *status) | |
252 | { | |
253 | if (U_FAILURE(*status)) return NULL; | |
254 | U_ASSERT(keyHash != NULL); | |
255 | U_ASSERT(keyComp != NULL); | |
b75a7d8f | 256 | |
73c04bcf A |
257 | result->keyHasher = keyHash; |
258 | result->keyComparator = keyComp; | |
259 | result->valueComparator = valueComp; | |
260 | result->keyDeleter = NULL; | |
261 | result->valueDeleter = NULL; | |
262 | result->allocated = FALSE; | |
263 | _uhash_internalSetResizePolicy(result, U_GROW); | |
b75a7d8f | 264 | |
73c04bcf | 265 | _uhash_allocate(result, primeIndex, status); |
b75a7d8f | 266 | |
73c04bcf A |
267 | if (U_FAILURE(*status)) { |
268 | return NULL; | |
b75a7d8f | 269 | } |
b75a7d8f | 270 | |
b75a7d8f A |
271 | return result; |
272 | } | |
273 | ||
73c04bcf A |
274 | static UHashtable* |
275 | _uhash_create(UHashFunction *keyHash, | |
276 | UKeyComparator *keyComp, | |
277 | UValueComparator *valueComp, | |
278 | int32_t primeIndex, | |
279 | UErrorCode *status) { | |
280 | UHashtable *result; | |
b75a7d8f | 281 | |
73c04bcf | 282 | if (U_FAILURE(*status)) return NULL; |
b75a7d8f | 283 | |
73c04bcf A |
284 | result = (UHashtable*) uprv_malloc(sizeof(UHashtable)); |
285 | if (result == NULL) { | |
286 | *status = U_MEMORY_ALLOCATION_ERROR; | |
287 | return NULL; | |
288 | } | |
b75a7d8f | 289 | |
73c04bcf A |
290 | _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status); |
291 | result->allocated = TRUE; | |
b75a7d8f | 292 | |
73c04bcf A |
293 | if (U_FAILURE(*status)) { |
294 | uprv_free(result); | |
295 | return NULL; | |
296 | } | |
b75a7d8f | 297 | |
73c04bcf | 298 | return result; |
b75a7d8f A |
299 | } |
300 | ||
73c04bcf A |
301 | /** |
302 | * Look for a key in the table, or if no such key exists, the first | |
303 | * empty slot matching the given hashcode. Keys are compared using | |
304 | * the keyComparator function. | |
305 | * | |
306 | * First find the start position, which is the hashcode modulo | |
307 | * the length. Test it to see if it is: | |
308 | * | |
309 | * a. identical: First check the hash values for a quick check, | |
310 | * then compare keys for equality using keyComparator. | |
311 | * b. deleted | |
312 | * c. empty | |
313 | * | |
314 | * Stop if it is identical or empty, otherwise continue by adding a | |
315 | * "jump" value (moduloing by the length again to keep it within | |
316 | * range) and retesting. For efficiency, there need enough empty | |
317 | * values so that the searchs stop within a reasonable amount of time. | |
318 | * This can be changed by changing the high/low water marks. | |
319 | * | |
320 | * In theory, this function can return NULL, if it is full (no empty | |
321 | * or deleted slots) and if no matching key is found. In practice, we | |
322 | * prevent this elsewhere (in uhash_put) by making sure the last slot | |
323 | * in the table is never filled. | |
324 | * | |
325 | * The size of the table should be prime for this algorithm to work; | |
326 | * otherwise we are not guaranteed that the jump value (the secondary | |
327 | * hash) is relatively prime to the table length. | |
328 | */ | |
329 | static UHashElement* | |
330 | _uhash_find(const UHashtable *hash, UHashTok key, | |
331 | int32_t hashcode) { | |
b75a7d8f | 332 | |
73c04bcf A |
333 | int32_t firstDeleted = -1; /* assume invalid index */ |
334 | int32_t theIndex, startIndex; | |
335 | int32_t jump = 0; /* lazy evaluate */ | |
336 | int32_t tableHash; | |
337 | UHashElement *elements = hash->elements; | |
b75a7d8f | 338 | |
73c04bcf A |
339 | hashcode &= 0x7FFFFFFF; /* must be positive */ |
340 | startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length; | |
374ca955 | 341 | |
73c04bcf A |
342 | do { |
343 | tableHash = elements[theIndex].hashcode; | |
344 | if (tableHash == hashcode) { /* quick check */ | |
345 | if ((*hash->keyComparator)(key, elements[theIndex].key)) { | |
346 | return &(elements[theIndex]); | |
347 | } | |
348 | } else if (!IS_EMPTY_OR_DELETED(tableHash)) { | |
349 | /* We have hit a slot which contains a key-value pair, | |
350 | * but for which the hash code does not match. Keep | |
351 | * looking. | |
352 | */ | |
353 | } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */ | |
354 | break; | |
355 | } else if (firstDeleted < 0) { /* remember first deleted */ | |
356 | firstDeleted = theIndex; | |
357 | } | |
358 | if (jump == 0) { /* lazy compute jump */ | |
359 | /* The jump value must be relatively prime to the table | |
360 | * length. As long as the length is prime, then any value | |
361 | * 1..length-1 will be relatively prime to it. | |
362 | */ | |
363 | jump = (hashcode % (hash->length - 1)) + 1; | |
364 | } | |
365 | theIndex = (theIndex + jump) % hash->length; | |
366 | } while (theIndex != startIndex); | |
b75a7d8f | 367 | |
73c04bcf A |
368 | if (firstDeleted >= 0) { |
369 | theIndex = firstDeleted; /* reset if had deleted slot */ | |
370 | } else if (tableHash != HASH_EMPTY) { | |
371 | /* We get to this point if the hashtable is full (no empty or | |
372 | * deleted slots), and we've failed to find a match. THIS | |
373 | * WILL NEVER HAPPEN as long as uhash_put() makes sure that | |
374 | * count is always < length. | |
375 | */ | |
376 | U_ASSERT(FALSE); | |
377 | return NULL; /* Never happens if uhash_put() behaves */ | |
378 | } | |
379 | return &(elements[theIndex]); | |
b75a7d8f A |
380 | } |
381 | ||
73c04bcf A |
382 | /** |
383 | * Attempt to grow or shrink the data arrays in order to make the | |
384 | * count fit between the high and low water marks. hash_put() and | |
385 | * hash_remove() call this method when the count exceeds the high or | |
386 | * low water marks. This method may do nothing, if memory allocation | |
387 | * fails, or if the count is already in range, or if the length is | |
388 | * already at the low or high limit. In any case, upon return the | |
389 | * arrays will be valid. | |
390 | */ | |
391 | static void | |
46f4442e | 392 | _uhash_rehash(UHashtable *hash, UErrorCode *status) { |
b75a7d8f | 393 | |
73c04bcf A |
394 | UHashElement *old = hash->elements; |
395 | int32_t oldLength = hash->length; | |
396 | int32_t newPrimeIndex = hash->primeIndex; | |
397 | int32_t i; | |
374ca955 | 398 | |
73c04bcf A |
399 | if (hash->count > hash->highWaterMark) { |
400 | if (++newPrimeIndex >= PRIMES_LENGTH) { | |
401 | return; | |
402 | } | |
403 | } else if (hash->count < hash->lowWaterMark) { | |
404 | if (--newPrimeIndex < 0) { | |
405 | return; | |
406 | } | |
407 | } else { | |
408 | return; | |
409 | } | |
374ca955 | 410 | |
46f4442e | 411 | _uhash_allocate(hash, newPrimeIndex, status); |
b75a7d8f | 412 | |
46f4442e | 413 | if (U_FAILURE(*status)) { |
73c04bcf A |
414 | hash->elements = old; |
415 | hash->length = oldLength; | |
416 | return; | |
417 | } | |
b75a7d8f | 418 | |
73c04bcf A |
419 | for (i = oldLength - 1; i >= 0; --i) { |
420 | if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) { | |
421 | UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode); | |
422 | U_ASSERT(e != NULL); | |
423 | U_ASSERT(e->hashcode == HASH_EMPTY); | |
424 | e->key = old[i].key; | |
425 | e->value = old[i].value; | |
426 | e->hashcode = old[i].hashcode; | |
427 | ++hash->count; | |
428 | } | |
429 | } | |
b75a7d8f | 430 | |
73c04bcf | 431 | uprv_free(old); |
374ca955 A |
432 | } |
433 | ||
73c04bcf A |
434 | static UHashTok |
435 | _uhash_remove(UHashtable *hash, | |
436 | UHashTok key) { | |
437 | /* First find the position of the key in the table. If the object | |
438 | * has not been removed already, remove it. If the user wanted | |
439 | * keys deleted, then delete it also. We have to put a special | |
440 | * hashcode in that position that means that something has been | |
441 | * deleted, since when we do a find, we have to continue PAST any | |
442 | * deleted values. | |
443 | */ | |
444 | UHashTok result; | |
445 | UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key)); | |
446 | U_ASSERT(e != NULL); | |
46f4442e A |
447 | result.pointer = NULL; |
448 | result.integer = 0; | |
73c04bcf A |
449 | if (!IS_EMPTY_OR_DELETED(e->hashcode)) { |
450 | result = _uhash_internalRemoveElement(hash, e); | |
451 | if (hash->count < hash->lowWaterMark) { | |
46f4442e A |
452 | UErrorCode status = U_ZERO_ERROR; |
453 | _uhash_rehash(hash, &status); | |
b75a7d8f A |
454 | } |
455 | } | |
73c04bcf | 456 | return result; |
b75a7d8f A |
457 | } |
458 | ||
73c04bcf A |
459 | static UHashTok |
460 | _uhash_put(UHashtable *hash, | |
461 | UHashTok key, | |
462 | UHashTok value, | |
463 | int8_t hint, | |
464 | UErrorCode *status) { | |
b75a7d8f | 465 | |
73c04bcf A |
466 | /* Put finds the position in the table for the new value. If the |
467 | * key is already in the table, it is deleted, if there is a | |
468 | * non-NULL keyDeleter. Then the key, the hash and the value are | |
469 | * all put at the position in their respective arrays. | |
b75a7d8f | 470 | */ |
73c04bcf A |
471 | int32_t hashcode; |
472 | UHashElement* e; | |
473 | UHashTok emptytok; | |
474 | ||
475 | if (U_FAILURE(*status)) { | |
476 | goto err; | |
477 | } | |
b75a7d8f | 478 | U_ASSERT(hash != NULL); |
73c04bcf A |
479 | /* Cannot always check pointer here or iSeries sees NULL every time. */ |
480 | if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) { | |
481 | /* Disallow storage of NULL values, since NULL is returned by | |
482 | * get() to indicate an absent key. Storing NULL == removing. | |
483 | */ | |
484 | return _uhash_remove(hash, key); | |
485 | } | |
486 | if (hash->count > hash->highWaterMark) { | |
46f4442e A |
487 | _uhash_rehash(hash, status); |
488 | if (U_FAILURE(*status)) { | |
489 | goto err; | |
490 | } | |
b75a7d8f A |
491 | } |
492 | ||
73c04bcf A |
493 | hashcode = (*hash->keyHasher)(key); |
494 | e = _uhash_find(hash, key, hashcode); | |
b75a7d8f | 495 | U_ASSERT(e != NULL); |
73c04bcf A |
496 | |
497 | if (IS_EMPTY_OR_DELETED(e->hashcode)) { | |
498 | /* Important: We must never actually fill the table up. If we | |
499 | * do so, then _uhash_find() will return NULL, and we'll have | |
500 | * to check for NULL after every call to _uhash_find(). To | |
501 | * avoid this we make sure there is always at least one empty | |
502 | * or deleted slot in the table. This only is a problem if we | |
503 | * are out of memory and rehash isn't working. | |
504 | */ | |
505 | ++hash->count; | |
506 | if (hash->count == hash->length) { | |
507 | /* Don't allow count to reach length */ | |
508 | --hash->count; | |
509 | *status = U_MEMORY_ALLOCATION_ERROR; | |
510 | goto err; | |
511 | } | |
b75a7d8f | 512 | } |
b75a7d8f | 513 | |
73c04bcf A |
514 | /* We must in all cases handle storage properly. If there was an |
515 | * old key, then it must be deleted (if the deleter != NULL). | |
516 | * Make hashcodes stored in table positive. | |
517 | */ | |
518 | return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint); | |
b75a7d8f | 519 | |
73c04bcf A |
520 | err: |
521 | /* If the deleters are non-NULL, this method adopts its key and/or | |
522 | * value arguments, and we must be sure to delete the key and/or | |
523 | * value in all cases, even upon failure. | |
524 | */ | |
525 | HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer); | |
526 | emptytok.pointer = NULL; emptytok.integer = 0; | |
527 | return emptytok; | |
b75a7d8f A |
528 | } |
529 | ||
b75a7d8f A |
530 | |
531 | /******************************************************************** | |
73c04bcf | 532 | * PUBLIC API |
b75a7d8f A |
533 | ********************************************************************/ |
534 | ||
73c04bcf A |
535 | U_CAPI UHashtable* U_EXPORT2 |
536 | uhash_open(UHashFunction *keyHash, | |
537 | UKeyComparator *keyComp, | |
538 | UValueComparator *valueComp, | |
539 | UErrorCode *status) { | |
b75a7d8f | 540 | |
73c04bcf | 541 | return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); |
b75a7d8f A |
542 | } |
543 | ||
73c04bcf A |
544 | U_CAPI UHashtable* U_EXPORT2 |
545 | uhash_openSize(UHashFunction *keyHash, | |
546 | UKeyComparator *keyComp, | |
547 | UValueComparator *valueComp, | |
548 | int32_t size, | |
549 | UErrorCode *status) { | |
b75a7d8f | 550 | |
73c04bcf A |
551 | /* Find the smallest index i for which PRIMES[i] >= size. */ |
552 | int32_t i = 0; | |
553 | while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { | |
554 | ++i; | |
555 | } | |
b75a7d8f | 556 | |
73c04bcf | 557 | return _uhash_create(keyHash, keyComp, valueComp, i, status); |
b75a7d8f A |
558 | } |
559 | ||
73c04bcf A |
560 | U_CAPI UHashtable* U_EXPORT2 |
561 | uhash_init(UHashtable *fillinResult, | |
562 | UHashFunction *keyHash, | |
563 | UKeyComparator *keyComp, | |
564 | UValueComparator *valueComp, | |
565 | UErrorCode *status) { | |
b75a7d8f | 566 | |
73c04bcf | 567 | return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status); |
b75a7d8f A |
568 | } |
569 | ||
73c04bcf A |
570 | U_CAPI void U_EXPORT2 |
571 | uhash_close(UHashtable *hash) { | |
572 | U_ASSERT(hash != NULL); | |
573 | if (hash->elements != NULL) { | |
574 | if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) { | |
575 | int32_t pos=-1; | |
576 | UHashElement *e; | |
577 | while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) { | |
578 | HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer); | |
579 | } | |
580 | } | |
581 | uprv_free(hash->elements); | |
582 | hash->elements = NULL; | |
b75a7d8f | 583 | } |
73c04bcf A |
584 | if (hash->allocated) { |
585 | uprv_free(hash); | |
b75a7d8f | 586 | } |
b75a7d8f A |
587 | } |
588 | ||
73c04bcf A |
589 | U_CAPI UHashFunction *U_EXPORT2 |
590 | uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) { | |
591 | UHashFunction *result = hash->keyHasher; | |
592 | hash->keyHasher = fn; | |
593 | return result; | |
b75a7d8f A |
594 | } |
595 | ||
73c04bcf A |
596 | U_CAPI UKeyComparator *U_EXPORT2 |
597 | uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) { | |
598 | UKeyComparator *result = hash->keyComparator; | |
599 | hash->keyComparator = fn; | |
600 | return result; | |
601 | } | |
602 | U_CAPI UValueComparator *U_EXPORT2 | |
603 | uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){ | |
604 | UValueComparator *result = hash->valueComparator; | |
605 | hash->valueComparator = fn; | |
606 | return result; | |
b75a7d8f A |
607 | } |
608 | ||
73c04bcf A |
609 | U_CAPI UObjectDeleter *U_EXPORT2 |
610 | uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) { | |
611 | UObjectDeleter *result = hash->keyDeleter; | |
612 | hash->keyDeleter = fn; | |
613 | return result; | |
b75a7d8f A |
614 | } |
615 | ||
73c04bcf A |
616 | U_CAPI UObjectDeleter *U_EXPORT2 |
617 | uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) { | |
618 | UObjectDeleter *result = hash->valueDeleter; | |
619 | hash->valueDeleter = fn; | |
620 | return result; | |
621 | } | |
b75a7d8f A |
622 | |
623 | U_CAPI void U_EXPORT2 | |
73c04bcf | 624 | uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { |
46f4442e | 625 | UErrorCode status = U_ZERO_ERROR; |
73c04bcf A |
626 | _uhash_internalSetResizePolicy(hash, policy); |
627 | hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); | |
628 | hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); | |
46f4442e | 629 | _uhash_rehash(hash, &status); |
b75a7d8f A |
630 | } |
631 | ||
73c04bcf A |
632 | U_CAPI int32_t U_EXPORT2 |
633 | uhash_count(const UHashtable *hash) { | |
634 | return hash->count; | |
635 | } | |
b75a7d8f | 636 | |
73c04bcf A |
637 | U_CAPI void* U_EXPORT2 |
638 | uhash_get(const UHashtable *hash, | |
639 | const void* key) { | |
640 | UHashTok keyholder; | |
641 | keyholder.pointer = (void*) key; | |
642 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; | |
643 | } | |
b75a7d8f | 644 | |
73c04bcf A |
645 | U_CAPI void* U_EXPORT2 |
646 | uhash_iget(const UHashtable *hash, | |
647 | int32_t key) { | |
648 | UHashTok keyholder; | |
649 | keyholder.integer = key; | |
650 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer; | |
651 | } | |
b75a7d8f | 652 | |
73c04bcf A |
653 | U_CAPI int32_t U_EXPORT2 |
654 | uhash_geti(const UHashtable *hash, | |
655 | const void* key) { | |
656 | UHashTok keyholder; | |
657 | keyholder.pointer = (void*) key; | |
658 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; | |
659 | } | |
b75a7d8f | 660 | |
73c04bcf A |
661 | U_CAPI int32_t U_EXPORT2 |
662 | uhash_igeti(const UHashtable *hash, | |
663 | int32_t key) { | |
664 | UHashTok keyholder; | |
665 | keyholder.integer = key; | |
666 | return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer; | |
667 | } | |
b75a7d8f | 668 | |
73c04bcf A |
669 | U_CAPI void* U_EXPORT2 |
670 | uhash_put(UHashtable *hash, | |
671 | void* key, | |
672 | void* value, | |
673 | UErrorCode *status) { | |
674 | UHashTok keyholder, valueholder; | |
675 | keyholder.pointer = key; | |
676 | valueholder.pointer = value; | |
677 | return _uhash_put(hash, keyholder, valueholder, | |
678 | HINT_KEY_POINTER | HINT_VALUE_POINTER, | |
679 | status).pointer; | |
680 | } | |
b75a7d8f | 681 | |
73c04bcf A |
682 | U_CAPI void* U_EXPORT2 |
683 | uhash_iput(UHashtable *hash, | |
684 | int32_t key, | |
685 | void* value, | |
686 | UErrorCode *status) { | |
687 | UHashTok keyholder, valueholder; | |
688 | keyholder.integer = key; | |
689 | valueholder.pointer = value; | |
690 | return _uhash_put(hash, keyholder, valueholder, | |
691 | HINT_VALUE_POINTER, | |
692 | status).pointer; | |
b75a7d8f A |
693 | } |
694 | ||
73c04bcf A |
695 | U_CAPI int32_t U_EXPORT2 |
696 | uhash_puti(UHashtable *hash, | |
697 | void* key, | |
698 | int32_t value, | |
699 | UErrorCode *status) { | |
700 | UHashTok keyholder, valueholder; | |
701 | keyholder.pointer = key; | |
702 | valueholder.integer = value; | |
703 | return _uhash_put(hash, keyholder, valueholder, | |
704 | HINT_KEY_POINTER, | |
705 | status).integer; | |
706 | } | |
b75a7d8f | 707 | |
b75a7d8f | 708 | |
73c04bcf A |
709 | U_CAPI int32_t U_EXPORT2 |
710 | uhash_iputi(UHashtable *hash, | |
711 | int32_t key, | |
712 | int32_t value, | |
713 | UErrorCode *status) { | |
714 | UHashTok keyholder, valueholder; | |
715 | keyholder.integer = key; | |
716 | valueholder.integer = value; | |
717 | return _uhash_put(hash, keyholder, valueholder, | |
718 | 0, /* neither is a ptr */ | |
719 | status).integer; | |
720 | } | |
b75a7d8f | 721 | |
73c04bcf A |
722 | U_CAPI void* U_EXPORT2 |
723 | uhash_remove(UHashtable *hash, | |
724 | const void* key) { | |
725 | UHashTok keyholder; | |
726 | keyholder.pointer = (void*) key; | |
727 | return _uhash_remove(hash, keyholder).pointer; | |
728 | } | |
b75a7d8f | 729 | |
73c04bcf A |
730 | U_CAPI void* U_EXPORT2 |
731 | uhash_iremove(UHashtable *hash, | |
732 | int32_t key) { | |
733 | UHashTok keyholder; | |
734 | keyholder.integer = key; | |
735 | return _uhash_remove(hash, keyholder).pointer; | |
736 | } | |
b75a7d8f | 737 | |
73c04bcf A |
738 | U_CAPI int32_t U_EXPORT2 |
739 | uhash_removei(UHashtable *hash, | |
740 | const void* key) { | |
741 | UHashTok keyholder; | |
742 | keyholder.pointer = (void*) key; | |
743 | return _uhash_remove(hash, keyholder).integer; | |
744 | } | |
b75a7d8f | 745 | |
73c04bcf A |
746 | U_CAPI int32_t U_EXPORT2 |
747 | uhash_iremovei(UHashtable *hash, | |
748 | int32_t key) { | |
749 | UHashTok keyholder; | |
750 | keyholder.integer = key; | |
751 | return _uhash_remove(hash, keyholder).integer; | |
752 | } | |
b75a7d8f | 753 | |
73c04bcf A |
754 | U_CAPI void U_EXPORT2 |
755 | uhash_removeAll(UHashtable *hash) { | |
756 | int32_t pos = -1; | |
757 | const UHashElement *e; | |
758 | U_ASSERT(hash != NULL); | |
759 | if (hash->count != 0) { | |
760 | while ((e = uhash_nextElement(hash, &pos)) != NULL) { | |
761 | uhash_removeElement(hash, e); | |
762 | } | |
b75a7d8f | 763 | } |
73c04bcf | 764 | U_ASSERT(hash->count == 0); |
b75a7d8f A |
765 | } |
766 | ||
73c04bcf A |
767 | U_CAPI const UHashElement* U_EXPORT2 |
768 | uhash_find(const UHashtable *hash, const void* key) { | |
769 | UHashTok keyholder; | |
770 | const UHashElement *e; | |
771 | keyholder.pointer = (void*) key; | |
772 | e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); | |
773 | return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e; | |
774 | } | |
b75a7d8f | 775 | |
73c04bcf A |
776 | U_CAPI const UHashElement* U_EXPORT2 |
777 | uhash_nextElement(const UHashtable *hash, int32_t *pos) { | |
778 | /* Walk through the array until we find an element that is not | |
779 | * EMPTY and not DELETED. | |
780 | */ | |
b75a7d8f | 781 | int32_t i; |
73c04bcf A |
782 | U_ASSERT(hash != NULL); |
783 | for (i = *pos + 1; i < hash->length; ++i) { | |
784 | if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) { | |
785 | *pos = i; | |
786 | return &(hash->elements[i]); | |
b75a7d8f | 787 | } |
b75a7d8f A |
788 | } |
789 | ||
73c04bcf A |
790 | /* No more elements */ |
791 | return NULL; | |
792 | } | |
b75a7d8f | 793 | |
73c04bcf A |
794 | U_CAPI void* U_EXPORT2 |
795 | uhash_removeElement(UHashtable *hash, const UHashElement* e) { | |
796 | U_ASSERT(hash != NULL); | |
797 | U_ASSERT(e != NULL); | |
798 | if (!IS_EMPTY_OR_DELETED(e->hashcode)) { | |
799 | return _uhash_internalRemoveElement(hash, (UHashElement*) e).pointer; | |
b75a7d8f | 800 | } |
73c04bcf A |
801 | return NULL; |
802 | } | |
b75a7d8f | 803 | |
73c04bcf A |
804 | /******************************************************************** |
805 | * UHashTok convenience | |
806 | ********************************************************************/ | |
b75a7d8f | 807 | |
73c04bcf A |
808 | /** |
809 | * Return a UHashTok for an integer. | |
810 | */ | |
811 | /*U_CAPI UHashTok U_EXPORT2 | |
812 | uhash_toki(int32_t i) { | |
813 | UHashTok tok; | |
814 | tok.integer = i; | |
815 | return tok; | |
816 | }*/ | |
b75a7d8f A |
817 | |
818 | /** | |
73c04bcf | 819 | * Return a UHashTok for a pointer. |
b75a7d8f | 820 | */ |
73c04bcf A |
821 | /*U_CAPI UHashTok U_EXPORT2 |
822 | uhash_tokp(void* p) { | |
823 | UHashTok tok; | |
824 | tok.pointer = p; | |
825 | return tok; | |
826 | }*/ | |
b75a7d8f | 827 | |
73c04bcf A |
828 | /******************************************************************** |
829 | * PUBLIC Key Hash Functions | |
830 | ********************************************************************/ | |
831 | ||
832 | /* | |
833 | Compute the hash by iterating sparsely over about 32 (up to 63) | |
834 | characters spaced evenly through the string. For each character, | |
835 | multiply the previous hash value by a prime number and add the new | |
836 | character in, like a linear congruential random number generator, | |
837 | producing a pseudorandom deterministic value well distributed over | |
838 | the output range. [LIU] | |
839 | */ | |
840 | ||
841 | #define STRING_HASH(TYPE, STR, STRLEN, DEREF) \ | |
842 | int32_t hash = 0; \ | |
843 | const TYPE *p = (const TYPE*) STR; \ | |
844 | if (p != NULL) { \ | |
845 | int32_t len = (int32_t)(STRLEN); \ | |
846 | int32_t inc = ((len - 32) / 32) + 1; \ | |
847 | const TYPE *limit = p + len; \ | |
848 | while (p<limit) { \ | |
849 | hash = (hash * 37) + DEREF; \ | |
850 | p += inc; \ | |
851 | } \ | |
852 | } \ | |
853 | return hash | |
b75a7d8f | 854 | |
73c04bcf A |
855 | U_CAPI int32_t U_EXPORT2 |
856 | uhash_hashUChars(const UHashTok key) { | |
857 | STRING_HASH(UChar, key.pointer, u_strlen(p), *p); | |
858 | } | |
b75a7d8f | 859 | |
73c04bcf A |
860 | /* Used by UnicodeString to compute its hashcode - Not public API. */ |
861 | U_CAPI int32_t U_EXPORT2 | |
862 | uhash_hashUCharsN(const UChar *str, int32_t length) { | |
863 | STRING_HASH(UChar, str, length, *p); | |
864 | } | |
b75a7d8f | 865 | |
73c04bcf A |
866 | U_CAPI int32_t U_EXPORT2 |
867 | uhash_hashChars(const UHashTok key) { | |
868 | STRING_HASH(uint8_t, key.pointer, uprv_strlen((char*)p), *p); | |
b75a7d8f A |
869 | } |
870 | ||
73c04bcf A |
871 | U_CAPI int32_t U_EXPORT2 |
872 | uhash_hashIChars(const UHashTok key) { | |
873 | STRING_HASH(uint8_t, key.pointer, uprv_strlen((char*)p), uprv_tolower(*p)); | |
874 | } | |
b75a7d8f | 875 | |
73c04bcf A |
876 | U_CAPI UBool U_EXPORT2 |
877 | uhash_equals(const UHashtable* hash1, const UHashtable* hash2){ | |
878 | ||
879 | int32_t count1, count2, pos, i; | |
b75a7d8f | 880 | |
73c04bcf A |
881 | if(hash1==hash2){ |
882 | return TRUE; | |
b75a7d8f | 883 | } |
73c04bcf | 884 | |
46f4442e A |
885 | /* |
886 | * Make sure that we are comparing 2 valid hashes of the same type | |
887 | * with valid comparison functions. | |
888 | * Without valid comparison functions, a binary comparison | |
889 | * of the hash values will yield random results on machines | |
890 | * with 64-bit pointers and 32-bit integer hashes. | |
891 | * A valueComparator is normally optional. | |
892 | */ | |
893 | if (hash1==NULL || hash2==NULL || | |
894 | hash1->keyComparator != hash2->keyComparator || | |
895 | hash1->valueComparator != hash2->valueComparator || | |
896 | hash1->valueComparator == NULL) | |
897 | { | |
898 | /* | |
899 | Normally we would return an error here about incompatible hash tables, | |
900 | but we return FALSE instead. | |
901 | */ | |
73c04bcf | 902 | return FALSE; |
b75a7d8f A |
903 | } |
904 | ||
73c04bcf A |
905 | count1 = uhash_count(hash1); |
906 | count2 = uhash_count(hash2); | |
907 | if(count1!=count2){ | |
908 | return FALSE; | |
909 | } | |
910 | ||
911 | pos=-1; | |
912 | for(i=0; i<count1; i++){ | |
913 | const UHashElement* elem1 = uhash_nextElement(hash1, &pos); | |
914 | const UHashTok key1 = elem1->key; | |
915 | const UHashTok val1 = elem1->value; | |
916 | /* here the keys are not compared, instead the key form hash1 is used to fetch | |
917 | * value from hash2. If the hashes are equal then then both hashes should | |
918 | * contain equal values for the same key! | |
b75a7d8f | 919 | */ |
73c04bcf A |
920 | const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1)); |
921 | const UHashTok val2 = elem2->value; | |
922 | if(hash1->valueComparator(val1, val2)==FALSE){ | |
923 | return FALSE; | |
b75a7d8f A |
924 | } |
925 | } | |
73c04bcf A |
926 | return TRUE; |
927 | } | |
b75a7d8f | 928 | |
73c04bcf A |
929 | /******************************************************************** |
930 | * PUBLIC Comparator Functions | |
931 | ********************************************************************/ | |
b75a7d8f | 932 | |
73c04bcf A |
933 | U_CAPI UBool U_EXPORT2 |
934 | uhash_compareUChars(const UHashTok key1, const UHashTok key2) { | |
935 | const UChar *p1 = (const UChar*) key1.pointer; | |
936 | const UChar *p2 = (const UChar*) key2.pointer; | |
937 | if (p1 == p2) { | |
938 | return TRUE; | |
939 | } | |
940 | if (p1 == NULL || p2 == NULL) { | |
941 | return FALSE; | |
942 | } | |
943 | while (*p1 != 0 && *p1 == *p2) { | |
944 | ++p1; | |
945 | ++p2; | |
946 | } | |
947 | return (UBool)(*p1 == *p2); | |
b75a7d8f A |
948 | } |
949 | ||
73c04bcf A |
950 | U_CAPI UBool U_EXPORT2 |
951 | uhash_compareChars(const UHashTok key1, const UHashTok key2) { | |
952 | const char *p1 = (const char*) key1.pointer; | |
953 | const char *p2 = (const char*) key2.pointer; | |
954 | if (p1 == p2) { | |
955 | return TRUE; | |
b75a7d8f | 956 | } |
73c04bcf A |
957 | if (p1 == NULL || p2 == NULL) { |
958 | return FALSE; | |
959 | } | |
960 | while (*p1 != 0 && *p1 == *p2) { | |
961 | ++p1; | |
962 | ++p2; | |
963 | } | |
964 | return (UBool)(*p1 == *p2); | |
b75a7d8f A |
965 | } |
966 | ||
73c04bcf A |
967 | U_CAPI UBool U_EXPORT2 |
968 | uhash_compareIChars(const UHashTok key1, const UHashTok key2) { | |
969 | const char *p1 = (const char*) key1.pointer; | |
970 | const char *p2 = (const char*) key2.pointer; | |
971 | if (p1 == p2) { | |
972 | return TRUE; | |
b75a7d8f | 973 | } |
73c04bcf A |
974 | if (p1 == NULL || p2 == NULL) { |
975 | return FALSE; | |
b75a7d8f | 976 | } |
73c04bcf A |
977 | while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) { |
978 | ++p1; | |
979 | ++p2; | |
b75a7d8f | 980 | } |
73c04bcf | 981 | return (UBool)(*p1 == *p2); |
b75a7d8f A |
982 | } |
983 | ||
73c04bcf A |
984 | /******************************************************************** |
985 | * PUBLIC int32_t Support Functions | |
986 | ********************************************************************/ | |
987 | ||
988 | U_CAPI int32_t U_EXPORT2 | |
989 | uhash_hashLong(const UHashTok key) { | |
990 | return key.integer; | |
b75a7d8f A |
991 | } |
992 | ||
73c04bcf A |
993 | U_CAPI UBool U_EXPORT2 |
994 | uhash_compareLong(const UHashTok key1, const UHashTok key2) { | |
995 | return (UBool)(key1.integer == key2.integer); | |
996 | } | |
997 | ||
998 | /******************************************************************** | |
999 | * PUBLIC Deleter Functions | |
1000 | ********************************************************************/ | |
1001 | ||
1002 | U_CAPI void U_EXPORT2 | |
1003 | uhash_freeBlock(void *obj) { | |
1004 | uprv_free(obj); | |
b75a7d8f | 1005 | } |
73c04bcf | 1006 |