]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | /* |
2 | *************************************************************************** | |
4388f060 | 3 | * Copyright (C) 1999-2012 International Business Machines Corporation |
729e4ab9 | 4 | * and others. All rights reserved. |
b75a7d8f A |
5 | *************************************************************************** |
6 | */ | |
374ca955 A |
7 | // |
8 | // file: rbbi.c Contains the implementation of the rule based break iterator | |
9 | // runtime engine and the API implementation for | |
10 | // class RuleBasedBreakIterator | |
11 | // | |
b75a7d8f | 12 | |
51004dcb | 13 | #include "utypeinfo.h" // for 'typeid' to work |
729e4ab9 | 14 | |
b75a7d8f A |
15 | #include "unicode/utypes.h" |
16 | ||
17 | #if !UCONFIG_NO_BREAK_ITERATION | |
18 | ||
19 | #include "unicode/rbbi.h" | |
20 | #include "unicode/schriter.h" | |
73c04bcf | 21 | #include "unicode/uchriter.h" |
b75a7d8f | 22 | #include "unicode/udata.h" |
374ca955 | 23 | #include "unicode/uclean.h" |
b75a7d8f A |
24 | #include "rbbidata.h" |
25 | #include "rbbirb.h" | |
26 | #include "cmemory.h" | |
27 | #include "cstring.h" | |
46f4442e | 28 | #include "umutex.h" |
73c04bcf A |
29 | #include "ucln_cmn.h" |
30 | #include "brkeng.h" | |
b75a7d8f A |
31 | |
32 | #include "uassert.h" | |
73c04bcf A |
33 | #include "uvector.h" |
34 | ||
35 | // if U_LOCAL_SERVICE_HOOK is defined, then localsvc.cpp is expected to be included. | |
36 | #if U_LOCAL_SERVICE_HOOK | |
37 | #include "localsvc.h" | |
38 | #endif | |
39 | ||
40 | #ifdef RBBI_DEBUG | |
41 | static UBool fTrace = FALSE; | |
42 | #endif | |
b75a7d8f A |
43 | |
44 | U_NAMESPACE_BEGIN | |
45 | ||
46f4442e A |
46 | // The state number of the starting state |
47 | #define START_STATE 1 | |
b75a7d8f | 48 | |
46f4442e A |
49 | // The state-transition value indicating "stop" |
50 | #define STOP_STATE 0 | |
b75a7d8f | 51 | |
374ca955 A |
52 | |
53 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator) | |
b75a7d8f A |
54 | |
55 | ||
56 | //======================================================================= | |
57 | // constructors | |
58 | //======================================================================= | |
59 | ||
60 | /** | |
61 | * Constructs a RuleBasedBreakIterator that uses the already-created | |
62 | * tables object that is passed in as a parameter. | |
63 | */ | |
64 | RuleBasedBreakIterator::RuleBasedBreakIterator(RBBIDataHeader* data, UErrorCode &status) | |
65 | { | |
66 | init(); | |
374ca955 | 67 | fData = new RBBIDataWrapper(data, status); // status checked in constructor |
b75a7d8f | 68 | if (U_FAILURE(status)) {return;} |
b75a7d8f A |
69 | if(fData == 0) { |
70 | status = U_MEMORY_ALLOCATION_ERROR; | |
71 | return; | |
72 | } | |
73 | } | |
74 | ||
46f4442e A |
75 | /** |
76 | * Same as above but does not adopt memory | |
77 | */ | |
78 | RuleBasedBreakIterator::RuleBasedBreakIterator(const RBBIDataHeader* data, enum EDontAdopt, UErrorCode &status) | |
79 | { | |
80 | init(); | |
81 | fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status); // status checked in constructor | |
82 | if (U_FAILURE(status)) {return;} | |
83 | if(fData == 0) { | |
84 | status = U_MEMORY_ALLOCATION_ERROR; | |
85 | return; | |
86 | } | |
87 | } | |
88 | ||
4388f060 A |
89 | |
90 | // | |
91 | // Construct from precompiled binary rules (tables). This constructor is public API, | |
92 | // taking the rules as a (const uint8_t *) to match the type produced by getBinaryRules(). | |
93 | // | |
94 | RuleBasedBreakIterator::RuleBasedBreakIterator(const uint8_t *compiledRules, | |
95 | uint32_t ruleLength, | |
96 | UErrorCode &status) { | |
97 | init(); | |
98 | if (U_FAILURE(status)) { | |
99 | return; | |
100 | } | |
101 | if (compiledRules == NULL || ruleLength < sizeof(RBBIDataHeader)) { | |
102 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
103 | return; | |
104 | } | |
105 | const RBBIDataHeader *data = (const RBBIDataHeader *)compiledRules; | |
106 | if (data->fLength > ruleLength) { | |
107 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
108 | return; | |
109 | } | |
110 | fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status); | |
111 | if (U_FAILURE(status)) {return;} | |
112 | if(fData == 0) { | |
113 | status = U_MEMORY_ALLOCATION_ERROR; | |
114 | return; | |
115 | } | |
116 | } | |
117 | ||
118 | ||
b75a7d8f A |
119 | //------------------------------------------------------------------------------- |
120 | // | |
121 | // Constructor from a UDataMemory handle to precompiled break rules | |
122 | // stored in an ICU data file. | |
123 | // | |
124 | //------------------------------------------------------------------------------- | |
125 | RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UErrorCode &status) | |
126 | { | |
127 | init(); | |
374ca955 | 128 | fData = new RBBIDataWrapper(udm, status); // status checked in constructor |
b75a7d8f | 129 | if (U_FAILURE(status)) {return;} |
b75a7d8f A |
130 | if(fData == 0) { |
131 | status = U_MEMORY_ALLOCATION_ERROR; | |
132 | return; | |
133 | } | |
134 | } | |
135 | ||
136 | ||
137 | ||
138 | //------------------------------------------------------------------------------- | |
139 | // | |
140 | // Constructor from a set of rules supplied as a string. | |
141 | // | |
142 | //------------------------------------------------------------------------------- | |
143 | RuleBasedBreakIterator::RuleBasedBreakIterator( const UnicodeString &rules, | |
144 | UParseError &parseError, | |
145 | UErrorCode &status) | |
146 | { | |
147 | init(); | |
148 | if (U_FAILURE(status)) {return;} | |
149 | RuleBasedBreakIterator *bi = (RuleBasedBreakIterator *) | |
46f4442e | 150 | RBBIRuleBuilder::createRuleBasedBreakIterator(rules, &parseError, status); |
b75a7d8f A |
151 | // Note: This is a bit awkward. The RBBI ruleBuilder has a factory method that |
152 | // creates and returns a complete RBBI. From here, in a constructor, we | |
153 | // can't just return the object created by the builder factory, hence | |
154 | // the assignment of the factory created object to "this". | |
155 | if (U_SUCCESS(status)) { | |
156 | *this = *bi; | |
157 | delete bi; | |
158 | } | |
159 | } | |
160 | ||
161 | ||
162 | //------------------------------------------------------------------------------- | |
163 | // | |
164 | // Default Constructor. Create an empty shell that can be set up later. | |
165 | // Used when creating a RuleBasedBreakIterator from a set | |
166 | // of rules. | |
167 | //------------------------------------------------------------------------------- | |
168 | RuleBasedBreakIterator::RuleBasedBreakIterator() { | |
169 | init(); | |
170 | } | |
171 | ||
172 | ||
173 | //------------------------------------------------------------------------------- | |
174 | // | |
175 | // Copy constructor. Will produce a break iterator with the same behavior, | |
176 | // and which iterates over the same text, as the one passed in. | |
177 | // | |
178 | //------------------------------------------------------------------------------- | |
179 | RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator& other) | |
180 | : BreakIterator(other) | |
181 | { | |
182 | this->init(); | |
183 | *this = other; | |
184 | } | |
185 | ||
186 | ||
187 | /** | |
188 | * Destructor | |
189 | */ | |
190 | RuleBasedBreakIterator::~RuleBasedBreakIterator() { | |
73c04bcf A |
191 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { |
192 | // fCharIter was adopted from the outside. | |
193 | delete fCharIter; | |
194 | } | |
195 | fCharIter = NULL; | |
196 | delete fSCharIter; | |
197 | fCharIter = NULL; | |
198 | delete fDCharIter; | |
199 | fDCharIter = NULL; | |
200 | ||
201 | utext_close(fText); | |
202 | ||
b75a7d8f A |
203 | if (fData != NULL) { |
204 | fData->removeReference(); | |
205 | fData = NULL; | |
206 | } | |
73c04bcf A |
207 | if (fCachedBreakPositions) { |
208 | uprv_free(fCachedBreakPositions); | |
209 | fCachedBreakPositions = NULL; | |
210 | } | |
211 | if (fLanguageBreakEngines) { | |
212 | delete fLanguageBreakEngines; | |
213 | fLanguageBreakEngines = NULL; | |
214 | } | |
215 | if (fUnhandledBreakEngine) { | |
216 | delete fUnhandledBreakEngine; | |
217 | fUnhandledBreakEngine = NULL; | |
218 | } | |
b75a7d8f A |
219 | } |
220 | ||
221 | /** | |
222 | * Assignment operator. Sets this iterator to have the same behavior, | |
223 | * and iterate over the same text, as the one passed in. | |
224 | */ | |
225 | RuleBasedBreakIterator& | |
226 | RuleBasedBreakIterator::operator=(const RuleBasedBreakIterator& that) { | |
227 | if (this == &that) { | |
228 | return *this; | |
229 | } | |
73c04bcf A |
230 | reset(); // Delete break cache information |
231 | fBreakType = that.fBreakType; | |
232 | if (fLanguageBreakEngines != NULL) { | |
233 | delete fLanguageBreakEngines; | |
234 | fLanguageBreakEngines = NULL; // Just rebuild for now | |
235 | } | |
236 | // TODO: clone fLanguageBreakEngines from "that" | |
237 | UErrorCode status = U_ZERO_ERROR; | |
238 | fText = utext_clone(fText, that.fText, FALSE, TRUE, &status); | |
239 | ||
240 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { | |
241 | delete fCharIter; | |
242 | } | |
243 | fCharIter = NULL; | |
244 | ||
245 | if (that.fCharIter != NULL ) { | |
246 | // This is a little bit tricky - it will intially appear that | |
247 | // this->fCharIter is adopted, even if that->fCharIter was | |
248 | // not adopted. That's ok. | |
249 | fCharIter = that.fCharIter->clone(); | |
b75a7d8f A |
250 | } |
251 | ||
252 | if (fData != NULL) { | |
253 | fData->removeReference(); | |
254 | fData = NULL; | |
255 | } | |
256 | if (that.fData != NULL) { | |
257 | fData = that.fData->addReference(); | |
258 | } | |
b75a7d8f A |
259 | |
260 | return *this; | |
261 | } | |
262 | ||
263 | ||
264 | ||
265 | //----------------------------------------------------------------------------- | |
266 | // | |
267 | // init() Shared initialization routine. Used by all the constructors. | |
268 | // Initializes all fields, leaving the object in a consistent state. | |
269 | // | |
270 | //----------------------------------------------------------------------------- | |
b75a7d8f | 271 | void RuleBasedBreakIterator::init() { |
73c04bcf A |
272 | UErrorCode status = U_ZERO_ERROR; |
273 | fBufferClone = FALSE; | |
274 | fText = utext_openUChars(NULL, NULL, 0, &status); | |
275 | fCharIter = NULL; | |
276 | fSCharIter = NULL; | |
277 | fDCharIter = NULL; | |
374ca955 A |
278 | fData = NULL; |
279 | fLastRuleStatusIndex = 0; | |
280 | fLastStatusIndexValid = TRUE; | |
281 | fDictionaryCharCount = 0; | |
729e4ab9 A |
282 | fBreakType = UBRK_WORD; // Defaulting BreakType to word gives reasonable |
283 | // dictionary behavior for Break Iterators that are | |
284 | // built from rules. Even better would be the ability to | |
285 | // declare the type in the rules. | |
73c04bcf A |
286 | |
287 | fCachedBreakPositions = NULL; | |
288 | fLanguageBreakEngines = NULL; | |
289 | fUnhandledBreakEngine = NULL; | |
290 | fNumCachedBreakPositions = 0; | |
291 | fPositionInCache = 0; | |
b75a7d8f A |
292 | |
293 | #ifdef RBBI_DEBUG | |
294 | static UBool debugInitDone = FALSE; | |
295 | if (debugInitDone == FALSE) { | |
296 | char *debugEnv = getenv("U_RBBIDEBUG"); | |
297 | if (debugEnv && uprv_strstr(debugEnv, "trace")) { | |
298 | fTrace = TRUE; | |
299 | } | |
300 | debugInitDone = TRUE; | |
301 | } | |
302 | #endif | |
303 | } | |
304 | ||
305 | ||
306 | ||
307 | //----------------------------------------------------------------------------- | |
308 | // | |
309 | // clone - Returns a newly-constructed RuleBasedBreakIterator with the same | |
310 | // behavior, and iterating over the same text, as this one. | |
311 | // Virtual function: does the right thing with subclasses. | |
312 | // | |
313 | //----------------------------------------------------------------------------- | |
314 | BreakIterator* | |
315 | RuleBasedBreakIterator::clone(void) const { | |
316 | return new RuleBasedBreakIterator(*this); | |
317 | } | |
318 | ||
319 | /** | |
320 | * Equality operator. Returns TRUE if both BreakIterators are of the | |
321 | * same class, have the same behavior, and iterate over the same text. | |
322 | */ | |
323 | UBool | |
324 | RuleBasedBreakIterator::operator==(const BreakIterator& that) const { | |
729e4ab9 | 325 | if (typeid(*this) != typeid(that)) { |
73c04bcf | 326 | return FALSE; |
b75a7d8f A |
327 | } |
328 | ||
329 | const RuleBasedBreakIterator& that2 = (const RuleBasedBreakIterator&) that; | |
73c04bcf A |
330 | |
331 | if (!utext_equals(fText, that2.fText)) { | |
332 | // The two break iterators are operating on different text, | |
333 | // or have a different interation position. | |
334 | return FALSE; | |
335 | }; | |
336 | ||
337 | // TODO: need a check for when in a dictionary region at different offsets. | |
338 | ||
339 | if (that2.fData == fData || | |
340 | (fData != NULL && that2.fData != NULL && *that2.fData == *fData)) { | |
341 | // The two break iterators are using the same rules. | |
342 | return TRUE; | |
b75a7d8f | 343 | } |
73c04bcf | 344 | return FALSE; |
b75a7d8f A |
345 | } |
346 | ||
347 | /** | |
348 | * Compute a hash code for this BreakIterator | |
349 | * @return A hash code | |
350 | */ | |
351 | int32_t | |
352 | RuleBasedBreakIterator::hashCode(void) const { | |
353 | int32_t hash = 0; | |
354 | if (fData != NULL) { | |
355 | hash = fData->hashCode(); | |
356 | } | |
357 | return hash; | |
358 | } | |
359 | ||
73c04bcf A |
360 | |
361 | void RuleBasedBreakIterator::setText(UText *ut, UErrorCode &status) { | |
362 | if (U_FAILURE(status)) { | |
363 | return; | |
364 | } | |
365 | reset(); | |
366 | fText = utext_clone(fText, ut, FALSE, TRUE, &status); | |
367 | ||
368 | // Set up a dummy CharacterIterator to be returned if anyone | |
369 | // calls getText(). With input from UText, there is no reasonable | |
370 | // way to return a characterIterator over the actual input text. | |
371 | // Return one over an empty string instead - this is the closest | |
372 | // we can come to signaling a failure. | |
373 | // (GetText() is obsolete, this failure is sort of OK) | |
374 | if (fDCharIter == NULL) { | |
46f4442e | 375 | static const UChar c = 0; |
73c04bcf | 376 | fDCharIter = new UCharCharacterIterator(&c, 0); |
46f4442e A |
377 | if (fDCharIter == NULL) { |
378 | status = U_MEMORY_ALLOCATION_ERROR; | |
379 | return; | |
380 | } | |
73c04bcf A |
381 | } |
382 | ||
383 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { | |
384 | // existing fCharIter was adopted from the outside. Delete it now. | |
385 | delete fCharIter; | |
386 | } | |
387 | fCharIter = fDCharIter; | |
388 | ||
389 | this->first(); | |
390 | } | |
391 | ||
392 | ||
393 | UText *RuleBasedBreakIterator::getUText(UText *fillIn, UErrorCode &status) const { | |
394 | UText *result = utext_clone(fillIn, fText, FALSE, TRUE, &status); | |
395 | return result; | |
396 | } | |
397 | ||
398 | ||
399 | ||
b75a7d8f A |
400 | /** |
401 | * Returns the description used to create this iterator | |
402 | */ | |
403 | const UnicodeString& | |
404 | RuleBasedBreakIterator::getRules() const { | |
405 | if (fData != NULL) { | |
406 | return fData->getRuleSourceString(); | |
407 | } else { | |
408 | static const UnicodeString *s; | |
409 | if (s == NULL) { | |
410 | // TODO: something more elegant here. | |
411 | // perhaps API should return the string by value. | |
412 | // Note: thread unsafe init & leak are semi-ok, better than | |
413 | // what was before. Sould be cleaned up, though. | |
414 | s = new UnicodeString; | |
415 | } | |
416 | return *s; | |
417 | } | |
418 | } | |
419 | ||
420 | //======================================================================= | |
421 | // BreakIterator overrides | |
422 | //======================================================================= | |
423 | ||
424 | /** | |
73c04bcf | 425 | * Return a CharacterIterator over the text being analyzed. |
b75a7d8f | 426 | */ |
73c04bcf | 427 | CharacterIterator& |
b75a7d8f | 428 | RuleBasedBreakIterator::getText() const { |
73c04bcf | 429 | return *fCharIter; |
b75a7d8f A |
430 | } |
431 | ||
432 | /** | |
433 | * Set the iterator to analyze a new piece of text. This function resets | |
434 | * the current iteration position to the beginning of the text. | |
435 | * @param newText An iterator over the text to analyze. | |
436 | */ | |
437 | void | |
438 | RuleBasedBreakIterator::adoptText(CharacterIterator* newText) { | |
73c04bcf A |
439 | // If we are holding a CharacterIterator adopted from a |
440 | // previous call to this function, delete it now. | |
441 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { | |
442 | delete fCharIter; | |
443 | } | |
444 | ||
445 | fCharIter = newText; | |
446 | UErrorCode status = U_ZERO_ERROR; | |
b75a7d8f | 447 | reset(); |
73c04bcf A |
448 | if (newText==NULL || newText->startIndex() != 0) { |
449 | // startIndex !=0 wants to be an error, but there's no way to report it. | |
450 | // Make the iterator text be an empty string. | |
451 | fText = utext_openUChars(fText, NULL, 0, &status); | |
452 | } else { | |
453 | fText = utext_openCharacterIterator(fText, newText, &status); | |
454 | } | |
b75a7d8f A |
455 | this->first(); |
456 | } | |
457 | ||
458 | /** | |
459 | * Set the iterator to analyze a new piece of text. This function resets | |
460 | * the current iteration position to the beginning of the text. | |
461 | * @param newText An iterator over the text to analyze. | |
462 | */ | |
463 | void | |
464 | RuleBasedBreakIterator::setText(const UnicodeString& newText) { | |
73c04bcf | 465 | UErrorCode status = U_ZERO_ERROR; |
b75a7d8f | 466 | reset(); |
73c04bcf A |
467 | fText = utext_openConstUnicodeString(fText, &newText, &status); |
468 | ||
469 | // Set up a character iterator on the string. | |
470 | // Needed in case someone calls getText(). | |
471 | // Can not, unfortunately, do this lazily on the (probably never) | |
472 | // call to getText(), because getText is const. | |
473 | if (fSCharIter == NULL) { | |
474 | fSCharIter = new StringCharacterIterator(newText); | |
475 | } else { | |
476 | fSCharIter->setText(newText); | |
b75a7d8f | 477 | } |
73c04bcf A |
478 | |
479 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { | |
480 | // old fCharIter was adopted from the outside. Delete it. | |
481 | delete fCharIter; | |
b75a7d8f | 482 | } |
73c04bcf A |
483 | fCharIter = fSCharIter; |
484 | ||
b75a7d8f A |
485 | this->first(); |
486 | } | |
487 | ||
488 | ||
4388f060 A |
489 | /** |
490 | * Provide a new UText for the input text. Must reference text with contents identical | |
491 | * to the original. | |
492 | * Intended for use with text data originating in Java (garbage collected) environments | |
493 | * where the data may be moved in memory at arbitrary times. | |
494 | */ | |
495 | RuleBasedBreakIterator &RuleBasedBreakIterator::refreshInputText(UText *input, UErrorCode &status) { | |
496 | if (U_FAILURE(status)) { | |
497 | return *this; | |
498 | } | |
499 | if (input == NULL) { | |
500 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
501 | return *this; | |
502 | } | |
503 | int64_t pos = utext_getNativeIndex(fText); | |
504 | // Shallow read-only clone of the new UText into the existing input UText | |
505 | fText = utext_clone(fText, input, FALSE, TRUE, &status); | |
506 | if (U_FAILURE(status)) { | |
507 | return *this; | |
508 | } | |
509 | utext_setNativeIndex(fText, pos); | |
510 | if (utext_getNativeIndex(fText) != pos) { | |
511 | // Sanity check. The new input utext is supposed to have the exact same | |
512 | // contents as the old. If we can't set to the same position, it doesn't. | |
513 | // The contents underlying the old utext might be invalid at this point, | |
514 | // so it's not safe to check directly. | |
515 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
516 | } | |
517 | return *this; | |
518 | } | |
519 | ||
b75a7d8f A |
520 | |
521 | /** | |
522 | * Sets the current iteration position to the beginning of the text. | |
b75a7d8f A |
523 | * @return The offset of the beginning of the text. |
524 | */ | |
525 | int32_t RuleBasedBreakIterator::first(void) { | |
526 | reset(); | |
374ca955 A |
527 | fLastRuleStatusIndex = 0; |
528 | fLastStatusIndexValid = TRUE; | |
73c04bcf A |
529 | //if (fText == NULL) |
530 | // return BreakIterator::DONE; | |
b75a7d8f | 531 | |
73c04bcf A |
532 | utext_setNativeIndex(fText, 0); |
533 | return 0; | |
b75a7d8f A |
534 | } |
535 | ||
536 | /** | |
537 | * Sets the current iteration position to the end of the text. | |
b75a7d8f A |
538 | * @return The text's past-the-end offset. |
539 | */ | |
540 | int32_t RuleBasedBreakIterator::last(void) { | |
541 | reset(); | |
542 | if (fText == NULL) { | |
374ca955 A |
543 | fLastRuleStatusIndex = 0; |
544 | fLastStatusIndexValid = TRUE; | |
b75a7d8f A |
545 | return BreakIterator::DONE; |
546 | } | |
547 | ||
374ca955 | 548 | fLastStatusIndexValid = FALSE; |
73c04bcf A |
549 | int32_t pos = (int32_t)utext_nativeLength(fText); |
550 | utext_setNativeIndex(fText, pos); | |
b75a7d8f A |
551 | return pos; |
552 | } | |
553 | ||
554 | /** | |
555 | * Advances the iterator either forward or backward the specified number of steps. | |
556 | * Negative values move backward, and positive values move forward. This is | |
557 | * equivalent to repeatedly calling next() or previous(). | |
558 | * @param n The number of steps to move. The sign indicates the direction | |
559 | * (negative is backwards, and positive is forwards). | |
560 | * @return The character offset of the boundary position n boundaries away from | |
561 | * the current one. | |
562 | */ | |
563 | int32_t RuleBasedBreakIterator::next(int32_t n) { | |
564 | int32_t result = current(); | |
565 | while (n > 0) { | |
73c04bcf | 566 | result = next(); |
b75a7d8f A |
567 | --n; |
568 | } | |
569 | while (n < 0) { | |
570 | result = previous(); | |
571 | ++n; | |
572 | } | |
573 | return result; | |
574 | } | |
575 | ||
576 | /** | |
577 | * Advances the iterator to the next boundary position. | |
578 | * @return The position of the first boundary after this one. | |
579 | */ | |
580 | int32_t RuleBasedBreakIterator::next(void) { | |
73c04bcf A |
581 | // if we have cached break positions and we're still in the range |
582 | // covered by them, just move one step forward in the cache | |
583 | if (fCachedBreakPositions != NULL) { | |
584 | if (fPositionInCache < fNumCachedBreakPositions - 1) { | |
585 | ++fPositionInCache; | |
586 | int32_t pos = fCachedBreakPositions[fPositionInCache]; | |
587 | utext_setNativeIndex(fText, pos); | |
588 | return pos; | |
589 | } | |
590 | else { | |
591 | reset(); | |
592 | } | |
593 | } | |
594 | ||
595 | int32_t startPos = current(); | |
596 | int32_t result = handleNext(fData->fForwardTable); | |
597 | if (fDictionaryCharCount > 0) { | |
598 | result = checkDictionary(startPos, result, FALSE); | |
599 | } | |
600 | return result; | |
b75a7d8f A |
601 | } |
602 | ||
603 | /** | |
604 | * Advances the iterator backwards, to the last boundary preceding this one. | |
605 | * @return The position of the last boundary position preceding this one. | |
606 | */ | |
607 | int32_t RuleBasedBreakIterator::previous(void) { | |
73c04bcf A |
608 | int32_t result; |
609 | int32_t startPos; | |
610 | ||
611 | // if we have cached break positions and we're still in the range | |
612 | // covered by them, just move one step backward in the cache | |
613 | if (fCachedBreakPositions != NULL) { | |
614 | if (fPositionInCache > 0) { | |
615 | --fPositionInCache; | |
616 | // If we're at the beginning of the cache, need to reevaluate the | |
617 | // rule status | |
618 | if (fPositionInCache <= 0) { | |
619 | fLastStatusIndexValid = FALSE; | |
620 | } | |
621 | int32_t pos = fCachedBreakPositions[fPositionInCache]; | |
622 | utext_setNativeIndex(fText, pos); | |
623 | return pos; | |
624 | } | |
625 | else { | |
626 | reset(); | |
627 | } | |
628 | } | |
629 | ||
b75a7d8f | 630 | // if we're already sitting at the beginning of the text, return DONE |
73c04bcf | 631 | if (fText == NULL || (startPos = current()) == 0) { |
374ca955 A |
632 | fLastRuleStatusIndex = 0; |
633 | fLastStatusIndexValid = TRUE; | |
b75a7d8f A |
634 | return BreakIterator::DONE; |
635 | } | |
636 | ||
374ca955 | 637 | if (fData->fSafeRevTable != NULL || fData->fSafeFwdTable != NULL) { |
73c04bcf A |
638 | result = handlePrevious(fData->fReverseTable); |
639 | if (fDictionaryCharCount > 0) { | |
640 | result = checkDictionary(result, startPos, TRUE); | |
641 | } | |
642 | return result; | |
374ca955 A |
643 | } |
644 | ||
645 | // old rule syntax | |
b75a7d8f A |
646 | // set things up. handlePrevious() will back us up to some valid |
647 | // break position before the current position (we back our internal | |
648 | // iterator up one step to prevent handlePrevious() from returning | |
649 | // the current position), but not necessarily the last one before | |
73c04bcf | 650 | |
b75a7d8f | 651 | // where we started |
374ca955 | 652 | |
b75a7d8f | 653 | int32_t start = current(); |
374ca955 | 654 | |
4388f060 | 655 | (void)UTEXT_PREVIOUS32(fText); |
73c04bcf A |
656 | int32_t lastResult = handlePrevious(fData->fReverseTable); |
657 | if (lastResult == UBRK_DONE) { | |
658 | lastResult = 0; | |
659 | utext_setNativeIndex(fText, 0); | |
660 | } | |
661 | result = lastResult; | |
b75a7d8f A |
662 | int32_t lastTag = 0; |
663 | UBool breakTagValid = FALSE; | |
664 | ||
665 | // iterate forward from the known break position until we pass our | |
666 | // starting point. The last break position before the starting | |
667 | // point is our return value | |
374ca955 | 668 | |
b75a7d8f | 669 | for (;;) { |
73c04bcf | 670 | result = next(); |
b75a7d8f A |
671 | if (result == BreakIterator::DONE || result >= start) { |
672 | break; | |
673 | } | |
674 | lastResult = result; | |
374ca955 | 675 | lastTag = fLastRuleStatusIndex; |
b75a7d8f A |
676 | breakTagValid = TRUE; |
677 | } | |
678 | ||
679 | // fLastBreakTag wants to have the value for section of text preceding | |
680 | // the result position that we are to return (in lastResult.) If | |
681 | // the backwards rules overshot and the above loop had to do two or more | |
73c04bcf | 682 | // next()s to move up to the desired return position, we will have a valid |
374ca955 A |
683 | // tag value. But, if handlePrevious() took us to exactly the correct result positon, |
684 | // we wont have a tag value for that position, which is only set by handleNext(). | |
b75a7d8f A |
685 | |
686 | // set the current iteration position to be the last break position | |
687 | // before where we started, and then return that value | |
73c04bcf | 688 | utext_setNativeIndex(fText, lastResult); |
374ca955 A |
689 | fLastRuleStatusIndex = lastTag; // for use by getRuleStatus() |
690 | fLastStatusIndexValid = breakTagValid; | |
73c04bcf A |
691 | |
692 | // No need to check the dictionary; it will have been handled by | |
693 | // next() | |
694 | ||
b75a7d8f A |
695 | return lastResult; |
696 | } | |
697 | ||
b75a7d8f A |
698 | /** |
699 | * Sets the iterator to refer to the first boundary position following | |
700 | * the specified position. | |
701 | * @offset The position from which to begin searching for a break position. | |
702 | * @return The position of the first break after the current position. | |
703 | */ | |
704 | int32_t RuleBasedBreakIterator::following(int32_t offset) { | |
73c04bcf A |
705 | // if we have cached break positions and offset is in the range |
706 | // covered by them, use them | |
707 | // TODO: could use binary search | |
708 | // TODO: what if offset is outside range, but break is not? | |
709 | if (fCachedBreakPositions != NULL) { | |
710 | if (offset >= fCachedBreakPositions[0] | |
711 | && offset < fCachedBreakPositions[fNumCachedBreakPositions - 1]) { | |
712 | fPositionInCache = 0; | |
713 | // We are guaranteed not to leave the array due to range test above | |
714 | while (offset >= fCachedBreakPositions[fPositionInCache]) { | |
715 | ++fPositionInCache; | |
716 | } | |
717 | int32_t pos = fCachedBreakPositions[fPositionInCache]; | |
718 | utext_setNativeIndex(fText, pos); | |
719 | return pos; | |
720 | } | |
721 | else { | |
722 | reset(); | |
723 | } | |
724 | } | |
725 | ||
b75a7d8f A |
726 | // if the offset passed in is already past the end of the text, |
727 | // just return DONE; if it's before the beginning, return the | |
728 | // text's starting offset | |
374ca955 A |
729 | fLastRuleStatusIndex = 0; |
730 | fLastStatusIndexValid = TRUE; | |
73c04bcf | 731 | if (fText == NULL || offset >= utext_nativeLength(fText)) { |
b75a7d8f A |
732 | last(); |
733 | return next(); | |
734 | } | |
73c04bcf | 735 | else if (offset < 0) { |
b75a7d8f A |
736 | return first(); |
737 | } | |
738 | ||
739 | // otherwise, set our internal iteration position (temporarily) | |
740 | // to the position passed in. If this is the _beginning_ position, | |
741 | // then we can just use next() to get our return value | |
b75a7d8f | 742 | |
374ca955 A |
743 | int32_t result = 0; |
744 | ||
745 | if (fData->fSafeRevTable != NULL) { | |
746 | // new rule syntax | |
73c04bcf | 747 | utext_setNativeIndex(fText, offset); |
374ca955 A |
748 | // move forward one codepoint to prepare for moving back to a |
749 | // safe point. | |
750 | // this handles offset being between a supplementary character | |
4388f060 | 751 | (void)UTEXT_NEXT32(fText); |
374ca955 A |
752 | // handlePrevious will move most of the time to < 1 boundary away |
753 | handlePrevious(fData->fSafeRevTable); | |
754 | int32_t result = next(); | |
755 | while (result <= offset) { | |
756 | result = next(); | |
757 | } | |
758 | return result; | |
759 | } | |
760 | if (fData->fSafeFwdTable != NULL) { | |
761 | // backup plan if forward safe table is not available | |
73c04bcf | 762 | utext_setNativeIndex(fText, offset); |
4388f060 | 763 | (void)UTEXT_PREVIOUS32(fText); |
374ca955 A |
764 | // handle next will give result >= offset |
765 | handleNext(fData->fSafeFwdTable); | |
766 | // previous will give result 0 or 1 boundary away from offset, | |
767 | // most of the time | |
768 | // we have to | |
769 | int32_t oldresult = previous(); | |
770 | while (oldresult > offset) { | |
771 | int32_t result = previous(); | |
772 | if (result <= offset) { | |
773 | return oldresult; | |
774 | } | |
775 | oldresult = result; | |
776 | } | |
777 | int32_t result = next(); | |
778 | if (result <= offset) { | |
779 | return next(); | |
780 | } | |
781 | return result; | |
782 | } | |
b75a7d8f | 783 | // otherwise, we have to sync up first. Use handlePrevious() to back |
73c04bcf | 784 | // up to a known break position before the specified position (if |
b75a7d8f A |
785 | // we can determine that the specified position is a break position, |
786 | // we don't back up at all). This may or may not be the last break | |
787 | // position at or before our starting position. Advance forward | |
788 | // from here until we've passed the starting position. The position | |
789 | // we stop on will be the first break position after the specified one. | |
374ca955 A |
790 | // old rule syntax |
791 | ||
73c04bcf A |
792 | utext_setNativeIndex(fText, offset); |
793 | if (offset==0 || | |
729e4ab9 | 794 | (offset==1 && utext_getNativeIndex(fText)==0)) { |
73c04bcf | 795 | return next(); |
374ca955 A |
796 | } |
797 | result = previous(); | |
b75a7d8f | 798 | |
b75a7d8f A |
799 | while (result != BreakIterator::DONE && result <= offset) { |
800 | result = next(); | |
801 | } | |
802 | ||
803 | return result; | |
804 | } | |
805 | ||
806 | /** | |
807 | * Sets the iterator to refer to the last boundary position before the | |
808 | * specified position. | |
809 | * @offset The position to begin searching for a break from. | |
810 | * @return The position of the last boundary before the starting position. | |
811 | */ | |
812 | int32_t RuleBasedBreakIterator::preceding(int32_t offset) { | |
73c04bcf A |
813 | // if we have cached break positions and offset is in the range |
814 | // covered by them, use them | |
815 | if (fCachedBreakPositions != NULL) { | |
816 | // TODO: binary search? | |
817 | // TODO: What if offset is outside range, but break is not? | |
818 | if (offset > fCachedBreakPositions[0] | |
819 | && offset <= fCachedBreakPositions[fNumCachedBreakPositions - 1]) { | |
820 | fPositionInCache = 0; | |
821 | while (fPositionInCache < fNumCachedBreakPositions | |
822 | && offset > fCachedBreakPositions[fPositionInCache]) | |
823 | ++fPositionInCache; | |
824 | --fPositionInCache; | |
825 | // If we're at the beginning of the cache, need to reevaluate the | |
826 | // rule status | |
827 | if (fPositionInCache <= 0) { | |
828 | fLastStatusIndexValid = FALSE; | |
829 | } | |
830 | utext_setNativeIndex(fText, fCachedBreakPositions[fPositionInCache]); | |
831 | return fCachedBreakPositions[fPositionInCache]; | |
832 | } | |
833 | else { | |
834 | reset(); | |
835 | } | |
836 | } | |
837 | ||
b75a7d8f A |
838 | // if the offset passed in is already past the end of the text, |
839 | // just return DONE; if it's before the beginning, return the | |
840 | // text's starting offset | |
73c04bcf | 841 | if (fText == NULL || offset > utext_nativeLength(fText)) { |
b75a7d8f A |
842 | // return BreakIterator::DONE; |
843 | return last(); | |
844 | } | |
73c04bcf | 845 | else if (offset < 0) { |
b75a7d8f A |
846 | return first(); |
847 | } | |
848 | ||
849 | // if we start by updating the current iteration position to the | |
850 | // position specified by the caller, we can just use previous() | |
851 | // to carry out this operation | |
374ca955 A |
852 | |
853 | if (fData->fSafeFwdTable != NULL) { | |
374ca955 | 854 | // new rule syntax |
73c04bcf A |
855 | utext_setNativeIndex(fText, offset); |
856 | int32_t newOffset = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
857 | if (newOffset != offset) { | |
858 | // Will come here if specified offset was not a code point boundary AND | |
859 | // the underlying implmentation is using UText, which snaps any non-code-point-boundary | |
860 | // indices to the containing code point. | |
861 | // For breakitereator::preceding only, these non-code-point indices need to be moved | |
862 | // up to refer to the following codepoint. | |
4388f060 | 863 | (void)UTEXT_NEXT32(fText); |
73c04bcf A |
864 | offset = (int32_t)UTEXT_GETNATIVEINDEX(fText); |
865 | } | |
866 | ||
867 | // TODO: (synwee) would it be better to just check for being in the middle of a surrogate pair, | |
374ca955 A |
868 | // rather than adjusting the position unconditionally? |
869 | // (Change would interact with safe rules.) | |
73c04bcf A |
870 | // TODO: change RBBI behavior for off-boundary indices to match that of UText? |
871 | // affects only preceding(), seems cleaner, but is slightly different. | |
4388f060 | 872 | (void)UTEXT_PREVIOUS32(fText); |
374ca955 | 873 | handleNext(fData->fSafeFwdTable); |
73c04bcf | 874 | int32_t result = (int32_t)UTEXT_GETNATIVEINDEX(fText); |
374ca955 A |
875 | while (result >= offset) { |
876 | result = previous(); | |
877 | } | |
878 | return result; | |
879 | } | |
880 | if (fData->fSafeRevTable != NULL) { | |
881 | // backup plan if forward safe table is not available | |
73c04bcf A |
882 | // TODO: check whether this path can be discarded |
883 | // It's probably OK to say that rules must supply both safe tables | |
884 | // if they use safe tables at all. We have certainly never described | |
885 | // to anyone how to work with just one safe table. | |
886 | utext_setNativeIndex(fText, offset); | |
4388f060 | 887 | (void)UTEXT_NEXT32(fText); |
73c04bcf | 888 | |
374ca955 A |
889 | // handle previous will give result <= offset |
890 | handlePrevious(fData->fSafeRevTable); | |
891 | ||
892 | // next will give result 0 or 1 boundary away from offset, | |
893 | // most of the time | |
894 | // we have to | |
895 | int32_t oldresult = next(); | |
896 | while (oldresult < offset) { | |
897 | int32_t result = next(); | |
898 | if (result >= offset) { | |
899 | return oldresult; | |
900 | } | |
901 | oldresult = result; | |
902 | } | |
903 | int32_t result = previous(); | |
904 | if (result >= offset) { | |
905 | return previous(); | |
906 | } | |
907 | return result; | |
908 | } | |
909 | ||
910 | // old rule syntax | |
73c04bcf | 911 | utext_setNativeIndex(fText, offset); |
b75a7d8f A |
912 | return previous(); |
913 | } | |
914 | ||
915 | /** | |
916 | * Returns true if the specfied position is a boundary position. As a side | |
917 | * effect, leaves the iterator pointing to the first boundary position at | |
918 | * or after "offset". | |
919 | * @param offset the offset to check. | |
920 | * @return True if "offset" is a boundary position. | |
921 | */ | |
922 | UBool RuleBasedBreakIterator::isBoundary(int32_t offset) { | |
923 | // the beginning index of the iterator is always a boundary position by definition | |
73c04bcf | 924 | if (offset == 0) { |
b75a7d8f A |
925 | first(); // For side effects on current position, tag values. |
926 | return TRUE; | |
927 | } | |
928 | ||
73c04bcf | 929 | if (offset == (int32_t)utext_nativeLength(fText)) { |
374ca955 A |
930 | last(); // For side effects on current position, tag values. |
931 | return TRUE; | |
932 | } | |
933 | ||
b75a7d8f | 934 | // out-of-range indexes are never boundary positions |
73c04bcf | 935 | if (offset < 0) { |
b75a7d8f A |
936 | first(); // For side effects on current position, tag values. |
937 | return FALSE; | |
938 | } | |
939 | ||
73c04bcf | 940 | if (offset > utext_nativeLength(fText)) { |
b75a7d8f A |
941 | last(); // For side effects on current position, tag values. |
942 | return FALSE; | |
943 | } | |
944 | ||
945 | // otherwise, we can use following() on the position before the specified | |
946 | // one and return true if the position we get back is the one the user | |
947 | // specified | |
73c04bcf A |
948 | utext_previous32From(fText, offset); |
949 | int32_t backOne = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
950 | UBool result = following(backOne) == offset; | |
951 | return result; | |
b75a7d8f A |
952 | } |
953 | ||
954 | /** | |
955 | * Returns the current iteration position. | |
956 | * @return The current iteration position. | |
957 | */ | |
958 | int32_t RuleBasedBreakIterator::current(void) const { | |
73c04bcf A |
959 | int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText); |
960 | return pos; | |
b75a7d8f | 961 | } |
73c04bcf | 962 | |
b75a7d8f A |
963 | //======================================================================= |
964 | // implementation | |
965 | //======================================================================= | |
966 | ||
73c04bcf A |
967 | // |
968 | // RBBIRunMode - the state machine runs an extra iteration at the beginning and end | |
969 | // of user text. A variable with this enum type keeps track of where we | |
970 | // are. The state machine only fetches user input while in the RUN mode. | |
971 | // | |
972 | enum RBBIRunMode { | |
973 | RBBI_START, // state machine processing is before first char of input | |
974 | RBBI_RUN, // state machine processing is in the user text | |
975 | RBBI_END // state machine processing is after end of user text. | |
976 | }; | |
977 | ||
b75a7d8f A |
978 | |
979 | //----------------------------------------------------------------------------------- | |
980 | // | |
73c04bcf A |
981 | // handleNext(stateTable) |
982 | // This method is the actual implementation of the rbbi next() method. | |
983 | // This method initializes the state machine to state 1 | |
b75a7d8f A |
984 | // and advances through the text character by character until we reach the end |
985 | // of the text or the state machine transitions to state 0. We update our return | |
374ca955 | 986 | // value every time the state machine passes through an accepting state. |
b75a7d8f A |
987 | // |
988 | //----------------------------------------------------------------------------------- | |
374ca955 | 989 | int32_t RuleBasedBreakIterator::handleNext(const RBBIStateTable *statetable) { |
73c04bcf | 990 | int32_t state; |
4388f060 | 991 | uint16_t category = 0; |
73c04bcf A |
992 | RBBIRunMode mode; |
993 | ||
994 | RBBIStateTableRow *row; | |
995 | UChar32 c; | |
996 | int32_t lookaheadStatus = 0; | |
997 | int32_t lookaheadTagIdx = 0; | |
998 | int32_t result = 0; | |
999 | int32_t initialPosition = 0; | |
1000 | int32_t lookaheadResult = 0; | |
1001 | UBool lookAheadHardBreak = (statetable->fFlags & RBBI_LOOKAHEAD_HARD_BREAK) != 0; | |
1002 | const char *tableData = statetable->fTableData; | |
1003 | uint32_t tableRowLen = statetable->fRowLen; | |
1004 | ||
1005 | #ifdef RBBI_DEBUG | |
1006 | if (fTrace) { | |
1007 | RBBIDebugPuts("Handle Next pos char state category"); | |
1008 | } | |
1009 | #endif | |
b75a7d8f A |
1010 | |
1011 | // No matter what, handleNext alway correctly sets the break tag value. | |
374ca955 | 1012 | fLastStatusIndexValid = TRUE; |
73c04bcf | 1013 | fLastRuleStatusIndex = 0; |
b75a7d8f A |
1014 | |
1015 | // if we're already at the end of the text, return DONE. | |
73c04bcf A |
1016 | initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText); |
1017 | result = initialPosition; | |
1018 | c = UTEXT_NEXT32(fText); | |
1019 | if (fData == NULL || c==U_SENTINEL) { | |
b75a7d8f A |
1020 | return BreakIterator::DONE; |
1021 | } | |
1022 | ||
73c04bcf A |
1023 | // Set the initial state for the state machine |
1024 | state = START_STATE; | |
1025 | row = (RBBIStateTableRow *) | |
1026 | //(statetable->fTableData + (statetable->fRowLen * state)); | |
1027 | (tableData + tableRowLen * state); | |
1028 | ||
1029 | ||
1030 | mode = RBBI_RUN; | |
1031 | if (statetable->fFlags & RBBI_BOF_REQUIRED) { | |
1032 | category = 2; | |
1033 | mode = RBBI_START; | |
1034 | } | |
b75a7d8f | 1035 | |
b75a7d8f A |
1036 | |
1037 | // loop until we reach the end of the text or transition to state 0 | |
73c04bcf | 1038 | // |
b75a7d8f | 1039 | for (;;) { |
73c04bcf | 1040 | if (c == U_SENTINEL) { |
374ca955 | 1041 | // Reached end of input string. |
73c04bcf A |
1042 | if (mode == RBBI_END) { |
1043 | // We have already run the loop one last time with the | |
1044 | // character set to the psueudo {eof} value. Now it is time | |
1045 | // to unconditionally bail out. | |
1046 | if (lookaheadResult > result) { | |
1047 | // We ran off the end of the string with a pending look-ahead match. | |
1048 | // Treat this as if the look-ahead condition had been met, and return | |
1049 | // the match at the / position from the look-ahead rule. | |
1050 | result = lookaheadResult; | |
1051 | fLastRuleStatusIndex = lookaheadTagIdx; | |
1052 | lookaheadStatus = 0; | |
1053 | } | |
1054 | break; | |
374ca955 | 1055 | } |
73c04bcf A |
1056 | // Run the loop one last time with the fake end-of-input character category. |
1057 | mode = RBBI_END; | |
1058 | category = 1; | |
b75a7d8f | 1059 | } |
b75a7d8f | 1060 | |
b75a7d8f | 1061 | // |
73c04bcf A |
1062 | // Get the char category. An incoming category of 1 or 2 means that |
1063 | // we are preset for doing the beginning or end of input, and | |
1064 | // that we shouldn't get a category from an actual text input character. | |
1065 | // | |
1066 | if (mode == RBBI_RUN) { | |
1067 | // look up the current character's character category, which tells us | |
1068 | // which column in the state table to look at. | |
1069 | // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned, | |
1070 | // not the size of the character going in, which is a UChar32. | |
1071 | // | |
1072 | UTRIE_GET16(&fData->fTrie, c, category); | |
1073 | ||
1074 | // Check the dictionary bit in the character's category. | |
1075 | // Counter is only used by dictionary based iterators (subclasses). | |
1076 | // Chars that need to be handled by a dictionary have a flag bit set | |
1077 | // in their category values. | |
1078 | // | |
1079 | if ((category & 0x4000) != 0) { | |
1080 | fDictionaryCharCount++; | |
1081 | // And off the dictionary flag bit. | |
1082 | category &= ~0x4000; | |
1083 | } | |
b75a7d8f A |
1084 | } |
1085 | ||
4388f060 | 1086 | #ifdef RBBI_DEBUG |
374ca955 | 1087 | if (fTrace) { |
729e4ab9 | 1088 | RBBIDebugPrintf(" %4ld ", utext_getNativeIndex(fText)); |
374ca955 A |
1089 | if (0x20<=c && c<0x7f) { |
1090 | RBBIDebugPrintf("\"%c\" ", c); | |
1091 | } else { | |
1092 | RBBIDebugPrintf("%5x ", c); | |
1093 | } | |
1094 | RBBIDebugPrintf("%3d %3d\n", state, category); | |
b75a7d8f | 1095 | } |
374ca955 | 1096 | #endif |
b75a7d8f | 1097 | |
73c04bcf A |
1098 | // State Transition - move machine to its next state |
1099 | // | |
4388f060 A |
1100 | |
1101 | // Note: fNextState is defined as uint16_t[2], but we are casting | |
1102 | // a generated RBBI table to RBBIStateTableRow and some tables | |
1103 | // actually have more than 2 categories. | |
1104 | U_ASSERT(category<fData->fHeader->fCatCount); | |
1105 | state = row->fNextState[category]; /*Not accessing beyond memory*/ | |
b75a7d8f | 1106 | row = (RBBIStateTableRow *) |
73c04bcf A |
1107 | // (statetable->fTableData + (statetable->fRowLen * state)); |
1108 | (tableData + tableRowLen * state); | |
b75a7d8f | 1109 | |
b75a7d8f | 1110 | |
b75a7d8f | 1111 | if (row->fAccepting == -1) { |
73c04bcf A |
1112 | // Match found, common case. |
1113 | if (mode != RBBI_START) { | |
1114 | result = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1115 | } | |
374ca955 | 1116 | fLastRuleStatusIndex = row->fTagIdx; // Remember the break status (tag) values. |
b75a7d8f A |
1117 | } |
1118 | ||
374ca955 A |
1119 | if (row->fLookAhead != 0) { |
1120 | if (lookaheadStatus != 0 | |
1121 | && row->fAccepting == lookaheadStatus) { | |
73c04bcf | 1122 | // Lookahead match is completed. |
374ca955 A |
1123 | result = lookaheadResult; |
1124 | fLastRuleStatusIndex = lookaheadTagIdx; | |
1125 | lookaheadStatus = 0; | |
73c04bcf A |
1126 | // TODO: make a standalone hard break in a rule work. |
1127 | if (lookAheadHardBreak) { | |
46f4442e | 1128 | UTEXT_SETNATIVEINDEX(fText, result); |
73c04bcf A |
1129 | return result; |
1130 | } | |
1131 | // Look-ahead completed, but other rules may match further. Continue on | |
1132 | // TODO: junk this feature? I don't think it's used anywhwere. | |
374ca955 | 1133 | goto continueOn; |
b75a7d8f | 1134 | } |
374ca955 | 1135 | |
73c04bcf | 1136 | int32_t r = (int32_t)UTEXT_GETNATIVEINDEX(fText); |
374ca955 A |
1137 | lookaheadResult = r; |
1138 | lookaheadStatus = row->fLookAhead; | |
1139 | lookaheadTagIdx = row->fTagIdx; | |
b75a7d8f A |
1140 | goto continueOn; |
1141 | } | |
1142 | ||
374ca955 | 1143 | |
73c04bcf A |
1144 | if (row->fAccepting != 0) { |
1145 | // Because this is an accepting state, any in-progress look-ahead match | |
1146 | // is no longer relavant. Clear out the pending lookahead status. | |
1147 | lookaheadStatus = 0; // clear out any pending look-ahead match. | |
b75a7d8f A |
1148 | } |
1149 | ||
1150 | continueOn: | |
1151 | if (state == STOP_STATE) { | |
374ca955 A |
1152 | // This is the normal exit from the lookup state machine. |
1153 | // We have advanced through the string until it is certain that no | |
1154 | // longer match is possible, no matter what characters follow. | |
b75a7d8f A |
1155 | break; |
1156 | } | |
73c04bcf A |
1157 | |
1158 | // Advance to the next character. | |
1159 | // If this is a beginning-of-input loop iteration, don't advance | |
1160 | // the input position. The next iteration will be processing the | |
1161 | // first real input character. | |
1162 | if (mode == RBBI_RUN) { | |
1163 | c = UTEXT_NEXT32(fText); | |
1164 | } else { | |
1165 | if (mode == RBBI_START) { | |
1166 | mode = RBBI_RUN; | |
1167 | } | |
1168 | } | |
1169 | ||
1170 | ||
b75a7d8f A |
1171 | } |
1172 | ||
374ca955 | 1173 | // The state machine is done. Check whether it found a match... |
b75a7d8f | 1174 | |
374ca955 A |
1175 | // If the iterator failed to advance in the match engine, force it ahead by one. |
1176 | // (This really indicates a defect in the break rules. They should always match | |
1177 | // at least one character.) | |
1178 | if (result == initialPosition) { | |
46f4442e | 1179 | UTEXT_SETNATIVEINDEX(fText, initialPosition); |
73c04bcf A |
1180 | UTEXT_NEXT32(fText); |
1181 | result = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
374ca955 | 1182 | } |
b75a7d8f | 1183 | |
374ca955 | 1184 | // Leave the iterator at our result position. |
46f4442e | 1185 | UTEXT_SETNATIVEINDEX(fText, result); |
73c04bcf A |
1186 | #ifdef RBBI_DEBUG |
1187 | if (fTrace) { | |
1188 | RBBIDebugPrintf("result = %d\n\n", result); | |
b75a7d8f | 1189 | } |
73c04bcf | 1190 | #endif |
b75a7d8f A |
1191 | return result; |
1192 | } | |
1193 | ||
1194 | ||
73c04bcf | 1195 | |
374ca955 A |
1196 | //----------------------------------------------------------------------------------- |
1197 | // | |
1198 | // handlePrevious() | |
1199 | // | |
73c04bcf A |
1200 | // Iterate backwards, according to the logic of the reverse rules. |
1201 | // This version handles the exact style backwards rules. | |
374ca955 A |
1202 | // |
1203 | // The logic of this function is very similar to handleNext(), above. | |
1204 | // | |
1205 | //----------------------------------------------------------------------------------- | |
1206 | int32_t RuleBasedBreakIterator::handlePrevious(const RBBIStateTable *statetable) { | |
73c04bcf | 1207 | int32_t state; |
4388f060 | 1208 | uint16_t category = 0; |
73c04bcf A |
1209 | RBBIRunMode mode; |
1210 | RBBIStateTableRow *row; | |
1211 | UChar32 c; | |
1212 | int32_t lookaheadStatus = 0; | |
1213 | int32_t result = 0; | |
1214 | int32_t initialPosition = 0; | |
1215 | int32_t lookaheadResult = 0; | |
1216 | UBool lookAheadHardBreak = (statetable->fFlags & RBBI_LOOKAHEAD_HARD_BREAK) != 0; | |
1217 | ||
1218 | #ifdef RBBI_DEBUG | |
1219 | if (fTrace) { | |
1220 | RBBIDebugPuts("Handle Previous pos char state category"); | |
1221 | } | |
1222 | #endif | |
1223 | ||
1224 | // handlePrevious() never gets the rule status. | |
1225 | // Flag the status as invalid; if the user ever asks for status, we will need | |
1226 | // to back up, then re-find the break position using handleNext(), which does | |
1227 | // get the status value. | |
374ca955 | 1228 | fLastStatusIndexValid = FALSE; |
73c04bcf | 1229 | fLastRuleStatusIndex = 0; |
374ca955 | 1230 | |
73c04bcf A |
1231 | // if we're already at the start of the text, return DONE. |
1232 | if (fText == NULL || fData == NULL || UTEXT_GETNATIVEINDEX(fText)==0) { | |
1233 | return BreakIterator::DONE; | |
1234 | } | |
374ca955 | 1235 | |
73c04bcf A |
1236 | // Set up the starting char. |
1237 | initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1238 | result = initialPosition; | |
1239 | c = UTEXT_PREVIOUS32(fText); | |
374ca955 | 1240 | |
73c04bcf A |
1241 | // Set the initial state for the state machine |
1242 | state = START_STATE; | |
374ca955 | 1243 | row = (RBBIStateTableRow *) |
73c04bcf A |
1244 | (statetable->fTableData + (statetable->fRowLen * state)); |
1245 | category = 3; | |
1246 | mode = RBBI_RUN; | |
1247 | if (statetable->fFlags & RBBI_BOF_REQUIRED) { | |
1248 | category = 2; | |
1249 | mode = RBBI_START; | |
374ca955 A |
1250 | } |
1251 | ||
374ca955 | 1252 | |
73c04bcf A |
1253 | // loop until we reach the start of the text or transition to state 0 |
1254 | // | |
374ca955 | 1255 | for (;;) { |
73c04bcf A |
1256 | if (c == U_SENTINEL) { |
1257 | // Reached end of input string. | |
729e4ab9 | 1258 | if (mode == RBBI_END) { |
73c04bcf A |
1259 | // We have already run the loop one last time with the |
1260 | // character set to the psueudo {eof} value. Now it is time | |
1261 | // to unconditionally bail out. | |
73c04bcf A |
1262 | if (lookaheadResult < result) { |
1263 | // We ran off the end of the string with a pending look-ahead match. | |
1264 | // Treat this as if the look-ahead condition had been met, and return | |
1265 | // the match at the / position from the look-ahead rule. | |
1266 | result = lookaheadResult; | |
1267 | lookaheadStatus = 0; | |
1268 | } else if (result == initialPosition) { | |
1269 | // Ran off start, no match found. | |
1270 | // move one index one (towards the start, since we are doing a previous()) | |
46f4442e | 1271 | UTEXT_SETNATIVEINDEX(fText, initialPosition); |
4388f060 | 1272 | (void)UTEXT_PREVIOUS32(fText); // TODO: shouldn't be necessary. We're already at beginning. Check. |
73c04bcf A |
1273 | } |
1274 | break; | |
374ca955 | 1275 | } |
73c04bcf A |
1276 | // Run the loop one last time with the fake end-of-input character category. |
1277 | mode = RBBI_END; | |
1278 | category = 1; | |
374ca955 A |
1279 | } |
1280 | ||
374ca955 | 1281 | // |
73c04bcf A |
1282 | // Get the char category. An incoming category of 1 or 2 means that |
1283 | // we are preset for doing the beginning or end of input, and | |
1284 | // that we shouldn't get a category from an actual text input character. | |
1285 | // | |
1286 | if (mode == RBBI_RUN) { | |
1287 | // look up the current character's character category, which tells us | |
1288 | // which column in the state table to look at. | |
1289 | // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned, | |
1290 | // not the size of the character going in, which is a UChar32. | |
1291 | // | |
1292 | UTRIE_GET16(&fData->fTrie, c, category); | |
1293 | ||
1294 | // Check the dictionary bit in the character's category. | |
1295 | // Counter is only used by dictionary based iterators (subclasses). | |
1296 | // Chars that need to be handled by a dictionary have a flag bit set | |
1297 | // in their category values. | |
1298 | // | |
1299 | if ((category & 0x4000) != 0) { | |
1300 | fDictionaryCharCount++; | |
1301 | // And off the dictionary flag bit. | |
1302 | category &= ~0x4000; | |
1303 | } | |
374ca955 A |
1304 | } |
1305 | ||
1306 | #ifdef RBBI_DEBUG | |
1307 | if (fTrace) { | |
73c04bcf | 1308 | RBBIDebugPrintf(" %4d ", (int32_t)utext_getNativeIndex(fText)); |
374ca955 A |
1309 | if (0x20<=c && c<0x7f) { |
1310 | RBBIDebugPrintf("\"%c\" ", c); | |
1311 | } else { | |
1312 | RBBIDebugPrintf("%5x ", c); | |
1313 | } | |
1314 | RBBIDebugPrintf("%3d %3d\n", state, category); | |
1315 | } | |
1316 | #endif | |
1317 | ||
73c04bcf A |
1318 | // State Transition - move machine to its next state |
1319 | // | |
4388f060 A |
1320 | |
1321 | // Note: fNextState is defined as uint16_t[2], but we are casting | |
1322 | // a generated RBBI table to RBBIStateTableRow and some tables | |
1323 | // actually have more than 2 categories. | |
1324 | U_ASSERT(category<fData->fHeader->fCatCount); | |
1325 | state = row->fNextState[category]; /*Not accessing beyond memory*/ | |
374ca955 | 1326 | row = (RBBIStateTableRow *) |
73c04bcf | 1327 | (statetable->fTableData + (statetable->fRowLen * state)); |
374ca955 A |
1328 | |
1329 | if (row->fAccepting == -1) { | |
73c04bcf A |
1330 | // Match found, common case. |
1331 | result = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
374ca955 A |
1332 | } |
1333 | ||
1334 | if (row->fLookAhead != 0) { | |
1335 | if (lookaheadStatus != 0 | |
1336 | && row->fAccepting == lookaheadStatus) { | |
73c04bcf | 1337 | // Lookahead match is completed. |
374ca955 | 1338 | result = lookaheadResult; |
374ca955 | 1339 | lookaheadStatus = 0; |
73c04bcf | 1340 | // TODO: make a standalone hard break in a rule work. |
374ca955 | 1341 | if (lookAheadHardBreak) { |
46f4442e | 1342 | UTEXT_SETNATIVEINDEX(fText, result); |
374ca955 A |
1343 | return result; |
1344 | } | |
73c04bcf A |
1345 | // Look-ahead completed, but other rules may match further. Continue on |
1346 | // TODO: junk this feature? I don't think it's used anywhwere. | |
374ca955 A |
1347 | goto continueOn; |
1348 | } | |
1349 | ||
73c04bcf A |
1350 | int32_t r = (int32_t)UTEXT_GETNATIVEINDEX(fText); |
1351 | lookaheadResult = r; | |
1352 | lookaheadStatus = row->fLookAhead; | |
374ca955 A |
1353 | goto continueOn; |
1354 | } | |
1355 | ||
374ca955 | 1356 | |
73c04bcf A |
1357 | if (row->fAccepting != 0) { |
1358 | // Because this is an accepting state, any in-progress look-ahead match | |
1359 | // is no longer relavant. Clear out the pending lookahead status. | |
1360 | lookaheadStatus = 0; | |
1361 | } | |
374ca955 A |
1362 | |
1363 | continueOn: | |
1364 | if (state == STOP_STATE) { | |
73c04bcf A |
1365 | // This is the normal exit from the lookup state machine. |
1366 | // We have advanced through the string until it is certain that no | |
1367 | // longer match is possible, no matter what characters follow. | |
374ca955 A |
1368 | break; |
1369 | } | |
1370 | ||
73c04bcf A |
1371 | // Move (backwards) to the next character to process. |
1372 | // If this is a beginning-of-input loop iteration, don't advance | |
1373 | // the input position. The next iteration will be processing the | |
1374 | // first real input character. | |
1375 | if (mode == RBBI_RUN) { | |
1376 | c = UTEXT_PREVIOUS32(fText); | |
1377 | } else { | |
1378 | if (mode == RBBI_START) { | |
1379 | mode = RBBI_RUN; | |
1380 | } | |
1381 | } | |
374ca955 A |
1382 | } |
1383 | ||
73c04bcf A |
1384 | // The state machine is done. Check whether it found a match... |
1385 | ||
1386 | // If the iterator failed to advance in the match engine, force it ahead by one. | |
1387 | // (This really indicates a defect in the break rules. They should always match | |
1388 | // at least one character.) | |
1389 | if (result == initialPosition) { | |
46f4442e | 1390 | UTEXT_SETNATIVEINDEX(fText, initialPosition); |
73c04bcf A |
1391 | UTEXT_PREVIOUS32(fText); |
1392 | result = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1393 | } | |
374ca955 | 1394 | |
73c04bcf | 1395 | // Leave the iterator at our result position. |
46f4442e | 1396 | UTEXT_SETNATIVEINDEX(fText, result); |
73c04bcf A |
1397 | #ifdef RBBI_DEBUG |
1398 | if (fTrace) { | |
1399 | RBBIDebugPrintf("result = %d\n\n", result); | |
1400 | } | |
1401 | #endif | |
374ca955 A |
1402 | return result; |
1403 | } | |
1404 | ||
1405 | ||
b75a7d8f A |
1406 | void |
1407 | RuleBasedBreakIterator::reset() | |
1408 | { | |
73c04bcf A |
1409 | if (fCachedBreakPositions) { |
1410 | uprv_free(fCachedBreakPositions); | |
1411 | } | |
1412 | fCachedBreakPositions = NULL; | |
1413 | fNumCachedBreakPositions = 0; | |
1414 | fDictionaryCharCount = 0; | |
1415 | fPositionInCache = 0; | |
b75a7d8f A |
1416 | } |
1417 | ||
1418 | ||
1419 | ||
1420 | //------------------------------------------------------------------------------- | |
1421 | // | |
1422 | // getRuleStatus() Return the break rule tag associated with the current | |
1423 | // iterator position. If the iterator arrived at its current | |
1424 | // position by iterating forwards, the value will have been | |
1425 | // cached by the handleNext() function. | |
1426 | // | |
1427 | // If no cached status value is available, the status is | |
1428 | // found by doing a previous() followed by a next(), which | |
1429 | // leaves the iterator where it started, and computes the | |
1430 | // status while doing the next(). | |
1431 | // | |
1432 | //------------------------------------------------------------------------------- | |
374ca955 A |
1433 | void RuleBasedBreakIterator::makeRuleStatusValid() { |
1434 | if (fLastStatusIndexValid == FALSE) { | |
b75a7d8f | 1435 | // No cached status is available. |
73c04bcf | 1436 | if (fText == NULL || current() == 0) { |
b75a7d8f | 1437 | // At start of text, or there is no text. Status is always zero. |
374ca955 A |
1438 | fLastRuleStatusIndex = 0; |
1439 | fLastStatusIndexValid = TRUE; | |
b75a7d8f A |
1440 | } else { |
1441 | // Not at start of text. Find status the tedious way. | |
1442 | int32_t pa = current(); | |
374ca955 | 1443 | previous(); |
73c04bcf A |
1444 | if (fNumCachedBreakPositions > 0) { |
1445 | reset(); // Blow off the dictionary cache | |
1446 | } | |
374ca955 A |
1447 | int32_t pb = next(); |
1448 | if (pa != pb) { | |
1449 | // note: the if (pa != pb) test is here only to eliminate warnings for | |
1450 | // unused local variables on gcc. Logically, it isn't needed. | |
1451 | U_ASSERT(pa == pb); | |
1452 | } | |
b75a7d8f A |
1453 | } |
1454 | } | |
374ca955 | 1455 | U_ASSERT(fLastRuleStatusIndex >= 0 && fLastRuleStatusIndex < fData->fStatusMaxIdx); |
b75a7d8f A |
1456 | } |
1457 | ||
1458 | ||
374ca955 A |
1459 | int32_t RuleBasedBreakIterator::getRuleStatus() const { |
1460 | RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this; | |
1461 | nonConstThis->makeRuleStatusValid(); | |
1462 | ||
1463 | // fLastRuleStatusIndex indexes to the start of the appropriate status record | |
1464 | // (the number of status values.) | |
1465 | // This function returns the last (largest) of the array of status values. | |
1466 | int32_t idx = fLastRuleStatusIndex + fData->fRuleStatusTable[fLastRuleStatusIndex]; | |
1467 | int32_t tagVal = fData->fRuleStatusTable[idx]; | |
1468 | ||
1469 | return tagVal; | |
1470 | } | |
1471 | ||
1472 | ||
1473 | ||
1474 | ||
1475 | int32_t RuleBasedBreakIterator::getRuleStatusVec( | |
1476 | int32_t *fillInVec, int32_t capacity, UErrorCode &status) | |
1477 | { | |
1478 | if (U_FAILURE(status)) { | |
1479 | return 0; | |
1480 | } | |
1481 | ||
1482 | RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this; | |
1483 | nonConstThis->makeRuleStatusValid(); | |
1484 | int32_t numVals = fData->fRuleStatusTable[fLastRuleStatusIndex]; | |
1485 | int32_t numValsToCopy = numVals; | |
1486 | if (numVals > capacity) { | |
1487 | status = U_BUFFER_OVERFLOW_ERROR; | |
1488 | numValsToCopy = capacity; | |
1489 | } | |
1490 | int i; | |
1491 | for (i=0; i<numValsToCopy; i++) { | |
1492 | fillInVec[i] = fData->fRuleStatusTable[fLastRuleStatusIndex + i + 1]; | |
1493 | } | |
1494 | return numVals; | |
1495 | } | |
1496 | ||
1497 | ||
1498 | ||
b75a7d8f A |
1499 | //------------------------------------------------------------------------------- |
1500 | // | |
1501 | // getBinaryRules Access to the compiled form of the rules, | |
1502 | // for use by build system tools that save the data | |
1503 | // for standard iterator types. | |
1504 | // | |
1505 | //------------------------------------------------------------------------------- | |
1506 | const uint8_t *RuleBasedBreakIterator::getBinaryRules(uint32_t &length) { | |
1507 | const uint8_t *retPtr = NULL; | |
1508 | length = 0; | |
1509 | ||
1510 | if (fData != NULL) { | |
1511 | retPtr = (const uint8_t *)fData->fHeader; | |
1512 | length = fData->fHeader->fLength; | |
1513 | } | |
1514 | return retPtr; | |
1515 | } | |
1516 | ||
1517 | ||
1518 | ||
1519 | ||
1520 | //------------------------------------------------------------------------------- | |
1521 | // | |
1522 | // BufferClone TODO: In my (Andy) opinion, this function should be deprecated. | |
1523 | // Saving one heap allocation isn't worth the trouble. | |
1524 | // Cloning shouldn't be done in tight loops, and | |
1525 | // making the clone copy involves other heap operations anyway. | |
1526 | // And the application code for correctly dealing with buffer | |
1527 | // size problems and the eventual object destruction is ugly. | |
1528 | // | |
1529 | //------------------------------------------------------------------------------- | |
1530 | BreakIterator * RuleBasedBreakIterator::createBufferClone(void *stackBuffer, | |
1531 | int32_t &bufferSize, | |
1532 | UErrorCode &status) | |
1533 | { | |
1534 | if (U_FAILURE(status)){ | |
1535 | return NULL; | |
1536 | } | |
1537 | ||
1538 | // | |
1539 | // If user buffer size is zero this is a preflight operation to | |
1540 | // obtain the needed buffer size, allowing for worst case misalignment. | |
1541 | // | |
1542 | if (bufferSize == 0) { | |
1543 | bufferSize = sizeof(RuleBasedBreakIterator) + U_ALIGNMENT_OFFSET_UP(0); | |
1544 | return NULL; | |
1545 | } | |
1546 | ||
1547 | ||
1548 | // | |
1549 | // Check the alignment and size of the user supplied buffer. | |
1550 | // Allocate heap memory if the user supplied memory is insufficient. | |
1551 | // | |
1552 | char *buf = (char *)stackBuffer; | |
1553 | uint32_t s = bufferSize; | |
1554 | ||
1555 | if (stackBuffer == NULL) { | |
1556 | s = 0; // Ignore size, force allocation if user didn't give us a buffer. | |
1557 | } | |
1558 | if (U_ALIGNMENT_OFFSET(stackBuffer) != 0) { | |
1559 | uint32_t offsetUp = (uint32_t)U_ALIGNMENT_OFFSET_UP(buf); | |
1560 | s -= offsetUp; | |
1561 | buf += offsetUp; | |
1562 | } | |
1563 | if (s < sizeof(RuleBasedBreakIterator)) { | |
73c04bcf A |
1564 | // Not enough room in the caller-supplied buffer. |
1565 | // Do a plain-vanilla heap based clone and return that, along with | |
1566 | // a warning that the clone was allocated. | |
1567 | RuleBasedBreakIterator *clonedBI = new RuleBasedBreakIterator(*this); | |
1568 | if (clonedBI == 0) { | |
b75a7d8f | 1569 | status = U_MEMORY_ALLOCATION_ERROR; |
73c04bcf A |
1570 | } else { |
1571 | status = U_SAFECLONE_ALLOCATED_WARNING; | |
b75a7d8f | 1572 | } |
73c04bcf | 1573 | return clonedBI; |
b75a7d8f A |
1574 | } |
1575 | ||
1576 | // | |
73c04bcf | 1577 | // Clone the source BI into the caller-supplied buffer. |
b75a7d8f | 1578 | // |
4388f060 | 1579 | RuleBasedBreakIterator *clone = new(buf) RuleBasedBreakIterator(*this); |
73c04bcf | 1580 | clone->fBufferClone = TRUE; // Flag to prevent deleting storage on close (From C code) |
b75a7d8f A |
1581 | |
1582 | return clone; | |
1583 | } | |
1584 | ||
1585 | ||
b75a7d8f A |
1586 | //------------------------------------------------------------------------------- |
1587 | // | |
1588 | // isDictionaryChar Return true if the category lookup for this char | |
1589 | // indicates that it is in the set of dictionary lookup | |
1590 | // chars. | |
1591 | // | |
1592 | // This function is intended for use by dictionary based | |
1593 | // break iterators. | |
1594 | // | |
1595 | //------------------------------------------------------------------------------- | |
73c04bcf | 1596 | /*UBool RuleBasedBreakIterator::isDictionaryChar(UChar32 c) { |
b75a7d8f A |
1597 | if (fData == NULL) { |
1598 | return FALSE; | |
1599 | } | |
1600 | uint16_t category; | |
1601 | UTRIE_GET16(&fData->fTrie, c, category); | |
1602 | return (category & 0x4000) != 0; | |
73c04bcf A |
1603 | }*/ |
1604 | ||
1605 | ||
1606 | //------------------------------------------------------------------------------- | |
1607 | // | |
1608 | // checkDictionary This function handles all processing of characters in | |
1609 | // the "dictionary" set. It will determine the appropriate | |
1610 | // course of action, and possibly set up a cache in the | |
1611 | // process. | |
1612 | // | |
1613 | //------------------------------------------------------------------------------- | |
1614 | int32_t RuleBasedBreakIterator::checkDictionary(int32_t startPos, | |
1615 | int32_t endPos, | |
1616 | UBool reverse) { | |
1617 | // Reset the old break cache first. | |
73c04bcf A |
1618 | reset(); |
1619 | ||
51004dcb A |
1620 | // note: code segment below assumes that dictionary chars are in the |
1621 | // startPos-endPos range | |
1622 | // value returned should be next character in sequence | |
1623 | if ((endPos - startPos) <= 1) { | |
73c04bcf A |
1624 | return (reverse ? startPos : endPos); |
1625 | } | |
1626 | ||
729e4ab9 A |
1627 | // Bug 5532. The dictionary code will crash if the input text is UTF-8 |
1628 | // because native indexes are different from UTF-16 indexes. | |
1629 | // Temporary hack: skip dictionary lookup for UTF-8 encoded text. | |
1630 | // It wont give the right breaks, but it's better than a crash. | |
1631 | // | |
1632 | // Check the type of the UText by checking its pFuncs field, which | |
1633 | // is UText's function dispatch table. It will be the same for all | |
1634 | // UTF-8 UTexts and different for any other UText type. | |
1635 | // | |
1636 | // We have no other type of UText available with non-UTF-16 native indexing. | |
1637 | // This whole check will go away once the dictionary code is fixed. | |
1638 | static const void *utext_utf8Funcs; | |
1639 | if (utext_utf8Funcs == NULL) { | |
1640 | // Cache the UTF-8 UText function pointer value. | |
1641 | UErrorCode status = U_ZERO_ERROR; | |
1642 | UText tempUText = UTEXT_INITIALIZER; | |
1643 | utext_openUTF8(&tempUText, NULL, 0, &status); | |
1644 | utext_utf8Funcs = tempUText.pFuncs; | |
1645 | utext_close(&tempUText); | |
1646 | } | |
1647 | if (fText->pFuncs == utext_utf8Funcs) { | |
1648 | return (reverse ? startPos : endPos); | |
1649 | } | |
1650 | ||
73c04bcf A |
1651 | // Starting from the starting point, scan towards the proposed result, |
1652 | // looking for the first dictionary character (which may be the one | |
1653 | // we're on, if we're starting in the middle of a range). | |
1654 | utext_setNativeIndex(fText, reverse ? endPos : startPos); | |
1655 | if (reverse) { | |
1656 | UTEXT_PREVIOUS32(fText); | |
1657 | } | |
1658 | ||
1659 | int32_t rangeStart = startPos; | |
1660 | int32_t rangeEnd = endPos; | |
1661 | ||
1662 | uint16_t category; | |
1663 | int32_t current; | |
1664 | UErrorCode status = U_ZERO_ERROR; | |
1665 | UStack breaks(status); | |
1666 | int32_t foundBreakCount = 0; | |
1667 | UChar32 c = utext_current32(fText); | |
1668 | ||
1669 | UTRIE_GET16(&fData->fTrie, c, category); | |
1670 | ||
1671 | // Is the character we're starting on a dictionary character? If so, we | |
1672 | // need to back up to include the entire run; otherwise the results of | |
1673 | // the break algorithm will differ depending on where we start. Since | |
1674 | // the result is cached and there is typically a non-dictionary break | |
1675 | // within a small number of words, there should be little performance impact. | |
1676 | if (category & 0x4000) { | |
1677 | if (reverse) { | |
1678 | do { | |
1679 | utext_next32(fText); // TODO: recast to work directly with postincrement. | |
1680 | c = utext_current32(fText); | |
1681 | UTRIE_GET16(&fData->fTrie, c, category); | |
1682 | } while (c != U_SENTINEL && (category & 0x4000)); | |
1683 | // Back up to the last dictionary character | |
1684 | rangeEnd = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1685 | if (c == U_SENTINEL) { | |
1686 | // c = fText->last32(); | |
1687 | // TODO: why was this if needed? | |
1688 | c = UTEXT_PREVIOUS32(fText); | |
1689 | } | |
1690 | else { | |
1691 | c = UTEXT_PREVIOUS32(fText); | |
1692 | } | |
1693 | } | |
1694 | else { | |
1695 | do { | |
1696 | c = UTEXT_PREVIOUS32(fText); | |
1697 | UTRIE_GET16(&fData->fTrie, c, category); | |
1698 | } | |
1699 | while (c != U_SENTINEL && (category & 0x4000)); | |
1700 | // Back up to the last dictionary character | |
1701 | if (c == U_SENTINEL) { | |
1702 | // c = fText->first32(); | |
1703 | c = utext_current32(fText); | |
1704 | } | |
1705 | else { | |
1706 | utext_next32(fText); | |
1707 | c = utext_current32(fText); | |
1708 | } | |
1709 | rangeStart = (int32_t)UTEXT_GETNATIVEINDEX(fText);; | |
1710 | } | |
1711 | UTRIE_GET16(&fData->fTrie, c, category); | |
1712 | } | |
1713 | ||
1714 | // Loop through the text, looking for ranges of dictionary characters. | |
1715 | // For each span, find the appropriate break engine, and ask it to find | |
1716 | // any breaks within the span. | |
1717 | // Note: we always do this in the forward direction, so that the break | |
1718 | // cache is built in the right order. | |
1719 | if (reverse) { | |
1720 | utext_setNativeIndex(fText, rangeStart); | |
1721 | c = utext_current32(fText); | |
1722 | UTRIE_GET16(&fData->fTrie, c, category); | |
1723 | } | |
1724 | while(U_SUCCESS(status)) { | |
1725 | while((current = (int32_t)UTEXT_GETNATIVEINDEX(fText)) < rangeEnd && (category & 0x4000) == 0) { | |
1726 | utext_next32(fText); // TODO: tweak for post-increment operation | |
1727 | c = utext_current32(fText); | |
1728 | UTRIE_GET16(&fData->fTrie, c, category); | |
1729 | } | |
1730 | if (current >= rangeEnd) { | |
1731 | break; | |
1732 | } | |
1733 | ||
1734 | // We now have a dictionary character. Get the appropriate language object | |
1735 | // to deal with it. | |
1736 | const LanguageBreakEngine *lbe = getLanguageBreakEngine(c); | |
1737 | ||
1738 | // Ask the language object if there are any breaks. It will leave the text | |
1739 | // pointer on the other side of its range, ready to search for the next one. | |
1740 | if (lbe != NULL) { | |
1741 | foundBreakCount += lbe->findBreaks(fText, rangeStart, rangeEnd, FALSE, fBreakType, breaks); | |
1742 | } | |
1743 | ||
1744 | // Reload the loop variables for the next go-round | |
1745 | c = utext_current32(fText); | |
1746 | UTRIE_GET16(&fData->fTrie, c, category); | |
1747 | } | |
1748 | ||
1749 | // If we found breaks, build a new break cache. The first and last entries must | |
1750 | // be the original starting and ending position. | |
1751 | if (foundBreakCount > 0) { | |
1752 | int32_t totalBreaks = foundBreakCount; | |
1753 | if (startPos < breaks.elementAti(0)) { | |
1754 | totalBreaks += 1; | |
1755 | } | |
1756 | if (endPos > breaks.peeki()) { | |
1757 | totalBreaks += 1; | |
1758 | } | |
1759 | fCachedBreakPositions = (int32_t *)uprv_malloc(totalBreaks * sizeof(int32_t)); | |
1760 | if (fCachedBreakPositions != NULL) { | |
1761 | int32_t out = 0; | |
1762 | fNumCachedBreakPositions = totalBreaks; | |
1763 | if (startPos < breaks.elementAti(0)) { | |
1764 | fCachedBreakPositions[out++] = startPos; | |
1765 | } | |
1766 | for (int32_t i = 0; i < foundBreakCount; ++i) { | |
1767 | fCachedBreakPositions[out++] = breaks.elementAti(i); | |
1768 | } | |
1769 | if (endPos > fCachedBreakPositions[out-1]) { | |
1770 | fCachedBreakPositions[out] = endPos; | |
1771 | } | |
1772 | // If there are breaks, then by definition, we are replacing the original | |
1773 | // proposed break by one of the breaks we found. Use following() and | |
1774 | // preceding() to do the work. They should never recurse in this case. | |
1775 | if (reverse) { | |
51004dcb | 1776 | return preceding(endPos); |
73c04bcf A |
1777 | } |
1778 | else { | |
1779 | return following(startPos); | |
1780 | } | |
1781 | } | |
1782 | // If the allocation failed, just fall through to the "no breaks found" case. | |
1783 | } | |
1784 | ||
1785 | // If we get here, there were no language-based breaks. Set the text pointer | |
1786 | // to the original proposed break. | |
1787 | utext_setNativeIndex(fText, reverse ? startPos : endPos); | |
1788 | return (reverse ? startPos : endPos); | |
1789 | } | |
1790 | ||
73c04bcf A |
1791 | U_NAMESPACE_END |
1792 | ||
1793 | // defined in ucln_cmn.h | |
1794 | ||
4388f060 | 1795 | static icu::UStack *gLanguageBreakFactories = NULL; |
46f4442e | 1796 | |
73c04bcf A |
1797 | /** |
1798 | * Release all static memory held by breakiterator. | |
1799 | */ | |
1800 | U_CDECL_BEGIN | |
1801 | static UBool U_CALLCONV breakiterator_cleanup_dict(void) { | |
1802 | if (gLanguageBreakFactories) { | |
1803 | delete gLanguageBreakFactories; | |
1804 | gLanguageBreakFactories = NULL; | |
1805 | } | |
1806 | return TRUE; | |
b75a7d8f | 1807 | } |
73c04bcf | 1808 | U_CDECL_END |
b75a7d8f | 1809 | |
73c04bcf A |
1810 | U_CDECL_BEGIN |
1811 | static void U_CALLCONV _deleteFactory(void *obj) { | |
4388f060 | 1812 | delete (icu::LanguageBreakFactory *) obj; |
73c04bcf A |
1813 | } |
1814 | U_CDECL_END | |
1815 | U_NAMESPACE_BEGIN | |
b75a7d8f | 1816 | |
73c04bcf A |
1817 | static const LanguageBreakEngine* |
1818 | getLanguageBreakEngineFromFactory(UChar32 c, int32_t breakType) | |
1819 | { | |
1820 | UBool needsInit; | |
1821 | UErrorCode status = U_ZERO_ERROR; | |
46f4442e | 1822 | UMTX_CHECK(NULL, (UBool)(gLanguageBreakFactories == NULL), needsInit); |
73c04bcf A |
1823 | |
1824 | if (needsInit) { | |
1825 | UStack *factories = new UStack(_deleteFactory, NULL, status); | |
46f4442e | 1826 | if (factories != NULL && U_SUCCESS(status)) { |
73c04bcf A |
1827 | ICULanguageBreakFactory *builtIn = new ICULanguageBreakFactory(status); |
1828 | factories->push(builtIn, status); | |
1829 | #ifdef U_LOCAL_SERVICE_HOOK | |
1830 | LanguageBreakFactory *extra = (LanguageBreakFactory *)uprv_svc_hook("languageBreakFactory", &status); | |
1831 | if (extra != NULL) { | |
1832 | factories->push(extra, status); | |
1833 | } | |
1834 | #endif | |
1835 | } | |
1836 | umtx_lock(NULL); | |
1837 | if (gLanguageBreakFactories == NULL) { | |
1838 | gLanguageBreakFactories = factories; | |
1839 | factories = NULL; | |
1840 | ucln_common_registerCleanup(UCLN_COMMON_BREAKITERATOR_DICT, breakiterator_cleanup_dict); | |
1841 | } | |
1842 | umtx_unlock(NULL); | |
1843 | delete factories; | |
1844 | } | |
1845 | ||
1846 | if (gLanguageBreakFactories == NULL) { | |
1847 | return NULL; | |
1848 | } | |
1849 | ||
1850 | int32_t i = gLanguageBreakFactories->size(); | |
1851 | const LanguageBreakEngine *lbe = NULL; | |
1852 | while (--i >= 0) { | |
1853 | LanguageBreakFactory *factory = (LanguageBreakFactory *)(gLanguageBreakFactories->elementAt(i)); | |
1854 | lbe = factory->getEngineFor(c, breakType); | |
1855 | if (lbe != NULL) { | |
1856 | break; | |
1857 | } | |
1858 | } | |
1859 | return lbe; | |
1860 | } | |
1861 | ||
1862 | ||
1863 | //------------------------------------------------------------------------------- | |
1864 | // | |
1865 | // getLanguageBreakEngine Find an appropriate LanguageBreakEngine for the | |
51004dcb | 1866 | // the character c. |
73c04bcf A |
1867 | // |
1868 | //------------------------------------------------------------------------------- | |
1869 | const LanguageBreakEngine * | |
1870 | RuleBasedBreakIterator::getLanguageBreakEngine(UChar32 c) { | |
1871 | const LanguageBreakEngine *lbe = NULL; | |
1872 | UErrorCode status = U_ZERO_ERROR; | |
1873 | ||
1874 | if (fLanguageBreakEngines == NULL) { | |
1875 | fLanguageBreakEngines = new UStack(status); | |
46f4442e | 1876 | if (fLanguageBreakEngines == NULL || U_FAILURE(status)) { |
73c04bcf A |
1877 | delete fLanguageBreakEngines; |
1878 | fLanguageBreakEngines = 0; | |
1879 | return NULL; | |
1880 | } | |
1881 | } | |
1882 | ||
1883 | int32_t i = fLanguageBreakEngines->size(); | |
1884 | while (--i >= 0) { | |
1885 | lbe = (const LanguageBreakEngine *)(fLanguageBreakEngines->elementAt(i)); | |
1886 | if (lbe->handles(c, fBreakType)) { | |
1887 | return lbe; | |
1888 | } | |
1889 | } | |
1890 | ||
1891 | // No existing dictionary took the character. See if a factory wants to | |
1892 | // give us a new LanguageBreakEngine for this character. | |
1893 | lbe = getLanguageBreakEngineFromFactory(c, fBreakType); | |
1894 | ||
1895 | // If we got one, use it and push it on our stack. | |
1896 | if (lbe != NULL) { | |
1897 | fLanguageBreakEngines->push((void *)lbe, status); | |
1898 | // Even if we can't remember it, we can keep looking it up, so | |
1899 | // return it even if the push fails. | |
1900 | return lbe; | |
1901 | } | |
1902 | ||
1903 | // No engine is forthcoming for this character. Add it to the | |
1904 | // reject set. Create the reject break engine if needed. | |
1905 | if (fUnhandledBreakEngine == NULL) { | |
1906 | fUnhandledBreakEngine = new UnhandledEngine(status); | |
1907 | if (U_SUCCESS(status) && fUnhandledBreakEngine == NULL) { | |
1908 | status = U_MEMORY_ALLOCATION_ERROR; | |
1909 | } | |
1910 | // Put it last so that scripts for which we have an engine get tried | |
1911 | // first. | |
1912 | fLanguageBreakEngines->insertElementAt(fUnhandledBreakEngine, 0, status); | |
1913 | // If we can't insert it, or creation failed, get rid of it | |
1914 | if (U_FAILURE(status)) { | |
1915 | delete fUnhandledBreakEngine; | |
1916 | fUnhandledBreakEngine = 0; | |
1917 | return NULL; | |
1918 | } | |
1919 | } | |
1920 | ||
1921 | // Tell the reject engine about the character; at its discretion, it may | |
1922 | // add more than just the one character. | |
1923 | fUnhandledBreakEngine->handleCharacter(c, fBreakType); | |
1924 | ||
1925 | return fUnhandledBreakEngine; | |
1926 | } | |
1927 | ||
1928 | ||
1929 | ||
1930 | /*int32_t RuleBasedBreakIterator::getBreakType() const { | |
1931 | return fBreakType; | |
1932 | }*/ | |
1933 | ||
1934 | void RuleBasedBreakIterator::setBreakType(int32_t type) { | |
1935 | fBreakType = type; | |
1936 | reset(); | |
1937 | } | |
b75a7d8f A |
1938 | |
1939 | U_NAMESPACE_END | |
1940 | ||
1941 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |