]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | /* |
2 | *************************************************************************** | |
73c04bcf | 3 | * Copyright (C) 1999-2006 International Business Machines Corporation * |
b75a7d8f A |
4 | * and others. All rights reserved. * |
5 | *************************************************************************** | |
6 | */ | |
374ca955 A |
7 | // |
8 | // file: rbbi.c Contains the implementation of the rule based break iterator | |
9 | // runtime engine and the API implementation for | |
10 | // class RuleBasedBreakIterator | |
11 | // | |
b75a7d8f A |
12 | |
13 | #include "unicode/utypes.h" | |
14 | ||
15 | #if !UCONFIG_NO_BREAK_ITERATION | |
16 | ||
17 | #include "unicode/rbbi.h" | |
18 | #include "unicode/schriter.h" | |
73c04bcf | 19 | #include "unicode/uchriter.h" |
b75a7d8f | 20 | #include "unicode/udata.h" |
374ca955 | 21 | #include "unicode/uclean.h" |
b75a7d8f A |
22 | #include "rbbidata.h" |
23 | #include "rbbirb.h" | |
24 | #include "cmemory.h" | |
25 | #include "cstring.h" | |
73c04bcf A |
26 | #include "mutex.h" |
27 | #include "ucln_cmn.h" | |
28 | #include "brkeng.h" | |
b75a7d8f A |
29 | |
30 | #include "uassert.h" | |
73c04bcf A |
31 | #include "uvector.h" |
32 | ||
33 | // if U_LOCAL_SERVICE_HOOK is defined, then localsvc.cpp is expected to be included. | |
34 | #if U_LOCAL_SERVICE_HOOK | |
35 | #include "localsvc.h" | |
36 | #endif | |
37 | ||
38 | #ifdef RBBI_DEBUG | |
39 | static UBool fTrace = FALSE; | |
40 | #endif | |
b75a7d8f A |
41 | |
42 | U_NAMESPACE_BEGIN | |
43 | ||
44 | ||
45 | static const int16_t START_STATE = 1; // The state number of the starting state | |
46 | static const int16_t STOP_STATE = 0; // The state-transition value indicating "stop" | |
47 | ||
374ca955 A |
48 | |
49 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator) | |
b75a7d8f A |
50 | |
51 | ||
52 | //======================================================================= | |
53 | // constructors | |
54 | //======================================================================= | |
55 | ||
56 | /** | |
57 | * Constructs a RuleBasedBreakIterator that uses the already-created | |
58 | * tables object that is passed in as a parameter. | |
59 | */ | |
60 | RuleBasedBreakIterator::RuleBasedBreakIterator(RBBIDataHeader* data, UErrorCode &status) | |
61 | { | |
62 | init(); | |
374ca955 | 63 | fData = new RBBIDataWrapper(data, status); // status checked in constructor |
b75a7d8f | 64 | if (U_FAILURE(status)) {return;} |
b75a7d8f A |
65 | if(fData == 0) { |
66 | status = U_MEMORY_ALLOCATION_ERROR; | |
67 | return; | |
68 | } | |
69 | } | |
70 | ||
71 | //------------------------------------------------------------------------------- | |
72 | // | |
73 | // Constructor from a UDataMemory handle to precompiled break rules | |
74 | // stored in an ICU data file. | |
75 | // | |
76 | //------------------------------------------------------------------------------- | |
77 | RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UErrorCode &status) | |
78 | { | |
79 | init(); | |
374ca955 | 80 | fData = new RBBIDataWrapper(udm, status); // status checked in constructor |
b75a7d8f | 81 | if (U_FAILURE(status)) {return;} |
b75a7d8f A |
82 | if(fData == 0) { |
83 | status = U_MEMORY_ALLOCATION_ERROR; | |
84 | return; | |
85 | } | |
86 | } | |
87 | ||
88 | ||
89 | ||
90 | //------------------------------------------------------------------------------- | |
91 | // | |
92 | // Constructor from a set of rules supplied as a string. | |
93 | // | |
94 | //------------------------------------------------------------------------------- | |
95 | RuleBasedBreakIterator::RuleBasedBreakIterator( const UnicodeString &rules, | |
96 | UParseError &parseError, | |
97 | UErrorCode &status) | |
98 | { | |
99 | init(); | |
100 | if (U_FAILURE(status)) {return;} | |
101 | RuleBasedBreakIterator *bi = (RuleBasedBreakIterator *) | |
102 | RBBIRuleBuilder::createRuleBasedBreakIterator(rules, parseError, status); | |
103 | // Note: This is a bit awkward. The RBBI ruleBuilder has a factory method that | |
104 | // creates and returns a complete RBBI. From here, in a constructor, we | |
105 | // can't just return the object created by the builder factory, hence | |
106 | // the assignment of the factory created object to "this". | |
107 | if (U_SUCCESS(status)) { | |
108 | *this = *bi; | |
109 | delete bi; | |
110 | } | |
111 | } | |
112 | ||
113 | ||
114 | //------------------------------------------------------------------------------- | |
115 | // | |
116 | // Default Constructor. Create an empty shell that can be set up later. | |
117 | // Used when creating a RuleBasedBreakIterator from a set | |
118 | // of rules. | |
119 | //------------------------------------------------------------------------------- | |
120 | RuleBasedBreakIterator::RuleBasedBreakIterator() { | |
121 | init(); | |
122 | } | |
123 | ||
124 | ||
125 | //------------------------------------------------------------------------------- | |
126 | // | |
127 | // Copy constructor. Will produce a break iterator with the same behavior, | |
128 | // and which iterates over the same text, as the one passed in. | |
129 | // | |
130 | //------------------------------------------------------------------------------- | |
131 | RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator& other) | |
132 | : BreakIterator(other) | |
133 | { | |
134 | this->init(); | |
135 | *this = other; | |
136 | } | |
137 | ||
138 | ||
139 | /** | |
140 | * Destructor | |
141 | */ | |
142 | RuleBasedBreakIterator::~RuleBasedBreakIterator() { | |
73c04bcf A |
143 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { |
144 | // fCharIter was adopted from the outside. | |
145 | delete fCharIter; | |
146 | } | |
147 | fCharIter = NULL; | |
148 | delete fSCharIter; | |
149 | fCharIter = NULL; | |
150 | delete fDCharIter; | |
151 | fDCharIter = NULL; | |
152 | ||
153 | utext_close(fText); | |
154 | ||
b75a7d8f A |
155 | if (fData != NULL) { |
156 | fData->removeReference(); | |
157 | fData = NULL; | |
158 | } | |
73c04bcf A |
159 | if (fCachedBreakPositions) { |
160 | uprv_free(fCachedBreakPositions); | |
161 | fCachedBreakPositions = NULL; | |
162 | } | |
163 | if (fLanguageBreakEngines) { | |
164 | delete fLanguageBreakEngines; | |
165 | fLanguageBreakEngines = NULL; | |
166 | } | |
167 | if (fUnhandledBreakEngine) { | |
168 | delete fUnhandledBreakEngine; | |
169 | fUnhandledBreakEngine = NULL; | |
170 | } | |
b75a7d8f A |
171 | } |
172 | ||
173 | /** | |
174 | * Assignment operator. Sets this iterator to have the same behavior, | |
175 | * and iterate over the same text, as the one passed in. | |
176 | */ | |
177 | RuleBasedBreakIterator& | |
178 | RuleBasedBreakIterator::operator=(const RuleBasedBreakIterator& that) { | |
179 | if (this == &that) { | |
180 | return *this; | |
181 | } | |
73c04bcf A |
182 | reset(); // Delete break cache information |
183 | fBreakType = that.fBreakType; | |
184 | if (fLanguageBreakEngines != NULL) { | |
185 | delete fLanguageBreakEngines; | |
186 | fLanguageBreakEngines = NULL; // Just rebuild for now | |
187 | } | |
188 | // TODO: clone fLanguageBreakEngines from "that" | |
189 | UErrorCode status = U_ZERO_ERROR; | |
190 | fText = utext_clone(fText, that.fText, FALSE, TRUE, &status); | |
191 | ||
192 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { | |
193 | delete fCharIter; | |
194 | } | |
195 | fCharIter = NULL; | |
196 | ||
197 | if (that.fCharIter != NULL ) { | |
198 | // This is a little bit tricky - it will intially appear that | |
199 | // this->fCharIter is adopted, even if that->fCharIter was | |
200 | // not adopted. That's ok. | |
201 | fCharIter = that.fCharIter->clone(); | |
b75a7d8f A |
202 | } |
203 | ||
204 | if (fData != NULL) { | |
205 | fData->removeReference(); | |
206 | fData = NULL; | |
207 | } | |
208 | if (that.fData != NULL) { | |
209 | fData = that.fData->addReference(); | |
210 | } | |
b75a7d8f A |
211 | |
212 | return *this; | |
213 | } | |
214 | ||
215 | ||
216 | ||
217 | //----------------------------------------------------------------------------- | |
218 | // | |
219 | // init() Shared initialization routine. Used by all the constructors. | |
220 | // Initializes all fields, leaving the object in a consistent state. | |
221 | // | |
222 | //----------------------------------------------------------------------------- | |
b75a7d8f | 223 | void RuleBasedBreakIterator::init() { |
73c04bcf A |
224 | UErrorCode status = U_ZERO_ERROR; |
225 | fBufferClone = FALSE; | |
226 | fText = utext_openUChars(NULL, NULL, 0, &status); | |
227 | fCharIter = NULL; | |
228 | fSCharIter = NULL; | |
229 | fDCharIter = NULL; | |
374ca955 A |
230 | fData = NULL; |
231 | fLastRuleStatusIndex = 0; | |
232 | fLastStatusIndexValid = TRUE; | |
233 | fDictionaryCharCount = 0; | |
73c04bcf A |
234 | fBreakType = -1; |
235 | ||
236 | fCachedBreakPositions = NULL; | |
237 | fLanguageBreakEngines = NULL; | |
238 | fUnhandledBreakEngine = NULL; | |
239 | fNumCachedBreakPositions = 0; | |
240 | fPositionInCache = 0; | |
b75a7d8f A |
241 | |
242 | #ifdef RBBI_DEBUG | |
243 | static UBool debugInitDone = FALSE; | |
244 | if (debugInitDone == FALSE) { | |
245 | char *debugEnv = getenv("U_RBBIDEBUG"); | |
246 | if (debugEnv && uprv_strstr(debugEnv, "trace")) { | |
247 | fTrace = TRUE; | |
248 | } | |
249 | debugInitDone = TRUE; | |
250 | } | |
251 | #endif | |
252 | } | |
253 | ||
254 | ||
255 | ||
256 | //----------------------------------------------------------------------------- | |
257 | // | |
258 | // clone - Returns a newly-constructed RuleBasedBreakIterator with the same | |
259 | // behavior, and iterating over the same text, as this one. | |
260 | // Virtual function: does the right thing with subclasses. | |
261 | // | |
262 | //----------------------------------------------------------------------------- | |
263 | BreakIterator* | |
264 | RuleBasedBreakIterator::clone(void) const { | |
265 | return new RuleBasedBreakIterator(*this); | |
266 | } | |
267 | ||
268 | /** | |
269 | * Equality operator. Returns TRUE if both BreakIterators are of the | |
270 | * same class, have the same behavior, and iterate over the same text. | |
271 | */ | |
272 | UBool | |
273 | RuleBasedBreakIterator::operator==(const BreakIterator& that) const { | |
b75a7d8f | 274 | if (that.getDynamicClassID() != getDynamicClassID()) { |
73c04bcf | 275 | return FALSE; |
b75a7d8f A |
276 | } |
277 | ||
278 | const RuleBasedBreakIterator& that2 = (const RuleBasedBreakIterator&) that; | |
73c04bcf A |
279 | |
280 | if (!utext_equals(fText, that2.fText)) { | |
281 | // The two break iterators are operating on different text, | |
282 | // or have a different interation position. | |
283 | return FALSE; | |
284 | }; | |
285 | ||
286 | // TODO: need a check for when in a dictionary region at different offsets. | |
287 | ||
288 | if (that2.fData == fData || | |
289 | (fData != NULL && that2.fData != NULL && *that2.fData == *fData)) { | |
290 | // The two break iterators are using the same rules. | |
291 | return TRUE; | |
b75a7d8f | 292 | } |
73c04bcf | 293 | return FALSE; |
b75a7d8f A |
294 | } |
295 | ||
296 | /** | |
297 | * Compute a hash code for this BreakIterator | |
298 | * @return A hash code | |
299 | */ | |
300 | int32_t | |
301 | RuleBasedBreakIterator::hashCode(void) const { | |
302 | int32_t hash = 0; | |
303 | if (fData != NULL) { | |
304 | hash = fData->hashCode(); | |
305 | } | |
306 | return hash; | |
307 | } | |
308 | ||
73c04bcf A |
309 | |
310 | void RuleBasedBreakIterator::setText(UText *ut, UErrorCode &status) { | |
311 | if (U_FAILURE(status)) { | |
312 | return; | |
313 | } | |
314 | reset(); | |
315 | fText = utext_clone(fText, ut, FALSE, TRUE, &status); | |
316 | ||
317 | // Set up a dummy CharacterIterator to be returned if anyone | |
318 | // calls getText(). With input from UText, there is no reasonable | |
319 | // way to return a characterIterator over the actual input text. | |
320 | // Return one over an empty string instead - this is the closest | |
321 | // we can come to signaling a failure. | |
322 | // (GetText() is obsolete, this failure is sort of OK) | |
323 | if (fDCharIter == NULL) { | |
324 | static UChar c = 0; | |
325 | fDCharIter = new UCharCharacterIterator(&c, 0); | |
326 | } | |
327 | ||
328 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { | |
329 | // existing fCharIter was adopted from the outside. Delete it now. | |
330 | delete fCharIter; | |
331 | } | |
332 | fCharIter = fDCharIter; | |
333 | ||
334 | this->first(); | |
335 | } | |
336 | ||
337 | ||
338 | UText *RuleBasedBreakIterator::getUText(UText *fillIn, UErrorCode &status) const { | |
339 | UText *result = utext_clone(fillIn, fText, FALSE, TRUE, &status); | |
340 | return result; | |
341 | } | |
342 | ||
343 | ||
344 | ||
b75a7d8f A |
345 | /** |
346 | * Returns the description used to create this iterator | |
347 | */ | |
348 | const UnicodeString& | |
349 | RuleBasedBreakIterator::getRules() const { | |
350 | if (fData != NULL) { | |
351 | return fData->getRuleSourceString(); | |
352 | } else { | |
353 | static const UnicodeString *s; | |
354 | if (s == NULL) { | |
355 | // TODO: something more elegant here. | |
356 | // perhaps API should return the string by value. | |
357 | // Note: thread unsafe init & leak are semi-ok, better than | |
358 | // what was before. Sould be cleaned up, though. | |
359 | s = new UnicodeString; | |
360 | } | |
361 | return *s; | |
362 | } | |
363 | } | |
364 | ||
365 | //======================================================================= | |
366 | // BreakIterator overrides | |
367 | //======================================================================= | |
368 | ||
369 | /** | |
73c04bcf | 370 | * Return a CharacterIterator over the text being analyzed. |
b75a7d8f | 371 | */ |
73c04bcf | 372 | CharacterIterator& |
b75a7d8f | 373 | RuleBasedBreakIterator::getText() const { |
73c04bcf | 374 | return *fCharIter; |
b75a7d8f A |
375 | } |
376 | ||
377 | /** | |
378 | * Set the iterator to analyze a new piece of text. This function resets | |
379 | * the current iteration position to the beginning of the text. | |
380 | * @param newText An iterator over the text to analyze. | |
381 | */ | |
382 | void | |
383 | RuleBasedBreakIterator::adoptText(CharacterIterator* newText) { | |
73c04bcf A |
384 | // If we are holding a CharacterIterator adopted from a |
385 | // previous call to this function, delete it now. | |
386 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { | |
387 | delete fCharIter; | |
388 | } | |
389 | ||
390 | fCharIter = newText; | |
391 | UErrorCode status = U_ZERO_ERROR; | |
b75a7d8f | 392 | reset(); |
73c04bcf A |
393 | if (newText==NULL || newText->startIndex() != 0) { |
394 | // startIndex !=0 wants to be an error, but there's no way to report it. | |
395 | // Make the iterator text be an empty string. | |
396 | fText = utext_openUChars(fText, NULL, 0, &status); | |
397 | } else { | |
398 | fText = utext_openCharacterIterator(fText, newText, &status); | |
399 | } | |
b75a7d8f A |
400 | this->first(); |
401 | } | |
402 | ||
403 | /** | |
404 | * Set the iterator to analyze a new piece of text. This function resets | |
405 | * the current iteration position to the beginning of the text. | |
406 | * @param newText An iterator over the text to analyze. | |
407 | */ | |
408 | void | |
409 | RuleBasedBreakIterator::setText(const UnicodeString& newText) { | |
73c04bcf | 410 | UErrorCode status = U_ZERO_ERROR; |
b75a7d8f | 411 | reset(); |
73c04bcf A |
412 | fText = utext_openConstUnicodeString(fText, &newText, &status); |
413 | ||
414 | // Set up a character iterator on the string. | |
415 | // Needed in case someone calls getText(). | |
416 | // Can not, unfortunately, do this lazily on the (probably never) | |
417 | // call to getText(), because getText is const. | |
418 | if (fSCharIter == NULL) { | |
419 | fSCharIter = new StringCharacterIterator(newText); | |
420 | } else { | |
421 | fSCharIter->setText(newText); | |
b75a7d8f | 422 | } |
73c04bcf A |
423 | |
424 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { | |
425 | // old fCharIter was adopted from the outside. Delete it. | |
426 | delete fCharIter; | |
b75a7d8f | 427 | } |
73c04bcf A |
428 | fCharIter = fSCharIter; |
429 | ||
b75a7d8f A |
430 | this->first(); |
431 | } | |
432 | ||
433 | ||
434 | ||
435 | /** | |
436 | * Sets the current iteration position to the beginning of the text. | |
b75a7d8f A |
437 | * @return The offset of the beginning of the text. |
438 | */ | |
439 | int32_t RuleBasedBreakIterator::first(void) { | |
440 | reset(); | |
374ca955 A |
441 | fLastRuleStatusIndex = 0; |
442 | fLastStatusIndexValid = TRUE; | |
73c04bcf A |
443 | //if (fText == NULL) |
444 | // return BreakIterator::DONE; | |
b75a7d8f | 445 | |
73c04bcf A |
446 | utext_setNativeIndex(fText, 0); |
447 | return 0; | |
b75a7d8f A |
448 | } |
449 | ||
450 | /** | |
451 | * Sets the current iteration position to the end of the text. | |
b75a7d8f A |
452 | * @return The text's past-the-end offset. |
453 | */ | |
454 | int32_t RuleBasedBreakIterator::last(void) { | |
455 | reset(); | |
456 | if (fText == NULL) { | |
374ca955 A |
457 | fLastRuleStatusIndex = 0; |
458 | fLastStatusIndexValid = TRUE; | |
b75a7d8f A |
459 | return BreakIterator::DONE; |
460 | } | |
461 | ||
374ca955 | 462 | fLastStatusIndexValid = FALSE; |
73c04bcf A |
463 | int32_t pos = (int32_t)utext_nativeLength(fText); |
464 | utext_setNativeIndex(fText, pos); | |
b75a7d8f A |
465 | return pos; |
466 | } | |
467 | ||
468 | /** | |
469 | * Advances the iterator either forward or backward the specified number of steps. | |
470 | * Negative values move backward, and positive values move forward. This is | |
471 | * equivalent to repeatedly calling next() or previous(). | |
472 | * @param n The number of steps to move. The sign indicates the direction | |
473 | * (negative is backwards, and positive is forwards). | |
474 | * @return The character offset of the boundary position n boundaries away from | |
475 | * the current one. | |
476 | */ | |
477 | int32_t RuleBasedBreakIterator::next(int32_t n) { | |
478 | int32_t result = current(); | |
479 | while (n > 0) { | |
73c04bcf | 480 | result = next(); |
b75a7d8f A |
481 | --n; |
482 | } | |
483 | while (n < 0) { | |
484 | result = previous(); | |
485 | ++n; | |
486 | } | |
487 | return result; | |
488 | } | |
489 | ||
490 | /** | |
491 | * Advances the iterator to the next boundary position. | |
492 | * @return The position of the first boundary after this one. | |
493 | */ | |
494 | int32_t RuleBasedBreakIterator::next(void) { | |
73c04bcf A |
495 | // if we have cached break positions and we're still in the range |
496 | // covered by them, just move one step forward in the cache | |
497 | if (fCachedBreakPositions != NULL) { | |
498 | if (fPositionInCache < fNumCachedBreakPositions - 1) { | |
499 | ++fPositionInCache; | |
500 | int32_t pos = fCachedBreakPositions[fPositionInCache]; | |
501 | utext_setNativeIndex(fText, pos); | |
502 | return pos; | |
503 | } | |
504 | else { | |
505 | reset(); | |
506 | } | |
507 | } | |
508 | ||
509 | int32_t startPos = current(); | |
510 | int32_t result = handleNext(fData->fForwardTable); | |
511 | if (fDictionaryCharCount > 0) { | |
512 | result = checkDictionary(startPos, result, FALSE); | |
513 | } | |
514 | return result; | |
b75a7d8f A |
515 | } |
516 | ||
517 | /** | |
518 | * Advances the iterator backwards, to the last boundary preceding this one. | |
519 | * @return The position of the last boundary position preceding this one. | |
520 | */ | |
521 | int32_t RuleBasedBreakIterator::previous(void) { | |
73c04bcf A |
522 | int32_t result; |
523 | int32_t startPos; | |
524 | ||
525 | // if we have cached break positions and we're still in the range | |
526 | // covered by them, just move one step backward in the cache | |
527 | if (fCachedBreakPositions != NULL) { | |
528 | if (fPositionInCache > 0) { | |
529 | --fPositionInCache; | |
530 | // If we're at the beginning of the cache, need to reevaluate the | |
531 | // rule status | |
532 | if (fPositionInCache <= 0) { | |
533 | fLastStatusIndexValid = FALSE; | |
534 | } | |
535 | int32_t pos = fCachedBreakPositions[fPositionInCache]; | |
536 | utext_setNativeIndex(fText, pos); | |
537 | return pos; | |
538 | } | |
539 | else { | |
540 | reset(); | |
541 | } | |
542 | } | |
543 | ||
b75a7d8f | 544 | // if we're already sitting at the beginning of the text, return DONE |
73c04bcf | 545 | if (fText == NULL || (startPos = current()) == 0) { |
374ca955 A |
546 | fLastRuleStatusIndex = 0; |
547 | fLastStatusIndexValid = TRUE; | |
b75a7d8f A |
548 | return BreakIterator::DONE; |
549 | } | |
550 | ||
374ca955 | 551 | if (fData->fSafeRevTable != NULL || fData->fSafeFwdTable != NULL) { |
73c04bcf A |
552 | result = handlePrevious(fData->fReverseTable); |
553 | if (fDictionaryCharCount > 0) { | |
554 | result = checkDictionary(result, startPos, TRUE); | |
555 | } | |
556 | return result; | |
374ca955 A |
557 | } |
558 | ||
559 | // old rule syntax | |
b75a7d8f A |
560 | // set things up. handlePrevious() will back us up to some valid |
561 | // break position before the current position (we back our internal | |
562 | // iterator up one step to prevent handlePrevious() from returning | |
563 | // the current position), but not necessarily the last one before | |
73c04bcf | 564 | |
b75a7d8f | 565 | // where we started |
374ca955 | 566 | |
b75a7d8f | 567 | int32_t start = current(); |
374ca955 | 568 | |
73c04bcf A |
569 | UTEXT_PREVIOUS32(fText); |
570 | int32_t lastResult = handlePrevious(fData->fReverseTable); | |
571 | if (lastResult == UBRK_DONE) { | |
572 | lastResult = 0; | |
573 | utext_setNativeIndex(fText, 0); | |
574 | } | |
575 | result = lastResult; | |
b75a7d8f A |
576 | int32_t lastTag = 0; |
577 | UBool breakTagValid = FALSE; | |
578 | ||
579 | // iterate forward from the known break position until we pass our | |
580 | // starting point. The last break position before the starting | |
581 | // point is our return value | |
374ca955 | 582 | |
b75a7d8f | 583 | for (;;) { |
73c04bcf | 584 | result = next(); |
b75a7d8f A |
585 | if (result == BreakIterator::DONE || result >= start) { |
586 | break; | |
587 | } | |
588 | lastResult = result; | |
374ca955 | 589 | lastTag = fLastRuleStatusIndex; |
b75a7d8f A |
590 | breakTagValid = TRUE; |
591 | } | |
592 | ||
593 | // fLastBreakTag wants to have the value for section of text preceding | |
594 | // the result position that we are to return (in lastResult.) If | |
595 | // the backwards rules overshot and the above loop had to do two or more | |
73c04bcf | 596 | // next()s to move up to the desired return position, we will have a valid |
374ca955 A |
597 | // tag value. But, if handlePrevious() took us to exactly the correct result positon, |
598 | // we wont have a tag value for that position, which is only set by handleNext(). | |
b75a7d8f A |
599 | |
600 | // set the current iteration position to be the last break position | |
601 | // before where we started, and then return that value | |
73c04bcf | 602 | utext_setNativeIndex(fText, lastResult); |
374ca955 A |
603 | fLastRuleStatusIndex = lastTag; // for use by getRuleStatus() |
604 | fLastStatusIndexValid = breakTagValid; | |
73c04bcf A |
605 | |
606 | // No need to check the dictionary; it will have been handled by | |
607 | // next() | |
608 | ||
b75a7d8f A |
609 | return lastResult; |
610 | } | |
611 | ||
b75a7d8f A |
612 | /** |
613 | * Sets the iterator to refer to the first boundary position following | |
614 | * the specified position. | |
615 | * @offset The position from which to begin searching for a break position. | |
616 | * @return The position of the first break after the current position. | |
617 | */ | |
618 | int32_t RuleBasedBreakIterator::following(int32_t offset) { | |
73c04bcf A |
619 | // if we have cached break positions and offset is in the range |
620 | // covered by them, use them | |
621 | // TODO: could use binary search | |
622 | // TODO: what if offset is outside range, but break is not? | |
623 | if (fCachedBreakPositions != NULL) { | |
624 | if (offset >= fCachedBreakPositions[0] | |
625 | && offset < fCachedBreakPositions[fNumCachedBreakPositions - 1]) { | |
626 | fPositionInCache = 0; | |
627 | // We are guaranteed not to leave the array due to range test above | |
628 | while (offset >= fCachedBreakPositions[fPositionInCache]) { | |
629 | ++fPositionInCache; | |
630 | } | |
631 | int32_t pos = fCachedBreakPositions[fPositionInCache]; | |
632 | utext_setNativeIndex(fText, pos); | |
633 | return pos; | |
634 | } | |
635 | else { | |
636 | reset(); | |
637 | } | |
638 | } | |
639 | ||
b75a7d8f A |
640 | // if the offset passed in is already past the end of the text, |
641 | // just return DONE; if it's before the beginning, return the | |
642 | // text's starting offset | |
374ca955 A |
643 | fLastRuleStatusIndex = 0; |
644 | fLastStatusIndexValid = TRUE; | |
73c04bcf | 645 | if (fText == NULL || offset >= utext_nativeLength(fText)) { |
b75a7d8f A |
646 | last(); |
647 | return next(); | |
648 | } | |
73c04bcf | 649 | else if (offset < 0) { |
b75a7d8f A |
650 | return first(); |
651 | } | |
652 | ||
653 | // otherwise, set our internal iteration position (temporarily) | |
654 | // to the position passed in. If this is the _beginning_ position, | |
655 | // then we can just use next() to get our return value | |
b75a7d8f | 656 | |
374ca955 A |
657 | int32_t result = 0; |
658 | ||
659 | if (fData->fSafeRevTable != NULL) { | |
660 | // new rule syntax | |
73c04bcf | 661 | utext_setNativeIndex(fText, offset); |
374ca955 A |
662 | // move forward one codepoint to prepare for moving back to a |
663 | // safe point. | |
664 | // this handles offset being between a supplementary character | |
73c04bcf | 665 | UTEXT_NEXT32(fText); |
374ca955 A |
666 | // handlePrevious will move most of the time to < 1 boundary away |
667 | handlePrevious(fData->fSafeRevTable); | |
668 | int32_t result = next(); | |
669 | while (result <= offset) { | |
670 | result = next(); | |
671 | } | |
672 | return result; | |
673 | } | |
674 | if (fData->fSafeFwdTable != NULL) { | |
675 | // backup plan if forward safe table is not available | |
73c04bcf A |
676 | utext_setNativeIndex(fText, offset); |
677 | UTEXT_PREVIOUS32(fText); | |
374ca955 A |
678 | // handle next will give result >= offset |
679 | handleNext(fData->fSafeFwdTable); | |
680 | // previous will give result 0 or 1 boundary away from offset, | |
681 | // most of the time | |
682 | // we have to | |
683 | int32_t oldresult = previous(); | |
684 | while (oldresult > offset) { | |
685 | int32_t result = previous(); | |
686 | if (result <= offset) { | |
687 | return oldresult; | |
688 | } | |
689 | oldresult = result; | |
690 | } | |
691 | int32_t result = next(); | |
692 | if (result <= offset) { | |
693 | return next(); | |
694 | } | |
695 | return result; | |
696 | } | |
b75a7d8f | 697 | // otherwise, we have to sync up first. Use handlePrevious() to back |
73c04bcf | 698 | // up to a known break position before the specified position (if |
b75a7d8f A |
699 | // we can determine that the specified position is a break position, |
700 | // we don't back up at all). This may or may not be the last break | |
701 | // position at or before our starting position. Advance forward | |
702 | // from here until we've passed the starting position. The position | |
703 | // we stop on will be the first break position after the specified one. | |
374ca955 A |
704 | // old rule syntax |
705 | ||
73c04bcf A |
706 | utext_setNativeIndex(fText, offset); |
707 | if (offset==0 || | |
708 | offset==1 && utext_getNativeIndex(fText)==0) { | |
709 | return next(); | |
374ca955 A |
710 | } |
711 | result = previous(); | |
b75a7d8f | 712 | |
b75a7d8f A |
713 | while (result != BreakIterator::DONE && result <= offset) { |
714 | result = next(); | |
715 | } | |
716 | ||
717 | return result; | |
718 | } | |
719 | ||
720 | /** | |
721 | * Sets the iterator to refer to the last boundary position before the | |
722 | * specified position. | |
723 | * @offset The position to begin searching for a break from. | |
724 | * @return The position of the last boundary before the starting position. | |
725 | */ | |
726 | int32_t RuleBasedBreakIterator::preceding(int32_t offset) { | |
73c04bcf A |
727 | // if we have cached break positions and offset is in the range |
728 | // covered by them, use them | |
729 | if (fCachedBreakPositions != NULL) { | |
730 | // TODO: binary search? | |
731 | // TODO: What if offset is outside range, but break is not? | |
732 | if (offset > fCachedBreakPositions[0] | |
733 | && offset <= fCachedBreakPositions[fNumCachedBreakPositions - 1]) { | |
734 | fPositionInCache = 0; | |
735 | while (fPositionInCache < fNumCachedBreakPositions | |
736 | && offset > fCachedBreakPositions[fPositionInCache]) | |
737 | ++fPositionInCache; | |
738 | --fPositionInCache; | |
739 | // If we're at the beginning of the cache, need to reevaluate the | |
740 | // rule status | |
741 | if (fPositionInCache <= 0) { | |
742 | fLastStatusIndexValid = FALSE; | |
743 | } | |
744 | utext_setNativeIndex(fText, fCachedBreakPositions[fPositionInCache]); | |
745 | return fCachedBreakPositions[fPositionInCache]; | |
746 | } | |
747 | else { | |
748 | reset(); | |
749 | } | |
750 | } | |
751 | ||
b75a7d8f A |
752 | // if the offset passed in is already past the end of the text, |
753 | // just return DONE; if it's before the beginning, return the | |
754 | // text's starting offset | |
73c04bcf | 755 | if (fText == NULL || offset > utext_nativeLength(fText)) { |
b75a7d8f A |
756 | // return BreakIterator::DONE; |
757 | return last(); | |
758 | } | |
73c04bcf | 759 | else if (offset < 0) { |
b75a7d8f A |
760 | return first(); |
761 | } | |
762 | ||
763 | // if we start by updating the current iteration position to the | |
764 | // position specified by the caller, we can just use previous() | |
765 | // to carry out this operation | |
374ca955 A |
766 | |
767 | if (fData->fSafeFwdTable != NULL) { | |
374ca955 | 768 | // new rule syntax |
73c04bcf A |
769 | utext_setNativeIndex(fText, offset); |
770 | int32_t newOffset = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
771 | if (newOffset != offset) { | |
772 | // Will come here if specified offset was not a code point boundary AND | |
773 | // the underlying implmentation is using UText, which snaps any non-code-point-boundary | |
774 | // indices to the containing code point. | |
775 | // For breakitereator::preceding only, these non-code-point indices need to be moved | |
776 | // up to refer to the following codepoint. | |
777 | UTEXT_NEXT32(fText); | |
778 | offset = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
779 | } | |
780 | ||
781 | // TODO: (synwee) would it be better to just check for being in the middle of a surrogate pair, | |
374ca955 A |
782 | // rather than adjusting the position unconditionally? |
783 | // (Change would interact with safe rules.) | |
73c04bcf A |
784 | // TODO: change RBBI behavior for off-boundary indices to match that of UText? |
785 | // affects only preceding(), seems cleaner, but is slightly different. | |
786 | UTEXT_PREVIOUS32(fText); | |
374ca955 | 787 | handleNext(fData->fSafeFwdTable); |
73c04bcf | 788 | int32_t result = (int32_t)UTEXT_GETNATIVEINDEX(fText); |
374ca955 A |
789 | while (result >= offset) { |
790 | result = previous(); | |
791 | } | |
792 | return result; | |
793 | } | |
794 | if (fData->fSafeRevTable != NULL) { | |
795 | // backup plan if forward safe table is not available | |
73c04bcf A |
796 | // TODO: check whether this path can be discarded |
797 | // It's probably OK to say that rules must supply both safe tables | |
798 | // if they use safe tables at all. We have certainly never described | |
799 | // to anyone how to work with just one safe table. | |
800 | utext_setNativeIndex(fText, offset); | |
801 | UTEXT_NEXT32(fText); | |
802 | ||
374ca955 A |
803 | // handle previous will give result <= offset |
804 | handlePrevious(fData->fSafeRevTable); | |
805 | ||
806 | // next will give result 0 or 1 boundary away from offset, | |
807 | // most of the time | |
808 | // we have to | |
809 | int32_t oldresult = next(); | |
810 | while (oldresult < offset) { | |
811 | int32_t result = next(); | |
812 | if (result >= offset) { | |
813 | return oldresult; | |
814 | } | |
815 | oldresult = result; | |
816 | } | |
817 | int32_t result = previous(); | |
818 | if (result >= offset) { | |
819 | return previous(); | |
820 | } | |
821 | return result; | |
822 | } | |
823 | ||
824 | // old rule syntax | |
73c04bcf | 825 | utext_setNativeIndex(fText, offset); |
b75a7d8f A |
826 | return previous(); |
827 | } | |
828 | ||
829 | /** | |
830 | * Returns true if the specfied position is a boundary position. As a side | |
831 | * effect, leaves the iterator pointing to the first boundary position at | |
832 | * or after "offset". | |
833 | * @param offset the offset to check. | |
834 | * @return True if "offset" is a boundary position. | |
835 | */ | |
836 | UBool RuleBasedBreakIterator::isBoundary(int32_t offset) { | |
837 | // the beginning index of the iterator is always a boundary position by definition | |
73c04bcf | 838 | if (offset == 0) { |
b75a7d8f A |
839 | first(); // For side effects on current position, tag values. |
840 | return TRUE; | |
841 | } | |
842 | ||
73c04bcf | 843 | if (offset == (int32_t)utext_nativeLength(fText)) { |
374ca955 A |
844 | last(); // For side effects on current position, tag values. |
845 | return TRUE; | |
846 | } | |
847 | ||
b75a7d8f | 848 | // out-of-range indexes are never boundary positions |
73c04bcf | 849 | if (offset < 0) { |
b75a7d8f A |
850 | first(); // For side effects on current position, tag values. |
851 | return FALSE; | |
852 | } | |
853 | ||
73c04bcf | 854 | if (offset > utext_nativeLength(fText)) { |
b75a7d8f A |
855 | last(); // For side effects on current position, tag values. |
856 | return FALSE; | |
857 | } | |
858 | ||
859 | // otherwise, we can use following() on the position before the specified | |
860 | // one and return true if the position we get back is the one the user | |
861 | // specified | |
73c04bcf A |
862 | utext_previous32From(fText, offset); |
863 | int32_t backOne = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
864 | UBool result = following(backOne) == offset; | |
865 | return result; | |
b75a7d8f A |
866 | } |
867 | ||
868 | /** | |
869 | * Returns the current iteration position. | |
870 | * @return The current iteration position. | |
871 | */ | |
872 | int32_t RuleBasedBreakIterator::current(void) const { | |
73c04bcf A |
873 | int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText); |
874 | return pos; | |
b75a7d8f | 875 | } |
73c04bcf | 876 | |
b75a7d8f A |
877 | //======================================================================= |
878 | // implementation | |
879 | //======================================================================= | |
880 | ||
73c04bcf A |
881 | // |
882 | // RBBIRunMode - the state machine runs an extra iteration at the beginning and end | |
883 | // of user text. A variable with this enum type keeps track of where we | |
884 | // are. The state machine only fetches user input while in the RUN mode. | |
885 | // | |
886 | enum RBBIRunMode { | |
887 | RBBI_START, // state machine processing is before first char of input | |
888 | RBBI_RUN, // state machine processing is in the user text | |
889 | RBBI_END // state machine processing is after end of user text. | |
890 | }; | |
891 | ||
b75a7d8f A |
892 | |
893 | //----------------------------------------------------------------------------------- | |
894 | // | |
73c04bcf A |
895 | // handleNext(stateTable) |
896 | // This method is the actual implementation of the rbbi next() method. | |
897 | // This method initializes the state machine to state 1 | |
b75a7d8f A |
898 | // and advances through the text character by character until we reach the end |
899 | // of the text or the state machine transitions to state 0. We update our return | |
374ca955 | 900 | // value every time the state machine passes through an accepting state. |
b75a7d8f A |
901 | // |
902 | //----------------------------------------------------------------------------------- | |
374ca955 | 903 | int32_t RuleBasedBreakIterator::handleNext(const RBBIStateTable *statetable) { |
73c04bcf A |
904 | int32_t state; |
905 | int16_t category = 0; | |
906 | RBBIRunMode mode; | |
907 | ||
908 | RBBIStateTableRow *row; | |
909 | UChar32 c; | |
910 | int32_t lookaheadStatus = 0; | |
911 | int32_t lookaheadTagIdx = 0; | |
912 | int32_t result = 0; | |
913 | int32_t initialPosition = 0; | |
914 | int32_t lookaheadResult = 0; | |
915 | UBool lookAheadHardBreak = (statetable->fFlags & RBBI_LOOKAHEAD_HARD_BREAK) != 0; | |
916 | const char *tableData = statetable->fTableData; | |
917 | uint32_t tableRowLen = statetable->fRowLen; | |
918 | ||
919 | #ifdef RBBI_DEBUG | |
920 | if (fTrace) { | |
921 | RBBIDebugPuts("Handle Next pos char state category"); | |
922 | } | |
923 | #endif | |
b75a7d8f A |
924 | |
925 | // No matter what, handleNext alway correctly sets the break tag value. | |
374ca955 | 926 | fLastStatusIndexValid = TRUE; |
73c04bcf | 927 | fLastRuleStatusIndex = 0; |
b75a7d8f A |
928 | |
929 | // if we're already at the end of the text, return DONE. | |
73c04bcf A |
930 | initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText); |
931 | result = initialPosition; | |
932 | c = UTEXT_NEXT32(fText); | |
933 | if (fData == NULL || c==U_SENTINEL) { | |
b75a7d8f A |
934 | return BreakIterator::DONE; |
935 | } | |
936 | ||
73c04bcf A |
937 | // Set the initial state for the state machine |
938 | state = START_STATE; | |
939 | row = (RBBIStateTableRow *) | |
940 | //(statetable->fTableData + (statetable->fRowLen * state)); | |
941 | (tableData + tableRowLen * state); | |
942 | ||
943 | ||
944 | mode = RBBI_RUN; | |
945 | if (statetable->fFlags & RBBI_BOF_REQUIRED) { | |
946 | category = 2; | |
947 | mode = RBBI_START; | |
948 | } | |
b75a7d8f | 949 | |
b75a7d8f A |
950 | |
951 | // loop until we reach the end of the text or transition to state 0 | |
73c04bcf | 952 | // |
b75a7d8f | 953 | for (;;) { |
73c04bcf | 954 | if (c == U_SENTINEL) { |
374ca955 | 955 | // Reached end of input string. |
73c04bcf A |
956 | if (mode == RBBI_END) { |
957 | // We have already run the loop one last time with the | |
958 | // character set to the psueudo {eof} value. Now it is time | |
959 | // to unconditionally bail out. | |
960 | if (lookaheadResult > result) { | |
961 | // We ran off the end of the string with a pending look-ahead match. | |
962 | // Treat this as if the look-ahead condition had been met, and return | |
963 | // the match at the / position from the look-ahead rule. | |
964 | result = lookaheadResult; | |
965 | fLastRuleStatusIndex = lookaheadTagIdx; | |
966 | lookaheadStatus = 0; | |
967 | } | |
968 | break; | |
374ca955 | 969 | } |
73c04bcf A |
970 | // Run the loop one last time with the fake end-of-input character category. |
971 | mode = RBBI_END; | |
972 | category = 1; | |
b75a7d8f | 973 | } |
b75a7d8f | 974 | |
b75a7d8f | 975 | // |
73c04bcf A |
976 | // Get the char category. An incoming category of 1 or 2 means that |
977 | // we are preset for doing the beginning or end of input, and | |
978 | // that we shouldn't get a category from an actual text input character. | |
979 | // | |
980 | if (mode == RBBI_RUN) { | |
981 | // look up the current character's character category, which tells us | |
982 | // which column in the state table to look at. | |
983 | // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned, | |
984 | // not the size of the character going in, which is a UChar32. | |
985 | // | |
986 | UTRIE_GET16(&fData->fTrie, c, category); | |
987 | ||
988 | // Check the dictionary bit in the character's category. | |
989 | // Counter is only used by dictionary based iterators (subclasses). | |
990 | // Chars that need to be handled by a dictionary have a flag bit set | |
991 | // in their category values. | |
992 | // | |
993 | if ((category & 0x4000) != 0) { | |
994 | fDictionaryCharCount++; | |
995 | // And off the dictionary flag bit. | |
996 | category &= ~0x4000; | |
997 | } | |
b75a7d8f A |
998 | } |
999 | ||
374ca955 A |
1000 | #ifdef RBBI_DEBUG |
1001 | if (fTrace) { | |
73c04bcf | 1002 | RBBIDebugPrintf(" %4d ", utext_getNativeIndex(fText)); |
374ca955 A |
1003 | if (0x20<=c && c<0x7f) { |
1004 | RBBIDebugPrintf("\"%c\" ", c); | |
1005 | } else { | |
1006 | RBBIDebugPrintf("%5x ", c); | |
1007 | } | |
1008 | RBBIDebugPrintf("%3d %3d\n", state, category); | |
b75a7d8f | 1009 | } |
374ca955 | 1010 | #endif |
b75a7d8f | 1011 | |
73c04bcf A |
1012 | // State Transition - move machine to its next state |
1013 | // | |
b75a7d8f A |
1014 | state = row->fNextState[category]; |
1015 | row = (RBBIStateTableRow *) | |
73c04bcf A |
1016 | // (statetable->fTableData + (statetable->fRowLen * state)); |
1017 | (tableData + tableRowLen * state); | |
b75a7d8f | 1018 | |
b75a7d8f | 1019 | |
b75a7d8f | 1020 | if (row->fAccepting == -1) { |
73c04bcf A |
1021 | // Match found, common case. |
1022 | if (mode != RBBI_START) { | |
1023 | result = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1024 | } | |
374ca955 | 1025 | fLastRuleStatusIndex = row->fTagIdx; // Remember the break status (tag) values. |
b75a7d8f A |
1026 | } |
1027 | ||
374ca955 A |
1028 | if (row->fLookAhead != 0) { |
1029 | if (lookaheadStatus != 0 | |
1030 | && row->fAccepting == lookaheadStatus) { | |
73c04bcf | 1031 | // Lookahead match is completed. |
374ca955 A |
1032 | result = lookaheadResult; |
1033 | fLastRuleStatusIndex = lookaheadTagIdx; | |
1034 | lookaheadStatus = 0; | |
73c04bcf A |
1035 | // TODO: make a standalone hard break in a rule work. |
1036 | if (lookAheadHardBreak) { | |
1037 | utext_setNativeIndex(fText, result); | |
1038 | return result; | |
1039 | } | |
1040 | // Look-ahead completed, but other rules may match further. Continue on | |
1041 | // TODO: junk this feature? I don't think it's used anywhwere. | |
374ca955 | 1042 | goto continueOn; |
b75a7d8f | 1043 | } |
374ca955 | 1044 | |
73c04bcf | 1045 | int32_t r = (int32_t)UTEXT_GETNATIVEINDEX(fText); |
374ca955 A |
1046 | lookaheadResult = r; |
1047 | lookaheadStatus = row->fLookAhead; | |
1048 | lookaheadTagIdx = row->fTagIdx; | |
b75a7d8f A |
1049 | goto continueOn; |
1050 | } | |
1051 | ||
374ca955 | 1052 | |
73c04bcf A |
1053 | if (row->fAccepting != 0) { |
1054 | // Because this is an accepting state, any in-progress look-ahead match | |
1055 | // is no longer relavant. Clear out the pending lookahead status. | |
1056 | lookaheadStatus = 0; // clear out any pending look-ahead match. | |
b75a7d8f A |
1057 | } |
1058 | ||
1059 | continueOn: | |
1060 | if (state == STOP_STATE) { | |
374ca955 A |
1061 | // This is the normal exit from the lookup state machine. |
1062 | // We have advanced through the string until it is certain that no | |
1063 | // longer match is possible, no matter what characters follow. | |
b75a7d8f A |
1064 | break; |
1065 | } | |
73c04bcf A |
1066 | |
1067 | // Advance to the next character. | |
1068 | // If this is a beginning-of-input loop iteration, don't advance | |
1069 | // the input position. The next iteration will be processing the | |
1070 | // first real input character. | |
1071 | if (mode == RBBI_RUN) { | |
1072 | c = UTEXT_NEXT32(fText); | |
1073 | } else { | |
1074 | if (mode == RBBI_START) { | |
1075 | mode = RBBI_RUN; | |
1076 | } | |
1077 | } | |
1078 | ||
1079 | ||
b75a7d8f A |
1080 | } |
1081 | ||
374ca955 | 1082 | // The state machine is done. Check whether it found a match... |
b75a7d8f | 1083 | |
374ca955 A |
1084 | // If the iterator failed to advance in the match engine, force it ahead by one. |
1085 | // (This really indicates a defect in the break rules. They should always match | |
1086 | // at least one character.) | |
1087 | if (result == initialPosition) { | |
73c04bcf A |
1088 | utext_setNativeIndex(fText, initialPosition); |
1089 | UTEXT_NEXT32(fText); | |
1090 | result = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
374ca955 | 1091 | } |
b75a7d8f | 1092 | |
374ca955 | 1093 | // Leave the iterator at our result position. |
73c04bcf A |
1094 | utext_setNativeIndex(fText, result); |
1095 | #ifdef RBBI_DEBUG | |
1096 | if (fTrace) { | |
1097 | RBBIDebugPrintf("result = %d\n\n", result); | |
b75a7d8f | 1098 | } |
73c04bcf | 1099 | #endif |
b75a7d8f A |
1100 | return result; |
1101 | } | |
1102 | ||
1103 | ||
73c04bcf | 1104 | |
374ca955 A |
1105 | //----------------------------------------------------------------------------------- |
1106 | // | |
1107 | // handlePrevious() | |
1108 | // | |
73c04bcf A |
1109 | // Iterate backwards, according to the logic of the reverse rules. |
1110 | // This version handles the exact style backwards rules. | |
374ca955 A |
1111 | // |
1112 | // The logic of this function is very similar to handleNext(), above. | |
1113 | // | |
1114 | //----------------------------------------------------------------------------------- | |
1115 | int32_t RuleBasedBreakIterator::handlePrevious(const RBBIStateTable *statetable) { | |
73c04bcf A |
1116 | int32_t state; |
1117 | int16_t category = 0; | |
1118 | RBBIRunMode mode; | |
1119 | RBBIStateTableRow *row; | |
1120 | UChar32 c; | |
1121 | int32_t lookaheadStatus = 0; | |
1122 | int32_t result = 0; | |
1123 | int32_t initialPosition = 0; | |
1124 | int32_t lookaheadResult = 0; | |
1125 | UBool lookAheadHardBreak = (statetable->fFlags & RBBI_LOOKAHEAD_HARD_BREAK) != 0; | |
1126 | ||
1127 | #ifdef RBBI_DEBUG | |
1128 | if (fTrace) { | |
1129 | RBBIDebugPuts("Handle Previous pos char state category"); | |
1130 | } | |
1131 | #endif | |
1132 | ||
1133 | // handlePrevious() never gets the rule status. | |
1134 | // Flag the status as invalid; if the user ever asks for status, we will need | |
1135 | // to back up, then re-find the break position using handleNext(), which does | |
1136 | // get the status value. | |
374ca955 | 1137 | fLastStatusIndexValid = FALSE; |
73c04bcf | 1138 | fLastRuleStatusIndex = 0; |
374ca955 | 1139 | |
73c04bcf A |
1140 | // if we're already at the start of the text, return DONE. |
1141 | if (fText == NULL || fData == NULL || UTEXT_GETNATIVEINDEX(fText)==0) { | |
1142 | return BreakIterator::DONE; | |
1143 | } | |
374ca955 | 1144 | |
73c04bcf A |
1145 | // Set up the starting char. |
1146 | initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1147 | result = initialPosition; | |
1148 | c = UTEXT_PREVIOUS32(fText); | |
374ca955 | 1149 | |
73c04bcf A |
1150 | // Set the initial state for the state machine |
1151 | state = START_STATE; | |
374ca955 | 1152 | row = (RBBIStateTableRow *) |
73c04bcf A |
1153 | (statetable->fTableData + (statetable->fRowLen * state)); |
1154 | category = 3; | |
1155 | mode = RBBI_RUN; | |
1156 | if (statetable->fFlags & RBBI_BOF_REQUIRED) { | |
1157 | category = 2; | |
1158 | mode = RBBI_START; | |
374ca955 A |
1159 | } |
1160 | ||
374ca955 | 1161 | |
73c04bcf A |
1162 | // loop until we reach the start of the text or transition to state 0 |
1163 | // | |
374ca955 | 1164 | for (;;) { |
73c04bcf A |
1165 | if (c == U_SENTINEL) { |
1166 | // Reached end of input string. | |
1167 | if (mode == RBBI_END || | |
1168 | *(int32_t *)fData->fHeader->fFormatVersion == 1 ) { | |
1169 | // We have already run the loop one last time with the | |
1170 | // character set to the psueudo {eof} value. Now it is time | |
1171 | // to unconditionally bail out. | |
1172 | // (Or we have an old format binary rule file that does not support {eof}.) | |
1173 | if (lookaheadResult < result) { | |
1174 | // We ran off the end of the string with a pending look-ahead match. | |
1175 | // Treat this as if the look-ahead condition had been met, and return | |
1176 | // the match at the / position from the look-ahead rule. | |
1177 | result = lookaheadResult; | |
1178 | lookaheadStatus = 0; | |
1179 | } else if (result == initialPosition) { | |
1180 | // Ran off start, no match found. | |
1181 | // move one index one (towards the start, since we are doing a previous()) | |
1182 | utext_setNativeIndex(fText, initialPosition); | |
1183 | UTEXT_PREVIOUS32(fText); // TODO: shouldn't be necessary. We're already at beginning. Check. | |
1184 | } | |
1185 | break; | |
374ca955 | 1186 | } |
73c04bcf A |
1187 | // Run the loop one last time with the fake end-of-input character category. |
1188 | mode = RBBI_END; | |
1189 | category = 1; | |
374ca955 A |
1190 | } |
1191 | ||
374ca955 | 1192 | // |
73c04bcf A |
1193 | // Get the char category. An incoming category of 1 or 2 means that |
1194 | // we are preset for doing the beginning or end of input, and | |
1195 | // that we shouldn't get a category from an actual text input character. | |
1196 | // | |
1197 | if (mode == RBBI_RUN) { | |
1198 | // look up the current character's character category, which tells us | |
1199 | // which column in the state table to look at. | |
1200 | // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned, | |
1201 | // not the size of the character going in, which is a UChar32. | |
1202 | // | |
1203 | UTRIE_GET16(&fData->fTrie, c, category); | |
1204 | ||
1205 | // Check the dictionary bit in the character's category. | |
1206 | // Counter is only used by dictionary based iterators (subclasses). | |
1207 | // Chars that need to be handled by a dictionary have a flag bit set | |
1208 | // in their category values. | |
1209 | // | |
1210 | if ((category & 0x4000) != 0) { | |
1211 | fDictionaryCharCount++; | |
1212 | // And off the dictionary flag bit. | |
1213 | category &= ~0x4000; | |
1214 | } | |
374ca955 A |
1215 | } |
1216 | ||
1217 | #ifdef RBBI_DEBUG | |
1218 | if (fTrace) { | |
73c04bcf | 1219 | RBBIDebugPrintf(" %4d ", (int32_t)utext_getNativeIndex(fText)); |
374ca955 A |
1220 | if (0x20<=c && c<0x7f) { |
1221 | RBBIDebugPrintf("\"%c\" ", c); | |
1222 | } else { | |
1223 | RBBIDebugPrintf("%5x ", c); | |
1224 | } | |
1225 | RBBIDebugPrintf("%3d %3d\n", state, category); | |
1226 | } | |
1227 | #endif | |
1228 | ||
73c04bcf A |
1229 | // State Transition - move machine to its next state |
1230 | // | |
374ca955 A |
1231 | state = row->fNextState[category]; |
1232 | row = (RBBIStateTableRow *) | |
73c04bcf | 1233 | (statetable->fTableData + (statetable->fRowLen * state)); |
374ca955 A |
1234 | |
1235 | if (row->fAccepting == -1) { | |
73c04bcf A |
1236 | // Match found, common case. |
1237 | result = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
374ca955 A |
1238 | } |
1239 | ||
1240 | if (row->fLookAhead != 0) { | |
1241 | if (lookaheadStatus != 0 | |
1242 | && row->fAccepting == lookaheadStatus) { | |
73c04bcf | 1243 | // Lookahead match is completed. |
374ca955 | 1244 | result = lookaheadResult; |
374ca955 | 1245 | lookaheadStatus = 0; |
73c04bcf | 1246 | // TODO: make a standalone hard break in a rule work. |
374ca955 | 1247 | if (lookAheadHardBreak) { |
73c04bcf | 1248 | utext_setNativeIndex(fText, result); |
374ca955 A |
1249 | return result; |
1250 | } | |
73c04bcf A |
1251 | // Look-ahead completed, but other rules may match further. Continue on |
1252 | // TODO: junk this feature? I don't think it's used anywhwere. | |
374ca955 A |
1253 | goto continueOn; |
1254 | } | |
1255 | ||
73c04bcf A |
1256 | int32_t r = (int32_t)UTEXT_GETNATIVEINDEX(fText); |
1257 | lookaheadResult = r; | |
1258 | lookaheadStatus = row->fLookAhead; | |
374ca955 A |
1259 | goto continueOn; |
1260 | } | |
1261 | ||
374ca955 | 1262 | |
73c04bcf A |
1263 | if (row->fAccepting != 0) { |
1264 | // Because this is an accepting state, any in-progress look-ahead match | |
1265 | // is no longer relavant. Clear out the pending lookahead status. | |
1266 | lookaheadStatus = 0; | |
1267 | } | |
374ca955 A |
1268 | |
1269 | continueOn: | |
1270 | if (state == STOP_STATE) { | |
73c04bcf A |
1271 | // This is the normal exit from the lookup state machine. |
1272 | // We have advanced through the string until it is certain that no | |
1273 | // longer match is possible, no matter what characters follow. | |
374ca955 A |
1274 | break; |
1275 | } | |
1276 | ||
73c04bcf A |
1277 | // Move (backwards) to the next character to process. |
1278 | // If this is a beginning-of-input loop iteration, don't advance | |
1279 | // the input position. The next iteration will be processing the | |
1280 | // first real input character. | |
1281 | if (mode == RBBI_RUN) { | |
1282 | c = UTEXT_PREVIOUS32(fText); | |
1283 | } else { | |
1284 | if (mode == RBBI_START) { | |
1285 | mode = RBBI_RUN; | |
1286 | } | |
1287 | } | |
374ca955 A |
1288 | } |
1289 | ||
73c04bcf A |
1290 | // The state machine is done. Check whether it found a match... |
1291 | ||
1292 | // If the iterator failed to advance in the match engine, force it ahead by one. | |
1293 | // (This really indicates a defect in the break rules. They should always match | |
1294 | // at least one character.) | |
1295 | if (result == initialPosition) { | |
1296 | utext_setNativeIndex(fText, initialPosition); | |
1297 | UTEXT_PREVIOUS32(fText); | |
1298 | result = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1299 | } | |
374ca955 | 1300 | |
73c04bcf A |
1301 | // Leave the iterator at our result position. |
1302 | utext_setNativeIndex(fText, result); | |
1303 | #ifdef RBBI_DEBUG | |
1304 | if (fTrace) { | |
1305 | RBBIDebugPrintf("result = %d\n\n", result); | |
1306 | } | |
1307 | #endif | |
374ca955 A |
1308 | return result; |
1309 | } | |
1310 | ||
1311 | ||
b75a7d8f A |
1312 | void |
1313 | RuleBasedBreakIterator::reset() | |
1314 | { | |
73c04bcf A |
1315 | if (fCachedBreakPositions) { |
1316 | uprv_free(fCachedBreakPositions); | |
1317 | } | |
1318 | fCachedBreakPositions = NULL; | |
1319 | fNumCachedBreakPositions = 0; | |
1320 | fDictionaryCharCount = 0; | |
1321 | fPositionInCache = 0; | |
b75a7d8f A |
1322 | } |
1323 | ||
1324 | ||
1325 | ||
1326 | //------------------------------------------------------------------------------- | |
1327 | // | |
1328 | // getRuleStatus() Return the break rule tag associated with the current | |
1329 | // iterator position. If the iterator arrived at its current | |
1330 | // position by iterating forwards, the value will have been | |
1331 | // cached by the handleNext() function. | |
1332 | // | |
1333 | // If no cached status value is available, the status is | |
1334 | // found by doing a previous() followed by a next(), which | |
1335 | // leaves the iterator where it started, and computes the | |
1336 | // status while doing the next(). | |
1337 | // | |
1338 | //------------------------------------------------------------------------------- | |
374ca955 A |
1339 | void RuleBasedBreakIterator::makeRuleStatusValid() { |
1340 | if (fLastStatusIndexValid == FALSE) { | |
b75a7d8f | 1341 | // No cached status is available. |
73c04bcf | 1342 | if (fText == NULL || current() == 0) { |
b75a7d8f | 1343 | // At start of text, or there is no text. Status is always zero. |
374ca955 A |
1344 | fLastRuleStatusIndex = 0; |
1345 | fLastStatusIndexValid = TRUE; | |
b75a7d8f A |
1346 | } else { |
1347 | // Not at start of text. Find status the tedious way. | |
1348 | int32_t pa = current(); | |
374ca955 | 1349 | previous(); |
73c04bcf A |
1350 | if (fNumCachedBreakPositions > 0) { |
1351 | reset(); // Blow off the dictionary cache | |
1352 | } | |
374ca955 A |
1353 | int32_t pb = next(); |
1354 | if (pa != pb) { | |
1355 | // note: the if (pa != pb) test is here only to eliminate warnings for | |
1356 | // unused local variables on gcc. Logically, it isn't needed. | |
1357 | U_ASSERT(pa == pb); | |
1358 | } | |
b75a7d8f A |
1359 | } |
1360 | } | |
374ca955 | 1361 | U_ASSERT(fLastRuleStatusIndex >= 0 && fLastRuleStatusIndex < fData->fStatusMaxIdx); |
b75a7d8f A |
1362 | } |
1363 | ||
1364 | ||
374ca955 A |
1365 | int32_t RuleBasedBreakIterator::getRuleStatus() const { |
1366 | RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this; | |
1367 | nonConstThis->makeRuleStatusValid(); | |
1368 | ||
1369 | // fLastRuleStatusIndex indexes to the start of the appropriate status record | |
1370 | // (the number of status values.) | |
1371 | // This function returns the last (largest) of the array of status values. | |
1372 | int32_t idx = fLastRuleStatusIndex + fData->fRuleStatusTable[fLastRuleStatusIndex]; | |
1373 | int32_t tagVal = fData->fRuleStatusTable[idx]; | |
1374 | ||
1375 | return tagVal; | |
1376 | } | |
1377 | ||
1378 | ||
1379 | ||
1380 | ||
1381 | int32_t RuleBasedBreakIterator::getRuleStatusVec( | |
1382 | int32_t *fillInVec, int32_t capacity, UErrorCode &status) | |
1383 | { | |
1384 | if (U_FAILURE(status)) { | |
1385 | return 0; | |
1386 | } | |
1387 | ||
1388 | RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this; | |
1389 | nonConstThis->makeRuleStatusValid(); | |
1390 | int32_t numVals = fData->fRuleStatusTable[fLastRuleStatusIndex]; | |
1391 | int32_t numValsToCopy = numVals; | |
1392 | if (numVals > capacity) { | |
1393 | status = U_BUFFER_OVERFLOW_ERROR; | |
1394 | numValsToCopy = capacity; | |
1395 | } | |
1396 | int i; | |
1397 | for (i=0; i<numValsToCopy; i++) { | |
1398 | fillInVec[i] = fData->fRuleStatusTable[fLastRuleStatusIndex + i + 1]; | |
1399 | } | |
1400 | return numVals; | |
1401 | } | |
1402 | ||
1403 | ||
1404 | ||
b75a7d8f A |
1405 | //------------------------------------------------------------------------------- |
1406 | // | |
1407 | // getBinaryRules Access to the compiled form of the rules, | |
1408 | // for use by build system tools that save the data | |
1409 | // for standard iterator types. | |
1410 | // | |
1411 | //------------------------------------------------------------------------------- | |
1412 | const uint8_t *RuleBasedBreakIterator::getBinaryRules(uint32_t &length) { | |
1413 | const uint8_t *retPtr = NULL; | |
1414 | length = 0; | |
1415 | ||
1416 | if (fData != NULL) { | |
1417 | retPtr = (const uint8_t *)fData->fHeader; | |
1418 | length = fData->fHeader->fLength; | |
1419 | } | |
1420 | return retPtr; | |
1421 | } | |
1422 | ||
1423 | ||
1424 | ||
1425 | ||
1426 | //------------------------------------------------------------------------------- | |
1427 | // | |
1428 | // BufferClone TODO: In my (Andy) opinion, this function should be deprecated. | |
1429 | // Saving one heap allocation isn't worth the trouble. | |
1430 | // Cloning shouldn't be done in tight loops, and | |
1431 | // making the clone copy involves other heap operations anyway. | |
1432 | // And the application code for correctly dealing with buffer | |
1433 | // size problems and the eventual object destruction is ugly. | |
1434 | // | |
1435 | //------------------------------------------------------------------------------- | |
1436 | BreakIterator * RuleBasedBreakIterator::createBufferClone(void *stackBuffer, | |
1437 | int32_t &bufferSize, | |
1438 | UErrorCode &status) | |
1439 | { | |
1440 | if (U_FAILURE(status)){ | |
1441 | return NULL; | |
1442 | } | |
1443 | ||
1444 | // | |
1445 | // If user buffer size is zero this is a preflight operation to | |
1446 | // obtain the needed buffer size, allowing for worst case misalignment. | |
1447 | // | |
1448 | if (bufferSize == 0) { | |
1449 | bufferSize = sizeof(RuleBasedBreakIterator) + U_ALIGNMENT_OFFSET_UP(0); | |
1450 | return NULL; | |
1451 | } | |
1452 | ||
1453 | ||
1454 | // | |
1455 | // Check the alignment and size of the user supplied buffer. | |
1456 | // Allocate heap memory if the user supplied memory is insufficient. | |
1457 | // | |
1458 | char *buf = (char *)stackBuffer; | |
1459 | uint32_t s = bufferSize; | |
1460 | ||
1461 | if (stackBuffer == NULL) { | |
1462 | s = 0; // Ignore size, force allocation if user didn't give us a buffer. | |
1463 | } | |
1464 | if (U_ALIGNMENT_OFFSET(stackBuffer) != 0) { | |
1465 | uint32_t offsetUp = (uint32_t)U_ALIGNMENT_OFFSET_UP(buf); | |
1466 | s -= offsetUp; | |
1467 | buf += offsetUp; | |
1468 | } | |
1469 | if (s < sizeof(RuleBasedBreakIterator)) { | |
73c04bcf A |
1470 | // Not enough room in the caller-supplied buffer. |
1471 | // Do a plain-vanilla heap based clone and return that, along with | |
1472 | // a warning that the clone was allocated. | |
1473 | RuleBasedBreakIterator *clonedBI = new RuleBasedBreakIterator(*this); | |
1474 | if (clonedBI == 0) { | |
b75a7d8f | 1475 | status = U_MEMORY_ALLOCATION_ERROR; |
73c04bcf A |
1476 | } else { |
1477 | status = U_SAFECLONE_ALLOCATED_WARNING; | |
b75a7d8f | 1478 | } |
73c04bcf | 1479 | return clonedBI; |
b75a7d8f A |
1480 | } |
1481 | ||
1482 | // | |
73c04bcf | 1483 | // Clone the source BI into the caller-supplied buffer. |
b75a7d8f A |
1484 | // TODO: using an overloaded operator new to directly initialize the |
1485 | // copy in the user's buffer would be better, but it doesn't seem | |
1486 | // to get along with namespaces. Investigate why. | |
1487 | // | |
1488 | // The memcpy is only safe with an empty (default constructed) | |
1489 | // break iterator. Use on others can screw up reference counts | |
1490 | // to data. memcpy-ing objects is not really a good idea... | |
1491 | // | |
1492 | RuleBasedBreakIterator localIter; // Empty break iterator, source for memcpy | |
1493 | RuleBasedBreakIterator *clone = (RuleBasedBreakIterator *)buf; | |
73c04bcf A |
1494 | uprv_memcpy(clone, &localIter, sizeof(RuleBasedBreakIterator)); // init C++ gorp, BreakIterator base class part |
1495 | clone->init(); // Init RuleBasedBreakIterator part, (user default constructor) | |
1496 | *clone = *this; // clone = the real BI we want. | |
1497 | clone->fBufferClone = TRUE; // Flag to prevent deleting storage on close (From C code) | |
b75a7d8f A |
1498 | |
1499 | return clone; | |
1500 | } | |
1501 | ||
1502 | ||
b75a7d8f A |
1503 | //------------------------------------------------------------------------------- |
1504 | // | |
1505 | // isDictionaryChar Return true if the category lookup for this char | |
1506 | // indicates that it is in the set of dictionary lookup | |
1507 | // chars. | |
1508 | // | |
1509 | // This function is intended for use by dictionary based | |
1510 | // break iterators. | |
1511 | // | |
1512 | //------------------------------------------------------------------------------- | |
73c04bcf | 1513 | /*UBool RuleBasedBreakIterator::isDictionaryChar(UChar32 c) { |
b75a7d8f A |
1514 | if (fData == NULL) { |
1515 | return FALSE; | |
1516 | } | |
1517 | uint16_t category; | |
1518 | UTRIE_GET16(&fData->fTrie, c, category); | |
1519 | return (category & 0x4000) != 0; | |
73c04bcf A |
1520 | }*/ |
1521 | ||
1522 | ||
1523 | //------------------------------------------------------------------------------- | |
1524 | // | |
1525 | // checkDictionary This function handles all processing of characters in | |
1526 | // the "dictionary" set. It will determine the appropriate | |
1527 | // course of action, and possibly set up a cache in the | |
1528 | // process. | |
1529 | // | |
1530 | //------------------------------------------------------------------------------- | |
1531 | int32_t RuleBasedBreakIterator::checkDictionary(int32_t startPos, | |
1532 | int32_t endPos, | |
1533 | UBool reverse) { | |
1534 | // Reset the old break cache first. | |
1535 | uint32_t dictionaryCount = fDictionaryCharCount; | |
1536 | reset(); | |
1537 | ||
1538 | if (dictionaryCount <= 1 || (endPos - startPos) <= 1) { | |
1539 | return (reverse ? startPos : endPos); | |
1540 | } | |
1541 | ||
1542 | // Starting from the starting point, scan towards the proposed result, | |
1543 | // looking for the first dictionary character (which may be the one | |
1544 | // we're on, if we're starting in the middle of a range). | |
1545 | utext_setNativeIndex(fText, reverse ? endPos : startPos); | |
1546 | if (reverse) { | |
1547 | UTEXT_PREVIOUS32(fText); | |
1548 | } | |
1549 | ||
1550 | int32_t rangeStart = startPos; | |
1551 | int32_t rangeEnd = endPos; | |
1552 | ||
1553 | uint16_t category; | |
1554 | int32_t current; | |
1555 | UErrorCode status = U_ZERO_ERROR; | |
1556 | UStack breaks(status); | |
1557 | int32_t foundBreakCount = 0; | |
1558 | UChar32 c = utext_current32(fText); | |
1559 | ||
1560 | UTRIE_GET16(&fData->fTrie, c, category); | |
1561 | ||
1562 | // Is the character we're starting on a dictionary character? If so, we | |
1563 | // need to back up to include the entire run; otherwise the results of | |
1564 | // the break algorithm will differ depending on where we start. Since | |
1565 | // the result is cached and there is typically a non-dictionary break | |
1566 | // within a small number of words, there should be little performance impact. | |
1567 | if (category & 0x4000) { | |
1568 | if (reverse) { | |
1569 | do { | |
1570 | utext_next32(fText); // TODO: recast to work directly with postincrement. | |
1571 | c = utext_current32(fText); | |
1572 | UTRIE_GET16(&fData->fTrie, c, category); | |
1573 | } while (c != U_SENTINEL && (category & 0x4000)); | |
1574 | // Back up to the last dictionary character | |
1575 | rangeEnd = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1576 | if (c == U_SENTINEL) { | |
1577 | // c = fText->last32(); | |
1578 | // TODO: why was this if needed? | |
1579 | c = UTEXT_PREVIOUS32(fText); | |
1580 | } | |
1581 | else { | |
1582 | c = UTEXT_PREVIOUS32(fText); | |
1583 | } | |
1584 | } | |
1585 | else { | |
1586 | do { | |
1587 | c = UTEXT_PREVIOUS32(fText); | |
1588 | UTRIE_GET16(&fData->fTrie, c, category); | |
1589 | } | |
1590 | while (c != U_SENTINEL && (category & 0x4000)); | |
1591 | // Back up to the last dictionary character | |
1592 | if (c == U_SENTINEL) { | |
1593 | // c = fText->first32(); | |
1594 | c = utext_current32(fText); | |
1595 | } | |
1596 | else { | |
1597 | utext_next32(fText); | |
1598 | c = utext_current32(fText); | |
1599 | } | |
1600 | rangeStart = (int32_t)UTEXT_GETNATIVEINDEX(fText);; | |
1601 | } | |
1602 | UTRIE_GET16(&fData->fTrie, c, category); | |
1603 | } | |
1604 | ||
1605 | // Loop through the text, looking for ranges of dictionary characters. | |
1606 | // For each span, find the appropriate break engine, and ask it to find | |
1607 | // any breaks within the span. | |
1608 | // Note: we always do this in the forward direction, so that the break | |
1609 | // cache is built in the right order. | |
1610 | if (reverse) { | |
1611 | utext_setNativeIndex(fText, rangeStart); | |
1612 | c = utext_current32(fText); | |
1613 | UTRIE_GET16(&fData->fTrie, c, category); | |
1614 | } | |
1615 | while(U_SUCCESS(status)) { | |
1616 | while((current = (int32_t)UTEXT_GETNATIVEINDEX(fText)) < rangeEnd && (category & 0x4000) == 0) { | |
1617 | utext_next32(fText); // TODO: tweak for post-increment operation | |
1618 | c = utext_current32(fText); | |
1619 | UTRIE_GET16(&fData->fTrie, c, category); | |
1620 | } | |
1621 | if (current >= rangeEnd) { | |
1622 | break; | |
1623 | } | |
1624 | ||
1625 | // We now have a dictionary character. Get the appropriate language object | |
1626 | // to deal with it. | |
1627 | const LanguageBreakEngine *lbe = getLanguageBreakEngine(c); | |
1628 | ||
1629 | // Ask the language object if there are any breaks. It will leave the text | |
1630 | // pointer on the other side of its range, ready to search for the next one. | |
1631 | if (lbe != NULL) { | |
1632 | foundBreakCount += lbe->findBreaks(fText, rangeStart, rangeEnd, FALSE, fBreakType, breaks); | |
1633 | } | |
1634 | ||
1635 | // Reload the loop variables for the next go-round | |
1636 | c = utext_current32(fText); | |
1637 | UTRIE_GET16(&fData->fTrie, c, category); | |
1638 | } | |
1639 | ||
1640 | // If we found breaks, build a new break cache. The first and last entries must | |
1641 | // be the original starting and ending position. | |
1642 | if (foundBreakCount > 0) { | |
1643 | int32_t totalBreaks = foundBreakCount; | |
1644 | if (startPos < breaks.elementAti(0)) { | |
1645 | totalBreaks += 1; | |
1646 | } | |
1647 | if (endPos > breaks.peeki()) { | |
1648 | totalBreaks += 1; | |
1649 | } | |
1650 | fCachedBreakPositions = (int32_t *)uprv_malloc(totalBreaks * sizeof(int32_t)); | |
1651 | if (fCachedBreakPositions != NULL) { | |
1652 | int32_t out = 0; | |
1653 | fNumCachedBreakPositions = totalBreaks; | |
1654 | if (startPos < breaks.elementAti(0)) { | |
1655 | fCachedBreakPositions[out++] = startPos; | |
1656 | } | |
1657 | for (int32_t i = 0; i < foundBreakCount; ++i) { | |
1658 | fCachedBreakPositions[out++] = breaks.elementAti(i); | |
1659 | } | |
1660 | if (endPos > fCachedBreakPositions[out-1]) { | |
1661 | fCachedBreakPositions[out] = endPos; | |
1662 | } | |
1663 | // If there are breaks, then by definition, we are replacing the original | |
1664 | // proposed break by one of the breaks we found. Use following() and | |
1665 | // preceding() to do the work. They should never recurse in this case. | |
1666 | if (reverse) { | |
1667 | return preceding(endPos - 1); | |
1668 | } | |
1669 | else { | |
1670 | return following(startPos); | |
1671 | } | |
1672 | } | |
1673 | // If the allocation failed, just fall through to the "no breaks found" case. | |
1674 | } | |
1675 | ||
1676 | // If we get here, there were no language-based breaks. Set the text pointer | |
1677 | // to the original proposed break. | |
1678 | utext_setNativeIndex(fText, reverse ? startPos : endPos); | |
1679 | return (reverse ? startPos : endPos); | |
1680 | } | |
1681 | ||
1682 | static UStack *gLanguageBreakFactories = NULL; | |
1683 | ||
1684 | U_NAMESPACE_END | |
1685 | ||
1686 | // defined in ucln_cmn.h | |
1687 | ||
1688 | /** | |
1689 | * Release all static memory held by breakiterator. | |
1690 | */ | |
1691 | U_CDECL_BEGIN | |
1692 | static UBool U_CALLCONV breakiterator_cleanup_dict(void) { | |
1693 | if (gLanguageBreakFactories) { | |
1694 | delete gLanguageBreakFactories; | |
1695 | gLanguageBreakFactories = NULL; | |
1696 | } | |
1697 | return TRUE; | |
b75a7d8f | 1698 | } |
73c04bcf | 1699 | U_CDECL_END |
b75a7d8f | 1700 | |
73c04bcf A |
1701 | U_CDECL_BEGIN |
1702 | static void U_CALLCONV _deleteFactory(void *obj) { | |
1703 | delete (LanguageBreakFactory *) obj; | |
1704 | } | |
1705 | U_CDECL_END | |
1706 | U_NAMESPACE_BEGIN | |
b75a7d8f | 1707 | |
73c04bcf A |
1708 | static const LanguageBreakEngine* |
1709 | getLanguageBreakEngineFromFactory(UChar32 c, int32_t breakType) | |
1710 | { | |
1711 | UBool needsInit; | |
1712 | UErrorCode status = U_ZERO_ERROR; | |
1713 | umtx_lock(NULL); | |
1714 | needsInit = (UBool)(gLanguageBreakFactories == NULL); | |
1715 | umtx_unlock(NULL); | |
1716 | ||
1717 | if (needsInit) { | |
1718 | UStack *factories = new UStack(_deleteFactory, NULL, status); | |
1719 | if (U_SUCCESS(status)) { | |
1720 | ICULanguageBreakFactory *builtIn = new ICULanguageBreakFactory(status); | |
1721 | factories->push(builtIn, status); | |
1722 | #ifdef U_LOCAL_SERVICE_HOOK | |
1723 | LanguageBreakFactory *extra = (LanguageBreakFactory *)uprv_svc_hook("languageBreakFactory", &status); | |
1724 | if (extra != NULL) { | |
1725 | factories->push(extra, status); | |
1726 | } | |
1727 | #endif | |
1728 | } | |
1729 | umtx_lock(NULL); | |
1730 | if (gLanguageBreakFactories == NULL) { | |
1731 | gLanguageBreakFactories = factories; | |
1732 | factories = NULL; | |
1733 | ucln_common_registerCleanup(UCLN_COMMON_BREAKITERATOR_DICT, breakiterator_cleanup_dict); | |
1734 | } | |
1735 | umtx_unlock(NULL); | |
1736 | delete factories; | |
1737 | } | |
1738 | ||
1739 | if (gLanguageBreakFactories == NULL) { | |
1740 | return NULL; | |
1741 | } | |
1742 | ||
1743 | int32_t i = gLanguageBreakFactories->size(); | |
1744 | const LanguageBreakEngine *lbe = NULL; | |
1745 | while (--i >= 0) { | |
1746 | LanguageBreakFactory *factory = (LanguageBreakFactory *)(gLanguageBreakFactories->elementAt(i)); | |
1747 | lbe = factory->getEngineFor(c, breakType); | |
1748 | if (lbe != NULL) { | |
1749 | break; | |
1750 | } | |
1751 | } | |
1752 | return lbe; | |
1753 | } | |
1754 | ||
1755 | ||
1756 | //------------------------------------------------------------------------------- | |
1757 | // | |
1758 | // getLanguageBreakEngine Find an appropriate LanguageBreakEngine for the | |
1759 | // the characer c. | |
1760 | // | |
1761 | //------------------------------------------------------------------------------- | |
1762 | const LanguageBreakEngine * | |
1763 | RuleBasedBreakIterator::getLanguageBreakEngine(UChar32 c) { | |
1764 | const LanguageBreakEngine *lbe = NULL; | |
1765 | UErrorCode status = U_ZERO_ERROR; | |
1766 | ||
1767 | if (fLanguageBreakEngines == NULL) { | |
1768 | fLanguageBreakEngines = new UStack(status); | |
1769 | if (U_FAILURE(status)) { | |
1770 | delete fLanguageBreakEngines; | |
1771 | fLanguageBreakEngines = 0; | |
1772 | return NULL; | |
1773 | } | |
1774 | } | |
1775 | ||
1776 | int32_t i = fLanguageBreakEngines->size(); | |
1777 | while (--i >= 0) { | |
1778 | lbe = (const LanguageBreakEngine *)(fLanguageBreakEngines->elementAt(i)); | |
1779 | if (lbe->handles(c, fBreakType)) { | |
1780 | return lbe; | |
1781 | } | |
1782 | } | |
1783 | ||
1784 | // No existing dictionary took the character. See if a factory wants to | |
1785 | // give us a new LanguageBreakEngine for this character. | |
1786 | lbe = getLanguageBreakEngineFromFactory(c, fBreakType); | |
1787 | ||
1788 | // If we got one, use it and push it on our stack. | |
1789 | if (lbe != NULL) { | |
1790 | fLanguageBreakEngines->push((void *)lbe, status); | |
1791 | // Even if we can't remember it, we can keep looking it up, so | |
1792 | // return it even if the push fails. | |
1793 | return lbe; | |
1794 | } | |
1795 | ||
1796 | // No engine is forthcoming for this character. Add it to the | |
1797 | // reject set. Create the reject break engine if needed. | |
1798 | if (fUnhandledBreakEngine == NULL) { | |
1799 | fUnhandledBreakEngine = new UnhandledEngine(status); | |
1800 | if (U_SUCCESS(status) && fUnhandledBreakEngine == NULL) { | |
1801 | status = U_MEMORY_ALLOCATION_ERROR; | |
1802 | } | |
1803 | // Put it last so that scripts for which we have an engine get tried | |
1804 | // first. | |
1805 | fLanguageBreakEngines->insertElementAt(fUnhandledBreakEngine, 0, status); | |
1806 | // If we can't insert it, or creation failed, get rid of it | |
1807 | if (U_FAILURE(status)) { | |
1808 | delete fUnhandledBreakEngine; | |
1809 | fUnhandledBreakEngine = 0; | |
1810 | return NULL; | |
1811 | } | |
1812 | } | |
1813 | ||
1814 | // Tell the reject engine about the character; at its discretion, it may | |
1815 | // add more than just the one character. | |
1816 | fUnhandledBreakEngine->handleCharacter(c, fBreakType); | |
1817 | ||
1818 | return fUnhandledBreakEngine; | |
1819 | } | |
1820 | ||
1821 | ||
1822 | ||
1823 | /*int32_t RuleBasedBreakIterator::getBreakType() const { | |
1824 | return fBreakType; | |
1825 | }*/ | |
1826 | ||
1827 | void RuleBasedBreakIterator::setBreakType(int32_t type) { | |
1828 | fBreakType = type; | |
1829 | reset(); | |
1830 | } | |
b75a7d8f A |
1831 | |
1832 | U_NAMESPACE_END | |
1833 | ||
1834 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |