]>
Commit | Line | Data |
---|---|---|
f3c0d7a5 A |
1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
73c04bcf A |
3 | /* |
4 | ******************************************************************************* | |
5 | * | |
2ca993e8 | 6 | * Copyright (C) 2005-2016, International Business Machines |
73c04bcf A |
7 | * Corporation and others. All Rights Reserved. |
8 | * | |
9 | ******************************************************************************* | |
10 | * file name: utext.cpp | |
f3c0d7a5 | 11 | * encoding: UTF-8 |
73c04bcf A |
12 | * tab size: 8 (not used) |
13 | * indentation:4 | |
14 | * | |
15 | * created on: 2005apr12 | |
16 | * created by: Markus W. Scherer | |
17 | */ | |
18 | ||
19 | #include "unicode/utypes.h" | |
20 | #include "unicode/ustring.h" | |
21 | #include "unicode/unistr.h" | |
22 | #include "unicode/chariter.h" | |
23 | #include "unicode/utext.h" | |
4388f060 A |
24 | #include "unicode/utf.h" |
25 | #include "unicode/utf8.h" | |
26 | #include "unicode/utf16.h" | |
73c04bcf A |
27 | #include "ustr_imp.h" |
28 | #include "cmemory.h" | |
29 | #include "cstring.h" | |
30 | #include "uassert.h" | |
729e4ab9 | 31 | #include "putilimp.h" |
73c04bcf | 32 | |
46f4442e | 33 | U_NAMESPACE_USE |
73c04bcf A |
34 | |
35 | #define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex)) | |
36 | ||
37 | ||
38 | static UBool | |
39 | utext_access(UText *ut, int64_t index, UBool forward) { | |
40 | return ut->pFuncs->access(ut, index, forward); | |
41 | } | |
42 | ||
43 | ||
44 | ||
46f4442e | 45 | U_CAPI UBool U_EXPORT2 |
73c04bcf A |
46 | utext_moveIndex32(UText *ut, int32_t delta) { |
47 | UChar32 c; | |
48 | if (delta > 0) { | |
49 | do { | |
50 | if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, TRUE)) { | |
51 | return FALSE; | |
52 | } | |
53 | c = ut->chunkContents[ut->chunkOffset]; | |
54 | if (U16_IS_SURROGATE(c)) { | |
55 | c = utext_next32(ut); | |
56 | if (c == U_SENTINEL) { | |
57 | return FALSE; | |
58 | } | |
59 | } else { | |
60 | ut->chunkOffset++; | |
61 | } | |
62 | } while(--delta>0); | |
63 | ||
64 | } else if (delta<0) { | |
65 | do { | |
66 | if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, FALSE)) { | |
67 | return FALSE; | |
68 | } | |
69 | c = ut->chunkContents[ut->chunkOffset-1]; | |
70 | if (U16_IS_SURROGATE(c)) { | |
71 | c = utext_previous32(ut); | |
72 | if (c == U_SENTINEL) { | |
73 | return FALSE; | |
74 | } | |
75 | } else { | |
76 | ut->chunkOffset--; | |
77 | } | |
78 | } while(++delta<0); | |
79 | } | |
80 | ||
81 | return TRUE; | |
82 | } | |
83 | ||
84 | ||
46f4442e | 85 | U_CAPI int64_t U_EXPORT2 |
73c04bcf A |
86 | utext_nativeLength(UText *ut) { |
87 | return ut->pFuncs->nativeLength(ut); | |
88 | } | |
89 | ||
90 | ||
46f4442e | 91 | U_CAPI UBool U_EXPORT2 |
73c04bcf A |
92 | utext_isLengthExpensive(const UText *ut) { |
93 | UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0; | |
94 | return r; | |
95 | } | |
96 | ||
97 | ||
46f4442e | 98 | U_CAPI int64_t U_EXPORT2 |
73c04bcf A |
99 | utext_getNativeIndex(const UText *ut) { |
100 | if(ut->chunkOffset <= ut->nativeIndexingLimit) { | |
101 | return ut->chunkNativeStart+ut->chunkOffset; | |
102 | } else { | |
103 | return ut->pFuncs->mapOffsetToNative(ut); | |
104 | } | |
105 | } | |
106 | ||
107 | ||
46f4442e | 108 | U_CAPI void U_EXPORT2 |
73c04bcf | 109 | utext_setNativeIndex(UText *ut, int64_t index) { |
3d1f044b A |
110 | // Apple note, at entry ut->chunkContents may be 0, not necessarily a problem |
111 | // (CF funcs will have set chunkNativeStart/Limit to 0 forcing call to access) | |
73c04bcf A |
112 | if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) { |
113 | // The desired position is outside of the current chunk. | |
114 | // Access the new position. Assume a forward iteration from here, | |
115 | // which will also be optimimum for a single random access. | |
116 | // Reverse iterations may suffer slightly. | |
117 | ut->pFuncs->access(ut, index, TRUE); | |
118 | } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) { | |
119 | // utf-16 indexing. | |
120 | ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart); | |
121 | } else { | |
3d1f044b | 122 | ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
73c04bcf | 123 | } |
3d1f044b A |
124 | // Apple note, it can still be valid to have ut->chunkContents==0 at this |
125 | // point (just not inside the next block), see <rdar://problem/53610517> | |
126 | ||
73c04bcf A |
127 | // The convention is that the index must always be on a code point boundary. |
128 | // Adjust the index position if it is in the middle of a surrogate pair. | |
129 | if (ut->chunkOffset<ut->chunkLength) { | |
130 | UChar c= ut->chunkContents[ut->chunkOffset]; | |
4388f060 | 131 | if (U16_IS_TRAIL(c)) { |
73c04bcf A |
132 | if (ut->chunkOffset==0) { |
133 | ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE); | |
134 | } | |
135 | if (ut->chunkOffset>0) { | |
136 | UChar lead = ut->chunkContents[ut->chunkOffset-1]; | |
4388f060 | 137 | if (U16_IS_LEAD(lead)) { |
73c04bcf A |
138 | ut->chunkOffset--; |
139 | } | |
140 | } | |
141 | } | |
142 | } | |
143 | } | |
144 | ||
145 | ||
146 | ||
46f4442e | 147 | U_CAPI int64_t U_EXPORT2 |
73c04bcf A |
148 | utext_getPreviousNativeIndex(UText *ut) { |
149 | // | |
150 | // Fast-path the common case. | |
151 | // Common means current position is not at the beginning of a chunk | |
152 | // and the preceding character is not supplementary. | |
153 | // | |
154 | int32_t i = ut->chunkOffset - 1; | |
155 | int64_t result; | |
156 | if (i >= 0) { | |
157 | UChar c = ut->chunkContents[i]; | |
158 | if (U16_IS_TRAIL(c) == FALSE) { | |
159 | if (i <= ut->nativeIndexingLimit) { | |
160 | result = ut->chunkNativeStart + i; | |
161 | } else { | |
162 | ut->chunkOffset = i; | |
163 | result = ut->pFuncs->mapOffsetToNative(ut); | |
164 | ut->chunkOffset++; | |
165 | } | |
166 | return result; | |
167 | } | |
168 | } | |
169 | ||
170 | // If at the start of text, simply return 0. | |
171 | if (ut->chunkOffset==0 && ut->chunkNativeStart==0) { | |
172 | return 0; | |
173 | } | |
174 | ||
175 | // Harder, less common cases. We are at a chunk boundary, or on a surrogate. | |
176 | // Keep it simple, use other functions to handle the edges. | |
177 | // | |
178 | utext_previous32(ut); | |
179 | result = UTEXT_GETNATIVEINDEX(ut); | |
180 | utext_next32(ut); | |
181 | return result; | |
182 | } | |
183 | ||
184 | ||
185 | // | |
186 | // utext_current32. Get the UChar32 at the current position. | |
187 | // UText iteration position is always on a code point boundary, | |
188 | // never on the trail half of a surrogate pair. | |
189 | // | |
46f4442e | 190 | U_CAPI UChar32 U_EXPORT2 |
73c04bcf A |
191 | utext_current32(UText *ut) { |
192 | UChar32 c; | |
193 | if (ut->chunkOffset==ut->chunkLength) { | |
194 | // Current position is just off the end of the chunk. | |
195 | if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { | |
196 | // Off the end of the text. | |
197 | return U_SENTINEL; | |
198 | } | |
199 | } | |
200 | ||
201 | c = ut->chunkContents[ut->chunkOffset]; | |
202 | if (U16_IS_LEAD(c) == FALSE) { | |
203 | // Normal, non-supplementary case. | |
204 | return c; | |
205 | } | |
206 | ||
207 | // | |
208 | // Possible supplementary char. | |
209 | // | |
210 | UChar32 trail = 0; | |
211 | UChar32 supplementaryC = c; | |
212 | if ((ut->chunkOffset+1) < ut->chunkLength) { | |
213 | // The trail surrogate is in the same chunk. | |
214 | trail = ut->chunkContents[ut->chunkOffset+1]; | |
215 | } else { | |
216 | // The trail surrogate is in a different chunk. | |
217 | // Because we must maintain the iteration position, we need to switch forward | |
218 | // into the new chunk, get the trail surrogate, then revert the chunk back to the | |
219 | // original one. | |
220 | // An edge case to be careful of: the entire text may end with an unpaired | |
221 | // leading surrogate. The attempt to access the trail will fail, but | |
222 | // the original position before the unpaired lead still needs to be restored. | |
223 | int64_t nativePosition = ut->chunkNativeLimit; | |
224 | int32_t originalOffset = ut->chunkOffset; | |
225 | if (ut->pFuncs->access(ut, nativePosition, TRUE)) { | |
226 | trail = ut->chunkContents[ut->chunkOffset]; | |
227 | } | |
228 | UBool r = ut->pFuncs->access(ut, nativePosition, FALSE); // reverse iteration flag loads preceding chunk | |
229 | U_ASSERT(r==TRUE); | |
230 | ut->chunkOffset = originalOffset; | |
231 | if(!r) { | |
232 | return U_SENTINEL; | |
233 | } | |
234 | } | |
235 | ||
236 | if (U16_IS_TRAIL(trail)) { | |
237 | supplementaryC = U16_GET_SUPPLEMENTARY(c, trail); | |
238 | } | |
239 | return supplementaryC; | |
240 | ||
241 | } | |
242 | ||
243 | ||
46f4442e | 244 | U_CAPI UChar32 U_EXPORT2 |
73c04bcf A |
245 | utext_char32At(UText *ut, int64_t nativeIndex) { |
246 | UChar32 c = U_SENTINEL; | |
247 | ||
248 | // Fast path the common case. | |
249 | if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) { | |
250 | ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart); | |
251 | c = ut->chunkContents[ut->chunkOffset]; | |
252 | if (U16_IS_SURROGATE(c) == FALSE) { | |
253 | return c; | |
254 | } | |
255 | } | |
256 | ||
257 | ||
258 | utext_setNativeIndex(ut, nativeIndex); | |
259 | if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) { | |
260 | c = ut->chunkContents[ut->chunkOffset]; | |
261 | if (U16_IS_SURROGATE(c)) { | |
262 | // For surrogates, let current32() deal with the complications | |
263 | // of supplementaries that may span chunk boundaries. | |
264 | c = utext_current32(ut); | |
265 | } | |
266 | } | |
267 | return c; | |
268 | } | |
269 | ||
270 | ||
46f4442e | 271 | U_CAPI UChar32 U_EXPORT2 |
73c04bcf A |
272 | utext_next32(UText *ut) { |
273 | UChar32 c; | |
274 | ||
275 | if (ut->chunkOffset >= ut->chunkLength) { | |
276 | if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { | |
277 | return U_SENTINEL; | |
278 | } | |
279 | } | |
280 | ||
281 | c = ut->chunkContents[ut->chunkOffset++]; | |
282 | if (U16_IS_LEAD(c) == FALSE) { | |
283 | // Normal case, not supplementary. | |
284 | // (A trail surrogate seen here is just returned as is, as a surrogate value. | |
285 | // It cannot be part of a pair.) | |
286 | return c; | |
287 | } | |
288 | ||
289 | if (ut->chunkOffset >= ut->chunkLength) { | |
290 | if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { | |
291 | // c is an unpaired lead surrogate at the end of the text. | |
292 | // return it as it is. | |
293 | return c; | |
294 | } | |
295 | } | |
296 | UChar32 trail = ut->chunkContents[ut->chunkOffset]; | |
297 | if (U16_IS_TRAIL(trail) == FALSE) { | |
298 | // c was an unpaired lead surrogate, not at the end of the text. | |
299 | // return it as it is (unpaired). Iteration position is on the | |
300 | // following character, possibly in the next chunk, where the | |
301 | // trail surrogate would have been if it had existed. | |
302 | return c; | |
303 | } | |
304 | ||
305 | UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail); | |
306 | ut->chunkOffset++; // move iteration position over the trail surrogate. | |
307 | return supplementary; | |
308 | } | |
309 | ||
310 | ||
46f4442e | 311 | U_CAPI UChar32 U_EXPORT2 |
73c04bcf A |
312 | utext_previous32(UText *ut) { |
313 | UChar32 c; | |
314 | ||
315 | if (ut->chunkOffset <= 0) { | |
316 | if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) { | |
317 | return U_SENTINEL; | |
318 | } | |
319 | } | |
320 | ut->chunkOffset--; | |
321 | c = ut->chunkContents[ut->chunkOffset]; | |
322 | if (U16_IS_TRAIL(c) == FALSE) { | |
323 | // Normal case, not supplementary. | |
324 | // (A lead surrogate seen here is just returned as is, as a surrogate value. | |
325 | // It cannot be part of a pair.) | |
326 | return c; | |
327 | } | |
328 | ||
329 | if (ut->chunkOffset <= 0) { | |
330 | if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) { | |
331 | // c is an unpaired trail surrogate at the start of the text. | |
332 | // return it as it is. | |
333 | return c; | |
334 | } | |
335 | } | |
336 | ||
337 | UChar32 lead = ut->chunkContents[ut->chunkOffset-1]; | |
338 | if (U16_IS_LEAD(lead) == FALSE) { | |
339 | // c was an unpaired trail surrogate, not at the end of the text. | |
340 | // return it as it is (unpaired). Iteration position is at c | |
341 | return c; | |
342 | } | |
343 | ||
344 | UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c); | |
345 | ut->chunkOffset--; // move iteration position over the lead surrogate. | |
346 | return supplementary; | |
347 | } | |
348 | ||
349 | ||
350 | ||
46f4442e | 351 | U_CAPI UChar32 U_EXPORT2 |
73c04bcf A |
352 | utext_next32From(UText *ut, int64_t index) { |
353 | UChar32 c = U_SENTINEL; | |
354 | ||
355 | if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) { | |
356 | // Desired position is outside of the current chunk. | |
357 | if(!ut->pFuncs->access(ut, index, TRUE)) { | |
358 | // no chunk available here | |
359 | return U_SENTINEL; | |
360 | } | |
361 | } else if (index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) { | |
362 | // Desired position is in chunk, with direct 1:1 native to UTF16 indexing | |
363 | ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); | |
364 | } else { | |
365 | // Desired position is in chunk, with non-UTF16 indexing. | |
366 | ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index); | |
367 | } | |
368 | ||
369 | c = ut->chunkContents[ut->chunkOffset++]; | |
370 | if (U16_IS_SURROGATE(c)) { | |
371 | // Surrogates. Many edge cases. Use other functions that already | |
372 | // deal with the problems. | |
373 | utext_setNativeIndex(ut, index); | |
374 | c = utext_next32(ut); | |
375 | } | |
376 | return c; | |
377 | } | |
378 | ||
379 | ||
46f4442e | 380 | U_CAPI UChar32 U_EXPORT2 |
73c04bcf A |
381 | utext_previous32From(UText *ut, int64_t index) { |
382 | // | |
383 | // Return the character preceding the specified index. | |
384 | // Leave the iteration position at the start of the character that was returned. | |
385 | // | |
386 | UChar32 cPrev; // The character preceding cCurr, which is what we will return. | |
387 | ||
388 | // Address the chunk containg the position preceding the incoming index | |
389 | // A tricky edge case: | |
390 | // We try to test the requested native index against the chunkNativeStart to determine | |
391 | // whether the character preceding the one at the index is in the current chunk. | |
392 | // BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the | |
393 | // requested index is on something other than the first position of the first char. | |
394 | // | |
395 | if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) { | |
396 | // Requested native index is outside of the current chunk. | |
397 | if(!ut->pFuncs->access(ut, index, FALSE)) { | |
398 | // no chunk available here | |
399 | return U_SENTINEL; | |
400 | } | |
401 | } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) { | |
402 | // Direct UTF-16 indexing. | |
403 | ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); | |
404 | } else { | |
405 | ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index); | |
406 | if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, FALSE)) { | |
407 | // no chunk available here | |
408 | return U_SENTINEL; | |
409 | } | |
410 | } | |
411 | ||
412 | // | |
413 | // Simple case with no surrogates. | |
414 | // | |
415 | ut->chunkOffset--; | |
416 | cPrev = ut->chunkContents[ut->chunkOffset]; | |
417 | ||
418 | if (U16_IS_SURROGATE(cPrev)) { | |
419 | // Possible supplementary. Many edge cases. | |
420 | // Let other functions do the heavy lifting. | |
421 | utext_setNativeIndex(ut, index); | |
422 | cPrev = utext_previous32(ut); | |
423 | } | |
424 | return cPrev; | |
425 | } | |
426 | ||
427 | ||
46f4442e | 428 | U_CAPI int32_t U_EXPORT2 |
73c04bcf A |
429 | utext_extract(UText *ut, |
430 | int64_t start, int64_t limit, | |
431 | UChar *dest, int32_t destCapacity, | |
432 | UErrorCode *status) { | |
433 | return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status); | |
434 | } | |
435 | ||
436 | ||
437 | ||
46f4442e | 438 | U_CAPI UBool U_EXPORT2 |
73c04bcf A |
439 | utext_equals(const UText *a, const UText *b) { |
440 | if (a==NULL || b==NULL || | |
441 | a->magic != UTEXT_MAGIC || | |
442 | b->magic != UTEXT_MAGIC) { | |
443 | // Null or invalid arguments don't compare equal to anything. | |
444 | return FALSE; | |
445 | } | |
446 | ||
447 | if (a->pFuncs != b->pFuncs) { | |
448 | // Different types of text providers. | |
449 | return FALSE; | |
450 | } | |
451 | ||
452 | if (a->context != b->context) { | |
453 | // Different sources (different strings) | |
454 | return FALSE; | |
455 | } | |
456 | if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) { | |
457 | // Different current position in the string. | |
458 | return FALSE; | |
459 | } | |
460 | ||
461 | return TRUE; | |
462 | } | |
463 | ||
46f4442e | 464 | U_CAPI UBool U_EXPORT2 |
73c04bcf A |
465 | utext_isWritable(const UText *ut) |
466 | { | |
467 | UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0; | |
468 | return b; | |
469 | } | |
470 | ||
471 | ||
46f4442e | 472 | U_CAPI void U_EXPORT2 |
73c04bcf A |
473 | utext_freeze(UText *ut) { |
474 | // Zero out the WRITABLE flag. | |
475 | ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE)); | |
476 | } | |
477 | ||
478 | ||
46f4442e | 479 | U_CAPI UBool U_EXPORT2 |
73c04bcf A |
480 | utext_hasMetaData(const UText *ut) |
481 | { | |
482 | UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0; | |
483 | return b; | |
484 | } | |
485 | ||
486 | ||
487 | ||
46f4442e | 488 | U_CAPI int32_t U_EXPORT2 |
73c04bcf A |
489 | utext_replace(UText *ut, |
490 | int64_t nativeStart, int64_t nativeLimit, | |
491 | const UChar *replacementText, int32_t replacementLength, | |
492 | UErrorCode *status) | |
493 | { | |
494 | if (U_FAILURE(*status)) { | |
495 | return 0; | |
496 | } | |
497 | if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { | |
498 | *status = U_NO_WRITE_PERMISSION; | |
499 | return 0; | |
500 | } | |
501 | int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status); | |
502 | return i; | |
503 | } | |
504 | ||
46f4442e | 505 | U_CAPI void U_EXPORT2 |
73c04bcf A |
506 | utext_copy(UText *ut, |
507 | int64_t nativeStart, int64_t nativeLimit, | |
508 | int64_t destIndex, | |
509 | UBool move, | |
510 | UErrorCode *status) | |
511 | { | |
512 | if (U_FAILURE(*status)) { | |
513 | return; | |
514 | } | |
515 | if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { | |
516 | *status = U_NO_WRITE_PERMISSION; | |
517 | return; | |
518 | } | |
519 | ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status); | |
520 | } | |
521 | ||
522 | ||
523 | ||
46f4442e | 524 | U_CAPI UText * U_EXPORT2 |
73c04bcf | 525 | utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) { |
b331163b A |
526 | if (U_FAILURE(*status)) { |
527 | return dest; | |
528 | } | |
529 | UText *result = src->pFuncs->clone(dest, src, deep, status); | |
530 | if (U_FAILURE(*status)) { | |
531 | return result; | |
532 | } | |
533 | if (result == NULL) { | |
534 | *status = U_MEMORY_ALLOCATION_ERROR; | |
535 | return result; | |
536 | } | |
73c04bcf A |
537 | if (readOnly) { |
538 | utext_freeze(result); | |
539 | } | |
540 | return result; | |
541 | } | |
542 | ||
543 | ||
544 | ||
545 | //------------------------------------------------------------------------------ | |
546 | // | |
547 | // UText common functions implementation | |
548 | // | |
549 | //------------------------------------------------------------------------------ | |
550 | ||
551 | // | |
552 | // UText.flags bit definitions | |
553 | // | |
554 | enum { | |
555 | UTEXT_HEAP_ALLOCATED = 1, // 1 if ICU has allocated this UText struct on the heap. | |
556 | // 0 if caller provided storage for the UText. | |
557 | ||
558 | UTEXT_EXTRA_HEAP_ALLOCATED = 2, // 1 if ICU has allocated extra storage as a separate | |
559 | // heap block. | |
560 | // 0 if there is no separate allocation. Either no extra | |
561 | // storage was requested, or it is appended to the end | |
562 | // of the main UText storage. | |
563 | ||
564 | UTEXT_OPEN = 4 // 1 if this UText is currently open | |
565 | // 0 if this UText is not open. | |
566 | }; | |
567 | ||
568 | ||
569 | // | |
570 | // Extended form of a UText. The purpose is to aid in computing the total size required | |
571 | // when a provider asks for a UText to be allocated with extra storage. | |
572 | ||
573 | struct ExtendedUText { | |
574 | UText ut; | |
575 | UAlignedMemory extension; | |
576 | }; | |
577 | ||
578 | static const UText emptyText = UTEXT_INITIALIZER; | |
579 | ||
46f4442e | 580 | U_CAPI UText * U_EXPORT2 |
73c04bcf A |
581 | utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) { |
582 | if (U_FAILURE(*status)) { | |
583 | return ut; | |
584 | } | |
585 | ||
586 | if (ut == NULL) { | |
587 | // We need to heap-allocate storage for the new UText | |
588 | int32_t spaceRequired = sizeof(UText); | |
589 | if (extraSpace > 0) { | |
590 | spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(UAlignedMemory); | |
591 | } | |
592 | ut = (UText *)uprv_malloc(spaceRequired); | |
593 | if (ut == NULL) { | |
594 | *status = U_MEMORY_ALLOCATION_ERROR; | |
46f4442e | 595 | return NULL; |
73c04bcf A |
596 | } else { |
597 | *ut = emptyText; | |
598 | ut->flags |= UTEXT_HEAP_ALLOCATED; | |
599 | if (spaceRequired>0) { | |
600 | ut->extraSize = extraSpace; | |
601 | ut->pExtra = &((ExtendedUText *)ut)->extension; | |
73c04bcf A |
602 | } |
603 | } | |
604 | } else { | |
605 | // We have been supplied with an already existing UText. | |
606 | // Verify that it really appears to be a UText. | |
607 | if (ut->magic != UTEXT_MAGIC) { | |
608 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
609 | return ut; | |
610 | } | |
611 | // If the ut is already open and there's a provider supplied close | |
612 | // function, call it. | |
613 | if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != NULL) { | |
614 | ut->pFuncs->close(ut); | |
615 | } | |
616 | ut->flags &= ~UTEXT_OPEN; | |
617 | ||
618 | // If extra space was requested by our caller, check whether | |
619 | // sufficient already exists, and allocate new if needed. | |
620 | if (extraSpace > ut->extraSize) { | |
621 | // Need more space. If there is existing separately allocated space, | |
622 | // delete it first, then allocate new space. | |
623 | if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { | |
624 | uprv_free(ut->pExtra); | |
625 | ut->extraSize = 0; | |
626 | } | |
627 | ut->pExtra = uprv_malloc(extraSpace); | |
628 | if (ut->pExtra == NULL) { | |
629 | *status = U_MEMORY_ALLOCATION_ERROR; | |
630 | } else { | |
631 | ut->extraSize = extraSpace; | |
632 | ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED; | |
73c04bcf A |
633 | } |
634 | } | |
635 | } | |
636 | if (U_SUCCESS(*status)) { | |
637 | ut->flags |= UTEXT_OPEN; | |
638 | ||
639 | // Initialize all remaining fields of the UText. | |
640 | // | |
641 | ut->context = NULL; | |
642 | ut->chunkContents = NULL; | |
643 | ut->p = NULL; | |
644 | ut->q = NULL; | |
645 | ut->r = NULL; | |
646 | ut->a = 0; | |
647 | ut->b = 0; | |
648 | ut->c = 0; | |
649 | ut->chunkOffset = 0; | |
650 | ut->chunkLength = 0; | |
651 | ut->chunkNativeStart = 0; | |
652 | ut->chunkNativeLimit = 0; | |
653 | ut->nativeIndexingLimit = 0; | |
654 | ut->providerProperties = 0; | |
655 | ut->privA = 0; | |
656 | ut->privB = 0; | |
657 | ut->privC = 0; | |
658 | ut->privP = NULL; | |
46f4442e A |
659 | if (ut->pExtra!=NULL && ut->extraSize>0) |
660 | uprv_memset(ut->pExtra, 0, ut->extraSize); | |
661 | ||
73c04bcf A |
662 | } |
663 | return ut; | |
664 | } | |
665 | ||
666 | ||
46f4442e | 667 | U_CAPI UText * U_EXPORT2 |
73c04bcf A |
668 | utext_close(UText *ut) { |
669 | if (ut==NULL || | |
670 | ut->magic != UTEXT_MAGIC || | |
671 | (ut->flags & UTEXT_OPEN) == 0) | |
672 | { | |
673 | // The supplied ut is not an open UText. | |
674 | // Do nothing. | |
675 | return ut; | |
676 | } | |
677 | ||
678 | // If the provider gave us a close function, call it now. | |
679 | // This will clean up anything allocated specifically by the provider. | |
680 | if (ut->pFuncs->close != NULL) { | |
681 | ut->pFuncs->close(ut); | |
682 | } | |
683 | ut->flags &= ~UTEXT_OPEN; | |
684 | ||
685 | // If we (the framework) allocated the UText or subsidiary storage, | |
686 | // delete it. | |
687 | if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { | |
688 | uprv_free(ut->pExtra); | |
689 | ut->pExtra = NULL; | |
690 | ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED; | |
691 | ut->extraSize = 0; | |
692 | } | |
693 | ||
694 | // Zero out function table of the closed UText. This is a defensive move, | |
695 | // inteded to cause applications that inadvertantly use a closed | |
696 | // utext to crash with null pointer errors. | |
697 | ut->pFuncs = NULL; | |
698 | ||
699 | if (ut->flags & UTEXT_HEAP_ALLOCATED) { | |
700 | // This UText was allocated by UText setup. We need to free it. | |
701 | // Clear magic, so we can detect if the user messes up and immediately | |
702 | // tries to reopen another UText using the deleted storage. | |
703 | ut->magic = 0; | |
704 | uprv_free(ut); | |
705 | ut = NULL; | |
706 | } | |
707 | return ut; | |
708 | } | |
709 | ||
710 | ||
711 | ||
712 | ||
713 | // | |
714 | // invalidateChunk Reset a chunk to have no contents, so that the next call | |
715 | // to access will cause new data to load. | |
716 | // This is needed when copy/move/replace operate directly on the | |
717 | // backing text, potentially putting it out of sync with the | |
718 | // contents in the chunk. | |
719 | // | |
720 | static void | |
721 | invalidateChunk(UText *ut) { | |
722 | ut->chunkLength = 0; | |
723 | ut->chunkNativeLimit = 0; | |
724 | ut->chunkNativeStart = 0; | |
725 | ut->chunkOffset = 0; | |
726 | ut->nativeIndexingLimit = 0; | |
727 | } | |
728 | ||
729 | // | |
730 | // pinIndex Do range pinning on a native index parameter. | |
731 | // 64 bit pinning is done in place. | |
732 | // 32 bit truncated result is returned as a convenience for | |
733 | // use in providers that don't need 64 bits. | |
734 | static int32_t | |
735 | pinIndex(int64_t &index, int64_t limit) { | |
736 | if (index<0) { | |
737 | index = 0; | |
738 | } else if (index > limit) { | |
739 | index = limit; | |
740 | } | |
741 | return (int32_t)index; | |
742 | } | |
743 | ||
744 | ||
745 | U_CDECL_BEGIN | |
746 | ||
747 | // | |
748 | // Pointer relocation function, | |
749 | // a utility used by shallow clone. | |
750 | // Adjust a pointer that refers to something within one UText (the source) | |
751 | // to refer to the same relative offset within a another UText (the target) | |
752 | // | |
753 | static void adjustPointer(UText *dest, const void **destPtr, const UText *src) { | |
754 | // convert all pointers to (char *) so that byte address arithmetic will work. | |
755 | char *dptr = (char *)*destPtr; | |
756 | char *dUText = (char *)dest; | |
757 | char *sUText = (char *)src; | |
758 | ||
759 | if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) { | |
760 | // target ptr was to something within the src UText's pExtra storage. | |
761 | // relocate it into the target UText's pExtra region. | |
762 | *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra); | |
763 | } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) { | |
764 | // target ptr was pointing to somewhere within the source UText itself. | |
765 | // Move it to the same offset within the target UText. | |
766 | *destPtr = dUText + (dptr-sUText); | |
767 | } | |
768 | } | |
769 | ||
770 | ||
771 | // | |
772 | // Clone. This is a generic copy-the-utext-by-value clone function that can be | |
773 | // used as-is with some utext types, and as a helper by other clones. | |
774 | // | |
775 | static UText * U_CALLCONV | |
776 | shallowTextClone(UText * dest, const UText * src, UErrorCode * status) { | |
777 | if (U_FAILURE(*status)) { | |
778 | return NULL; | |
779 | } | |
780 | int32_t srcExtraSize = src->extraSize; | |
781 | ||
782 | // | |
783 | // Use the generic text_setup to allocate storage if required. | |
784 | // | |
785 | dest = utext_setup(dest, srcExtraSize, status); | |
786 | if (U_FAILURE(*status)) { | |
787 | return dest; | |
788 | } | |
789 | ||
790 | // | |
791 | // flags (how the UText was allocated) and the pointer to the | |
792 | // extra storage must retain the values in the cloned utext that | |
793 | // were set up by utext_setup. Save them separately before | |
794 | // copying the whole struct. | |
795 | // | |
796 | void *destExtra = dest->pExtra; | |
797 | int32_t flags = dest->flags; | |
798 | ||
799 | ||
800 | // | |
801 | // Copy the whole UText struct by value. | |
802 | // Any "Extra" storage is copied also. | |
803 | // | |
804 | int sizeToCopy = src->sizeOfStruct; | |
805 | if (sizeToCopy > dest->sizeOfStruct) { | |
806 | sizeToCopy = dest->sizeOfStruct; | |
807 | } | |
808 | uprv_memcpy(dest, src, sizeToCopy); | |
809 | dest->pExtra = destExtra; | |
810 | dest->flags = flags; | |
811 | if (srcExtraSize > 0) { | |
812 | uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize); | |
813 | } | |
814 | ||
815 | // | |
816 | // Relocate any pointers in the target that refer to the UText itself | |
817 | // to point to the cloned copy rather than the original source. | |
818 | // | |
819 | adjustPointer(dest, &dest->context, src); | |
820 | adjustPointer(dest, &dest->p, src); | |
821 | adjustPointer(dest, &dest->q, src); | |
822 | adjustPointer(dest, &dest->r, src); | |
729e4ab9 | 823 | adjustPointer(dest, (const void **)&dest->chunkContents, src); |
73c04bcf | 824 | |
57a6839d A |
825 | // The newly shallow-cloned UText does _not_ own the underlying storage for the text. |
826 | // (The source for the clone may or may not have owned the text.) | |
827 | ||
828 | dest->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); | |
829 | ||
73c04bcf A |
830 | return dest; |
831 | } | |
832 | ||
833 | ||
834 | U_CDECL_END | |
835 | ||
836 | ||
837 | ||
838 | //------------------------------------------------------------------------------ | |
839 | // | |
840 | // UText implementation for UTF-8 char * strings (read-only) | |
841 | // Limitation: string length must be <= 0x7fffffff in length. | |
842 | // (length must for in an int32_t variable) | |
843 | // | |
844 | // Use of UText data members: | |
845 | // context pointer to UTF-8 string | |
846 | // utext.b is the input string length (bytes). | |
847 | // utext.c Length scanned so far in string | |
848 | // (for optimizing finding length of zero terminated strings.) | |
849 | // utext.p pointer to the current buffer | |
850 | // utext.q pointer to the other buffer. | |
851 | // | |
852 | //------------------------------------------------------------------------------ | |
853 | ||
854 | // Chunk size. | |
0f5d89e8 A |
855 | // Must be less than 85 (256/3), because of byte mapping from UChar indexes to native indexes. |
856 | // Worst case is three native bytes to one UChar. (Supplemenaries are 4 native bytes | |
857 | // to two UChars.) | |
858 | // The longest illegal byte sequence treated as a single error (and converted to U+FFFD) | |
859 | // is a three-byte sequence (truncated four-byte sequence). | |
73c04bcf A |
860 | // |
861 | enum { UTF8_TEXT_CHUNK_SIZE=32 }; | |
862 | ||
863 | // | |
864 | // UTF8Buf Two of these structs will be set up in the UText's extra allocated space. | |
865 | // Each contains the UChar chunk buffer, the to and from native maps, and | |
866 | // header info. | |
867 | // | |
868 | // because backwards iteration fills the buffers starting at the end and | |
869 | // working towards the front, the filled part of the buffers may not begin | |
870 | // at the start of the available storage for the buffers. | |
871 | // | |
872 | // Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for | |
873 | // the last character added being a supplementary, and thus requiring a surrogate | |
874 | // pair. Doing this is simpler than checking for the edge case. | |
875 | // | |
876 | ||
877 | struct UTF8Buf { | |
878 | int32_t bufNativeStart; // Native index of first char in UChar buf | |
879 | int32_t bufNativeLimit; // Native index following last char in buf. | |
880 | int32_t bufStartIdx; // First filled position in buf. | |
881 | int32_t bufLimitIdx; // Limit of filled range in buf. | |
882 | int32_t bufNILimit; // Limit of native indexing part of buf | |
883 | int32_t toUCharsMapStart; // Native index corresponding to | |
884 | // mapToUChars[0]. | |
885 | // Set to bufNativeStart when filling forwards. | |
886 | // Set to computed value when filling backwards. | |
887 | ||
888 | UChar buf[UTF8_TEXT_CHUNK_SIZE+4]; // The UChar buffer. Requires one extra position beyond the | |
889 | // the chunk size, to allow for surrogate at the end. | |
890 | // Length must be identical to mapToNative array, below, | |
891 | // because of the way indexing works when the array is | |
892 | // filled backwards during a reverse iteration. Thus, | |
893 | // the additional extra size. | |
894 | uint8_t mapToNative[UTF8_TEXT_CHUNK_SIZE+4]; // map UChar index in buf to | |
895 | // native offset from bufNativeStart. | |
896 | // Requires two extra slots, | |
897 | // one for a supplementary starting in the last normal position, | |
898 | // and one for an entry for the buffer limit position. | |
0f5d89e8 | 899 | uint8_t mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from bufNativeStart to |
f3c0d7a5 | 900 | // correspoding offset in filled part of buf. |
73c04bcf A |
901 | int32_t align; |
902 | }; | |
903 | ||
904 | U_CDECL_BEGIN | |
905 | ||
906 | // | |
907 | // utf8TextLength | |
908 | // | |
909 | // Get the length of the string. If we don't already know it, | |
910 | // we'll need to scan for the trailing nul. | |
911 | // | |
912 | static int64_t U_CALLCONV | |
913 | utf8TextLength(UText *ut) { | |
914 | if (ut->b < 0) { | |
915 | // Zero terminated string, and we haven't scanned to the end yet. | |
916 | // Scan it now. | |
917 | const char *r = (const char *)ut->context + ut->c; | |
918 | while (*r != 0) { | |
919 | r++; | |
920 | } | |
921 | if ((r - (const char *)ut->context) < 0x7fffffff) { | |
922 | ut->b = (int32_t)(r - (const char *)ut->context); | |
923 | } else { | |
924 | // Actual string was bigger (more than 2 gig) than we | |
925 | // can handle. Clip it to 2 GB. | |
926 | ut->b = 0x7fffffff; | |
927 | } | |
928 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); | |
929 | } | |
930 | return ut->b; | |
931 | } | |
932 | ||
933 | ||
934 | ||
935 | ||
936 | ||
937 | ||
938 | static UBool U_CALLCONV | |
939 | utf8TextAccess(UText *ut, int64_t index, UBool forward) { | |
940 | // | |
941 | // Apologies to those who are allergic to goto statements. | |
942 | // Consider each goto to a labelled block to be the equivalent of | |
943 | // call the named block as if it were a function(); | |
944 | // return; | |
945 | // | |
946 | const uint8_t *s8=(const uint8_t *)ut->context; | |
947 | UTF8Buf *u8b = NULL; | |
948 | int32_t length = ut->b; // Length of original utf-8 | |
949 | int32_t ix= (int32_t)index; // Requested index, trimmed to 32 bits. | |
950 | int32_t mapIndex = 0; | |
951 | if (index<0) { | |
952 | ix=0; | |
953 | } else if (index > 0x7fffffff) { | |
954 | // Strings with 64 bit lengths not supported by this UTF-8 provider. | |
955 | ix = 0x7fffffff; | |
956 | } | |
957 | ||
958 | // Pin requested index to the string length. | |
959 | if (ix>length) { | |
960 | if (length>=0) { | |
961 | ix=length; | |
729e4ab9 | 962 | } else if (ix>=ut->c) { |
73c04bcf A |
963 | // Zero terminated string, and requested index is beyond |
964 | // the region that has already been scanned. | |
965 | // Scan up to either the end of the string or to the | |
966 | // requested position, whichever comes first. | |
967 | while (ut->c<ix && s8[ut->c]!=0) { | |
968 | ut->c++; | |
969 | } | |
970 | // TODO: support for null terminated string length > 32 bits. | |
971 | if (s8[ut->c] == 0) { | |
972 | // We just found the actual length of the string. | |
973 | // Trim the requested index back to that. | |
974 | ix = ut->c; | |
975 | ut->b = ut->c; | |
976 | length = ut->c; | |
977 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); | |
978 | } | |
979 | } | |
980 | } | |
981 | ||
982 | // | |
983 | // Dispatch to the appropriate action for a forward iteration request. | |
984 | // | |
985 | if (forward) { | |
986 | if (ix==ut->chunkNativeLimit) { | |
987 | // Check for normal sequential iteration cases first. | |
988 | if (ix==length) { | |
989 | // Just reached end of string | |
990 | // Don't swap buffers, but do set the | |
991 | // current buffer position. | |
992 | ut->chunkOffset = ut->chunkLength; | |
993 | return FALSE; | |
994 | } else { | |
995 | // End of current buffer. | |
996 | // check whether other buffer already has what we need. | |
997 | UTF8Buf *altB = (UTF8Buf *)ut->q; | |
998 | if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) { | |
999 | goto swapBuffers; | |
1000 | } | |
1001 | } | |
1002 | } | |
1003 | ||
1004 | // A random access. Desired index could be in either or niether buf. | |
1005 | // For optimizing the order of testing, first check for the index | |
1006 | // being in the other buffer. This will be the case for uses that | |
1007 | // move back and forth over a fairly limited range | |
1008 | { | |
1009 | u8b = (UTF8Buf *)ut->q; // the alternate buffer | |
1010 | if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) { | |
1011 | // Requested index is in the other buffer. | |
1012 | goto swapBuffers; | |
1013 | } | |
1014 | if (ix == length) { | |
1015 | // Requested index is end-of-string. | |
1016 | // (this is the case of randomly seeking to the end. | |
1017 | // The case of iterating off the end is handled earlier.) | |
1018 | if (ix == ut->chunkNativeLimit) { | |
1019 | // Current buffer extends up to the end of the string. | |
1020 | // Leave it as the current buffer. | |
1021 | ut->chunkOffset = ut->chunkLength; | |
1022 | return FALSE; | |
1023 | } | |
1024 | if (ix == u8b->bufNativeLimit) { | |
1025 | // Alternate buffer extends to the end of string. | |
1026 | // Swap it in as the current buffer. | |
1027 | goto swapBuffersAndFail; | |
1028 | } | |
1029 | ||
1030 | // Neither existing buffer extends to the end of the string. | |
1031 | goto makeStubBuffer; | |
1032 | } | |
1033 | ||
1034 | if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) { | |
1035 | // Requested index is in neither buffer. | |
1036 | goto fillForward; | |
1037 | } | |
1038 | ||
1039 | // Requested index is in this buffer. | |
1040 | u8b = (UTF8Buf *)ut->p; // the current buffer | |
1041 | mapIndex = ix - u8b->toUCharsMapStart; | |
f3c0d7a5 | 1042 | U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars)); |
73c04bcf A |
1043 | ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
1044 | return TRUE; | |
1045 | ||
1046 | } | |
1047 | } | |
1048 | ||
1049 | ||
1050 | // | |
1051 | // Dispatch to the appropriate action for a | |
1052 | // Backwards Diretion iteration request. | |
1053 | // | |
1054 | if (ix==ut->chunkNativeStart) { | |
1055 | // Check for normal sequential iteration cases first. | |
1056 | if (ix==0) { | |
1057 | // Just reached the start of string | |
1058 | // Don't swap buffers, but do set the | |
1059 | // current buffer position. | |
1060 | ut->chunkOffset = 0; | |
1061 | return FALSE; | |
1062 | } else { | |
1063 | // Start of current buffer. | |
1064 | // check whether other buffer already has what we need. | |
1065 | UTF8Buf *altB = (UTF8Buf *)ut->q; | |
1066 | if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) { | |
1067 | goto swapBuffers; | |
1068 | } | |
1069 | } | |
1070 | } | |
1071 | ||
1072 | // A random access. Desired index could be in either or niether buf. | |
1073 | // For optimizing the order of testing, | |
1074 | // Most likely case: in the other buffer. | |
1075 | // Second most likely: in neither buffer. | |
1076 | // Unlikely, but must work: in the current buffer. | |
1077 | u8b = (UTF8Buf *)ut->q; // the alternate buffer | |
1078 | if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) { | |
1079 | // Requested index is in the other buffer. | |
1080 | goto swapBuffers; | |
1081 | } | |
1082 | // Requested index is start-of-string. | |
1083 | // (this is the case of randomly seeking to the start. | |
1084 | // The case of iterating off the start is handled earlier.) | |
1085 | if (ix==0) { | |
1086 | if (u8b->bufNativeStart==0) { | |
1087 | // Alternate buffer contains the data for the start string. | |
1088 | // Make it be the current buffer. | |
1089 | goto swapBuffersAndFail; | |
1090 | } else { | |
1091 | // Request for data before the start of string, | |
1092 | // neither buffer is usable. | |
1093 | // set up a zero-length buffer. | |
1094 | goto makeStubBuffer; | |
1095 | } | |
1096 | } | |
1097 | ||
1098 | if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) { | |
1099 | // Requested index is in neither buffer. | |
1100 | goto fillReverse; | |
1101 | } | |
1102 | ||
1103 | // Requested index is in this buffer. | |
1104 | // Set the utf16 buffer index. | |
1105 | u8b = (UTF8Buf *)ut->p; | |
1106 | mapIndex = ix - u8b->toUCharsMapStart; | |
1107 | ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; | |
1108 | if (ut->chunkOffset==0) { | |
1109 | // This occurs when the first character in the text is | |
1110 | // a multi-byte UTF-8 char, and the requested index is to | |
1111 | // one of the trailing bytes. Because there is no preceding , | |
1112 | // character, this access fails. We can't pick up on the | |
1113 | // situation sooner because the requested index is not zero. | |
1114 | return FALSE; | |
1115 | } else { | |
1116 | return TRUE; | |
1117 | } | |
1118 | ||
1119 | ||
1120 | ||
1121 | swapBuffers: | |
1122 | // The alternate buffer (ut->q) has the string data that was requested. | |
1123 | // Swap the primary and alternate buffers, and set the | |
1124 | // chunk index into the new primary buffer. | |
1125 | { | |
1126 | u8b = (UTF8Buf *)ut->q; | |
1127 | ut->q = ut->p; | |
1128 | ut->p = u8b; | |
1129 | ut->chunkContents = &u8b->buf[u8b->bufStartIdx]; | |
1130 | ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; | |
1131 | ut->chunkNativeStart = u8b->bufNativeStart; | |
1132 | ut->chunkNativeLimit = u8b->bufNativeLimit; | |
1133 | ut->nativeIndexingLimit = u8b->bufNILimit; | |
1134 | ||
1135 | // Index into the (now current) chunk | |
1136 | // Use the map to set the chunk index. It's more trouble than it's worth | |
1137 | // to check whether native indexing can be used. | |
1138 | U_ASSERT(ix>=u8b->bufNativeStart); | |
1139 | U_ASSERT(ix<=u8b->bufNativeLimit); | |
1140 | mapIndex = ix - u8b->toUCharsMapStart; | |
1141 | U_ASSERT(mapIndex>=0); | |
1142 | U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars)); | |
1143 | ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; | |
1144 | ||
1145 | return TRUE; | |
1146 | } | |
1147 | ||
1148 | ||
1149 | swapBuffersAndFail: | |
1150 | // We got a request for either the start or end of the string, | |
1151 | // with iteration continuing in the out-of-bounds direction. | |
1152 | // The alternate buffer already contains the data up to the | |
1153 | // start/end. | |
1154 | // Swap the buffers, then return failure, indicating that we couldn't | |
1155 | // make things correct for continuing the iteration in the requested | |
1156 | // direction. The position & buffer are correct should the | |
1157 | // user decide to iterate in the opposite direction. | |
1158 | u8b = (UTF8Buf *)ut->q; | |
1159 | ut->q = ut->p; | |
1160 | ut->p = u8b; | |
1161 | ut->chunkContents = &u8b->buf[u8b->bufStartIdx]; | |
1162 | ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; | |
1163 | ut->chunkNativeStart = u8b->bufNativeStart; | |
1164 | ut->chunkNativeLimit = u8b->bufNativeLimit; | |
1165 | ut->nativeIndexingLimit = u8b->bufNILimit; | |
1166 | ||
1167 | // Index into the (now current) chunk | |
1168 | // For this function (swapBuffersAndFail), the requested index | |
1169 | // will always be at either the start or end of the chunk. | |
1170 | if (ix==u8b->bufNativeLimit) { | |
1171 | ut->chunkOffset = ut->chunkLength; | |
1172 | } else { | |
1173 | ut->chunkOffset = 0; | |
1174 | U_ASSERT(ix == u8b->bufNativeStart); | |
1175 | } | |
1176 | return FALSE; | |
1177 | ||
1178 | makeStubBuffer: | |
1179 | // The user has done a seek/access past the start or end | |
1180 | // of the string. Rather than loading data that is likely | |
1181 | // to never be used, just set up a zero-length buffer at | |
1182 | // the position. | |
1183 | u8b = (UTF8Buf *)ut->q; | |
1184 | u8b->bufNativeStart = ix; | |
1185 | u8b->bufNativeLimit = ix; | |
1186 | u8b->bufStartIdx = 0; | |
1187 | u8b->bufLimitIdx = 0; | |
1188 | u8b->bufNILimit = 0; | |
1189 | u8b->toUCharsMapStart = ix; | |
1190 | u8b->mapToNative[0] = 0; | |
1191 | u8b->mapToUChars[0] = 0; | |
1192 | goto swapBuffersAndFail; | |
1193 | ||
1194 | ||
1195 | ||
1196 | fillForward: | |
1197 | { | |
1198 | // Move the incoming index to a code point boundary. | |
1199 | U8_SET_CP_START(s8, 0, ix); | |
1200 | ||
1201 | // Swap the UText buffers. | |
1202 | // We want to fill what was previously the alternate buffer, | |
1203 | // and make what was the current buffer be the new alternate. | |
3d1f044b | 1204 | UTF8Buf *u8b_swap = (UTF8Buf *)ut->q; |
73c04bcf | 1205 | ut->q = ut->p; |
3d1f044b | 1206 | ut->p = u8b_swap; |
73c04bcf A |
1207 | |
1208 | int32_t strLen = ut->b; | |
1209 | UBool nulTerminated = FALSE; | |
1210 | if (strLen < 0) { | |
1211 | strLen = 0x7fffffff; | |
1212 | nulTerminated = TRUE; | |
1213 | } | |
1214 | ||
3d1f044b A |
1215 | UChar *buf = u8b_swap->buf; |
1216 | uint8_t *mapToNative = u8b_swap->mapToNative; | |
1217 | uint8_t *mapToUChars = u8b_swap->mapToUChars; | |
73c04bcf A |
1218 | int32_t destIx = 0; |
1219 | int32_t srcIx = ix; | |
1220 | UBool seenNonAscii = FALSE; | |
729e4ab9 | 1221 | UChar32 c = 0; |
73c04bcf A |
1222 | |
1223 | // Fill the chunk buffer and mapping arrays. | |
1224 | while (destIx<UTF8_TEXT_CHUNK_SIZE) { | |
1225 | c = s8[srcIx]; | |
1226 | if (c>0 && c<0x80) { | |
1227 | // Special case ASCII range for speed. | |
1228 | // zero is excluded to simplify bounds checking. | |
729e4ab9 A |
1229 | buf[destIx] = (UChar)c; |
1230 | mapToNative[destIx] = (uint8_t)(srcIx - ix); | |
1231 | mapToUChars[srcIx-ix] = (uint8_t)destIx; | |
73c04bcf A |
1232 | srcIx++; |
1233 | destIx++; | |
1234 | } else { | |
1235 | // General case, handle everything. | |
1236 | if (seenNonAscii == FALSE) { | |
1237 | seenNonAscii = TRUE; | |
3d1f044b | 1238 | u8b_swap->bufNILimit = destIx; |
73c04bcf A |
1239 | } |
1240 | ||
1241 | int32_t cIx = srcIx; | |
1242 | int32_t dIx = destIx; | |
1243 | int32_t dIxSaved = destIx; | |
51004dcb | 1244 | U8_NEXT_OR_FFFD(s8, srcIx, strLen, c); |
73c04bcf A |
1245 | if (c==0 && nulTerminated) { |
1246 | srcIx--; | |
1247 | break; | |
1248 | } | |
73c04bcf A |
1249 | |
1250 | U16_APPEND_UNSAFE(buf, destIx, c); | |
1251 | do { | |
729e4ab9 | 1252 | mapToNative[dIx++] = (uint8_t)(cIx - ix); |
73c04bcf A |
1253 | } while (dIx < destIx); |
1254 | ||
1255 | do { | |
729e4ab9 | 1256 | mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved; |
73c04bcf A |
1257 | } while (cIx < srcIx); |
1258 | } | |
1259 | if (srcIx>=strLen) { | |
1260 | break; | |
1261 | } | |
1262 | ||
1263 | } | |
1264 | ||
1265 | // store Native <--> Chunk Map entries for the end of the buffer. | |
1266 | // There is no actual character here, but the index position is valid. | |
729e4ab9 A |
1267 | mapToNative[destIx] = (uint8_t)(srcIx - ix); |
1268 | mapToUChars[srcIx - ix] = (uint8_t)destIx; | |
73c04bcf A |
1269 | |
1270 | // fill in Buffer descriptor | |
3d1f044b A |
1271 | u8b_swap->bufNativeStart = ix; |
1272 | u8b_swap->bufNativeLimit = srcIx; | |
1273 | u8b_swap->bufStartIdx = 0; | |
1274 | u8b_swap->bufLimitIdx = destIx; | |
73c04bcf | 1275 | if (seenNonAscii == FALSE) { |
3d1f044b | 1276 | u8b_swap->bufNILimit = destIx; |
73c04bcf | 1277 | } |
3d1f044b | 1278 | u8b_swap->toUCharsMapStart = u8b_swap->bufNativeStart; |
73c04bcf A |
1279 | |
1280 | // Set UText chunk to refer to this buffer. | |
1281 | ut->chunkContents = buf; | |
1282 | ut->chunkOffset = 0; | |
3d1f044b A |
1283 | ut->chunkLength = u8b_swap->bufLimitIdx; |
1284 | ut->chunkNativeStart = u8b_swap->bufNativeStart; | |
1285 | ut->chunkNativeLimit = u8b_swap->bufNativeLimit; | |
1286 | ut->nativeIndexingLimit = u8b_swap->bufNILimit; | |
73c04bcf A |
1287 | |
1288 | // For zero terminated strings, keep track of the maximum point | |
1289 | // scanned so far. | |
1290 | if (nulTerminated && srcIx>ut->c) { | |
1291 | ut->c = srcIx; | |
1292 | if (c==0) { | |
1293 | // We scanned to the end. | |
1294 | // Remember the actual length. | |
1295 | ut->b = srcIx; | |
1296 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); | |
1297 | } | |
1298 | } | |
1299 | return TRUE; | |
1300 | } | |
1301 | ||
1302 | ||
1303 | fillReverse: | |
1304 | { | |
1305 | // Move the incoming index to a code point boundary. | |
1306 | // Can only do this if the incoming index is somewhere in the interior of the string. | |
1307 | // If index is at the end, there is no character there to look at. | |
1308 | if (ix != ut->b) { | |
f59164e3 A |
1309 | // Note: this function will only move the index back if it is on a trail byte |
1310 | // and there is a preceding lead byte and the sequence from the lead | |
1311 | // through this trail could be part of a valid UTF-8 sequence | |
1312 | // Otherwise the index remains unchanged. | |
73c04bcf A |
1313 | U8_SET_CP_START(s8, 0, ix); |
1314 | } | |
1315 | ||
1316 | // Swap the UText buffers. | |
1317 | // We want to fill what was previously the alternate buffer, | |
1318 | // and make what was the current buffer be the new alternate. | |
3d1f044b | 1319 | UTF8Buf *u8b_swap = (UTF8Buf *)ut->q; |
73c04bcf | 1320 | ut->q = ut->p; |
3d1f044b | 1321 | ut->p = u8b_swap; |
73c04bcf | 1322 | |
3d1f044b A |
1323 | UChar *buf = u8b_swap->buf; |
1324 | uint8_t *mapToNative = u8b_swap->mapToNative; | |
1325 | uint8_t *mapToUChars = u8b_swap->mapToUChars; | |
f3c0d7a5 | 1326 | int32_t toUCharsMapStart = ix - sizeof(UTF8Buf::mapToUChars) + 1; |
f59164e3 A |
1327 | // Note that toUCharsMapStart can be negative. Happens when the remaining |
1328 | // text from current position to the beginning is less than the buffer size. | |
1329 | // + 1 because mapToUChars must have a slot at the end for the bufNativeLimit entry. | |
73c04bcf A |
1330 | int32_t destIx = UTF8_TEXT_CHUNK_SIZE+2; // Start in the overflow region |
1331 | // at end of buffer to leave room | |
1332 | // for a surrogate pair at the | |
1333 | // buffer start. | |
1334 | int32_t srcIx = ix; | |
1335 | int32_t bufNILimit = destIx; | |
1336 | UChar32 c; | |
1337 | ||
1338 | // Map to/from Native Indexes, fill in for the position at the end of | |
1339 | // the buffer. | |
1340 | // | |
729e4ab9 A |
1341 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
1342 | mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx; | |
73c04bcf A |
1343 | |
1344 | // Fill the chunk buffer | |
1345 | // Work backwards, filling from the end of the buffer towards the front. | |
1346 | // | |
1347 | while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) { | |
1348 | srcIx--; | |
1349 | destIx--; | |
1350 | ||
1351 | // Get last byte of the UTF-8 character | |
1352 | c = s8[srcIx]; | |
1353 | if (c<0x80) { | |
1354 | // Special case ASCII range for speed. | |
729e4ab9 | 1355 | buf[destIx] = (UChar)c; |
f59164e3 | 1356 | U_ASSERT(toUCharsMapStart <= srcIx); |
729e4ab9 A |
1357 | mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx; |
1358 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); | |
73c04bcf A |
1359 | } else { |
1360 | // General case, handle everything non-ASCII. | |
1361 | ||
1362 | int32_t sIx = srcIx; // ix of last byte of multi-byte u8 char | |
1363 | ||
1364 | // Get the full character from the UTF8 string. | |
51004dcb | 1365 | // use code derived from tbe macros in utf8.h |
73c04bcf A |
1366 | // Leaves srcIx pointing at the first byte of the UTF-8 char. |
1367 | // | |
51004dcb A |
1368 | c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -3); |
1369 | // leaves srcIx at first byte of the multi-byte char. | |
73c04bcf A |
1370 | |
1371 | // Store the character in UTF-16 buffer. | |
1372 | if (c<0x10000) { | |
729e4ab9 A |
1373 | buf[destIx] = (UChar)c; |
1374 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); | |
73c04bcf A |
1375 | } else { |
1376 | buf[destIx] = U16_TRAIL(c); | |
729e4ab9 | 1377 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
73c04bcf | 1378 | buf[--destIx] = U16_LEAD(c); |
729e4ab9 | 1379 | mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
73c04bcf A |
1380 | } |
1381 | ||
1382 | // Fill in the map from native indexes to UChars buf index. | |
1383 | do { | |
729e4ab9 | 1384 | mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx; |
73c04bcf | 1385 | } while (sIx >= srcIx); |
f59164e3 | 1386 | U_ASSERT(toUCharsMapStart <= (srcIx+1)); |
73c04bcf A |
1387 | |
1388 | // Set native indexing limit to be the current position. | |
1389 | // We are processing a non-ascii, non-native-indexing char now; | |
1390 | // the limit will be here if the rest of the chars to be | |
1391 | // added to this buffer are ascii. | |
1392 | bufNILimit = destIx; | |
1393 | } | |
1394 | } | |
3d1f044b A |
1395 | u8b_swap->bufNativeStart = srcIx; |
1396 | u8b_swap->bufNativeLimit = ix; | |
1397 | u8b_swap->bufStartIdx = destIx; | |
1398 | u8b_swap->bufLimitIdx = UTF8_TEXT_CHUNK_SIZE+2; | |
1399 | u8b_swap->bufNILimit = bufNILimit - u8b_swap->bufStartIdx; | |
1400 | u8b_swap->toUCharsMapStart = toUCharsMapStart; | |
1401 | ||
1402 | ut->chunkContents = &buf[u8b_swap->bufStartIdx]; | |
1403 | ut->chunkLength = u8b_swap->bufLimitIdx - u8b_swap->bufStartIdx; | |
73c04bcf | 1404 | ut->chunkOffset = ut->chunkLength; |
3d1f044b A |
1405 | ut->chunkNativeStart = u8b_swap->bufNativeStart; |
1406 | ut->chunkNativeLimit = u8b_swap->bufNativeLimit; | |
1407 | ut->nativeIndexingLimit = u8b_swap->bufNILimit; | |
73c04bcf A |
1408 | return TRUE; |
1409 | } | |
1410 | ||
1411 | } | |
1412 | ||
1413 | ||
1414 | ||
1415 | // | |
1416 | // This is a slightly modified copy of u_strFromUTF8, | |
1417 | // Inserts a Replacement Char rather than failing on invalid UTF-8 | |
1418 | // Removes unnecessary features. | |
1419 | // | |
1420 | static UChar* | |
1421 | utext_strFromUTF8(UChar *dest, | |
1422 | int32_t destCapacity, | |
1423 | int32_t *pDestLength, | |
1424 | const char* src, | |
1425 | int32_t srcLength, // required. NUL terminated not supported. | |
1426 | UErrorCode *pErrorCode | |
1427 | ) | |
1428 | { | |
1429 | ||
1430 | UChar *pDest = dest; | |
4388f060 | 1431 | UChar *pDestLimit = (dest!=NULL)?(dest+destCapacity):NULL; |
73c04bcf A |
1432 | UChar32 ch=0; |
1433 | int32_t index = 0; | |
1434 | int32_t reqLength = 0; | |
1435 | uint8_t* pSrc = (uint8_t*) src; | |
1436 | ||
1437 | ||
1438 | while((index < srcLength)&&(pDest<pDestLimit)){ | |
1439 | ch = pSrc[index++]; | |
1440 | if(ch <=0x7f){ | |
1441 | *pDest++=(UChar)ch; | |
1442 | }else{ | |
51004dcb | 1443 | ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3); |
729e4ab9 | 1444 | if(U_IS_BMP(ch)){ |
73c04bcf A |
1445 | *(pDest++)=(UChar)ch; |
1446 | }else{ | |
4388f060 | 1447 | *(pDest++)=U16_LEAD(ch); |
73c04bcf | 1448 | if(pDest<pDestLimit){ |
4388f060 | 1449 | *(pDest++)=U16_TRAIL(ch); |
73c04bcf A |
1450 | }else{ |
1451 | reqLength++; | |
1452 | break; | |
1453 | } | |
1454 | } | |
1455 | } | |
1456 | } | |
1457 | /* donot fill the dest buffer just count the UChars needed */ | |
1458 | while(index < srcLength){ | |
1459 | ch = pSrc[index++]; | |
1460 | if(ch <= 0x7f){ | |
1461 | reqLength++; | |
1462 | }else{ | |
51004dcb | 1463 | ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3); |
729e4ab9 | 1464 | reqLength+=U16_LENGTH(ch); |
73c04bcf A |
1465 | } |
1466 | } | |
1467 | ||
1468 | reqLength+=(int32_t)(pDest - dest); | |
1469 | ||
1470 | if(pDestLength){ | |
1471 | *pDestLength = reqLength; | |
1472 | } | |
1473 | ||
1474 | /* Terminate the buffer */ | |
1475 | u_terminateUChars(dest,destCapacity,reqLength,pErrorCode); | |
1476 | ||
1477 | return dest; | |
1478 | } | |
1479 | ||
1480 | ||
1481 | ||
1482 | static int32_t U_CALLCONV | |
1483 | utf8TextExtract(UText *ut, | |
1484 | int64_t start, int64_t limit, | |
1485 | UChar *dest, int32_t destCapacity, | |
1486 | UErrorCode *pErrorCode) { | |
1487 | if(U_FAILURE(*pErrorCode)) { | |
1488 | return 0; | |
1489 | } | |
1490 | if(destCapacity<0 || (dest==NULL && destCapacity>0)) { | |
1491 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
1492 | return 0; | |
1493 | } | |
1494 | int32_t length = ut->b; | |
1495 | int32_t start32 = pinIndex(start, length); | |
1496 | int32_t limit32 = pinIndex(limit, length); | |
1497 | ||
1498 | if(start32>limit32) { | |
1499 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; | |
1500 | return 0; | |
1501 | } | |
1502 | ||
1503 | ||
1504 | // adjust the incoming indexes to land on code point boundaries if needed. | |
1505 | // adjust by no more than three, because that is the largest number of trail bytes | |
1506 | // in a well formed UTF8 character. | |
1507 | const uint8_t *buf = (const uint8_t *)ut->context; | |
1508 | int i; | |
1509 | if (start32 < ut->chunkNativeLimit) { | |
1510 | for (i=0; i<3; i++) { | |
729e4ab9 | 1511 | if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) { |
73c04bcf A |
1512 | break; |
1513 | } | |
1514 | start32--; | |
1515 | } | |
1516 | } | |
1517 | ||
1518 | if (limit32 < ut->chunkNativeLimit) { | |
1519 | for (i=0; i<3; i++) { | |
729e4ab9 | 1520 | if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) { |
73c04bcf A |
1521 | break; |
1522 | } | |
1523 | limit32--; | |
1524 | } | |
1525 | } | |
1526 | ||
1527 | // Do the actual extract. | |
1528 | int32_t destLength=0; | |
1529 | utext_strFromUTF8(dest, destCapacity, &destLength, | |
1530 | (const char *)ut->context+start32, limit32-start32, | |
1531 | pErrorCode); | |
729e4ab9 | 1532 | utf8TextAccess(ut, limit32, TRUE); |
73c04bcf A |
1533 | return destLength; |
1534 | } | |
1535 | ||
1536 | // | |
1537 | // utf8TextMapOffsetToNative | |
1538 | // | |
1539 | // Map a chunk (UTF-16) offset to a native index. | |
1540 | static int64_t U_CALLCONV | |
1541 | utf8TextMapOffsetToNative(const UText *ut) { | |
1542 | // | |
1543 | UTF8Buf *u8b = (UTF8Buf *)ut->p; | |
1544 | U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength); | |
1545 | int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart; | |
1546 | U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit); | |
1547 | return nativeOffset; | |
1548 | } | |
1549 | ||
1550 | // | |
1551 | // Map a native index to the corrsponding chunk offset | |
1552 | // | |
1553 | static int32_t U_CALLCONV | |
1554 | utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) { | |
1555 | U_ASSERT(index64 <= 0x7fffffff); | |
1556 | int32_t index = (int32_t)index64; | |
1557 | UTF8Buf *u8b = (UTF8Buf *)ut->p; | |
1558 | U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit); | |
1559 | U_ASSERT(index<=ut->chunkNativeLimit); | |
1560 | int32_t mapIndex = index - u8b->toUCharsMapStart; | |
f3c0d7a5 | 1561 | U_ASSERT(mapIndex < (int32_t)sizeof(UTF8Buf::mapToUChars)); |
73c04bcf A |
1562 | int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
1563 | U_ASSERT(offset>=0 && offset<=ut->chunkLength); | |
1564 | return offset; | |
1565 | } | |
1566 | ||
1567 | static UText * U_CALLCONV | |
1568 | utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) | |
1569 | { | |
1570 | // First do a generic shallow clone. Does everything needed for the UText struct itself. | |
1571 | dest = shallowTextClone(dest, src, status); | |
1572 | ||
1573 | // For deep clones, make a copy of the string. | |
1574 | // The copied storage is owned by the newly created clone. | |
1575 | // | |
1576 | // TODO: There is an isssue with using utext_nativeLength(). | |
1577 | // That function is non-const in cases where the input was NUL terminated | |
1578 | // and the length has not yet been determined. | |
1579 | // This function (clone()) is const. | |
1580 | // There potentially a thread safety issue lurking here. | |
1581 | // | |
1582 | if (deep && U_SUCCESS(*status)) { | |
1583 | int32_t len = (int32_t)utext_nativeLength((UText *)src); | |
1584 | char *copyStr = (char *)uprv_malloc(len+1); | |
1585 | if (copyStr == NULL) { | |
1586 | *status = U_MEMORY_ALLOCATION_ERROR; | |
1587 | } else { | |
1588 | uprv_memcpy(copyStr, src->context, len+1); | |
1589 | dest->context = copyStr; | |
1590 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); | |
1591 | } | |
1592 | } | |
1593 | return dest; | |
1594 | } | |
1595 | ||
1596 | ||
1597 | static void U_CALLCONV | |
1598 | utf8TextClose(UText *ut) { | |
1599 | // Most of the work of close is done by the generic UText framework close. | |
1600 | // All that needs to be done here is to delete the UTF8 string if the UText | |
1601 | // owns it. This occurs if the UText was created by cloning. | |
1602 | if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { | |
1603 | char *s = (char *)ut->context; | |
1604 | uprv_free(s); | |
1605 | ut->context = NULL; | |
1606 | } | |
1607 | } | |
1608 | ||
1609 | U_CDECL_END | |
1610 | ||
1611 | ||
57a6839d | 1612 | static const struct UTextFuncs utf8Funcs = |
73c04bcf A |
1613 | { |
1614 | sizeof(UTextFuncs), | |
1615 | 0, 0, 0, // Reserved alignment padding | |
1616 | utf8TextClone, | |
1617 | utf8TextLength, | |
1618 | utf8TextAccess, | |
1619 | utf8TextExtract, | |
1620 | NULL, /* replace*/ | |
1621 | NULL, /* copy */ | |
1622 | utf8TextMapOffsetToNative, | |
1623 | utf8TextMapIndexToUTF16, | |
1624 | utf8TextClose, | |
1625 | NULL, // spare 1 | |
1626 | NULL, // spare 2 | |
1627 | NULL // spare 3 | |
1628 | }; | |
1629 | ||
1630 | ||
729e4ab9 A |
1631 | static const char gEmptyString[] = {0}; |
1632 | ||
46f4442e | 1633 | U_CAPI UText * U_EXPORT2 |
73c04bcf A |
1634 | utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) { |
1635 | if(U_FAILURE(*status)) { | |
1636 | return NULL; | |
1637 | } | |
729e4ab9 A |
1638 | if(s==NULL && length==0) { |
1639 | s = gEmptyString; | |
1640 | } | |
1641 | ||
73c04bcf A |
1642 | if(s==NULL || length<-1 || length>INT32_MAX) { |
1643 | *status=U_ILLEGAL_ARGUMENT_ERROR; | |
1644 | return NULL; | |
1645 | } | |
1646 | ||
1647 | ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status); | |
1648 | if (U_FAILURE(*status)) { | |
1649 | return ut; | |
1650 | } | |
1651 | ||
1652 | ut->pFuncs = &utf8Funcs; | |
1653 | ut->context = s; | |
1654 | ut->b = (int32_t)length; | |
1655 | ut->c = (int32_t)length; | |
1656 | if (ut->c < 0) { | |
1657 | ut->c = 0; | |
1658 | ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); | |
1659 | } | |
1660 | ut->p = ut->pExtra; | |
1661 | ut->q = (char *)ut->pExtra + sizeof(UTF8Buf); | |
1662 | return ut; | |
1663 | ||
1664 | } | |
1665 | ||
1666 | ||
1667 | ||
1668 | ||
1669 | ||
1670 | ||
1671 | ||
1672 | ||
1673 | //------------------------------------------------------------------------------ | |
1674 | // | |
1675 | // UText implementation wrapper for Replaceable (read/write) | |
1676 | // | |
1677 | // Use of UText data members: | |
1678 | // context pointer to Replaceable. | |
1679 | // p pointer to Replaceable if it is owned by the UText. | |
1680 | // | |
1681 | //------------------------------------------------------------------------------ | |
1682 | ||
1683 | ||
1684 | ||
1685 | // minimum chunk size for this implementation: 3 | |
1686 | // to allow for possible trimming for code point boundaries | |
1687 | enum { REP_TEXT_CHUNK_SIZE=10 }; | |
1688 | ||
1689 | struct ReplExtra { | |
1690 | /* | |
1691 | * Chunk UChars. | |
1692 | * +1 to simplify filling with surrogate pair at the end. | |
1693 | */ | |
1694 | UChar s[REP_TEXT_CHUNK_SIZE+1]; | |
1695 | }; | |
1696 | ||
1697 | ||
1698 | U_CDECL_BEGIN | |
1699 | ||
1700 | static UText * U_CALLCONV | |
1701 | repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { | |
1702 | // First do a generic shallow clone. Does everything needed for the UText struct itself. | |
1703 | dest = shallowTextClone(dest, src, status); | |
1704 | ||
1705 | // For deep clones, make a copy of the Replaceable. | |
1706 | // The copied Replaceable storage is owned by the newly created UText clone. | |
1707 | // A non-NULL pointer in UText.p is the signal to the close() function to delete | |
1708 | // it. | |
1709 | // | |
1710 | if (deep && U_SUCCESS(*status)) { | |
1711 | const Replaceable *replSrc = (const Replaceable *)src->context; | |
1712 | dest->context = replSrc->clone(); | |
1713 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); | |
1714 | ||
1715 | // with deep clone, the copy is writable, even when the source is not. | |
1716 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); | |
1717 | } | |
1718 | return dest; | |
1719 | } | |
1720 | ||
1721 | ||
1722 | static void U_CALLCONV | |
1723 | repTextClose(UText *ut) { | |
1724 | // Most of the work of close is done by the generic UText framework close. | |
1725 | // All that needs to be done here is delete the Replaceable if the UText | |
1726 | // owns it. This occurs if the UText was created by cloning. | |
1727 | if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { | |
1728 | Replaceable *rep = (Replaceable *)ut->context; | |
1729 | delete rep; | |
1730 | ut->context = NULL; | |
1731 | } | |
1732 | } | |
1733 | ||
1734 | ||
1735 | static int64_t U_CALLCONV | |
1736 | repTextLength(UText *ut) { | |
1737 | const Replaceable *replSrc = (const Replaceable *)ut->context; | |
1738 | int32_t len = replSrc->length(); | |
1739 | return len; | |
1740 | } | |
1741 | ||
1742 | ||
1743 | static UBool U_CALLCONV | |
1744 | repTextAccess(UText *ut, int64_t index, UBool forward) { | |
1745 | const Replaceable *rep=(const Replaceable *)ut->context; | |
1746 | int32_t length=rep->length(); // Full length of the input text (bigger than a chunk) | |
1747 | ||
1748 | // clip the requested index to the limits of the text. | |
1749 | int32_t index32 = pinIndex(index, length); | |
1750 | U_ASSERT(index<=INT32_MAX); | |
1751 | ||
1752 | ||
1753 | /* | |
1754 | * Compute start/limit boundaries around index, for a segment of text | |
1755 | * to be extracted. | |
1756 | * To allow for the possibility that our user gave an index to the trailing | |
1757 | * half of a surrogate pair, we must request one extra preceding UChar when | |
1758 | * going in the forward direction. This will ensure that the buffer has the | |
1759 | * entire code point at the specified index. | |
1760 | */ | |
1761 | if(forward) { | |
1762 | ||
1763 | if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) { | |
1764 | // Buffer already contains the requested position. | |
1765 | ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); | |
1766 | return TRUE; | |
1767 | } | |
1768 | if (index32>=length && ut->chunkNativeLimit==length) { | |
1769 | // Request for end of string, and buffer already extends up to it. | |
1770 | // Can't get the data, but don't change the buffer. | |
1771 | ut->chunkOffset = length - (int32_t)ut->chunkNativeStart; | |
1772 | return FALSE; | |
1773 | } | |
1774 | ||
1775 | ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1; | |
1776 | // Going forward, so we want to have the buffer with stuff at and beyond | |
1777 | // the requested index. The -1 gets us one code point before the | |
1778 | // requested index also, to handle the case of the index being on | |
1779 | // a trail surrogate of a surrogate pair. | |
1780 | if(ut->chunkNativeLimit > length) { | |
1781 | ut->chunkNativeLimit = length; | |
1782 | } | |
1783 | // unless buffer ran off end, start is index-1. | |
1784 | ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE; | |
1785 | if(ut->chunkNativeStart < 0) { | |
1786 | ut->chunkNativeStart = 0; | |
1787 | } | |
1788 | } else { | |
1789 | // Reverse iteration. Fill buffer with data preceding the requested index. | |
1790 | if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) { | |
1791 | // Requested position already in buffer. | |
1792 | ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart; | |
1793 | return TRUE; | |
1794 | } | |
1795 | if (index32==0 && ut->chunkNativeStart==0) { | |
1796 | // Request for start, buffer already begins at start. | |
1797 | // No data, but keep the buffer as is. | |
1798 | ut->chunkOffset = 0; | |
1799 | return FALSE; | |
1800 | } | |
1801 | ||
1802 | // Figure out the bounds of the chunk to extract for reverse iteration. | |
1803 | // Need to worry about chunk not splitting surrogate pairs, and while still | |
1804 | // containing the data we need. | |
1805 | // Fix by requesting a chunk that includes an extra UChar at the end. | |
1806 | // If this turns out to be a lead surrogate, we can lop it off and still have | |
1807 | // the data we wanted. | |
1808 | ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE; | |
1809 | if (ut->chunkNativeStart < 0) { | |
1810 | ut->chunkNativeStart = 0; | |
1811 | } | |
1812 | ||
1813 | ut->chunkNativeLimit = index32 + 1; | |
1814 | if (ut->chunkNativeLimit > length) { | |
1815 | ut->chunkNativeLimit = length; | |
1816 | } | |
1817 | } | |
1818 | ||
1819 | // Extract the new chunk of text from the Replaceable source. | |
1820 | ReplExtra *ex = (ReplExtra *)ut->pExtra; | |
1821 | // UnicodeString with its buffer a writable alias to the chunk buffer | |
1822 | UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/); | |
1823 | rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer); | |
1824 | ||
1825 | ut->chunkContents = ex->s; | |
1826 | ut->chunkLength = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart); | |
1827 | ut->chunkOffset = (int32_t)(index32 - ut->chunkNativeStart); | |
1828 | ||
1829 | // Surrogate pairs from the input text must not span chunk boundaries. | |
1830 | // If end of chunk could be the start of a surrogate, trim it off. | |
1831 | if (ut->chunkNativeLimit < length && | |
1832 | U16_IS_LEAD(ex->s[ut->chunkLength-1])) { | |
1833 | ut->chunkLength--; | |
1834 | ut->chunkNativeLimit--; | |
1835 | if (ut->chunkOffset > ut->chunkLength) { | |
1836 | ut->chunkOffset = ut->chunkLength; | |
1837 | } | |
1838 | } | |
1839 | ||
1840 | // if the first UChar in the chunk could be the trailing half of a surrogate pair, | |
1841 | // trim it off. | |
1842 | if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) { | |
1843 | ++(ut->chunkContents); | |
1844 | ++(ut->chunkNativeStart); | |
1845 | --(ut->chunkLength); | |
1846 | --(ut->chunkOffset); | |
1847 | } | |
1848 | ||
1849 | // adjust the index/chunkOffset to a code point boundary | |
1850 | U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset); | |
1851 | ||
1852 | // Use fast indexing for get/setNativeIndex() | |
1853 | ut->nativeIndexingLimit = ut->chunkLength; | |
1854 | ||
1855 | return TRUE; | |
1856 | } | |
1857 | ||
1858 | ||
1859 | ||
1860 | static int32_t U_CALLCONV | |
1861 | repTextExtract(UText *ut, | |
1862 | int64_t start, int64_t limit, | |
1863 | UChar *dest, int32_t destCapacity, | |
1864 | UErrorCode *status) { | |
1865 | const Replaceable *rep=(const Replaceable *)ut->context; | |
1866 | int32_t length=rep->length(); | |
1867 | ||
1868 | if(U_FAILURE(*status)) { | |
1869 | return 0; | |
1870 | } | |
1871 | if(destCapacity<0 || (dest==NULL && destCapacity>0)) { | |
1872 | *status=U_ILLEGAL_ARGUMENT_ERROR; | |
1873 | } | |
1874 | if(start>limit) { | |
1875 | *status=U_INDEX_OUTOFBOUNDS_ERROR; | |
1876 | return 0; | |
1877 | } | |
1878 | ||
1879 | int32_t start32 = pinIndex(start, length); | |
1880 | int32_t limit32 = pinIndex(limit, length); | |
1881 | ||
1882 | // adjust start, limit if they point to trail half of surrogates | |
1883 | if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) && | |
1884 | U_IS_SUPPLEMENTARY(rep->char32At(start32))){ | |
1885 | start32--; | |
1886 | } | |
1887 | if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) && | |
1888 | U_IS_SUPPLEMENTARY(rep->char32At(limit32))){ | |
1889 | limit32--; | |
1890 | } | |
1891 | ||
1892 | length=limit32-start32; | |
1893 | if(length>destCapacity) { | |
1894 | limit32 = start32 + destCapacity; | |
1895 | } | |
1896 | UnicodeString buffer(dest, 0, destCapacity); // writable alias | |
1897 | rep->extractBetween(start32, limit32, buffer); | |
729e4ab9 | 1898 | repTextAccess(ut, limit32, TRUE); |
57a6839d | 1899 | |
73c04bcf A |
1900 | return u_terminateUChars(dest, destCapacity, length, status); |
1901 | } | |
1902 | ||
1903 | static int32_t U_CALLCONV | |
1904 | repTextReplace(UText *ut, | |
1905 | int64_t start, int64_t limit, | |
1906 | const UChar *src, int32_t length, | |
1907 | UErrorCode *status) { | |
1908 | Replaceable *rep=(Replaceable *)ut->context; | |
1909 | int32_t oldLength; | |
1910 | ||
1911 | if(U_FAILURE(*status)) { | |
1912 | return 0; | |
1913 | } | |
1914 | if(src==NULL && length!=0) { | |
1915 | *status=U_ILLEGAL_ARGUMENT_ERROR; | |
1916 | return 0; | |
1917 | } | |
1918 | oldLength=rep->length(); // will subtract from new length | |
1919 | if(start>limit ) { | |
1920 | *status=U_INDEX_OUTOFBOUNDS_ERROR; | |
1921 | return 0; | |
1922 | } | |
1923 | ||
1924 | int32_t start32 = pinIndex(start, oldLength); | |
1925 | int32_t limit32 = pinIndex(limit, oldLength); | |
1926 | ||
1927 | // Snap start & limit to code point boundaries. | |
1928 | if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) && | |
1929 | start32>0 && U16_IS_LEAD(rep->charAt(start32-1))) | |
1930 | { | |
1931 | start32--; | |
1932 | } | |
1933 | if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) && | |
1934 | U16_IS_TRAIL(rep->charAt(limit32))) | |
1935 | { | |
1936 | limit32++; | |
1937 | } | |
1938 | ||
1939 | // Do the actual replace operation using methods of the Replaceable class | |
1940 | UnicodeString replStr((UBool)(length<0), src, length); // read-only alias | |
1941 | rep->handleReplaceBetween(start32, limit32, replStr); | |
1942 | int32_t newLength = rep->length(); | |
1943 | int32_t lengthDelta = newLength - oldLength; | |
1944 | ||
1945 | // Is the UText chunk buffer OK? | |
1946 | if (ut->chunkNativeLimit > start32) { | |
1947 | // this replace operation may have impacted the current chunk. | |
1948 | // invalidate it, which will force a reload on the next access. | |
1949 | invalidateChunk(ut); | |
1950 | } | |
1951 | ||
1952 | // set the iteration position to the end of the newly inserted replacement text. | |
1953 | int32_t newIndexPos = limit32 + lengthDelta; | |
1954 | repTextAccess(ut, newIndexPos, TRUE); | |
1955 | ||
1956 | return lengthDelta; | |
1957 | } | |
1958 | ||
1959 | ||
1960 | static void U_CALLCONV | |
1961 | repTextCopy(UText *ut, | |
1962 | int64_t start, int64_t limit, | |
1963 | int64_t destIndex, | |
1964 | UBool move, | |
1965 | UErrorCode *status) | |
1966 | { | |
1967 | Replaceable *rep=(Replaceable *)ut->context; | |
1968 | int32_t length=rep->length(); | |
1969 | ||
1970 | if(U_FAILURE(*status)) { | |
1971 | return; | |
1972 | } | |
1973 | if (start>limit || (start<destIndex && destIndex<limit)) | |
1974 | { | |
1975 | *status=U_INDEX_OUTOFBOUNDS_ERROR; | |
1976 | return; | |
1977 | } | |
1978 | ||
1979 | int32_t start32 = pinIndex(start, length); | |
1980 | int32_t limit32 = pinIndex(limit, length); | |
1981 | int32_t destIndex32 = pinIndex(destIndex, length); | |
1982 | ||
1983 | // TODO: snap input parameters to code point boundaries. | |
1984 | ||
1985 | if(move) { | |
1986 | // move: copy to destIndex, then replace original with nothing | |
1987 | int32_t segLength=limit32-start32; | |
1988 | rep->copy(start32, limit32, destIndex32); | |
1989 | if(destIndex32<start32) { | |
1990 | start32+=segLength; | |
1991 | limit32+=segLength; | |
1992 | } | |
1993 | rep->handleReplaceBetween(start32, limit32, UnicodeString()); | |
1994 | } else { | |
1995 | // copy | |
1996 | rep->copy(start32, limit32, destIndex32); | |
1997 | } | |
1998 | ||
1999 | // If the change to the text touched the region in the chunk buffer, | |
2000 | // invalidate the buffer. | |
2001 | int32_t firstAffectedIndex = destIndex32; | |
2002 | if (move && start32<firstAffectedIndex) { | |
2003 | firstAffectedIndex = start32; | |
2004 | } | |
2005 | if (firstAffectedIndex < ut->chunkNativeLimit) { | |
2006 | // changes may have affected range covered by the chunk | |
2007 | invalidateChunk(ut); | |
2008 | } | |
2009 | ||
2010 | // Put iteration position at the newly inserted (moved) block, | |
2011 | int32_t nativeIterIndex = destIndex32 + limit32 - start32; | |
2012 | if (move && destIndex32>start32) { | |
2013 | // moved a block of text towards the end of the string. | |
2014 | nativeIterIndex = destIndex32; | |
2015 | } | |
2016 | ||
2017 | // Set position, reload chunk if needed. | |
2018 | repTextAccess(ut, nativeIterIndex, TRUE); | |
2019 | } | |
2020 | ||
57a6839d | 2021 | static const struct UTextFuncs repFuncs = |
73c04bcf A |
2022 | { |
2023 | sizeof(UTextFuncs), | |
2024 | 0, 0, 0, // Reserved alignment padding | |
2025 | repTextClone, | |
2026 | repTextLength, | |
2027 | repTextAccess, | |
2028 | repTextExtract, | |
57a6839d A |
2029 | repTextReplace, |
2030 | repTextCopy, | |
73c04bcf A |
2031 | NULL, // MapOffsetToNative, |
2032 | NULL, // MapIndexToUTF16, | |
2033 | repTextClose, | |
2034 | NULL, // spare 1 | |
2035 | NULL, // spare 2 | |
2036 | NULL // spare 3 | |
2037 | }; | |
2038 | ||
2039 | ||
46f4442e | 2040 | U_CAPI UText * U_EXPORT2 |
73c04bcf A |
2041 | utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status) |
2042 | { | |
2043 | if(U_FAILURE(*status)) { | |
2044 | return NULL; | |
2045 | } | |
2046 | if(rep==NULL) { | |
2047 | *status=U_ILLEGAL_ARGUMENT_ERROR; | |
2048 | return NULL; | |
2049 | } | |
2050 | ut = utext_setup(ut, sizeof(ReplExtra), status); | |
2ca993e8 A |
2051 | if(U_FAILURE(*status)) { |
2052 | return ut; | |
2053 | } | |
73c04bcf A |
2054 | |
2055 | ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE); | |
2056 | if(rep->hasMetaData()) { | |
2057 | ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA); | |
2058 | } | |
2059 | ||
2060 | ut->pFuncs = &repFuncs; | |
2061 | ut->context = rep; | |
2062 | return ut; | |
2063 | } | |
2064 | ||
2065 | U_CDECL_END | |
2066 | ||
2067 | ||
2068 | ||
2069 | ||
2070 | ||
2071 | ||
2072 | ||
2073 | ||
2074 | //------------------------------------------------------------------------------ | |
2075 | // | |
2076 | // UText implementation for UnicodeString (read/write) and | |
2077 | // for const UnicodeString (read only) | |
2078 | // (same implementation, only the flags are different) | |
2079 | // | |
2080 | // Use of UText data members: | |
2081 | // context pointer to UnicodeString | |
2082 | // p pointer to UnicodeString IF this UText owns the string | |
2083 | // and it must be deleted on close(). NULL otherwise. | |
2084 | // | |
2085 | //------------------------------------------------------------------------------ | |
2086 | ||
2087 | U_CDECL_BEGIN | |
2088 | ||
2089 | ||
2090 | static UText * U_CALLCONV | |
2091 | unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { | |
2092 | // First do a generic shallow clone. Does everything needed for the UText struct itself. | |
2093 | dest = shallowTextClone(dest, src, status); | |
2094 | ||
2095 | // For deep clones, make a copy of the UnicodeSring. | |
2096 | // The copied UnicodeString storage is owned by the newly created UText clone. | |
2097 | // A non-NULL pointer in UText.p is the signal to the close() function to delete | |
2098 | // the UText. | |
2099 | // | |
2100 | if (deep && U_SUCCESS(*status)) { | |
2101 | const UnicodeString *srcString = (const UnicodeString *)src->context; | |
2102 | dest->context = new UnicodeString(*srcString); | |
2103 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); | |
2104 | ||
2105 | // with deep clone, the copy is writable, even when the source is not. | |
2106 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); | |
2107 | } | |
2108 | return dest; | |
2109 | } | |
2110 | ||
2111 | static void U_CALLCONV | |
2112 | unistrTextClose(UText *ut) { | |
2113 | // Most of the work of close is done by the generic UText framework close. | |
2114 | // All that needs to be done here is delete the UnicodeString if the UText | |
2115 | // owns it. This occurs if the UText was created by cloning. | |
2116 | if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { | |
2117 | UnicodeString *str = (UnicodeString *)ut->context; | |
2118 | delete str; | |
2119 | ut->context = NULL; | |
2120 | } | |
2121 | } | |
2122 | ||
2123 | ||
2124 | static int64_t U_CALLCONV | |
2125 | unistrTextLength(UText *t) { | |
2126 | return ((const UnicodeString *)t->context)->length(); | |
2127 | } | |
2128 | ||
2129 | ||
2130 | static UBool U_CALLCONV | |
2131 | unistrTextAccess(UText *ut, int64_t index, UBool forward) { | |
2132 | int32_t length = ut->chunkLength; | |
2133 | ut->chunkOffset = pinIndex(index, length); | |
2134 | ||
2135 | // Check whether request is at the start or end | |
2136 | UBool retVal = (forward && index<length) || (!forward && index>0); | |
2137 | return retVal; | |
2138 | } | |
2139 | ||
2140 | ||
2141 | ||
2142 | static int32_t U_CALLCONV | |
2143 | unistrTextExtract(UText *t, | |
2144 | int64_t start, int64_t limit, | |
2145 | UChar *dest, int32_t destCapacity, | |
2146 | UErrorCode *pErrorCode) { | |
2147 | const UnicodeString *us=(const UnicodeString *)t->context; | |
2148 | int32_t length=us->length(); | |
2149 | ||
2150 | if(U_FAILURE(*pErrorCode)) { | |
2151 | return 0; | |
2152 | } | |
2153 | if(destCapacity<0 || (dest==NULL && destCapacity>0)) { | |
2154 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
2155 | } | |
2156 | if(start<0 || start>limit) { | |
2157 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; | |
2158 | return 0; | |
2159 | } | |
2160 | ||
2161 | int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length; | |
2162 | int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length; | |
2163 | ||
2164 | length=limit32-start32; | |
2165 | if (destCapacity>0 && dest!=NULL) { | |
2166 | int32_t trimmedLength = length; | |
2167 | if(trimmedLength>destCapacity) { | |
2168 | trimmedLength=destCapacity; | |
2169 | } | |
2170 | us->extract(start32, trimmedLength, dest); | |
729e4ab9 A |
2171 | t->chunkOffset = start32+trimmedLength; |
2172 | } else { | |
2173 | t->chunkOffset = start32; | |
73c04bcf A |
2174 | } |
2175 | u_terminateUChars(dest, destCapacity, length, pErrorCode); | |
2176 | return length; | |
2177 | } | |
2178 | ||
2179 | static int32_t U_CALLCONV | |
2180 | unistrTextReplace(UText *ut, | |
2181 | int64_t start, int64_t limit, | |
2182 | const UChar *src, int32_t length, | |
2183 | UErrorCode *pErrorCode) { | |
2184 | UnicodeString *us=(UnicodeString *)ut->context; | |
2185 | int32_t oldLength; | |
2186 | ||
2187 | if(U_FAILURE(*pErrorCode)) { | |
2188 | return 0; | |
2189 | } | |
2190 | if(src==NULL && length!=0) { | |
2191 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
2192 | } | |
2193 | if(start>limit) { | |
2194 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; | |
2195 | return 0; | |
2196 | } | |
2197 | oldLength=us->length(); | |
2198 | int32_t start32 = pinIndex(start, oldLength); | |
2199 | int32_t limit32 = pinIndex(limit, oldLength); | |
2200 | if (start32 < oldLength) { | |
2201 | start32 = us->getChar32Start(start32); | |
2202 | } | |
2203 | if (limit32 < oldLength) { | |
2204 | limit32 = us->getChar32Start(limit32); | |
2205 | } | |
2206 | ||
2207 | // replace | |
2208 | us->replace(start32, limit32-start32, src, length); | |
2209 | int32_t newLength = us->length(); | |
2210 | ||
2211 | // Update the chunk description. | |
2212 | ut->chunkContents = us->getBuffer(); | |
2213 | ut->chunkLength = newLength; | |
2214 | ut->chunkNativeLimit = newLength; | |
2215 | ut->nativeIndexingLimit = newLength; | |
2216 | ||
2217 | // Set iteration position to the point just following the newly inserted text. | |
2218 | int32_t lengthDelta = newLength - oldLength; | |
2219 | ut->chunkOffset = limit32 + lengthDelta; | |
2220 | ||
2221 | return lengthDelta; | |
2222 | } | |
2223 | ||
2224 | static void U_CALLCONV | |
2225 | unistrTextCopy(UText *ut, | |
2226 | int64_t start, int64_t limit, | |
2227 | int64_t destIndex, | |
2228 | UBool move, | |
2229 | UErrorCode *pErrorCode) { | |
2230 | UnicodeString *us=(UnicodeString *)ut->context; | |
2231 | int32_t length=us->length(); | |
2232 | ||
2233 | if(U_FAILURE(*pErrorCode)) { | |
2234 | return; | |
2235 | } | |
2236 | int32_t start32 = pinIndex(start, length); | |
2237 | int32_t limit32 = pinIndex(limit, length); | |
2238 | int32_t destIndex32 = pinIndex(destIndex, length); | |
2239 | ||
2240 | if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) { | |
2241 | *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; | |
2242 | return; | |
2243 | } | |
2244 | ||
2245 | if(move) { | |
f3c0d7a5 | 2246 | // move: copy to destIndex, then remove original |
73c04bcf A |
2247 | int32_t segLength=limit32-start32; |
2248 | us->copy(start32, limit32, destIndex32); | |
2249 | if(destIndex32<start32) { | |
2250 | start32+=segLength; | |
2251 | } | |
f3c0d7a5 | 2252 | us->remove(start32, segLength); |
73c04bcf A |
2253 | } else { |
2254 | // copy | |
2255 | us->copy(start32, limit32, destIndex32); | |
2256 | } | |
2257 | ||
2258 | // update chunk description, set iteration position. | |
2259 | ut->chunkContents = us->getBuffer(); | |
2260 | if (move==FALSE) { | |
2261 | // copy operation, string length grows | |
2262 | ut->chunkLength += limit32-start32; | |
2263 | ut->chunkNativeLimit = ut->chunkLength; | |
2264 | ut->nativeIndexingLimit = ut->chunkLength; | |
2265 | } | |
2266 | ||
2267 | // Iteration position to end of the newly inserted text. | |
2268 | ut->chunkOffset = destIndex32+limit32-start32; | |
2269 | if (move && destIndex32>start32) { | |
2270 | ut->chunkOffset = destIndex32; | |
2271 | } | |
2272 | ||
2273 | } | |
2274 | ||
57a6839d | 2275 | static const struct UTextFuncs unistrFuncs = |
73c04bcf A |
2276 | { |
2277 | sizeof(UTextFuncs), | |
2278 | 0, 0, 0, // Reserved alignment padding | |
2279 | unistrTextClone, | |
2280 | unistrTextLength, | |
2281 | unistrTextAccess, | |
2282 | unistrTextExtract, | |
57a6839d A |
2283 | unistrTextReplace, |
2284 | unistrTextCopy, | |
73c04bcf A |
2285 | NULL, // MapOffsetToNative, |
2286 | NULL, // MapIndexToUTF16, | |
2287 | unistrTextClose, | |
2288 | NULL, // spare 1 | |
2289 | NULL, // spare 2 | |
2290 | NULL // spare 3 | |
2291 | }; | |
2292 | ||
2293 | ||
2294 | ||
2295 | U_CDECL_END | |
2296 | ||
2297 | ||
46f4442e | 2298 | U_CAPI UText * U_EXPORT2 |
73c04bcf | 2299 | utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { |
4388f060 | 2300 | ut = utext_openConstUnicodeString(ut, s, status); |
73c04bcf | 2301 | if (U_SUCCESS(*status)) { |
4388f060 | 2302 | ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
73c04bcf A |
2303 | } |
2304 | return ut; | |
2305 | } | |
2306 | ||
2307 | ||
2308 | ||
46f4442e | 2309 | U_CAPI UText * U_EXPORT2 |
73c04bcf | 2310 | utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) { |
4388f060 A |
2311 | if (U_SUCCESS(*status) && s->isBogus()) { |
2312 | // The UnicodeString is bogus, but we still need to detach the UText | |
2313 | // from whatever it was hooked to before, if anything. | |
2314 | utext_openUChars(ut, NULL, 0, status); | |
2315 | *status = U_ILLEGAL_ARGUMENT_ERROR; | |
2316 | return ut; | |
2317 | } | |
73c04bcf A |
2318 | ut = utext_setup(ut, 0, status); |
2319 | // note: use the standard (writable) function table for UnicodeString. | |
2320 | // The flag settings disable writing, so having the functions in | |
2321 | // the table is harmless. | |
2322 | if (U_SUCCESS(*status)) { | |
2323 | ut->pFuncs = &unistrFuncs; | |
2324 | ut->context = s; | |
2325 | ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); | |
2326 | ut->chunkContents = s->getBuffer(); | |
2327 | ut->chunkLength = s->length(); | |
2328 | ut->chunkNativeStart = 0; | |
2329 | ut->chunkNativeLimit = ut->chunkLength; | |
2330 | ut->nativeIndexingLimit = ut->chunkLength; | |
2331 | } | |
2332 | return ut; | |
2333 | } | |
2334 | ||
2335 | //------------------------------------------------------------------------------ | |
2336 | // | |
2337 | // UText implementation for const UChar * strings | |
2338 | // | |
2339 | // Use of UText data members: | |
2340 | // context pointer to UnicodeString | |
2341 | // a length. -1 if not yet known. | |
2342 | // | |
2343 | // TODO: support 64 bit lengths. | |
2344 | // | |
2345 | //------------------------------------------------------------------------------ | |
2346 | ||
2347 | U_CDECL_BEGIN | |
2348 | ||
2349 | ||
2350 | static UText * U_CALLCONV | |
2351 | ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) { | |
2352 | // First do a generic shallow clone. | |
2353 | dest = shallowTextClone(dest, src, status); | |
2354 | ||
2355 | // For deep clones, make a copy of the string. | |
2356 | // The copied storage is owned by the newly created clone. | |
2357 | // A non-NULL pointer in UText.p is the signal to the close() function to delete | |
2358 | // it. | |
2359 | // | |
2360 | if (deep && U_SUCCESS(*status)) { | |
2361 | U_ASSERT(utext_nativeLength(dest) < INT32_MAX); | |
2362 | int32_t len = (int32_t)utext_nativeLength(dest); | |
2363 | ||
2364 | // The cloned string IS going to be NUL terminated, whether or not the original was. | |
2365 | const UChar *srcStr = (const UChar *)src->context; | |
2366 | UChar *copyStr = (UChar *)uprv_malloc((len+1) * sizeof(UChar)); | |
2367 | if (copyStr == NULL) { | |
2368 | *status = U_MEMORY_ALLOCATION_ERROR; | |
2369 | } else { | |
2370 | int64_t i; | |
2371 | for (i=0; i<len; i++) { | |
2372 | copyStr[i] = srcStr[i]; | |
2373 | } | |
2374 | copyStr[len] = 0; | |
2375 | dest->context = copyStr; | |
2376 | dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); | |
2377 | } | |
2378 | } | |
2379 | return dest; | |
2380 | } | |
2381 | ||
2382 | ||
2383 | static void U_CALLCONV | |
2384 | ucstrTextClose(UText *ut) { | |
2385 | // Most of the work of close is done by the generic UText framework close. | |
2386 | // All that needs to be done here is delete the string if the UText | |
2387 | // owns it. This occurs if the UText was created by cloning. | |
2388 | if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { | |
2389 | UChar *s = (UChar *)ut->context; | |
2390 | uprv_free(s); | |
2391 | ut->context = NULL; | |
2392 | } | |
2393 | } | |
2394 | ||
2395 | ||
2396 | ||
2397 | static int64_t U_CALLCONV | |
2398 | ucstrTextLength(UText *ut) { | |
2399 | if (ut->a < 0) { | |
2400 | // null terminated, we don't yet know the length. Scan for it. | |
2401 | // Access is not convenient for doing this | |
2402 | // because the current interation postion can't be changed. | |
2403 | const UChar *str = (const UChar *)ut->context; | |
2404 | for (;;) { | |
2405 | if (str[ut->chunkNativeLimit] == 0) { | |
2406 | break; | |
2407 | } | |
2408 | ut->chunkNativeLimit++; | |
2409 | } | |
2410 | ut->a = ut->chunkNativeLimit; | |
2411 | ut->chunkLength = (int32_t)ut->chunkNativeLimit; | |
2412 | ut->nativeIndexingLimit = ut->chunkLength; | |
2413 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); | |
2414 | } | |
2415 | return ut->a; | |
2416 | } | |
2417 | ||
2418 | ||
2419 | static UBool U_CALLCONV | |
2420 | ucstrTextAccess(UText *ut, int64_t index, UBool forward) { | |
2421 | const UChar *str = (const UChar *)ut->context; | |
2422 | ||
2423 | // pin the requested index to the bounds of the string, | |
2424 | // and set current iteration position. | |
2425 | if (index<0) { | |
2426 | index = 0; | |
2427 | } else if (index < ut->chunkNativeLimit) { | |
2428 | // The request data is within the chunk as it is known so far. | |
2429 | // Put index on a code point boundary. | |
2430 | U16_SET_CP_START(str, 0, index); | |
2431 | } else if (ut->a >= 0) { | |
2432 | // We know the length of this string, and the user is requesting something | |
2433 | // at or beyond the length. Pin the requested index to the length. | |
2434 | index = ut->a; | |
2435 | } else { | |
2436 | // Null terminated string, length not yet known, and the requested index | |
2437 | // is beyond where we have scanned so far. | |
2438 | // Scan to 32 UChars beyond the requested index. The strategy here is | |
2439 | // to avoid fully scanning a long string when the caller only wants to | |
2440 | // see a few characters at its beginning. | |
2441 | int32_t scanLimit = (int32_t)index + 32; | |
2442 | if ((index + 32)>INT32_MAX || (index + 32)<0 ) { // note: int64 expression | |
2443 | scanLimit = INT32_MAX; | |
2444 | } | |
2445 | ||
2446 | int32_t chunkLimit = (int32_t)ut->chunkNativeLimit; | |
2447 | for (; chunkLimit<scanLimit; chunkLimit++) { | |
2448 | if (str[chunkLimit] == 0) { | |
2449 | // We found the end of the string. Remember it, pin the requested index to it, | |
2450 | // and bail out of here. | |
2451 | ut->a = chunkLimit; | |
2452 | ut->chunkLength = chunkLimit; | |
2453 | ut->nativeIndexingLimit = chunkLimit; | |
2454 | if (index >= chunkLimit) { | |
2455 | index = chunkLimit; | |
2456 | } else { | |
2457 | U16_SET_CP_START(str, 0, index); | |
2458 | } | |
2459 | ||
2460 | ut->chunkNativeLimit = chunkLimit; | |
2461 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); | |
2462 | goto breakout; | |
2463 | } | |
2464 | } | |
2465 | // We scanned through the next batch of UChars without finding the end. | |
2466 | U16_SET_CP_START(str, 0, index); | |
2467 | if (chunkLimit == INT32_MAX) { | |
2468 | // Scanned to the limit of a 32 bit length. | |
2469 | // Forceably trim the overlength string back so length fits in int32 | |
2470 | // TODO: add support for 64 bit strings. | |
2471 | ut->a = chunkLimit; | |
2472 | ut->chunkLength = chunkLimit; | |
2473 | ut->nativeIndexingLimit = chunkLimit; | |
2474 | if (index > chunkLimit) { | |
2475 | index = chunkLimit; | |
2476 | } | |
2477 | ut->chunkNativeLimit = chunkLimit; | |
2478 | ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); | |
2479 | } else { | |
2480 | // The endpoint of a chunk must not be left in the middle of a surrogate pair. | |
2481 | // If the current end is on a lead surrogate, back the end up by one. | |
2482 | // It doesn't matter if the end char happens to be an unpaired surrogate, | |
2483 | // and it's simpler not to worry about it. | |
2484 | if (U16_IS_LEAD(str[chunkLimit-1])) { | |
2485 | --chunkLimit; | |
2486 | } | |
46f4442e A |
2487 | // Null-terminated chunk with end still unknown. |
2488 | // Update the chunk length to reflect what has been scanned thus far. | |
2489 | // That the full length is still unknown is (still) flagged by | |
2490 | // ut->a being < 0. | |
73c04bcf | 2491 | ut->chunkNativeLimit = chunkLimit; |
46f4442e A |
2492 | ut->nativeIndexingLimit = chunkLimit; |
2493 | ut->chunkLength = chunkLimit; | |
73c04bcf A |
2494 | } |
2495 | ||
2496 | } | |
2497 | breakout: | |
2498 | U_ASSERT(index<=INT32_MAX); | |
2499 | ut->chunkOffset = (int32_t)index; | |
2500 | ||
2501 | // Check whether request is at the start or end | |
2502 | UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index>0); | |
2503 | return retVal; | |
2504 | } | |
2505 | ||
2506 | ||
2507 | ||
2508 | static int32_t U_CALLCONV | |
2509 | ucstrTextExtract(UText *ut, | |
2510 | int64_t start, int64_t limit, | |
2511 | UChar *dest, int32_t destCapacity, | |
2512 | UErrorCode *pErrorCode) | |
2513 | { | |
2514 | if(U_FAILURE(*pErrorCode)) { | |
2515 | return 0; | |
2516 | } | |
2517 | if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) { | |
2518 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
2519 | return 0; | |
2520 | } | |
2521 | ||
729e4ab9 | 2522 | //const UChar *s=(const UChar *)ut->context; |
73c04bcf A |
2523 | int32_t si, di; |
2524 | ||
2525 | int32_t start32; | |
2526 | int32_t limit32; | |
2527 | ||
2528 | // Access the start. Does two things we need: | |
2529 | // Pins 'start' to the length of the string, if it came in out-of-bounds. | |
2530 | // Snaps 'start' to the beginning of a code point. | |
2531 | ucstrTextAccess(ut, start, TRUE); | |
729e4ab9 A |
2532 | const UChar *s=ut->chunkContents; |
2533 | start32 = ut->chunkOffset; | |
73c04bcf A |
2534 | |
2535 | int32_t strLength=(int32_t)ut->a; | |
2536 | if (strLength >= 0) { | |
2537 | limit32 = pinIndex(limit, strLength); | |
2538 | } else { | |
2539 | limit32 = pinIndex(limit, INT32_MAX); | |
2540 | } | |
73c04bcf A |
2541 | di = 0; |
2542 | for (si=start32; si<limit32; si++) { | |
2543 | if (strLength<0 && s[si]==0) { | |
2544 | // Just hit the end of a null-terminated string. | |
2545 | ut->a = si; // set string length for this UText | |
2546 | ut->chunkNativeLimit = si; | |
2547 | ut->chunkLength = si; | |
2548 | ut->nativeIndexingLimit = si; | |
2549 | strLength = si; | |
2ca993e8 | 2550 | limit32 = si; |
73c04bcf A |
2551 | break; |
2552 | } | |
4388f060 | 2553 | U_ASSERT(di>=0); /* to ensure di never exceeds INT32_MAX, which must not happen logically */ |
73c04bcf A |
2554 | if (di<destCapacity) { |
2555 | // only store if there is space. | |
2556 | dest[di] = s[si]; | |
2557 | } else { | |
2558 | if (strLength>=0) { | |
2559 | // We have filled the destination buffer, and the string length is known. | |
2560 | // Cut the loop short. There is no need to scan string termination. | |
729e4ab9 | 2561 | di = limit32 - start32; |
73c04bcf A |
2562 | si = limit32; |
2563 | break; | |
2564 | } | |
2565 | } | |
2566 | di++; | |
2567 | } | |
2568 | ||
2569 | // If the limit index points to a lead surrogate of a pair, | |
2570 | // add the corresponding trail surrogate to the destination. | |
2571 | if (si>0 && U16_IS_LEAD(s[si-1]) && | |
2ca993e8 | 2572 | ((si<strLength || strLength<0) && U16_IS_TRAIL(s[si]))) |
73c04bcf A |
2573 | { |
2574 | if (di<destCapacity) { | |
2575 | // store only if there is space in the output buffer. | |
2ca993e8 | 2576 | dest[di++] = s[si]; |
73c04bcf | 2577 | } |
2ca993e8 | 2578 | si++; |
73c04bcf A |
2579 | } |
2580 | ||
2581 | // Put iteration position at the point just following the extracted text | |
2ca993e8 A |
2582 | if (si <= ut->chunkNativeLimit) { |
2583 | ut->chunkOffset = si; | |
2584 | } else { | |
2585 | ucstrTextAccess(ut, si, TRUE); | |
2586 | } | |
73c04bcf A |
2587 | |
2588 | // Add a terminating NUL if space in the buffer permits, | |
2589 | // and set the error status as required. | |
2590 | u_terminateUChars(dest, destCapacity, di, pErrorCode); | |
2591 | return di; | |
2592 | } | |
2593 | ||
57a6839d | 2594 | static const struct UTextFuncs ucstrFuncs = |
73c04bcf A |
2595 | { |
2596 | sizeof(UTextFuncs), | |
2597 | 0, 0, 0, // Reserved alignment padding | |
2598 | ucstrTextClone, | |
2599 | ucstrTextLength, | |
2600 | ucstrTextAccess, | |
2601 | ucstrTextExtract, | |
2602 | NULL, // Replace | |
2603 | NULL, // Copy | |
2604 | NULL, // MapOffsetToNative, | |
2605 | NULL, // MapIndexToUTF16, | |
2606 | ucstrTextClose, | |
2607 | NULL, // spare 1 | |
2608 | NULL, // spare 2 | |
2609 | NULL, // spare 3 | |
2610 | }; | |
2611 | ||
2612 | U_CDECL_END | |
2613 | ||
729e4ab9 | 2614 | static const UChar gEmptyUString[] = {0}; |
73c04bcf | 2615 | |
46f4442e | 2616 | U_CAPI UText * U_EXPORT2 |
73c04bcf A |
2617 | utext_openUChars(UText *ut, const UChar *s, int64_t length, UErrorCode *status) { |
2618 | if (U_FAILURE(*status)) { | |
2619 | return NULL; | |
2620 | } | |
729e4ab9 A |
2621 | if(s==NULL && length==0) { |
2622 | s = gEmptyUString; | |
2623 | } | |
2624 | if (s==NULL || length < -1 || length>INT32_MAX) { | |
73c04bcf A |
2625 | *status = U_ILLEGAL_ARGUMENT_ERROR; |
2626 | return NULL; | |
2627 | } | |
2628 | ut = utext_setup(ut, 0, status); | |
2629 | if (U_SUCCESS(*status)) { | |
2630 | ut->pFuncs = &ucstrFuncs; | |
2631 | ut->context = s; | |
2632 | ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); | |
2633 | if (length==-1) { | |
2634 | ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); | |
2635 | } | |
2636 | ut->a = length; | |
2637 | ut->chunkContents = s; | |
2638 | ut->chunkNativeStart = 0; | |
2639 | ut->chunkNativeLimit = length>=0? length : 0; | |
2640 | ut->chunkLength = (int32_t)ut->chunkNativeLimit; | |
2641 | ut->chunkOffset = 0; | |
2642 | ut->nativeIndexingLimit = ut->chunkLength; | |
2643 | } | |
2644 | return ut; | |
2645 | } | |
2646 | ||
2647 | ||
2648 | //------------------------------------------------------------------------------ | |
2649 | // | |
2650 | // UText implementation for text from ICU CharacterIterators | |
2651 | // | |
2652 | // Use of UText data members: | |
2653 | // context pointer to the CharacterIterator | |
2654 | // a length of the full text. | |
2655 | // p pointer to buffer 1 | |
2656 | // b start index of local buffer 1 contents | |
2657 | // q pointer to buffer 2 | |
2658 | // c start index of local buffer 2 contents | |
2659 | // r pointer to the character iterator if the UText owns it. | |
2660 | // Null otherwise. | |
2661 | // | |
2662 | //------------------------------------------------------------------------------ | |
2663 | #define CIBufSize 16 | |
2664 | ||
2665 | U_CDECL_BEGIN | |
2666 | static void U_CALLCONV | |
2667 | charIterTextClose(UText *ut) { | |
2668 | // Most of the work of close is done by the generic UText framework close. | |
2669 | // All that needs to be done here is delete the CharacterIterator if the UText | |
2670 | // owns it. This occurs if the UText was created by cloning. | |
2671 | CharacterIterator *ci = (CharacterIterator *)ut->r; | |
2672 | delete ci; | |
2673 | ut->r = NULL; | |
2674 | } | |
2675 | ||
2676 | static int64_t U_CALLCONV | |
2677 | charIterTextLength(UText *ut) { | |
2678 | return (int32_t)ut->a; | |
2679 | } | |
2680 | ||
2681 | static UBool U_CALLCONV | |
2682 | charIterTextAccess(UText *ut, int64_t index, UBool forward) { | |
2683 | CharacterIterator *ci = (CharacterIterator *)ut->context; | |
2684 | ||
2685 | int32_t clippedIndex = (int32_t)index; | |
2686 | if (clippedIndex<0) { | |
2687 | clippedIndex=0; | |
2688 | } else if (clippedIndex>=ut->a) { | |
2689 | clippedIndex=(int32_t)ut->a; | |
2690 | } | |
2691 | int32_t neededIndex = clippedIndex; | |
2692 | if (!forward && neededIndex>0) { | |
2693 | // reverse iteration, want the position just before what was asked for. | |
2694 | neededIndex--; | |
2695 | } else if (forward && neededIndex==ut->a && neededIndex>0) { | |
2696 | // Forward iteration, don't ask for something past the end of the text. | |
2697 | neededIndex--; | |
2698 | } | |
2699 | ||
2700 | // Find the native index of the start of the buffer containing what we want. | |
2701 | neededIndex -= neededIndex % CIBufSize; | |
2702 | ||
2703 | UChar *buf = NULL; | |
2704 | UBool needChunkSetup = TRUE; | |
2705 | int i; | |
2706 | if (ut->chunkNativeStart == neededIndex) { | |
2707 | // The buffer we want is already the current chunk. | |
2708 | needChunkSetup = FALSE; | |
2709 | } else if (ut->b == neededIndex) { | |
2710 | // The first buffer (buffer p) has what we need. | |
2711 | buf = (UChar *)ut->p; | |
2712 | } else if (ut->c == neededIndex) { | |
2713 | // The second buffer (buffer q) has what we need. | |
2714 | buf = (UChar *)ut->q; | |
2715 | } else { | |
2716 | // Neither buffer already has what we need. | |
2717 | // Load new data from the character iterator. | |
2718 | // Use the buf that is not the current buffer. | |
2719 | buf = (UChar *)ut->p; | |
2720 | if (ut->p == ut->chunkContents) { | |
2721 | buf = (UChar *)ut->q; | |
2722 | } | |
2723 | ci->setIndex(neededIndex); | |
2724 | for (i=0; i<CIBufSize; i++) { | |
2725 | buf[i] = ci->nextPostInc(); | |
2726 | if (i+neededIndex > ut->a) { | |
2727 | break; | |
2728 | } | |
2729 | } | |
2730 | } | |
2731 | ||
2732 | // We have a buffer with the data we need. | |
2733 | // Set it up as the current chunk, if it wasn't already. | |
2734 | if (needChunkSetup) { | |
2735 | ut->chunkContents = buf; | |
2736 | ut->chunkLength = CIBufSize; | |
2737 | ut->chunkNativeStart = neededIndex; | |
2738 | ut->chunkNativeLimit = neededIndex + CIBufSize; | |
2739 | if (ut->chunkNativeLimit > ut->a) { | |
2740 | ut->chunkNativeLimit = ut->a; | |
2741 | ut->chunkLength = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chunkNativeStart); | |
2742 | } | |
2743 | ut->nativeIndexingLimit = ut->chunkLength; | |
2744 | U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize); | |
2745 | } | |
2746 | ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart; | |
2747 | UBool success = (forward? ut->chunkOffset<ut->chunkLength : ut->chunkOffset>0); | |
2748 | return success; | |
2749 | } | |
2750 | ||
2751 | static UText * U_CALLCONV | |
2752 | charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status) { | |
2753 | if (U_FAILURE(*status)) { | |
2754 | return NULL; | |
2755 | } | |
2756 | ||
2757 | if (deep) { | |
2758 | // There is no CharacterIterator API for cloning the underlying text storage. | |
2759 | *status = U_UNSUPPORTED_ERROR; | |
2760 | return NULL; | |
2761 | } else { | |
2762 | CharacterIterator *srcCI =(CharacterIterator *)src->context; | |
2763 | srcCI = srcCI->clone(); | |
2764 | dest = utext_openCharacterIterator(dest, srcCI, status); | |
2ca993e8 A |
2765 | if (U_FAILURE(*status)) { |
2766 | return dest; | |
2767 | } | |
73c04bcf A |
2768 | // cast off const on getNativeIndex. |
2769 | // For CharacterIterator based UTexts, this is safe, the operation is const. | |
2770 | int64_t ix = utext_getNativeIndex((UText *)src); | |
2771 | utext_setNativeIndex(dest, ix); | |
2772 | dest->r = srcCI; // flags that this UText owns the CharacterIterator | |
2773 | } | |
2774 | return dest; | |
2775 | } | |
2776 | ||
2777 | static int32_t U_CALLCONV | |
2778 | charIterTextExtract(UText *ut, | |
2779 | int64_t start, int64_t limit, | |
2780 | UChar *dest, int32_t destCapacity, | |
2781 | UErrorCode *status) | |
2782 | { | |
2783 | if(U_FAILURE(*status)) { | |
2784 | return 0; | |
2785 | } | |
2786 | if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) { | |
2787 | *status=U_ILLEGAL_ARGUMENT_ERROR; | |
2788 | return 0; | |
2789 | } | |
2790 | int32_t length = (int32_t)ut->a; | |
2791 | int32_t start32 = pinIndex(start, length); | |
2792 | int32_t limit32 = pinIndex(limit, length); | |
2793 | int32_t desti = 0; | |
2794 | int32_t srci; | |
729e4ab9 | 2795 | int32_t copyLimit; |
73c04bcf A |
2796 | |
2797 | CharacterIterator *ci = (CharacterIterator *)ut->context; | |
2798 | ci->setIndex32(start32); // Moves ix to lead of surrogate pair, if needed. | |
2799 | srci = ci->getIndex(); | |
729e4ab9 | 2800 | copyLimit = srci; |
73c04bcf A |
2801 | while (srci<limit32) { |
2802 | UChar32 c = ci->next32PostInc(); | |
2803 | int32_t len = U16_LENGTH(c); | |
4388f060 | 2804 | U_ASSERT(desti+len>0); /* to ensure desti+len never exceeds MAX_INT32, which must not happen logically */ |
73c04bcf A |
2805 | if (desti+len <= destCapacity) { |
2806 | U16_APPEND_UNSAFE(dest, desti, c); | |
729e4ab9 | 2807 | copyLimit = srci+len; |
73c04bcf A |
2808 | } else { |
2809 | desti += len; | |
2810 | *status = U_BUFFER_OVERFLOW_ERROR; | |
2811 | } | |
2812 | srci += len; | |
2813 | } | |
57a6839d | 2814 | |
729e4ab9 | 2815 | charIterTextAccess(ut, copyLimit, TRUE); |
73c04bcf A |
2816 | |
2817 | u_terminateUChars(dest, destCapacity, desti, status); | |
2818 | return desti; | |
2819 | } | |
2820 | ||
57a6839d | 2821 | static const struct UTextFuncs charIterFuncs = |
73c04bcf A |
2822 | { |
2823 | sizeof(UTextFuncs), | |
2824 | 0, 0, 0, // Reserved alignment padding | |
2825 | charIterTextClone, | |
2826 | charIterTextLength, | |
2827 | charIterTextAccess, | |
2828 | charIterTextExtract, | |
2829 | NULL, // Replace | |
2830 | NULL, // Copy | |
2831 | NULL, // MapOffsetToNative, | |
2832 | NULL, // MapIndexToUTF16, | |
2833 | charIterTextClose, | |
2834 | NULL, // spare 1 | |
2835 | NULL, // spare 2 | |
2836 | NULL // spare 3 | |
2837 | }; | |
2838 | U_CDECL_END | |
2839 | ||
2840 | ||
46f4442e | 2841 | U_CAPI UText * U_EXPORT2 |
73c04bcf A |
2842 | utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status) { |
2843 | if (U_FAILURE(*status)) { | |
2844 | return NULL; | |
2845 | } | |
2846 | ||
2847 | if (ci->startIndex() > 0) { | |
2848 | // No support for CharacterIterators that do not start indexing from zero. | |
2849 | *status = U_UNSUPPORTED_ERROR; | |
2850 | return NULL; | |
2851 | } | |
2852 | ||
2853 | // Extra space in UText for 2 buffers of CIBufSize UChars each. | |
2854 | int32_t extraSpace = 2 * CIBufSize * sizeof(UChar); | |
2855 | ut = utext_setup(ut, extraSpace, status); | |
2856 | if (U_SUCCESS(*status)) { | |
2857 | ut->pFuncs = &charIterFuncs; | |
2858 | ut->context = ci; | |
2859 | ut->providerProperties = 0; | |
2860 | ut->a = ci->endIndex(); // Length of text | |
2861 | ut->p = ut->pExtra; // First buffer | |
2862 | ut->b = -1; // Native index of first buffer contents | |
2863 | ut->q = (UChar*)ut->pExtra+CIBufSize; // Second buffer | |
2864 | ut->c = -1; // Native index of second buffer contents | |
2865 | ||
2866 | // Initialize current chunk contents to be empty. | |
2867 | // First access will fault something in. | |
2868 | // Note: The initial nativeStart and chunkOffset must sum to zero | |
2869 | // so that getNativeIndex() will correctly compute to zero | |
2870 | // if no call to Access() has ever been made. They can't be both | |
2871 | // zero without Access() thinking that the chunk is valid. | |
2872 | ut->chunkContents = (UChar *)ut->p; | |
2873 | ut->chunkNativeStart = -1; | |
2874 | ut->chunkOffset = 1; | |
2875 | ut->chunkNativeLimit = 0; | |
2876 | ut->chunkLength = 0; | |
2877 | ut->nativeIndexingLimit = ut->chunkOffset; // enables native indexing | |
2878 | } | |
2879 | return ut; | |
2880 | } |