]> git.saurik.com Git - apple/icu.git/blame - icuSources/common/utext.cpp
ICU-531.48.tar.gz
[apple/icu.git] / icuSources / common / utext.cpp
CommitLineData
73c04bcf
A
1/*
2*******************************************************************************
3*
57a6839d 4* Copyright (C) 2005-2013, International Business Machines
73c04bcf
A
5* Corporation and others. All Rights Reserved.
6*
7*******************************************************************************
8* file name: utext.cpp
9* encoding: US-ASCII
10* tab size: 8 (not used)
11* indentation:4
12*
13* created on: 2005apr12
14* created by: Markus W. Scherer
15*/
16
17#include "unicode/utypes.h"
18#include "unicode/ustring.h"
19#include "unicode/unistr.h"
20#include "unicode/chariter.h"
21#include "unicode/utext.h"
4388f060
A
22#include "unicode/utf.h"
23#include "unicode/utf8.h"
24#include "unicode/utf16.h"
73c04bcf
A
25#include "ustr_imp.h"
26#include "cmemory.h"
27#include "cstring.h"
28#include "uassert.h"
729e4ab9 29#include "putilimp.h"
73c04bcf 30
46f4442e 31U_NAMESPACE_USE
73c04bcf
A
32
33#define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex))
34
35
36static UBool
37utext_access(UText *ut, int64_t index, UBool forward) {
38 return ut->pFuncs->access(ut, index, forward);
39}
40
41
42
46f4442e 43U_CAPI UBool U_EXPORT2
73c04bcf
A
44utext_moveIndex32(UText *ut, int32_t delta) {
45 UChar32 c;
46 if (delta > 0) {
47 do {
48 if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNativeLimit, TRUE)) {
49 return FALSE;
50 }
51 c = ut->chunkContents[ut->chunkOffset];
52 if (U16_IS_SURROGATE(c)) {
53 c = utext_next32(ut);
54 if (c == U_SENTINEL) {
55 return FALSE;
56 }
57 } else {
58 ut->chunkOffset++;
59 }
60 } while(--delta>0);
61
62 } else if (delta<0) {
63 do {
64 if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, FALSE)) {
65 return FALSE;
66 }
67 c = ut->chunkContents[ut->chunkOffset-1];
68 if (U16_IS_SURROGATE(c)) {
69 c = utext_previous32(ut);
70 if (c == U_SENTINEL) {
71 return FALSE;
72 }
73 } else {
74 ut->chunkOffset--;
75 }
76 } while(++delta<0);
77 }
78
79 return TRUE;
80}
81
82
46f4442e 83U_CAPI int64_t U_EXPORT2
73c04bcf
A
84utext_nativeLength(UText *ut) {
85 return ut->pFuncs->nativeLength(ut);
86}
87
88
46f4442e 89U_CAPI UBool U_EXPORT2
73c04bcf
A
90utext_isLengthExpensive(const UText *ut) {
91 UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE)) != 0;
92 return r;
93}
94
95
46f4442e 96U_CAPI int64_t U_EXPORT2
73c04bcf
A
97utext_getNativeIndex(const UText *ut) {
98 if(ut->chunkOffset <= ut->nativeIndexingLimit) {
99 return ut->chunkNativeStart+ut->chunkOffset;
100 } else {
101 return ut->pFuncs->mapOffsetToNative(ut);
102 }
103}
104
105
46f4442e 106U_CAPI void U_EXPORT2
73c04bcf
A
107utext_setNativeIndex(UText *ut, int64_t index) {
108 if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
109 // The desired position is outside of the current chunk.
110 // Access the new position. Assume a forward iteration from here,
111 // which will also be optimimum for a single random access.
112 // Reverse iterations may suffer slightly.
113 ut->pFuncs->access(ut, index, TRUE);
114 } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit) {
115 // utf-16 indexing.
116 ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart);
117 } else {
118 ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
119 }
120 // The convention is that the index must always be on a code point boundary.
121 // Adjust the index position if it is in the middle of a surrogate pair.
122 if (ut->chunkOffset<ut->chunkLength) {
123 UChar c= ut->chunkContents[ut->chunkOffset];
4388f060 124 if (U16_IS_TRAIL(c)) {
73c04bcf
A
125 if (ut->chunkOffset==0) {
126 ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE);
127 }
128 if (ut->chunkOffset>0) {
129 UChar lead = ut->chunkContents[ut->chunkOffset-1];
4388f060 130 if (U16_IS_LEAD(lead)) {
73c04bcf
A
131 ut->chunkOffset--;
132 }
133 }
134 }
135 }
136}
137
138
139
46f4442e 140U_CAPI int64_t U_EXPORT2
73c04bcf
A
141utext_getPreviousNativeIndex(UText *ut) {
142 //
143 // Fast-path the common case.
144 // Common means current position is not at the beginning of a chunk
145 // and the preceding character is not supplementary.
146 //
147 int32_t i = ut->chunkOffset - 1;
148 int64_t result;
149 if (i >= 0) {
150 UChar c = ut->chunkContents[i];
151 if (U16_IS_TRAIL(c) == FALSE) {
152 if (i <= ut->nativeIndexingLimit) {
153 result = ut->chunkNativeStart + i;
154 } else {
155 ut->chunkOffset = i;
156 result = ut->pFuncs->mapOffsetToNative(ut);
157 ut->chunkOffset++;
158 }
159 return result;
160 }
161 }
162
163 // If at the start of text, simply return 0.
164 if (ut->chunkOffset==0 && ut->chunkNativeStart==0) {
165 return 0;
166 }
167
168 // Harder, less common cases. We are at a chunk boundary, or on a surrogate.
169 // Keep it simple, use other functions to handle the edges.
170 //
171 utext_previous32(ut);
172 result = UTEXT_GETNATIVEINDEX(ut);
173 utext_next32(ut);
174 return result;
175}
176
177
178//
179// utext_current32. Get the UChar32 at the current position.
180// UText iteration position is always on a code point boundary,
181// never on the trail half of a surrogate pair.
182//
46f4442e 183U_CAPI UChar32 U_EXPORT2
73c04bcf
A
184utext_current32(UText *ut) {
185 UChar32 c;
186 if (ut->chunkOffset==ut->chunkLength) {
187 // Current position is just off the end of the chunk.
188 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
189 // Off the end of the text.
190 return U_SENTINEL;
191 }
192 }
193
194 c = ut->chunkContents[ut->chunkOffset];
195 if (U16_IS_LEAD(c) == FALSE) {
196 // Normal, non-supplementary case.
197 return c;
198 }
199
200 //
201 // Possible supplementary char.
202 //
203 UChar32 trail = 0;
204 UChar32 supplementaryC = c;
205 if ((ut->chunkOffset+1) < ut->chunkLength) {
206 // The trail surrogate is in the same chunk.
207 trail = ut->chunkContents[ut->chunkOffset+1];
208 } else {
209 // The trail surrogate is in a different chunk.
210 // Because we must maintain the iteration position, we need to switch forward
211 // into the new chunk, get the trail surrogate, then revert the chunk back to the
212 // original one.
213 // An edge case to be careful of: the entire text may end with an unpaired
214 // leading surrogate. The attempt to access the trail will fail, but
215 // the original position before the unpaired lead still needs to be restored.
216 int64_t nativePosition = ut->chunkNativeLimit;
217 int32_t originalOffset = ut->chunkOffset;
218 if (ut->pFuncs->access(ut, nativePosition, TRUE)) {
219 trail = ut->chunkContents[ut->chunkOffset];
220 }
221 UBool r = ut->pFuncs->access(ut, nativePosition, FALSE); // reverse iteration flag loads preceding chunk
222 U_ASSERT(r==TRUE);
223 ut->chunkOffset = originalOffset;
224 if(!r) {
225 return U_SENTINEL;
226 }
227 }
228
229 if (U16_IS_TRAIL(trail)) {
230 supplementaryC = U16_GET_SUPPLEMENTARY(c, trail);
231 }
232 return supplementaryC;
233
234}
235
236
46f4442e 237U_CAPI UChar32 U_EXPORT2
73c04bcf
A
238utext_char32At(UText *ut, int64_t nativeIndex) {
239 UChar32 c = U_SENTINEL;
240
241 // Fast path the common case.
242 if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart + ut->nativeIndexingLimit) {
243 ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart);
244 c = ut->chunkContents[ut->chunkOffset];
245 if (U16_IS_SURROGATE(c) == FALSE) {
246 return c;
247 }
248 }
249
250
251 utext_setNativeIndex(ut, nativeIndex);
252 if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) {
253 c = ut->chunkContents[ut->chunkOffset];
254 if (U16_IS_SURROGATE(c)) {
255 // For surrogates, let current32() deal with the complications
256 // of supplementaries that may span chunk boundaries.
257 c = utext_current32(ut);
258 }
259 }
260 return c;
261}
262
263
46f4442e 264U_CAPI UChar32 U_EXPORT2
73c04bcf
A
265utext_next32(UText *ut) {
266 UChar32 c;
267
268 if (ut->chunkOffset >= ut->chunkLength) {
269 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
270 return U_SENTINEL;
271 }
272 }
273
274 c = ut->chunkContents[ut->chunkOffset++];
275 if (U16_IS_LEAD(c) == FALSE) {
276 // Normal case, not supplementary.
277 // (A trail surrogate seen here is just returned as is, as a surrogate value.
278 // It cannot be part of a pair.)
279 return c;
280 }
281
282 if (ut->chunkOffset >= ut->chunkLength) {
283 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) {
284 // c is an unpaired lead surrogate at the end of the text.
285 // return it as it is.
286 return c;
287 }
288 }
289 UChar32 trail = ut->chunkContents[ut->chunkOffset];
290 if (U16_IS_TRAIL(trail) == FALSE) {
291 // c was an unpaired lead surrogate, not at the end of the text.
292 // return it as it is (unpaired). Iteration position is on the
293 // following character, possibly in the next chunk, where the
294 // trail surrogate would have been if it had existed.
295 return c;
296 }
297
298 UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail);
299 ut->chunkOffset++; // move iteration position over the trail surrogate.
300 return supplementary;
301 }
302
303
46f4442e 304U_CAPI UChar32 U_EXPORT2
73c04bcf
A
305utext_previous32(UText *ut) {
306 UChar32 c;
307
308 if (ut->chunkOffset <= 0) {
309 if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) {
310 return U_SENTINEL;
311 }
312 }
313 ut->chunkOffset--;
314 c = ut->chunkContents[ut->chunkOffset];
315 if (U16_IS_TRAIL(c) == FALSE) {
316 // Normal case, not supplementary.
317 // (A lead surrogate seen here is just returned as is, as a surrogate value.
318 // It cannot be part of a pair.)
319 return c;
320 }
321
322 if (ut->chunkOffset <= 0) {
323 if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) {
324 // c is an unpaired trail surrogate at the start of the text.
325 // return it as it is.
326 return c;
327 }
328 }
329
330 UChar32 lead = ut->chunkContents[ut->chunkOffset-1];
331 if (U16_IS_LEAD(lead) == FALSE) {
332 // c was an unpaired trail surrogate, not at the end of the text.
333 // return it as it is (unpaired). Iteration position is at c
334 return c;
335 }
336
337 UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c);
338 ut->chunkOffset--; // move iteration position over the lead surrogate.
339 return supplementary;
340}
341
342
343
46f4442e 344U_CAPI UChar32 U_EXPORT2
73c04bcf
A
345utext_next32From(UText *ut, int64_t index) {
346 UChar32 c = U_SENTINEL;
347
348 if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) {
349 // Desired position is outside of the current chunk.
350 if(!ut->pFuncs->access(ut, index, TRUE)) {
351 // no chunk available here
352 return U_SENTINEL;
353 }
354 } else if (index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) {
355 // Desired position is in chunk, with direct 1:1 native to UTF16 indexing
356 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
357 } else {
358 // Desired position is in chunk, with non-UTF16 indexing.
359 ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index);
360 }
361
362 c = ut->chunkContents[ut->chunkOffset++];
363 if (U16_IS_SURROGATE(c)) {
364 // Surrogates. Many edge cases. Use other functions that already
365 // deal with the problems.
366 utext_setNativeIndex(ut, index);
367 c = utext_next32(ut);
368 }
369 return c;
370}
371
372
46f4442e 373U_CAPI UChar32 U_EXPORT2
73c04bcf
A
374utext_previous32From(UText *ut, int64_t index) {
375 //
376 // Return the character preceding the specified index.
377 // Leave the iteration position at the start of the character that was returned.
378 //
379 UChar32 cPrev; // The character preceding cCurr, which is what we will return.
380
381 // Address the chunk containg the position preceding the incoming index
382 // A tricky edge case:
383 // We try to test the requested native index against the chunkNativeStart to determine
384 // whether the character preceding the one at the index is in the current chunk.
385 // BUT, this test can fail with UTF-8 (or any other multibyte encoding), when the
386 // requested index is on something other than the first position of the first char.
387 //
388 if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) {
389 // Requested native index is outside of the current chunk.
390 if(!ut->pFuncs->access(ut, index, FALSE)) {
391 // no chunk available here
392 return U_SENTINEL;
393 }
394 } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit) {
395 // Direct UTF-16 indexing.
396 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
397 } else {
398 ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index);
399 if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, FALSE)) {
400 // no chunk available here
401 return U_SENTINEL;
402 }
403 }
404
405 //
406 // Simple case with no surrogates.
407 //
408 ut->chunkOffset--;
409 cPrev = ut->chunkContents[ut->chunkOffset];
410
411 if (U16_IS_SURROGATE(cPrev)) {
412 // Possible supplementary. Many edge cases.
413 // Let other functions do the heavy lifting.
414 utext_setNativeIndex(ut, index);
415 cPrev = utext_previous32(ut);
416 }
417 return cPrev;
418}
419
420
46f4442e 421U_CAPI int32_t U_EXPORT2
73c04bcf
A
422utext_extract(UText *ut,
423 int64_t start, int64_t limit,
424 UChar *dest, int32_t destCapacity,
425 UErrorCode *status) {
426 return ut->pFuncs->extract(ut, start, limit, dest, destCapacity, status);
427 }
428
429
430
46f4442e 431U_CAPI UBool U_EXPORT2
73c04bcf
A
432utext_equals(const UText *a, const UText *b) {
433 if (a==NULL || b==NULL ||
434 a->magic != UTEXT_MAGIC ||
435 b->magic != UTEXT_MAGIC) {
436 // Null or invalid arguments don't compare equal to anything.
437 return FALSE;
438 }
439
440 if (a->pFuncs != b->pFuncs) {
441 // Different types of text providers.
442 return FALSE;
443 }
444
445 if (a->context != b->context) {
446 // Different sources (different strings)
447 return FALSE;
448 }
449 if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) {
450 // Different current position in the string.
451 return FALSE;
452 }
453
454 return TRUE;
455}
456
46f4442e 457U_CAPI UBool U_EXPORT2
73c04bcf
A
458utext_isWritable(const UText *ut)
459{
460 UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0;
461 return b;
462}
463
464
46f4442e 465U_CAPI void U_EXPORT2
73c04bcf
A
466utext_freeze(UText *ut) {
467 // Zero out the WRITABLE flag.
468 ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE));
469}
470
471
46f4442e 472U_CAPI UBool U_EXPORT2
73c04bcf
A
473utext_hasMetaData(const UText *ut)
474{
475 UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA)) != 0;
476 return b;
477}
478
479
480
46f4442e 481U_CAPI int32_t U_EXPORT2
73c04bcf
A
482utext_replace(UText *ut,
483 int64_t nativeStart, int64_t nativeLimit,
484 const UChar *replacementText, int32_t replacementLength,
485 UErrorCode *status)
486{
487 if (U_FAILURE(*status)) {
488 return 0;
489 }
490 if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
491 *status = U_NO_WRITE_PERMISSION;
492 return 0;
493 }
494 int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementText, replacementLength, status);
495 return i;
496}
497
46f4442e 498U_CAPI void U_EXPORT2
73c04bcf
A
499utext_copy(UText *ut,
500 int64_t nativeStart, int64_t nativeLimit,
501 int64_t destIndex,
502 UBool move,
503 UErrorCode *status)
504{
505 if (U_FAILURE(*status)) {
506 return;
507 }
508 if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) {
509 *status = U_NO_WRITE_PERMISSION;
510 return;
511 }
512 ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status);
513}
514
515
516
46f4442e 517U_CAPI UText * U_EXPORT2
73c04bcf
A
518utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCode *status) {
519 UText *result;
520 result = src->pFuncs->clone(dest, src, deep, status);
521 if (readOnly) {
522 utext_freeze(result);
523 }
524 return result;
525}
526
527
528
529//------------------------------------------------------------------------------
530//
531// UText common functions implementation
532//
533//------------------------------------------------------------------------------
534
535//
536// UText.flags bit definitions
537//
538enum {
539 UTEXT_HEAP_ALLOCATED = 1, // 1 if ICU has allocated this UText struct on the heap.
540 // 0 if caller provided storage for the UText.
541
542 UTEXT_EXTRA_HEAP_ALLOCATED = 2, // 1 if ICU has allocated extra storage as a separate
543 // heap block.
544 // 0 if there is no separate allocation. Either no extra
545 // storage was requested, or it is appended to the end
546 // of the main UText storage.
547
548 UTEXT_OPEN = 4 // 1 if this UText is currently open
549 // 0 if this UText is not open.
550};
551
552
553//
554// Extended form of a UText. The purpose is to aid in computing the total size required
555// when a provider asks for a UText to be allocated with extra storage.
556
557struct ExtendedUText {
558 UText ut;
559 UAlignedMemory extension;
560};
561
562static const UText emptyText = UTEXT_INITIALIZER;
563
46f4442e 564U_CAPI UText * U_EXPORT2
73c04bcf
A
565utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) {
566 if (U_FAILURE(*status)) {
567 return ut;
568 }
569
570 if (ut == NULL) {
571 // We need to heap-allocate storage for the new UText
572 int32_t spaceRequired = sizeof(UText);
573 if (extraSpace > 0) {
574 spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(UAlignedMemory);
575 }
576 ut = (UText *)uprv_malloc(spaceRequired);
577 if (ut == NULL) {
578 *status = U_MEMORY_ALLOCATION_ERROR;
46f4442e 579 return NULL;
73c04bcf
A
580 } else {
581 *ut = emptyText;
582 ut->flags |= UTEXT_HEAP_ALLOCATED;
583 if (spaceRequired>0) {
584 ut->extraSize = extraSpace;
585 ut->pExtra = &((ExtendedUText *)ut)->extension;
73c04bcf
A
586 }
587 }
588 } else {
589 // We have been supplied with an already existing UText.
590 // Verify that it really appears to be a UText.
591 if (ut->magic != UTEXT_MAGIC) {
592 *status = U_ILLEGAL_ARGUMENT_ERROR;
593 return ut;
594 }
595 // If the ut is already open and there's a provider supplied close
596 // function, call it.
597 if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != NULL) {
598 ut->pFuncs->close(ut);
599 }
600 ut->flags &= ~UTEXT_OPEN;
601
602 // If extra space was requested by our caller, check whether
603 // sufficient already exists, and allocate new if needed.
604 if (extraSpace > ut->extraSize) {
605 // Need more space. If there is existing separately allocated space,
606 // delete it first, then allocate new space.
607 if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
608 uprv_free(ut->pExtra);
609 ut->extraSize = 0;
610 }
611 ut->pExtra = uprv_malloc(extraSpace);
612 if (ut->pExtra == NULL) {
613 *status = U_MEMORY_ALLOCATION_ERROR;
614 } else {
615 ut->extraSize = extraSpace;
616 ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED;
73c04bcf
A
617 }
618 }
619 }
620 if (U_SUCCESS(*status)) {
621 ut->flags |= UTEXT_OPEN;
622
623 // Initialize all remaining fields of the UText.
624 //
625 ut->context = NULL;
626 ut->chunkContents = NULL;
627 ut->p = NULL;
628 ut->q = NULL;
629 ut->r = NULL;
630 ut->a = 0;
631 ut->b = 0;
632 ut->c = 0;
633 ut->chunkOffset = 0;
634 ut->chunkLength = 0;
635 ut->chunkNativeStart = 0;
636 ut->chunkNativeLimit = 0;
637 ut->nativeIndexingLimit = 0;
638 ut->providerProperties = 0;
639 ut->privA = 0;
640 ut->privB = 0;
641 ut->privC = 0;
642 ut->privP = NULL;
46f4442e
A
643 if (ut->pExtra!=NULL && ut->extraSize>0)
644 uprv_memset(ut->pExtra, 0, ut->extraSize);
645
73c04bcf
A
646 }
647 return ut;
648}
649
650
46f4442e 651U_CAPI UText * U_EXPORT2
73c04bcf
A
652utext_close(UText *ut) {
653 if (ut==NULL ||
654 ut->magic != UTEXT_MAGIC ||
655 (ut->flags & UTEXT_OPEN) == 0)
656 {
657 // The supplied ut is not an open UText.
658 // Do nothing.
659 return ut;
660 }
661
662 // If the provider gave us a close function, call it now.
663 // This will clean up anything allocated specifically by the provider.
664 if (ut->pFuncs->close != NULL) {
665 ut->pFuncs->close(ut);
666 }
667 ut->flags &= ~UTEXT_OPEN;
668
669 // If we (the framework) allocated the UText or subsidiary storage,
670 // delete it.
671 if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) {
672 uprv_free(ut->pExtra);
673 ut->pExtra = NULL;
674 ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED;
675 ut->extraSize = 0;
676 }
677
678 // Zero out function table of the closed UText. This is a defensive move,
679 // inteded to cause applications that inadvertantly use a closed
680 // utext to crash with null pointer errors.
681 ut->pFuncs = NULL;
682
683 if (ut->flags & UTEXT_HEAP_ALLOCATED) {
684 // This UText was allocated by UText setup. We need to free it.
685 // Clear magic, so we can detect if the user messes up and immediately
686 // tries to reopen another UText using the deleted storage.
687 ut->magic = 0;
688 uprv_free(ut);
689 ut = NULL;
690 }
691 return ut;
692}
693
694
695
696
697//
698// invalidateChunk Reset a chunk to have no contents, so that the next call
699// to access will cause new data to load.
700// This is needed when copy/move/replace operate directly on the
701// backing text, potentially putting it out of sync with the
702// contents in the chunk.
703//
704static void
705invalidateChunk(UText *ut) {
706 ut->chunkLength = 0;
707 ut->chunkNativeLimit = 0;
708 ut->chunkNativeStart = 0;
709 ut->chunkOffset = 0;
710 ut->nativeIndexingLimit = 0;
711}
712
713//
714// pinIndex Do range pinning on a native index parameter.
715// 64 bit pinning is done in place.
716// 32 bit truncated result is returned as a convenience for
717// use in providers that don't need 64 bits.
718static int32_t
719pinIndex(int64_t &index, int64_t limit) {
720 if (index<0) {
721 index = 0;
722 } else if (index > limit) {
723 index = limit;
724 }
725 return (int32_t)index;
726}
727
728
729U_CDECL_BEGIN
730
731//
732// Pointer relocation function,
733// a utility used by shallow clone.
734// Adjust a pointer that refers to something within one UText (the source)
735// to refer to the same relative offset within a another UText (the target)
736//
737static void adjustPointer(UText *dest, const void **destPtr, const UText *src) {
738 // convert all pointers to (char *) so that byte address arithmetic will work.
739 char *dptr = (char *)*destPtr;
740 char *dUText = (char *)dest;
741 char *sUText = (char *)src;
742
743 if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSize) {
744 // target ptr was to something within the src UText's pExtra storage.
745 // relocate it into the target UText's pExtra region.
746 *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra);
747 } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) {
748 // target ptr was pointing to somewhere within the source UText itself.
749 // Move it to the same offset within the target UText.
750 *destPtr = dUText + (dptr-sUText);
751 }
752}
753
754
755//
756// Clone. This is a generic copy-the-utext-by-value clone function that can be
757// used as-is with some utext types, and as a helper by other clones.
758//
759static UText * U_CALLCONV
760shallowTextClone(UText * dest, const UText * src, UErrorCode * status) {
761 if (U_FAILURE(*status)) {
762 return NULL;
763 }
764 int32_t srcExtraSize = src->extraSize;
765
766 //
767 // Use the generic text_setup to allocate storage if required.
768 //
769 dest = utext_setup(dest, srcExtraSize, status);
770 if (U_FAILURE(*status)) {
771 return dest;
772 }
773
774 //
775 // flags (how the UText was allocated) and the pointer to the
776 // extra storage must retain the values in the cloned utext that
777 // were set up by utext_setup. Save them separately before
778 // copying the whole struct.
779 //
780 void *destExtra = dest->pExtra;
781 int32_t flags = dest->flags;
782
783
784 //
785 // Copy the whole UText struct by value.
786 // Any "Extra" storage is copied also.
787 //
788 int sizeToCopy = src->sizeOfStruct;
789 if (sizeToCopy > dest->sizeOfStruct) {
790 sizeToCopy = dest->sizeOfStruct;
791 }
792 uprv_memcpy(dest, src, sizeToCopy);
793 dest->pExtra = destExtra;
794 dest->flags = flags;
795 if (srcExtraSize > 0) {
796 uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize);
797 }
798
799 //
800 // Relocate any pointers in the target that refer to the UText itself
801 // to point to the cloned copy rather than the original source.
802 //
803 adjustPointer(dest, &dest->context, src);
804 adjustPointer(dest, &dest->p, src);
805 adjustPointer(dest, &dest->q, src);
806 adjustPointer(dest, &dest->r, src);
729e4ab9 807 adjustPointer(dest, (const void **)&dest->chunkContents, src);
73c04bcf 808
57a6839d
A
809 // The newly shallow-cloned UText does _not_ own the underlying storage for the text.
810 // (The source for the clone may or may not have owned the text.)
811
812 dest->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
813
73c04bcf
A
814 return dest;
815}
816
817
818U_CDECL_END
819
820
821
822//------------------------------------------------------------------------------
823//
824// UText implementation for UTF-8 char * strings (read-only)
825// Limitation: string length must be <= 0x7fffffff in length.
826// (length must for in an int32_t variable)
827//
828// Use of UText data members:
829// context pointer to UTF-8 string
830// utext.b is the input string length (bytes).
831// utext.c Length scanned so far in string
832// (for optimizing finding length of zero terminated strings.)
833// utext.p pointer to the current buffer
834// utext.q pointer to the other buffer.
835//
836//------------------------------------------------------------------------------
837
838// Chunk size.
839// Must be less than 85, because of byte mapping from UChar indexes to native indexes.
840// Worst case is three native bytes to one UChar. (Supplemenaries are 4 native bytes
841// to two UChars.)
842//
843enum { UTF8_TEXT_CHUNK_SIZE=32 };
844
845//
846// UTF8Buf Two of these structs will be set up in the UText's extra allocated space.
847// Each contains the UChar chunk buffer, the to and from native maps, and
848// header info.
849//
850// because backwards iteration fills the buffers starting at the end and
851// working towards the front, the filled part of the buffers may not begin
852// at the start of the available storage for the buffers.
853//
854// Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allow for
855// the last character added being a supplementary, and thus requiring a surrogate
856// pair. Doing this is simpler than checking for the edge case.
857//
858
859struct UTF8Buf {
860 int32_t bufNativeStart; // Native index of first char in UChar buf
861 int32_t bufNativeLimit; // Native index following last char in buf.
862 int32_t bufStartIdx; // First filled position in buf.
863 int32_t bufLimitIdx; // Limit of filled range in buf.
864 int32_t bufNILimit; // Limit of native indexing part of buf
865 int32_t toUCharsMapStart; // Native index corresponding to
866 // mapToUChars[0].
867 // Set to bufNativeStart when filling forwards.
868 // Set to computed value when filling backwards.
869
870 UChar buf[UTF8_TEXT_CHUNK_SIZE+4]; // The UChar buffer. Requires one extra position beyond the
871 // the chunk size, to allow for surrogate at the end.
872 // Length must be identical to mapToNative array, below,
873 // because of the way indexing works when the array is
874 // filled backwards during a reverse iteration. Thus,
875 // the additional extra size.
876 uint8_t mapToNative[UTF8_TEXT_CHUNK_SIZE+4]; // map UChar index in buf to
877 // native offset from bufNativeStart.
878 // Requires two extra slots,
879 // one for a supplementary starting in the last normal position,
880 // and one for an entry for the buffer limit position.
881 uint8_t mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from bufNativeStart to
882 // correspoding offset in filled part of buf.
883 int32_t align;
884};
885
886U_CDECL_BEGIN
887
888//
889// utf8TextLength
890//
891// Get the length of the string. If we don't already know it,
892// we'll need to scan for the trailing nul.
893//
894static int64_t U_CALLCONV
895utf8TextLength(UText *ut) {
896 if (ut->b < 0) {
897 // Zero terminated string, and we haven't scanned to the end yet.
898 // Scan it now.
899 const char *r = (const char *)ut->context + ut->c;
900 while (*r != 0) {
901 r++;
902 }
903 if ((r - (const char *)ut->context) < 0x7fffffff) {
904 ut->b = (int32_t)(r - (const char *)ut->context);
905 } else {
906 // Actual string was bigger (more than 2 gig) than we
907 // can handle. Clip it to 2 GB.
908 ut->b = 0x7fffffff;
909 }
910 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
911 }
912 return ut->b;
913}
914
915
916
917
918
919
920static UBool U_CALLCONV
921utf8TextAccess(UText *ut, int64_t index, UBool forward) {
922 //
923 // Apologies to those who are allergic to goto statements.
924 // Consider each goto to a labelled block to be the equivalent of
925 // call the named block as if it were a function();
926 // return;
927 //
928 const uint8_t *s8=(const uint8_t *)ut->context;
929 UTF8Buf *u8b = NULL;
930 int32_t length = ut->b; // Length of original utf-8
931 int32_t ix= (int32_t)index; // Requested index, trimmed to 32 bits.
932 int32_t mapIndex = 0;
933 if (index<0) {
934 ix=0;
935 } else if (index > 0x7fffffff) {
936 // Strings with 64 bit lengths not supported by this UTF-8 provider.
937 ix = 0x7fffffff;
938 }
939
940 // Pin requested index to the string length.
941 if (ix>length) {
942 if (length>=0) {
943 ix=length;
729e4ab9 944 } else if (ix>=ut->c) {
73c04bcf
A
945 // Zero terminated string, and requested index is beyond
946 // the region that has already been scanned.
947 // Scan up to either the end of the string or to the
948 // requested position, whichever comes first.
949 while (ut->c<ix && s8[ut->c]!=0) {
950 ut->c++;
951 }
952 // TODO: support for null terminated string length > 32 bits.
953 if (s8[ut->c] == 0) {
954 // We just found the actual length of the string.
955 // Trim the requested index back to that.
956 ix = ut->c;
957 ut->b = ut->c;
958 length = ut->c;
959 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
960 }
961 }
962 }
963
964 //
965 // Dispatch to the appropriate action for a forward iteration request.
966 //
967 if (forward) {
968 if (ix==ut->chunkNativeLimit) {
969 // Check for normal sequential iteration cases first.
970 if (ix==length) {
971 // Just reached end of string
972 // Don't swap buffers, but do set the
973 // current buffer position.
974 ut->chunkOffset = ut->chunkLength;
975 return FALSE;
976 } else {
977 // End of current buffer.
978 // check whether other buffer already has what we need.
979 UTF8Buf *altB = (UTF8Buf *)ut->q;
980 if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) {
981 goto swapBuffers;
982 }
983 }
984 }
985
986 // A random access. Desired index could be in either or niether buf.
987 // For optimizing the order of testing, first check for the index
988 // being in the other buffer. This will be the case for uses that
989 // move back and forth over a fairly limited range
990 {
991 u8b = (UTF8Buf *)ut->q; // the alternate buffer
992 if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) {
993 // Requested index is in the other buffer.
994 goto swapBuffers;
995 }
996 if (ix == length) {
997 // Requested index is end-of-string.
998 // (this is the case of randomly seeking to the end.
999 // The case of iterating off the end is handled earlier.)
1000 if (ix == ut->chunkNativeLimit) {
1001 // Current buffer extends up to the end of the string.
1002 // Leave it as the current buffer.
1003 ut->chunkOffset = ut->chunkLength;
1004 return FALSE;
1005 }
1006 if (ix == u8b->bufNativeLimit) {
1007 // Alternate buffer extends to the end of string.
1008 // Swap it in as the current buffer.
1009 goto swapBuffersAndFail;
1010 }
1011
1012 // Neither existing buffer extends to the end of the string.
1013 goto makeStubBuffer;
1014 }
1015
1016 if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) {
1017 // Requested index is in neither buffer.
1018 goto fillForward;
1019 }
1020
1021 // Requested index is in this buffer.
1022 u8b = (UTF8Buf *)ut->p; // the current buffer
1023 mapIndex = ix - u8b->toUCharsMapStart;
1024 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1025 return TRUE;
1026
1027 }
1028 }
1029
1030
1031 //
1032 // Dispatch to the appropriate action for a
1033 // Backwards Diretion iteration request.
1034 //
1035 if (ix==ut->chunkNativeStart) {
1036 // Check for normal sequential iteration cases first.
1037 if (ix==0) {
1038 // Just reached the start of string
1039 // Don't swap buffers, but do set the
1040 // current buffer position.
1041 ut->chunkOffset = 0;
1042 return FALSE;
1043 } else {
1044 // Start of current buffer.
1045 // check whether other buffer already has what we need.
1046 UTF8Buf *altB = (UTF8Buf *)ut->q;
1047 if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) {
1048 goto swapBuffers;
1049 }
1050 }
1051 }
1052
1053 // A random access. Desired index could be in either or niether buf.
1054 // For optimizing the order of testing,
1055 // Most likely case: in the other buffer.
1056 // Second most likely: in neither buffer.
1057 // Unlikely, but must work: in the current buffer.
1058 u8b = (UTF8Buf *)ut->q; // the alternate buffer
1059 if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) {
1060 // Requested index is in the other buffer.
1061 goto swapBuffers;
1062 }
1063 // Requested index is start-of-string.
1064 // (this is the case of randomly seeking to the start.
1065 // The case of iterating off the start is handled earlier.)
1066 if (ix==0) {
1067 if (u8b->bufNativeStart==0) {
1068 // Alternate buffer contains the data for the start string.
1069 // Make it be the current buffer.
1070 goto swapBuffersAndFail;
1071 } else {
1072 // Request for data before the start of string,
1073 // neither buffer is usable.
1074 // set up a zero-length buffer.
1075 goto makeStubBuffer;
1076 }
1077 }
1078
1079 if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) {
1080 // Requested index is in neither buffer.
1081 goto fillReverse;
1082 }
1083
1084 // Requested index is in this buffer.
1085 // Set the utf16 buffer index.
1086 u8b = (UTF8Buf *)ut->p;
1087 mapIndex = ix - u8b->toUCharsMapStart;
1088 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1089 if (ut->chunkOffset==0) {
1090 // This occurs when the first character in the text is
1091 // a multi-byte UTF-8 char, and the requested index is to
1092 // one of the trailing bytes. Because there is no preceding ,
1093 // character, this access fails. We can't pick up on the
1094 // situation sooner because the requested index is not zero.
1095 return FALSE;
1096 } else {
1097 return TRUE;
1098 }
1099
1100
1101
1102swapBuffers:
1103 // The alternate buffer (ut->q) has the string data that was requested.
1104 // Swap the primary and alternate buffers, and set the
1105 // chunk index into the new primary buffer.
1106 {
1107 u8b = (UTF8Buf *)ut->q;
1108 ut->q = ut->p;
1109 ut->p = u8b;
1110 ut->chunkContents = &u8b->buf[u8b->bufStartIdx];
1111 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx;
1112 ut->chunkNativeStart = u8b->bufNativeStart;
1113 ut->chunkNativeLimit = u8b->bufNativeLimit;
1114 ut->nativeIndexingLimit = u8b->bufNILimit;
1115
1116 // Index into the (now current) chunk
1117 // Use the map to set the chunk index. It's more trouble than it's worth
1118 // to check whether native indexing can be used.
1119 U_ASSERT(ix>=u8b->bufNativeStart);
1120 U_ASSERT(ix<=u8b->bufNativeLimit);
1121 mapIndex = ix - u8b->toUCharsMapStart;
1122 U_ASSERT(mapIndex>=0);
1123 U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars));
1124 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1125
1126 return TRUE;
1127 }
1128
1129
1130 swapBuffersAndFail:
1131 // We got a request for either the start or end of the string,
1132 // with iteration continuing in the out-of-bounds direction.
1133 // The alternate buffer already contains the data up to the
1134 // start/end.
1135 // Swap the buffers, then return failure, indicating that we couldn't
1136 // make things correct for continuing the iteration in the requested
1137 // direction. The position & buffer are correct should the
1138 // user decide to iterate in the opposite direction.
1139 u8b = (UTF8Buf *)ut->q;
1140 ut->q = ut->p;
1141 ut->p = u8b;
1142 ut->chunkContents = &u8b->buf[u8b->bufStartIdx];
1143 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx;
1144 ut->chunkNativeStart = u8b->bufNativeStart;
1145 ut->chunkNativeLimit = u8b->bufNativeLimit;
1146 ut->nativeIndexingLimit = u8b->bufNILimit;
1147
1148 // Index into the (now current) chunk
1149 // For this function (swapBuffersAndFail), the requested index
1150 // will always be at either the start or end of the chunk.
1151 if (ix==u8b->bufNativeLimit) {
1152 ut->chunkOffset = ut->chunkLength;
1153 } else {
1154 ut->chunkOffset = 0;
1155 U_ASSERT(ix == u8b->bufNativeStart);
1156 }
1157 return FALSE;
1158
1159makeStubBuffer:
1160 // The user has done a seek/access past the start or end
1161 // of the string. Rather than loading data that is likely
1162 // to never be used, just set up a zero-length buffer at
1163 // the position.
1164 u8b = (UTF8Buf *)ut->q;
1165 u8b->bufNativeStart = ix;
1166 u8b->bufNativeLimit = ix;
1167 u8b->bufStartIdx = 0;
1168 u8b->bufLimitIdx = 0;
1169 u8b->bufNILimit = 0;
1170 u8b->toUCharsMapStart = ix;
1171 u8b->mapToNative[0] = 0;
1172 u8b->mapToUChars[0] = 0;
1173 goto swapBuffersAndFail;
1174
1175
1176
1177fillForward:
1178 {
1179 // Move the incoming index to a code point boundary.
1180 U8_SET_CP_START(s8, 0, ix);
1181
1182 // Swap the UText buffers.
1183 // We want to fill what was previously the alternate buffer,
1184 // and make what was the current buffer be the new alternate.
1185 UTF8Buf *u8b = (UTF8Buf *)ut->q;
1186 ut->q = ut->p;
1187 ut->p = u8b;
1188
1189 int32_t strLen = ut->b;
1190 UBool nulTerminated = FALSE;
1191 if (strLen < 0) {
1192 strLen = 0x7fffffff;
1193 nulTerminated = TRUE;
1194 }
1195
1196 UChar *buf = u8b->buf;
1197 uint8_t *mapToNative = u8b->mapToNative;
1198 uint8_t *mapToUChars = u8b->mapToUChars;
1199 int32_t destIx = 0;
1200 int32_t srcIx = ix;
1201 UBool seenNonAscii = FALSE;
729e4ab9 1202 UChar32 c = 0;
73c04bcf
A
1203
1204 // Fill the chunk buffer and mapping arrays.
1205 while (destIx<UTF8_TEXT_CHUNK_SIZE) {
1206 c = s8[srcIx];
1207 if (c>0 && c<0x80) {
1208 // Special case ASCII range for speed.
1209 // zero is excluded to simplify bounds checking.
729e4ab9
A
1210 buf[destIx] = (UChar)c;
1211 mapToNative[destIx] = (uint8_t)(srcIx - ix);
1212 mapToUChars[srcIx-ix] = (uint8_t)destIx;
73c04bcf
A
1213 srcIx++;
1214 destIx++;
1215 } else {
1216 // General case, handle everything.
1217 if (seenNonAscii == FALSE) {
1218 seenNonAscii = TRUE;
1219 u8b->bufNILimit = destIx;
1220 }
1221
1222 int32_t cIx = srcIx;
1223 int32_t dIx = destIx;
1224 int32_t dIxSaved = destIx;
51004dcb 1225 U8_NEXT_OR_FFFD(s8, srcIx, strLen, c);
73c04bcf
A
1226 if (c==0 && nulTerminated) {
1227 srcIx--;
1228 break;
1229 }
73c04bcf
A
1230
1231 U16_APPEND_UNSAFE(buf, destIx, c);
1232 do {
729e4ab9 1233 mapToNative[dIx++] = (uint8_t)(cIx - ix);
73c04bcf
A
1234 } while (dIx < destIx);
1235
1236 do {
729e4ab9 1237 mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved;
73c04bcf
A
1238 } while (cIx < srcIx);
1239 }
1240 if (srcIx>=strLen) {
1241 break;
1242 }
1243
1244 }
1245
1246 // store Native <--> Chunk Map entries for the end of the buffer.
1247 // There is no actual character here, but the index position is valid.
729e4ab9
A
1248 mapToNative[destIx] = (uint8_t)(srcIx - ix);
1249 mapToUChars[srcIx - ix] = (uint8_t)destIx;
73c04bcf
A
1250
1251 // fill in Buffer descriptor
1252 u8b->bufNativeStart = ix;
1253 u8b->bufNativeLimit = srcIx;
1254 u8b->bufStartIdx = 0;
1255 u8b->bufLimitIdx = destIx;
1256 if (seenNonAscii == FALSE) {
1257 u8b->bufNILimit = destIx;
1258 }
1259 u8b->toUCharsMapStart = u8b->bufNativeStart;
1260
1261 // Set UText chunk to refer to this buffer.
1262 ut->chunkContents = buf;
1263 ut->chunkOffset = 0;
1264 ut->chunkLength = u8b->bufLimitIdx;
1265 ut->chunkNativeStart = u8b->bufNativeStart;
1266 ut->chunkNativeLimit = u8b->bufNativeLimit;
1267 ut->nativeIndexingLimit = u8b->bufNILimit;
1268
1269 // For zero terminated strings, keep track of the maximum point
1270 // scanned so far.
1271 if (nulTerminated && srcIx>ut->c) {
1272 ut->c = srcIx;
1273 if (c==0) {
1274 // We scanned to the end.
1275 // Remember the actual length.
1276 ut->b = srcIx;
1277 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1278 }
1279 }
1280 return TRUE;
1281 }
1282
1283
1284fillReverse:
1285 {
1286 // Move the incoming index to a code point boundary.
1287 // Can only do this if the incoming index is somewhere in the interior of the string.
1288 // If index is at the end, there is no character there to look at.
1289 if (ix != ut->b) {
1290 U8_SET_CP_START(s8, 0, ix);
1291 }
1292
1293 // Swap the UText buffers.
1294 // We want to fill what was previously the alternate buffer,
1295 // and make what was the current buffer be the new alternate.
1296 UTF8Buf *u8b = (UTF8Buf *)ut->q;
1297 ut->q = ut->p;
1298 ut->p = u8b;
1299
1300 UChar *buf = u8b->buf;
1301 uint8_t *mapToNative = u8b->mapToNative;
1302 uint8_t *mapToUChars = u8b->mapToUChars;
1303 int32_t toUCharsMapStart = ix - (UTF8_TEXT_CHUNK_SIZE*3 + 1);
1304 int32_t destIx = UTF8_TEXT_CHUNK_SIZE+2; // Start in the overflow region
1305 // at end of buffer to leave room
1306 // for a surrogate pair at the
1307 // buffer start.
1308 int32_t srcIx = ix;
1309 int32_t bufNILimit = destIx;
1310 UChar32 c;
1311
1312 // Map to/from Native Indexes, fill in for the position at the end of
1313 // the buffer.
1314 //
729e4ab9
A
1315 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
1316 mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
73c04bcf
A
1317
1318 // Fill the chunk buffer
1319 // Work backwards, filling from the end of the buffer towards the front.
1320 //
1321 while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) {
1322 srcIx--;
1323 destIx--;
1324
1325 // Get last byte of the UTF-8 character
1326 c = s8[srcIx];
1327 if (c<0x80) {
1328 // Special case ASCII range for speed.
729e4ab9
A
1329 buf[destIx] = (UChar)c;
1330 mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx;
1331 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
73c04bcf
A
1332 } else {
1333 // General case, handle everything non-ASCII.
1334
1335 int32_t sIx = srcIx; // ix of last byte of multi-byte u8 char
1336
1337 // Get the full character from the UTF8 string.
51004dcb 1338 // use code derived from tbe macros in utf8.h
73c04bcf
A
1339 // Leaves srcIx pointing at the first byte of the UTF-8 char.
1340 //
51004dcb
A
1341 c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -3);
1342 // leaves srcIx at first byte of the multi-byte char.
73c04bcf
A
1343
1344 // Store the character in UTF-16 buffer.
1345 if (c<0x10000) {
729e4ab9
A
1346 buf[destIx] = (UChar)c;
1347 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
73c04bcf
A
1348 } else {
1349 buf[destIx] = U16_TRAIL(c);
729e4ab9 1350 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
73c04bcf 1351 buf[--destIx] = U16_LEAD(c);
729e4ab9 1352 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart);
73c04bcf
A
1353 }
1354
1355 // Fill in the map from native indexes to UChars buf index.
1356 do {
729e4ab9 1357 mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx;
73c04bcf
A
1358 } while (sIx >= srcIx);
1359
1360 // Set native indexing limit to be the current position.
1361 // We are processing a non-ascii, non-native-indexing char now;
1362 // the limit will be here if the rest of the chars to be
1363 // added to this buffer are ascii.
1364 bufNILimit = destIx;
1365 }
1366 }
1367 u8b->bufNativeStart = srcIx;
1368 u8b->bufNativeLimit = ix;
1369 u8b->bufStartIdx = destIx;
1370 u8b->bufLimitIdx = UTF8_TEXT_CHUNK_SIZE+2;
1371 u8b->bufNILimit = bufNILimit - u8b->bufStartIdx;
1372 u8b->toUCharsMapStart = toUCharsMapStart;
1373
1374 ut->chunkContents = &buf[u8b->bufStartIdx];
1375 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx;
1376 ut->chunkOffset = ut->chunkLength;
1377 ut->chunkNativeStart = u8b->bufNativeStart;
1378 ut->chunkNativeLimit = u8b->bufNativeLimit;
1379 ut->nativeIndexingLimit = u8b->bufNILimit;
1380 return TRUE;
1381 }
1382
1383}
1384
1385
1386
1387//
1388// This is a slightly modified copy of u_strFromUTF8,
1389// Inserts a Replacement Char rather than failing on invalid UTF-8
1390// Removes unnecessary features.
1391//
1392static UChar*
1393utext_strFromUTF8(UChar *dest,
1394 int32_t destCapacity,
1395 int32_t *pDestLength,
1396 const char* src,
1397 int32_t srcLength, // required. NUL terminated not supported.
1398 UErrorCode *pErrorCode
1399 )
1400{
1401
1402 UChar *pDest = dest;
4388f060 1403 UChar *pDestLimit = (dest!=NULL)?(dest+destCapacity):NULL;
73c04bcf
A
1404 UChar32 ch=0;
1405 int32_t index = 0;
1406 int32_t reqLength = 0;
1407 uint8_t* pSrc = (uint8_t*) src;
1408
1409
1410 while((index < srcLength)&&(pDest<pDestLimit)){
1411 ch = pSrc[index++];
1412 if(ch <=0x7f){
1413 *pDest++=(UChar)ch;
1414 }else{
51004dcb 1415 ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
729e4ab9 1416 if(U_IS_BMP(ch)){
73c04bcf
A
1417 *(pDest++)=(UChar)ch;
1418 }else{
4388f060 1419 *(pDest++)=U16_LEAD(ch);
73c04bcf 1420 if(pDest<pDestLimit){
4388f060 1421 *(pDest++)=U16_TRAIL(ch);
73c04bcf
A
1422 }else{
1423 reqLength++;
1424 break;
1425 }
1426 }
1427 }
1428 }
1429 /* donot fill the dest buffer just count the UChars needed */
1430 while(index < srcLength){
1431 ch = pSrc[index++];
1432 if(ch <= 0x7f){
1433 reqLength++;
1434 }else{
51004dcb 1435 ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -3);
729e4ab9 1436 reqLength+=U16_LENGTH(ch);
73c04bcf
A
1437 }
1438 }
1439
1440 reqLength+=(int32_t)(pDest - dest);
1441
1442 if(pDestLength){
1443 *pDestLength = reqLength;
1444 }
1445
1446 /* Terminate the buffer */
1447 u_terminateUChars(dest,destCapacity,reqLength,pErrorCode);
1448
1449 return dest;
1450}
1451
1452
1453
1454static int32_t U_CALLCONV
1455utf8TextExtract(UText *ut,
1456 int64_t start, int64_t limit,
1457 UChar *dest, int32_t destCapacity,
1458 UErrorCode *pErrorCode) {
1459 if(U_FAILURE(*pErrorCode)) {
1460 return 0;
1461 }
1462 if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
1463 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
1464 return 0;
1465 }
1466 int32_t length = ut->b;
1467 int32_t start32 = pinIndex(start, length);
1468 int32_t limit32 = pinIndex(limit, length);
1469
1470 if(start32>limit32) {
1471 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
1472 return 0;
1473 }
1474
1475
1476 // adjust the incoming indexes to land on code point boundaries if needed.
1477 // adjust by no more than three, because that is the largest number of trail bytes
1478 // in a well formed UTF8 character.
1479 const uint8_t *buf = (const uint8_t *)ut->context;
1480 int i;
1481 if (start32 < ut->chunkNativeLimit) {
1482 for (i=0; i<3; i++) {
729e4ab9 1483 if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start32==0) {
73c04bcf
A
1484 break;
1485 }
1486 start32--;
1487 }
1488 }
1489
1490 if (limit32 < ut->chunkNativeLimit) {
1491 for (i=0; i<3; i++) {
729e4ab9 1492 if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit32==0) {
73c04bcf
A
1493 break;
1494 }
1495 limit32--;
1496 }
1497 }
1498
1499 // Do the actual extract.
1500 int32_t destLength=0;
1501 utext_strFromUTF8(dest, destCapacity, &destLength,
1502 (const char *)ut->context+start32, limit32-start32,
1503 pErrorCode);
729e4ab9 1504 utf8TextAccess(ut, limit32, TRUE);
73c04bcf
A
1505 return destLength;
1506}
1507
1508//
1509// utf8TextMapOffsetToNative
1510//
1511// Map a chunk (UTF-16) offset to a native index.
1512static int64_t U_CALLCONV
1513utf8TextMapOffsetToNative(const UText *ut) {
1514 //
1515 UTF8Buf *u8b = (UTF8Buf *)ut->p;
1516 U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chunkLength);
1517 int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx] + u8b->toUCharsMapStart;
1518 U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNativeLimit);
1519 return nativeOffset;
1520}
1521
1522//
1523// Map a native index to the corrsponding chunk offset
1524//
1525static int32_t U_CALLCONV
1526utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) {
1527 U_ASSERT(index64 <= 0x7fffffff);
1528 int32_t index = (int32_t)index64;
1529 UTF8Buf *u8b = (UTF8Buf *)ut->p;
1530 U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit);
1531 U_ASSERT(index<=ut->chunkNativeLimit);
1532 int32_t mapIndex = index - u8b->toUCharsMapStart;
1533 int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx;
1534 U_ASSERT(offset>=0 && offset<=ut->chunkLength);
1535 return offset;
1536}
1537
1538static UText * U_CALLCONV
1539utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status)
1540{
1541 // First do a generic shallow clone. Does everything needed for the UText struct itself.
1542 dest = shallowTextClone(dest, src, status);
1543
1544 // For deep clones, make a copy of the string.
1545 // The copied storage is owned by the newly created clone.
1546 //
1547 // TODO: There is an isssue with using utext_nativeLength().
1548 // That function is non-const in cases where the input was NUL terminated
1549 // and the length has not yet been determined.
1550 // This function (clone()) is const.
1551 // There potentially a thread safety issue lurking here.
1552 //
1553 if (deep && U_SUCCESS(*status)) {
1554 int32_t len = (int32_t)utext_nativeLength((UText *)src);
1555 char *copyStr = (char *)uprv_malloc(len+1);
1556 if (copyStr == NULL) {
1557 *status = U_MEMORY_ALLOCATION_ERROR;
1558 } else {
1559 uprv_memcpy(copyStr, src->context, len+1);
1560 dest->context = copyStr;
1561 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1562 }
1563 }
1564 return dest;
1565}
1566
1567
1568static void U_CALLCONV
1569utf8TextClose(UText *ut) {
1570 // Most of the work of close is done by the generic UText framework close.
1571 // All that needs to be done here is to delete the UTF8 string if the UText
1572 // owns it. This occurs if the UText was created by cloning.
1573 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1574 char *s = (char *)ut->context;
1575 uprv_free(s);
1576 ut->context = NULL;
1577 }
1578}
1579
1580U_CDECL_END
1581
1582
57a6839d 1583static const struct UTextFuncs utf8Funcs =
73c04bcf
A
1584{
1585 sizeof(UTextFuncs),
1586 0, 0, 0, // Reserved alignment padding
1587 utf8TextClone,
1588 utf8TextLength,
1589 utf8TextAccess,
1590 utf8TextExtract,
1591 NULL, /* replace*/
1592 NULL, /* copy */
1593 utf8TextMapOffsetToNative,
1594 utf8TextMapIndexToUTF16,
1595 utf8TextClose,
1596 NULL, // spare 1
1597 NULL, // spare 2
1598 NULL // spare 3
1599};
1600
1601
729e4ab9
A
1602static const char gEmptyString[] = {0};
1603
46f4442e 1604U_CAPI UText * U_EXPORT2
73c04bcf
A
1605utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) {
1606 if(U_FAILURE(*status)) {
1607 return NULL;
1608 }
729e4ab9
A
1609 if(s==NULL && length==0) {
1610 s = gEmptyString;
1611 }
1612
73c04bcf
A
1613 if(s==NULL || length<-1 || length>INT32_MAX) {
1614 *status=U_ILLEGAL_ARGUMENT_ERROR;
1615 return NULL;
1616 }
1617
1618 ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status);
1619 if (U_FAILURE(*status)) {
1620 return ut;
1621 }
1622
1623 ut->pFuncs = &utf8Funcs;
1624 ut->context = s;
1625 ut->b = (int32_t)length;
1626 ut->c = (int32_t)length;
1627 if (ut->c < 0) {
1628 ut->c = 0;
1629 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
1630 }
1631 ut->p = ut->pExtra;
1632 ut->q = (char *)ut->pExtra + sizeof(UTF8Buf);
1633 return ut;
1634
1635}
1636
1637
1638
1639
1640
1641
1642
1643
1644//------------------------------------------------------------------------------
1645//
1646// UText implementation wrapper for Replaceable (read/write)
1647//
1648// Use of UText data members:
1649// context pointer to Replaceable.
1650// p pointer to Replaceable if it is owned by the UText.
1651//
1652//------------------------------------------------------------------------------
1653
1654
1655
1656// minimum chunk size for this implementation: 3
1657// to allow for possible trimming for code point boundaries
1658enum { REP_TEXT_CHUNK_SIZE=10 };
1659
1660struct ReplExtra {
1661 /*
1662 * Chunk UChars.
1663 * +1 to simplify filling with surrogate pair at the end.
1664 */
1665 UChar s[REP_TEXT_CHUNK_SIZE+1];
1666};
1667
1668
1669U_CDECL_BEGIN
1670
1671static UText * U_CALLCONV
1672repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
1673 // First do a generic shallow clone. Does everything needed for the UText struct itself.
1674 dest = shallowTextClone(dest, src, status);
1675
1676 // For deep clones, make a copy of the Replaceable.
1677 // The copied Replaceable storage is owned by the newly created UText clone.
1678 // A non-NULL pointer in UText.p is the signal to the close() function to delete
1679 // it.
1680 //
1681 if (deep && U_SUCCESS(*status)) {
1682 const Replaceable *replSrc = (const Replaceable *)src->context;
1683 dest->context = replSrc->clone();
1684 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
1685
1686 // with deep clone, the copy is writable, even when the source is not.
1687 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
1688 }
1689 return dest;
1690}
1691
1692
1693static void U_CALLCONV
1694repTextClose(UText *ut) {
1695 // Most of the work of close is done by the generic UText framework close.
1696 // All that needs to be done here is delete the Replaceable if the UText
1697 // owns it. This occurs if the UText was created by cloning.
1698 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
1699 Replaceable *rep = (Replaceable *)ut->context;
1700 delete rep;
1701 ut->context = NULL;
1702 }
1703}
1704
1705
1706static int64_t U_CALLCONV
1707repTextLength(UText *ut) {
1708 const Replaceable *replSrc = (const Replaceable *)ut->context;
1709 int32_t len = replSrc->length();
1710 return len;
1711}
1712
1713
1714static UBool U_CALLCONV
1715repTextAccess(UText *ut, int64_t index, UBool forward) {
1716 const Replaceable *rep=(const Replaceable *)ut->context;
1717 int32_t length=rep->length(); // Full length of the input text (bigger than a chunk)
1718
1719 // clip the requested index to the limits of the text.
1720 int32_t index32 = pinIndex(index, length);
1721 U_ASSERT(index<=INT32_MAX);
1722
1723
1724 /*
1725 * Compute start/limit boundaries around index, for a segment of text
1726 * to be extracted.
1727 * To allow for the possibility that our user gave an index to the trailing
1728 * half of a surrogate pair, we must request one extra preceding UChar when
1729 * going in the forward direction. This will ensure that the buffer has the
1730 * entire code point at the specified index.
1731 */
1732 if(forward) {
1733
1734 if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) {
1735 // Buffer already contains the requested position.
1736 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart);
1737 return TRUE;
1738 }
1739 if (index32>=length && ut->chunkNativeLimit==length) {
1740 // Request for end of string, and buffer already extends up to it.
1741 // Can't get the data, but don't change the buffer.
1742 ut->chunkOffset = length - (int32_t)ut->chunkNativeStart;
1743 return FALSE;
1744 }
1745
1746 ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1;
1747 // Going forward, so we want to have the buffer with stuff at and beyond
1748 // the requested index. The -1 gets us one code point before the
1749 // requested index also, to handle the case of the index being on
1750 // a trail surrogate of a surrogate pair.
1751 if(ut->chunkNativeLimit > length) {
1752 ut->chunkNativeLimit = length;
1753 }
1754 // unless buffer ran off end, start is index-1.
1755 ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE;
1756 if(ut->chunkNativeStart < 0) {
1757 ut->chunkNativeStart = 0;
1758 }
1759 } else {
1760 // Reverse iteration. Fill buffer with data preceding the requested index.
1761 if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) {
1762 // Requested position already in buffer.
1763 ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart;
1764 return TRUE;
1765 }
1766 if (index32==0 && ut->chunkNativeStart==0) {
1767 // Request for start, buffer already begins at start.
1768 // No data, but keep the buffer as is.
1769 ut->chunkOffset = 0;
1770 return FALSE;
1771 }
1772
1773 // Figure out the bounds of the chunk to extract for reverse iteration.
1774 // Need to worry about chunk not splitting surrogate pairs, and while still
1775 // containing the data we need.
1776 // Fix by requesting a chunk that includes an extra UChar at the end.
1777 // If this turns out to be a lead surrogate, we can lop it off and still have
1778 // the data we wanted.
1779 ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE;
1780 if (ut->chunkNativeStart < 0) {
1781 ut->chunkNativeStart = 0;
1782 }
1783
1784 ut->chunkNativeLimit = index32 + 1;
1785 if (ut->chunkNativeLimit > length) {
1786 ut->chunkNativeLimit = length;
1787 }
1788 }
1789
1790 // Extract the new chunk of text from the Replaceable source.
1791 ReplExtra *ex = (ReplExtra *)ut->pExtra;
1792 // UnicodeString with its buffer a writable alias to the chunk buffer
1793 UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffer capacity*/);
1794 rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeLimit, buffer);
1795
1796 ut->chunkContents = ex->s;
1797 ut->chunkLength = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart);
1798 ut->chunkOffset = (int32_t)(index32 - ut->chunkNativeStart);
1799
1800 // Surrogate pairs from the input text must not span chunk boundaries.
1801 // If end of chunk could be the start of a surrogate, trim it off.
1802 if (ut->chunkNativeLimit < length &&
1803 U16_IS_LEAD(ex->s[ut->chunkLength-1])) {
1804 ut->chunkLength--;
1805 ut->chunkNativeLimit--;
1806 if (ut->chunkOffset > ut->chunkLength) {
1807 ut->chunkOffset = ut->chunkLength;
1808 }
1809 }
1810
1811 // if the first UChar in the chunk could be the trailing half of a surrogate pair,
1812 // trim it off.
1813 if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) {
1814 ++(ut->chunkContents);
1815 ++(ut->chunkNativeStart);
1816 --(ut->chunkLength);
1817 --(ut->chunkOffset);
1818 }
1819
1820 // adjust the index/chunkOffset to a code point boundary
1821 U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset);
1822
1823 // Use fast indexing for get/setNativeIndex()
1824 ut->nativeIndexingLimit = ut->chunkLength;
1825
1826 return TRUE;
1827}
1828
1829
1830
1831static int32_t U_CALLCONV
1832repTextExtract(UText *ut,
1833 int64_t start, int64_t limit,
1834 UChar *dest, int32_t destCapacity,
1835 UErrorCode *status) {
1836 const Replaceable *rep=(const Replaceable *)ut->context;
1837 int32_t length=rep->length();
1838
1839 if(U_FAILURE(*status)) {
1840 return 0;
1841 }
1842 if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
1843 *status=U_ILLEGAL_ARGUMENT_ERROR;
1844 }
1845 if(start>limit) {
1846 *status=U_INDEX_OUTOFBOUNDS_ERROR;
1847 return 0;
1848 }
1849
1850 int32_t start32 = pinIndex(start, length);
1851 int32_t limit32 = pinIndex(limit, length);
1852
1853 // adjust start, limit if they point to trail half of surrogates
1854 if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) &&
1855 U_IS_SUPPLEMENTARY(rep->char32At(start32))){
1856 start32--;
1857 }
1858 if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) &&
1859 U_IS_SUPPLEMENTARY(rep->char32At(limit32))){
1860 limit32--;
1861 }
1862
1863 length=limit32-start32;
1864 if(length>destCapacity) {
1865 limit32 = start32 + destCapacity;
1866 }
1867 UnicodeString buffer(dest, 0, destCapacity); // writable alias
1868 rep->extractBetween(start32, limit32, buffer);
729e4ab9 1869 repTextAccess(ut, limit32, TRUE);
57a6839d 1870
73c04bcf
A
1871 return u_terminateUChars(dest, destCapacity, length, status);
1872}
1873
1874static int32_t U_CALLCONV
1875repTextReplace(UText *ut,
1876 int64_t start, int64_t limit,
1877 const UChar *src, int32_t length,
1878 UErrorCode *status) {
1879 Replaceable *rep=(Replaceable *)ut->context;
1880 int32_t oldLength;
1881
1882 if(U_FAILURE(*status)) {
1883 return 0;
1884 }
1885 if(src==NULL && length!=0) {
1886 *status=U_ILLEGAL_ARGUMENT_ERROR;
1887 return 0;
1888 }
1889 oldLength=rep->length(); // will subtract from new length
1890 if(start>limit ) {
1891 *status=U_INDEX_OUTOFBOUNDS_ERROR;
1892 return 0;
1893 }
1894
1895 int32_t start32 = pinIndex(start, oldLength);
1896 int32_t limit32 = pinIndex(limit, oldLength);
1897
1898 // Snap start & limit to code point boundaries.
1899 if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) &&
1900 start32>0 && U16_IS_LEAD(rep->charAt(start32-1)))
1901 {
1902 start32--;
1903 }
1904 if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) &&
1905 U16_IS_TRAIL(rep->charAt(limit32)))
1906 {
1907 limit32++;
1908 }
1909
1910 // Do the actual replace operation using methods of the Replaceable class
1911 UnicodeString replStr((UBool)(length<0), src, length); // read-only alias
1912 rep->handleReplaceBetween(start32, limit32, replStr);
1913 int32_t newLength = rep->length();
1914 int32_t lengthDelta = newLength - oldLength;
1915
1916 // Is the UText chunk buffer OK?
1917 if (ut->chunkNativeLimit > start32) {
1918 // this replace operation may have impacted the current chunk.
1919 // invalidate it, which will force a reload on the next access.
1920 invalidateChunk(ut);
1921 }
1922
1923 // set the iteration position to the end of the newly inserted replacement text.
1924 int32_t newIndexPos = limit32 + lengthDelta;
1925 repTextAccess(ut, newIndexPos, TRUE);
1926
1927 return lengthDelta;
1928}
1929
1930
1931static void U_CALLCONV
1932repTextCopy(UText *ut,
1933 int64_t start, int64_t limit,
1934 int64_t destIndex,
1935 UBool move,
1936 UErrorCode *status)
1937{
1938 Replaceable *rep=(Replaceable *)ut->context;
1939 int32_t length=rep->length();
1940
1941 if(U_FAILURE(*status)) {
1942 return;
1943 }
1944 if (start>limit || (start<destIndex && destIndex<limit))
1945 {
1946 *status=U_INDEX_OUTOFBOUNDS_ERROR;
1947 return;
1948 }
1949
1950 int32_t start32 = pinIndex(start, length);
1951 int32_t limit32 = pinIndex(limit, length);
1952 int32_t destIndex32 = pinIndex(destIndex, length);
1953
1954 // TODO: snap input parameters to code point boundaries.
1955
1956 if(move) {
1957 // move: copy to destIndex, then replace original with nothing
1958 int32_t segLength=limit32-start32;
1959 rep->copy(start32, limit32, destIndex32);
1960 if(destIndex32<start32) {
1961 start32+=segLength;
1962 limit32+=segLength;
1963 }
1964 rep->handleReplaceBetween(start32, limit32, UnicodeString());
1965 } else {
1966 // copy
1967 rep->copy(start32, limit32, destIndex32);
1968 }
1969
1970 // If the change to the text touched the region in the chunk buffer,
1971 // invalidate the buffer.
1972 int32_t firstAffectedIndex = destIndex32;
1973 if (move && start32<firstAffectedIndex) {
1974 firstAffectedIndex = start32;
1975 }
1976 if (firstAffectedIndex < ut->chunkNativeLimit) {
1977 // changes may have affected range covered by the chunk
1978 invalidateChunk(ut);
1979 }
1980
1981 // Put iteration position at the newly inserted (moved) block,
1982 int32_t nativeIterIndex = destIndex32 + limit32 - start32;
1983 if (move && destIndex32>start32) {
1984 // moved a block of text towards the end of the string.
1985 nativeIterIndex = destIndex32;
1986 }
1987
1988 // Set position, reload chunk if needed.
1989 repTextAccess(ut, nativeIterIndex, TRUE);
1990}
1991
57a6839d 1992static const struct UTextFuncs repFuncs =
73c04bcf
A
1993{
1994 sizeof(UTextFuncs),
1995 0, 0, 0, // Reserved alignment padding
1996 repTextClone,
1997 repTextLength,
1998 repTextAccess,
1999 repTextExtract,
57a6839d
A
2000 repTextReplace,
2001 repTextCopy,
73c04bcf
A
2002 NULL, // MapOffsetToNative,
2003 NULL, // MapIndexToUTF16,
2004 repTextClose,
2005 NULL, // spare 1
2006 NULL, // spare 2
2007 NULL // spare 3
2008};
2009
2010
46f4442e 2011U_CAPI UText * U_EXPORT2
73c04bcf
A
2012utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status)
2013{
2014 if(U_FAILURE(*status)) {
2015 return NULL;
2016 }
2017 if(rep==NULL) {
2018 *status=U_ILLEGAL_ARGUMENT_ERROR;
2019 return NULL;
2020 }
2021 ut = utext_setup(ut, sizeof(ReplExtra), status);
2022
2023 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2024 if(rep->hasMetaData()) {
2025 ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA);
2026 }
2027
2028 ut->pFuncs = &repFuncs;
2029 ut->context = rep;
2030 return ut;
2031}
2032
2033U_CDECL_END
2034
2035
2036
2037
2038
2039
2040
2041
2042//------------------------------------------------------------------------------
2043//
2044// UText implementation for UnicodeString (read/write) and
2045// for const UnicodeString (read only)
2046// (same implementation, only the flags are different)
2047//
2048// Use of UText data members:
2049// context pointer to UnicodeString
2050// p pointer to UnicodeString IF this UText owns the string
2051// and it must be deleted on close(). NULL otherwise.
2052//
2053//------------------------------------------------------------------------------
2054
2055U_CDECL_BEGIN
2056
2057
2058static UText * U_CALLCONV
2059unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) {
2060 // First do a generic shallow clone. Does everything needed for the UText struct itself.
2061 dest = shallowTextClone(dest, src, status);
2062
2063 // For deep clones, make a copy of the UnicodeSring.
2064 // The copied UnicodeString storage is owned by the newly created UText clone.
2065 // A non-NULL pointer in UText.p is the signal to the close() function to delete
2066 // the UText.
2067 //
2068 if (deep && U_SUCCESS(*status)) {
2069 const UnicodeString *srcString = (const UnicodeString *)src->context;
2070 dest->context = new UnicodeString(*srcString);
2071 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2072
2073 // with deep clone, the copy is writable, even when the source is not.
2074 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
2075 }
2076 return dest;
2077}
2078
2079static void U_CALLCONV
2080unistrTextClose(UText *ut) {
2081 // Most of the work of close is done by the generic UText framework close.
2082 // All that needs to be done here is delete the UnicodeString if the UText
2083 // owns it. This occurs if the UText was created by cloning.
2084 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2085 UnicodeString *str = (UnicodeString *)ut->context;
2086 delete str;
2087 ut->context = NULL;
2088 }
2089}
2090
2091
2092static int64_t U_CALLCONV
2093unistrTextLength(UText *t) {
2094 return ((const UnicodeString *)t->context)->length();
2095}
2096
2097
2098static UBool U_CALLCONV
2099unistrTextAccess(UText *ut, int64_t index, UBool forward) {
2100 int32_t length = ut->chunkLength;
2101 ut->chunkOffset = pinIndex(index, length);
2102
2103 // Check whether request is at the start or end
2104 UBool retVal = (forward && index<length) || (!forward && index>0);
2105 return retVal;
2106}
2107
2108
2109
2110static int32_t U_CALLCONV
2111unistrTextExtract(UText *t,
2112 int64_t start, int64_t limit,
2113 UChar *dest, int32_t destCapacity,
2114 UErrorCode *pErrorCode) {
2115 const UnicodeString *us=(const UnicodeString *)t->context;
2116 int32_t length=us->length();
2117
2118 if(U_FAILURE(*pErrorCode)) {
2119 return 0;
2120 }
2121 if(destCapacity<0 || (dest==NULL && destCapacity>0)) {
2122 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2123 }
2124 if(start<0 || start>limit) {
2125 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2126 return 0;
2127 }
2128
2129 int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length;
2130 int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length;
2131
2132 length=limit32-start32;
2133 if (destCapacity>0 && dest!=NULL) {
2134 int32_t trimmedLength = length;
2135 if(trimmedLength>destCapacity) {
2136 trimmedLength=destCapacity;
2137 }
2138 us->extract(start32, trimmedLength, dest);
729e4ab9
A
2139 t->chunkOffset = start32+trimmedLength;
2140 } else {
2141 t->chunkOffset = start32;
73c04bcf
A
2142 }
2143 u_terminateUChars(dest, destCapacity, length, pErrorCode);
2144 return length;
2145}
2146
2147static int32_t U_CALLCONV
2148unistrTextReplace(UText *ut,
2149 int64_t start, int64_t limit,
2150 const UChar *src, int32_t length,
2151 UErrorCode *pErrorCode) {
2152 UnicodeString *us=(UnicodeString *)ut->context;
2153 int32_t oldLength;
2154
2155 if(U_FAILURE(*pErrorCode)) {
2156 return 0;
2157 }
2158 if(src==NULL && length!=0) {
2159 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2160 }
2161 if(start>limit) {
2162 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2163 return 0;
2164 }
2165 oldLength=us->length();
2166 int32_t start32 = pinIndex(start, oldLength);
2167 int32_t limit32 = pinIndex(limit, oldLength);
2168 if (start32 < oldLength) {
2169 start32 = us->getChar32Start(start32);
2170 }
2171 if (limit32 < oldLength) {
2172 limit32 = us->getChar32Start(limit32);
2173 }
2174
2175 // replace
2176 us->replace(start32, limit32-start32, src, length);
2177 int32_t newLength = us->length();
2178
2179 // Update the chunk description.
2180 ut->chunkContents = us->getBuffer();
2181 ut->chunkLength = newLength;
2182 ut->chunkNativeLimit = newLength;
2183 ut->nativeIndexingLimit = newLength;
2184
2185 // Set iteration position to the point just following the newly inserted text.
2186 int32_t lengthDelta = newLength - oldLength;
2187 ut->chunkOffset = limit32 + lengthDelta;
2188
2189 return lengthDelta;
2190}
2191
2192static void U_CALLCONV
2193unistrTextCopy(UText *ut,
2194 int64_t start, int64_t limit,
2195 int64_t destIndex,
2196 UBool move,
2197 UErrorCode *pErrorCode) {
2198 UnicodeString *us=(UnicodeString *)ut->context;
2199 int32_t length=us->length();
2200
2201 if(U_FAILURE(*pErrorCode)) {
2202 return;
2203 }
2204 int32_t start32 = pinIndex(start, length);
2205 int32_t limit32 = pinIndex(limit, length);
2206 int32_t destIndex32 = pinIndex(destIndex, length);
2207
2208 if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) {
2209 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2210 return;
2211 }
2212
2213 if(move) {
2214 // move: copy to destIndex, then replace original with nothing
2215 int32_t segLength=limit32-start32;
2216 us->copy(start32, limit32, destIndex32);
2217 if(destIndex32<start32) {
2218 start32+=segLength;
2219 }
2220 us->replace(start32, segLength, NULL, 0);
2221 } else {
2222 // copy
2223 us->copy(start32, limit32, destIndex32);
2224 }
2225
2226 // update chunk description, set iteration position.
2227 ut->chunkContents = us->getBuffer();
2228 if (move==FALSE) {
2229 // copy operation, string length grows
2230 ut->chunkLength += limit32-start32;
2231 ut->chunkNativeLimit = ut->chunkLength;
2232 ut->nativeIndexingLimit = ut->chunkLength;
2233 }
2234
2235 // Iteration position to end of the newly inserted text.
2236 ut->chunkOffset = destIndex32+limit32-start32;
2237 if (move && destIndex32>start32) {
2238 ut->chunkOffset = destIndex32;
2239 }
2240
2241}
2242
57a6839d 2243static const struct UTextFuncs unistrFuncs =
73c04bcf
A
2244{
2245 sizeof(UTextFuncs),
2246 0, 0, 0, // Reserved alignment padding
2247 unistrTextClone,
2248 unistrTextLength,
2249 unistrTextAccess,
2250 unistrTextExtract,
57a6839d
A
2251 unistrTextReplace,
2252 unistrTextCopy,
73c04bcf
A
2253 NULL, // MapOffsetToNative,
2254 NULL, // MapIndexToUTF16,
2255 unistrTextClose,
2256 NULL, // spare 1
2257 NULL, // spare 2
2258 NULL // spare 3
2259};
2260
2261
2262
2263U_CDECL_END
2264
2265
46f4442e 2266U_CAPI UText * U_EXPORT2
73c04bcf 2267utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) {
4388f060 2268 ut = utext_openConstUnicodeString(ut, s, status);
73c04bcf 2269 if (U_SUCCESS(*status)) {
4388f060 2270 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE);
73c04bcf
A
2271 }
2272 return ut;
2273}
2274
2275
2276
46f4442e 2277U_CAPI UText * U_EXPORT2
73c04bcf 2278utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *status) {
4388f060
A
2279 if (U_SUCCESS(*status) && s->isBogus()) {
2280 // The UnicodeString is bogus, but we still need to detach the UText
2281 // from whatever it was hooked to before, if anything.
2282 utext_openUChars(ut, NULL, 0, status);
2283 *status = U_ILLEGAL_ARGUMENT_ERROR;
2284 return ut;
2285 }
73c04bcf
A
2286 ut = utext_setup(ut, 0, status);
2287 // note: use the standard (writable) function table for UnicodeString.
2288 // The flag settings disable writing, so having the functions in
2289 // the table is harmless.
2290 if (U_SUCCESS(*status)) {
2291 ut->pFuncs = &unistrFuncs;
2292 ut->context = s;
2293 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2294 ut->chunkContents = s->getBuffer();
2295 ut->chunkLength = s->length();
2296 ut->chunkNativeStart = 0;
2297 ut->chunkNativeLimit = ut->chunkLength;
2298 ut->nativeIndexingLimit = ut->chunkLength;
2299 }
2300 return ut;
2301}
2302
2303//------------------------------------------------------------------------------
2304//
2305// UText implementation for const UChar * strings
2306//
2307// Use of UText data members:
2308// context pointer to UnicodeString
2309// a length. -1 if not yet known.
2310//
2311// TODO: support 64 bit lengths.
2312//
2313//------------------------------------------------------------------------------
2314
2315U_CDECL_BEGIN
2316
2317
2318static UText * U_CALLCONV
2319ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status) {
2320 // First do a generic shallow clone.
2321 dest = shallowTextClone(dest, src, status);
2322
2323 // For deep clones, make a copy of the string.
2324 // The copied storage is owned by the newly created clone.
2325 // A non-NULL pointer in UText.p is the signal to the close() function to delete
2326 // it.
2327 //
2328 if (deep && U_SUCCESS(*status)) {
2329 U_ASSERT(utext_nativeLength(dest) < INT32_MAX);
2330 int32_t len = (int32_t)utext_nativeLength(dest);
2331
2332 // The cloned string IS going to be NUL terminated, whether or not the original was.
2333 const UChar *srcStr = (const UChar *)src->context;
2334 UChar *copyStr = (UChar *)uprv_malloc((len+1) * sizeof(UChar));
2335 if (copyStr == NULL) {
2336 *status = U_MEMORY_ALLOCATION_ERROR;
2337 } else {
2338 int64_t i;
2339 for (i=0; i<len; i++) {
2340 copyStr[i] = srcStr[i];
2341 }
2342 copyStr[len] = 0;
2343 dest->context = copyStr;
2344 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT);
2345 }
2346 }
2347 return dest;
2348}
2349
2350
2351static void U_CALLCONV
2352ucstrTextClose(UText *ut) {
2353 // Most of the work of close is done by the generic UText framework close.
2354 // All that needs to be done here is delete the string if the UText
2355 // owns it. This occurs if the UText was created by cloning.
2356 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) {
2357 UChar *s = (UChar *)ut->context;
2358 uprv_free(s);
2359 ut->context = NULL;
2360 }
2361}
2362
2363
2364
2365static int64_t U_CALLCONV
2366ucstrTextLength(UText *ut) {
2367 if (ut->a < 0) {
2368 // null terminated, we don't yet know the length. Scan for it.
2369 // Access is not convenient for doing this
2370 // because the current interation postion can't be changed.
2371 const UChar *str = (const UChar *)ut->context;
2372 for (;;) {
2373 if (str[ut->chunkNativeLimit] == 0) {
2374 break;
2375 }
2376 ut->chunkNativeLimit++;
2377 }
2378 ut->a = ut->chunkNativeLimit;
2379 ut->chunkLength = (int32_t)ut->chunkNativeLimit;
2380 ut->nativeIndexingLimit = ut->chunkLength;
2381 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2382 }
2383 return ut->a;
2384}
2385
2386
2387static UBool U_CALLCONV
2388ucstrTextAccess(UText *ut, int64_t index, UBool forward) {
2389 const UChar *str = (const UChar *)ut->context;
2390
2391 // pin the requested index to the bounds of the string,
2392 // and set current iteration position.
2393 if (index<0) {
2394 index = 0;
2395 } else if (index < ut->chunkNativeLimit) {
2396 // The request data is within the chunk as it is known so far.
2397 // Put index on a code point boundary.
2398 U16_SET_CP_START(str, 0, index);
2399 } else if (ut->a >= 0) {
2400 // We know the length of this string, and the user is requesting something
2401 // at or beyond the length. Pin the requested index to the length.
2402 index = ut->a;
2403 } else {
2404 // Null terminated string, length not yet known, and the requested index
2405 // is beyond where we have scanned so far.
2406 // Scan to 32 UChars beyond the requested index. The strategy here is
2407 // to avoid fully scanning a long string when the caller only wants to
2408 // see a few characters at its beginning.
2409 int32_t scanLimit = (int32_t)index + 32;
2410 if ((index + 32)>INT32_MAX || (index + 32)<0 ) { // note: int64 expression
2411 scanLimit = INT32_MAX;
2412 }
2413
2414 int32_t chunkLimit = (int32_t)ut->chunkNativeLimit;
2415 for (; chunkLimit<scanLimit; chunkLimit++) {
2416 if (str[chunkLimit] == 0) {
2417 // We found the end of the string. Remember it, pin the requested index to it,
2418 // and bail out of here.
2419 ut->a = chunkLimit;
2420 ut->chunkLength = chunkLimit;
2421 ut->nativeIndexingLimit = chunkLimit;
2422 if (index >= chunkLimit) {
2423 index = chunkLimit;
2424 } else {
2425 U16_SET_CP_START(str, 0, index);
2426 }
2427
2428 ut->chunkNativeLimit = chunkLimit;
2429 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2430 goto breakout;
2431 }
2432 }
2433 // We scanned through the next batch of UChars without finding the end.
2434 U16_SET_CP_START(str, 0, index);
2435 if (chunkLimit == INT32_MAX) {
2436 // Scanned to the limit of a 32 bit length.
2437 // Forceably trim the overlength string back so length fits in int32
2438 // TODO: add support for 64 bit strings.
2439 ut->a = chunkLimit;
2440 ut->chunkLength = chunkLimit;
2441 ut->nativeIndexingLimit = chunkLimit;
2442 if (index > chunkLimit) {
2443 index = chunkLimit;
2444 }
2445 ut->chunkNativeLimit = chunkLimit;
2446 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2447 } else {
2448 // The endpoint of a chunk must not be left in the middle of a surrogate pair.
2449 // If the current end is on a lead surrogate, back the end up by one.
2450 // It doesn't matter if the end char happens to be an unpaired surrogate,
2451 // and it's simpler not to worry about it.
2452 if (U16_IS_LEAD(str[chunkLimit-1])) {
2453 --chunkLimit;
2454 }
46f4442e
A
2455 // Null-terminated chunk with end still unknown.
2456 // Update the chunk length to reflect what has been scanned thus far.
2457 // That the full length is still unknown is (still) flagged by
2458 // ut->a being < 0.
73c04bcf 2459 ut->chunkNativeLimit = chunkLimit;
46f4442e
A
2460 ut->nativeIndexingLimit = chunkLimit;
2461 ut->chunkLength = chunkLimit;
73c04bcf
A
2462 }
2463
2464 }
2465breakout:
2466 U_ASSERT(index<=INT32_MAX);
2467 ut->chunkOffset = (int32_t)index;
2468
2469 // Check whether request is at the start or end
2470 UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index>0);
2471 return retVal;
2472}
2473
2474
2475
2476static int32_t U_CALLCONV
2477ucstrTextExtract(UText *ut,
2478 int64_t start, int64_t limit,
2479 UChar *dest, int32_t destCapacity,
2480 UErrorCode *pErrorCode)
2481{
2482 if(U_FAILURE(*pErrorCode)) {
2483 return 0;
2484 }
2485 if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) {
2486 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
2487 return 0;
2488 }
2489
729e4ab9 2490 //const UChar *s=(const UChar *)ut->context;
73c04bcf
A
2491 int32_t si, di;
2492
2493 int32_t start32;
2494 int32_t limit32;
2495
2496 // Access the start. Does two things we need:
2497 // Pins 'start' to the length of the string, if it came in out-of-bounds.
2498 // Snaps 'start' to the beginning of a code point.
2499 ucstrTextAccess(ut, start, TRUE);
729e4ab9
A
2500 const UChar *s=ut->chunkContents;
2501 start32 = ut->chunkOffset;
73c04bcf
A
2502
2503 int32_t strLength=(int32_t)ut->a;
2504 if (strLength >= 0) {
2505 limit32 = pinIndex(limit, strLength);
2506 } else {
2507 limit32 = pinIndex(limit, INT32_MAX);
2508 }
73c04bcf
A
2509 di = 0;
2510 for (si=start32; si<limit32; si++) {
2511 if (strLength<0 && s[si]==0) {
2512 // Just hit the end of a null-terminated string.
2513 ut->a = si; // set string length for this UText
2514 ut->chunkNativeLimit = si;
2515 ut->chunkLength = si;
2516 ut->nativeIndexingLimit = si;
2517 strLength = si;
2518 break;
2519 }
4388f060 2520 U_ASSERT(di>=0); /* to ensure di never exceeds INT32_MAX, which must not happen logically */
73c04bcf
A
2521 if (di<destCapacity) {
2522 // only store if there is space.
2523 dest[di] = s[si];
2524 } else {
2525 if (strLength>=0) {
2526 // We have filled the destination buffer, and the string length is known.
2527 // Cut the loop short. There is no need to scan string termination.
729e4ab9 2528 di = limit32 - start32;
73c04bcf
A
2529 si = limit32;
2530 break;
2531 }
2532 }
2533 di++;
2534 }
2535
2536 // If the limit index points to a lead surrogate of a pair,
2537 // add the corresponding trail surrogate to the destination.
2538 if (si>0 && U16_IS_LEAD(s[si-1]) &&
2539 ((si<strLength || strLength<0) && U16_IS_TRAIL(s[si])))
2540 {
2541 if (di<destCapacity) {
2542 // store only if there is space in the output buffer.
2543 dest[di++] = s[si++];
2544 }
2545 }
2546
2547 // Put iteration position at the point just following the extracted text
729e4ab9 2548 ut->chunkOffset = uprv_min(strLength, start32 + destCapacity);
73c04bcf
A
2549
2550 // Add a terminating NUL if space in the buffer permits,
2551 // and set the error status as required.
2552 u_terminateUChars(dest, destCapacity, di, pErrorCode);
2553 return di;
2554}
2555
57a6839d 2556static const struct UTextFuncs ucstrFuncs =
73c04bcf
A
2557{
2558 sizeof(UTextFuncs),
2559 0, 0, 0, // Reserved alignment padding
2560 ucstrTextClone,
2561 ucstrTextLength,
2562 ucstrTextAccess,
2563 ucstrTextExtract,
2564 NULL, // Replace
2565 NULL, // Copy
2566 NULL, // MapOffsetToNative,
2567 NULL, // MapIndexToUTF16,
2568 ucstrTextClose,
2569 NULL, // spare 1
2570 NULL, // spare 2
2571 NULL, // spare 3
2572};
2573
2574U_CDECL_END
2575
729e4ab9 2576static const UChar gEmptyUString[] = {0};
73c04bcf 2577
46f4442e 2578U_CAPI UText * U_EXPORT2
73c04bcf
A
2579utext_openUChars(UText *ut, const UChar *s, int64_t length, UErrorCode *status) {
2580 if (U_FAILURE(*status)) {
2581 return NULL;
2582 }
729e4ab9
A
2583 if(s==NULL && length==0) {
2584 s = gEmptyUString;
2585 }
2586 if (s==NULL || length < -1 || length>INT32_MAX) {
73c04bcf
A
2587 *status = U_ILLEGAL_ARGUMENT_ERROR;
2588 return NULL;
2589 }
2590 ut = utext_setup(ut, 0, status);
2591 if (U_SUCCESS(*status)) {
2592 ut->pFuncs = &ucstrFuncs;
2593 ut->context = s;
2594 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS);
2595 if (length==-1) {
2596 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE);
2597 }
2598 ut->a = length;
2599 ut->chunkContents = s;
2600 ut->chunkNativeStart = 0;
2601 ut->chunkNativeLimit = length>=0? length : 0;
2602 ut->chunkLength = (int32_t)ut->chunkNativeLimit;
2603 ut->chunkOffset = 0;
2604 ut->nativeIndexingLimit = ut->chunkLength;
2605 }
2606 return ut;
2607}
2608
2609
2610//------------------------------------------------------------------------------
2611//
2612// UText implementation for text from ICU CharacterIterators
2613//
2614// Use of UText data members:
2615// context pointer to the CharacterIterator
2616// a length of the full text.
2617// p pointer to buffer 1
2618// b start index of local buffer 1 contents
2619// q pointer to buffer 2
2620// c start index of local buffer 2 contents
2621// r pointer to the character iterator if the UText owns it.
2622// Null otherwise.
2623//
2624//------------------------------------------------------------------------------
2625#define CIBufSize 16
2626
2627U_CDECL_BEGIN
2628static void U_CALLCONV
2629charIterTextClose(UText *ut) {
2630 // Most of the work of close is done by the generic UText framework close.
2631 // All that needs to be done here is delete the CharacterIterator if the UText
2632 // owns it. This occurs if the UText was created by cloning.
2633 CharacterIterator *ci = (CharacterIterator *)ut->r;
2634 delete ci;
2635 ut->r = NULL;
2636}
2637
2638static int64_t U_CALLCONV
2639charIterTextLength(UText *ut) {
2640 return (int32_t)ut->a;
2641}
2642
2643static UBool U_CALLCONV
2644charIterTextAccess(UText *ut, int64_t index, UBool forward) {
2645 CharacterIterator *ci = (CharacterIterator *)ut->context;
2646
2647 int32_t clippedIndex = (int32_t)index;
2648 if (clippedIndex<0) {
2649 clippedIndex=0;
2650 } else if (clippedIndex>=ut->a) {
2651 clippedIndex=(int32_t)ut->a;
2652 }
2653 int32_t neededIndex = clippedIndex;
2654 if (!forward && neededIndex>0) {
2655 // reverse iteration, want the position just before what was asked for.
2656 neededIndex--;
2657 } else if (forward && neededIndex==ut->a && neededIndex>0) {
2658 // Forward iteration, don't ask for something past the end of the text.
2659 neededIndex--;
2660 }
2661
2662 // Find the native index of the start of the buffer containing what we want.
2663 neededIndex -= neededIndex % CIBufSize;
2664
2665 UChar *buf = NULL;
2666 UBool needChunkSetup = TRUE;
2667 int i;
2668 if (ut->chunkNativeStart == neededIndex) {
2669 // The buffer we want is already the current chunk.
2670 needChunkSetup = FALSE;
2671 } else if (ut->b == neededIndex) {
2672 // The first buffer (buffer p) has what we need.
2673 buf = (UChar *)ut->p;
2674 } else if (ut->c == neededIndex) {
2675 // The second buffer (buffer q) has what we need.
2676 buf = (UChar *)ut->q;
2677 } else {
2678 // Neither buffer already has what we need.
2679 // Load new data from the character iterator.
2680 // Use the buf that is not the current buffer.
2681 buf = (UChar *)ut->p;
2682 if (ut->p == ut->chunkContents) {
2683 buf = (UChar *)ut->q;
2684 }
2685 ci->setIndex(neededIndex);
2686 for (i=0; i<CIBufSize; i++) {
2687 buf[i] = ci->nextPostInc();
2688 if (i+neededIndex > ut->a) {
2689 break;
2690 }
2691 }
2692 }
2693
2694 // We have a buffer with the data we need.
2695 // Set it up as the current chunk, if it wasn't already.
2696 if (needChunkSetup) {
2697 ut->chunkContents = buf;
2698 ut->chunkLength = CIBufSize;
2699 ut->chunkNativeStart = neededIndex;
2700 ut->chunkNativeLimit = neededIndex + CIBufSize;
2701 if (ut->chunkNativeLimit > ut->a) {
2702 ut->chunkNativeLimit = ut->a;
2703 ut->chunkLength = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chunkNativeStart);
2704 }
2705 ut->nativeIndexingLimit = ut->chunkLength;
2706 U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize);
2707 }
2708 ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart;
2709 UBool success = (forward? ut->chunkOffset<ut->chunkLength : ut->chunkOffset>0);
2710 return success;
2711}
2712
2713static UText * U_CALLCONV
2714charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status) {
2715 if (U_FAILURE(*status)) {
2716 return NULL;
2717 }
2718
2719 if (deep) {
2720 // There is no CharacterIterator API for cloning the underlying text storage.
2721 *status = U_UNSUPPORTED_ERROR;
2722 return NULL;
2723 } else {
2724 CharacterIterator *srcCI =(CharacterIterator *)src->context;
2725 srcCI = srcCI->clone();
2726 dest = utext_openCharacterIterator(dest, srcCI, status);
2727 // cast off const on getNativeIndex.
2728 // For CharacterIterator based UTexts, this is safe, the operation is const.
2729 int64_t ix = utext_getNativeIndex((UText *)src);
2730 utext_setNativeIndex(dest, ix);
2731 dest->r = srcCI; // flags that this UText owns the CharacterIterator
2732 }
2733 return dest;
2734}
2735
2736static int32_t U_CALLCONV
2737charIterTextExtract(UText *ut,
2738 int64_t start, int64_t limit,
2739 UChar *dest, int32_t destCapacity,
2740 UErrorCode *status)
2741{
2742 if(U_FAILURE(*status)) {
2743 return 0;
2744 }
2745 if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) {
2746 *status=U_ILLEGAL_ARGUMENT_ERROR;
2747 return 0;
2748 }
2749 int32_t length = (int32_t)ut->a;
2750 int32_t start32 = pinIndex(start, length);
2751 int32_t limit32 = pinIndex(limit, length);
2752 int32_t desti = 0;
2753 int32_t srci;
729e4ab9 2754 int32_t copyLimit;
73c04bcf
A
2755
2756 CharacterIterator *ci = (CharacterIterator *)ut->context;
2757 ci->setIndex32(start32); // Moves ix to lead of surrogate pair, if needed.
2758 srci = ci->getIndex();
729e4ab9 2759 copyLimit = srci;
73c04bcf
A
2760 while (srci<limit32) {
2761 UChar32 c = ci->next32PostInc();
2762 int32_t len = U16_LENGTH(c);
4388f060 2763 U_ASSERT(desti+len>0); /* to ensure desti+len never exceeds MAX_INT32, which must not happen logically */
73c04bcf
A
2764 if (desti+len <= destCapacity) {
2765 U16_APPEND_UNSAFE(dest, desti, c);
729e4ab9 2766 copyLimit = srci+len;
73c04bcf
A
2767 } else {
2768 desti += len;
2769 *status = U_BUFFER_OVERFLOW_ERROR;
2770 }
2771 srci += len;
2772 }
57a6839d 2773
729e4ab9 2774 charIterTextAccess(ut, copyLimit, TRUE);
73c04bcf
A
2775
2776 u_terminateUChars(dest, destCapacity, desti, status);
2777 return desti;
2778}
2779
57a6839d 2780static const struct UTextFuncs charIterFuncs =
73c04bcf
A
2781{
2782 sizeof(UTextFuncs),
2783 0, 0, 0, // Reserved alignment padding
2784 charIterTextClone,
2785 charIterTextLength,
2786 charIterTextAccess,
2787 charIterTextExtract,
2788 NULL, // Replace
2789 NULL, // Copy
2790 NULL, // MapOffsetToNative,
2791 NULL, // MapIndexToUTF16,
2792 charIterTextClose,
2793 NULL, // spare 1
2794 NULL, // spare 2
2795 NULL // spare 3
2796};
2797U_CDECL_END
2798
2799
46f4442e 2800U_CAPI UText * U_EXPORT2
73c04bcf
A
2801utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status) {
2802 if (U_FAILURE(*status)) {
2803 return NULL;
2804 }
2805
2806 if (ci->startIndex() > 0) {
2807 // No support for CharacterIterators that do not start indexing from zero.
2808 *status = U_UNSUPPORTED_ERROR;
2809 return NULL;
2810 }
2811
2812 // Extra space in UText for 2 buffers of CIBufSize UChars each.
2813 int32_t extraSpace = 2 * CIBufSize * sizeof(UChar);
2814 ut = utext_setup(ut, extraSpace, status);
2815 if (U_SUCCESS(*status)) {
2816 ut->pFuncs = &charIterFuncs;
2817 ut->context = ci;
2818 ut->providerProperties = 0;
2819 ut->a = ci->endIndex(); // Length of text
2820 ut->p = ut->pExtra; // First buffer
2821 ut->b = -1; // Native index of first buffer contents
2822 ut->q = (UChar*)ut->pExtra+CIBufSize; // Second buffer
2823 ut->c = -1; // Native index of second buffer contents
2824
2825 // Initialize current chunk contents to be empty.
2826 // First access will fault something in.
2827 // Note: The initial nativeStart and chunkOffset must sum to zero
2828 // so that getNativeIndex() will correctly compute to zero
2829 // if no call to Access() has ever been made. They can't be both
2830 // zero without Access() thinking that the chunk is valid.
2831 ut->chunkContents = (UChar *)ut->p;
2832 ut->chunkNativeStart = -1;
2833 ut->chunkOffset = 1;
2834 ut->chunkNativeLimit = 0;
2835 ut->chunkLength = 0;
2836 ut->nativeIndexingLimit = ut->chunkOffset; // enables native indexing
2837 }
2838 return ut;
2839}