]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | /* |
2 | ****************************************************************************** | |
3 | * Copyright (c) 1996-2003, International Business Machines | |
4 | * Corporation and others. All Rights Reserved. | |
5 | ****************************************************************************** | |
6 | * File unorm.cpp | |
7 | * | |
8 | * Created by: Vladimir Weinstein 12052000 | |
9 | * | |
10 | * Modification history : | |
11 | * | |
12 | * Date Name Description | |
13 | * 02/01/01 synwee Added normalization quickcheck enum and method. | |
14 | * 02/12/01 synwee Commented out quickcheck util api has been approved | |
15 | * Added private method for doing FCD checks | |
16 | * 02/23/01 synwee Modified quickcheck and checkFCE to run through | |
17 | * string for codepoints < 0x300 for the normalization | |
18 | * mode NFC. | |
19 | * 05/25/01+ Markus Scherer total rewrite, implement all normalization here | |
20 | * instead of just wrappers around normlzr.cpp, | |
21 | * load unorm.dat, support Unicode 3.1 with | |
22 | * supplementary code points, etc. | |
23 | */ | |
24 | ||
25 | #include "unicode/utypes.h" | |
26 | ||
27 | // moved up to make unorm_cmpEquivFold work without normalization | |
28 | #include "unicode/ustring.h" | |
29 | #include "unormimp.h" | |
30 | #include "ustr_imp.h" | |
31 | ||
32 | #if !UCONFIG_NO_NORMALIZATION | |
33 | ||
34 | #include "unicode/udata.h" | |
35 | #include "unicode/uchar.h" | |
36 | #include "unicode/uiter.h" | |
37 | #include "unicode/uniset.h" | |
38 | #include "unicode/usetiter.h" | |
39 | #include "unicode/unorm.h" | |
40 | #include "cmemory.h" | |
41 | #include "umutex.h" | |
42 | #include "utrie.h" | |
43 | #include "unicode/uset.h" | |
44 | ||
45 | /* | |
46 | * Status of tailored normalization | |
47 | * | |
48 | * This was done initially for investigation on Unicode public review issue 7 | |
49 | * (http://www.unicode.org/review/). See Jitterbug 2481. | |
50 | * While the UTC at meeting #94 (2003mar) did not take up the issue, this is | |
51 | * a permanent feature in ICU 2.6 in support of IDNA which requires true | |
52 | * Unicode 3.2 normalization. | |
53 | * (NormalizationCorrections are rolled into IDNA mapping tables.) | |
54 | * | |
55 | * Tailored normalization as implemented here allows to "normalize less" | |
56 | * than full Unicode normalization would. | |
57 | * Based internally on a UnicodeSet of code points that are | |
58 | * "excluded from normalization", the normalization functions leave those | |
59 | * code points alone ("inert"). This means that tailored normalization | |
60 | * still transforms text into a canonically equivalent form. | |
61 | * It does not add decompositions to code points that do not have any or | |
62 | * change decomposition results. | |
63 | * | |
64 | * Any function that searches for a safe boundary has not been touched, | |
65 | * which means that these functions will be over-pessimistic when | |
66 | * exclusions are applied. | |
67 | * This should not matter because subsequent checks and normalizations | |
68 | * do apply the exclusions; only a little more of the text may be processed | |
69 | * than necessary under exclusions. | |
70 | * | |
71 | * Normalization exclusions have the following effect on excluded code points c: | |
72 | * - c is not decomposed | |
73 | * - c is not a composition target | |
74 | * - c does not combine forward or backward for composition | |
75 | * except that this is not implemented for Jamo | |
76 | * - c is treated as having a combining class of 0 | |
77 | */ | |
78 | #define LENGTHOF(array) (sizeof(array)/sizeof((array)[0])) | |
79 | ||
80 | /* | |
81 | * This new implementation of the normalization code loads its data from | |
82 | * unorm.dat, which is generated with the gennorm tool. | |
83 | * The format of that file is described in unormimp.h . | |
84 | */ | |
85 | ||
86 | /* -------------------------------------------------------------------------- */ | |
87 | ||
88 | enum { | |
89 | _STACK_BUFFER_CAPACITY=100 | |
90 | }; | |
91 | ||
92 | /* | |
93 | * Constants for the bit fields in the options bit set parameter. | |
94 | * These need not be public. | |
95 | * A user only needs to know the currently assigned values. | |
96 | * The number and positions of reserved bits per field can remain private | |
97 | * and may change in future implementations. | |
98 | */ | |
99 | enum { | |
100 | _NORM_OPTIONS_NX_MASK=0x1f, | |
101 | _NORM_OPTIONS_UNICODE_MASK=0xe0, | |
102 | _NORM_OPTIONS_SETS_MASK=0xff, | |
103 | ||
104 | _NORM_OPTIONS_UNICODE_SHIFT=5 | |
105 | }; | |
106 | ||
107 | static inline UBool | |
108 | isHangulWithoutJamoT(UChar c) { | |
109 | c-=HANGUL_BASE; | |
110 | return c<HANGUL_COUNT && c%JAMO_T_COUNT==0; | |
111 | } | |
112 | ||
113 | /* norm32 helpers */ | |
114 | ||
115 | /* is this a norm32 with a regular index? */ | |
116 | static inline UBool | |
117 | isNorm32Regular(uint32_t norm32) { | |
118 | return norm32<_NORM_MIN_SPECIAL; | |
119 | } | |
120 | ||
121 | /* is this a norm32 with a special index for a lead surrogate? */ | |
122 | static inline UBool | |
123 | isNorm32LeadSurrogate(uint32_t norm32) { | |
124 | return _NORM_MIN_SPECIAL<=norm32 && norm32<_NORM_SURROGATES_TOP; | |
125 | } | |
126 | ||
127 | /* is this a norm32 with a special index for a Hangul syllable or a Jamo? */ | |
128 | static inline UBool | |
129 | isNorm32HangulOrJamo(uint32_t norm32) { | |
130 | return norm32>=_NORM_MIN_HANGUL; | |
131 | } | |
132 | ||
133 | /* | |
134 | * Given isNorm32HangulOrJamo(), | |
135 | * is this a Hangul syllable or a Jamo? | |
136 | */ | |
137 | static inline UBool | |
138 | isHangulJamoNorm32HangulOrJamoL(uint32_t norm32) { | |
139 | return norm32<_NORM_MIN_JAMO_V; | |
140 | } | |
141 | ||
142 | /* | |
143 | * Given norm32 for Jamo V or T, | |
144 | * is this a Jamo V? | |
145 | */ | |
146 | static inline UBool | |
147 | isJamoVTNorm32JamoV(uint32_t norm32) { | |
148 | return norm32<_NORM_JAMO_V_TOP; | |
149 | } | |
150 | ||
151 | /* some prototypes ---------------------------------------------------------- */ | |
152 | ||
153 | static const UChar * | |
154 | _findPreviousStarter(const UChar *start, const UChar *src, | |
155 | uint32_t ccOrQCMask, uint32_t decompQCMask, UChar minNoMaybe); | |
156 | ||
157 | static const UChar * | |
158 | _findNextStarter(const UChar *src, const UChar *limit, | |
159 | uint32_t qcMask, uint32_t decompQCMask, UChar minNoMaybe); | |
160 | ||
161 | static const UChar * | |
162 | _composePart(UChar *stackBuffer, UChar *&buffer, int32_t &bufferCapacity, int32_t &length, | |
163 | const UChar *prevStarter, const UChar *src, | |
164 | uint32_t qcMask, uint8_t &prevCC, | |
165 | const UnicodeSet *nx, | |
166 | UErrorCode *pErrorCode); | |
167 | ||
168 | /* load unorm.dat ----------------------------------------------------------- */ | |
169 | ||
170 | #define DATA_NAME "unorm" | |
171 | #define DATA_TYPE "icu" | |
172 | ||
173 | static UDataMemory *normData=NULL; | |
174 | static UErrorCode dataErrorCode=U_ZERO_ERROR; | |
175 | static int8_t haveNormData=0; | |
176 | ||
177 | static int32_t indexes[_NORM_INDEX_TOP]={ 0 }; | |
178 | static UTrie normTrie={ 0,0,0,0,0,0,0 }, fcdTrie={ 0,0,0,0,0,0,0 }, auxTrie={ 0,0,0,0,0,0,0 }; | |
179 | ||
180 | /* | |
181 | * pointers into the memory-mapped unorm.icu | |
182 | */ | |
183 | static const uint16_t *extraData=NULL, | |
184 | *combiningTable=NULL, | |
185 | *canonStartSets=NULL; | |
186 | ||
187 | static uint8_t formatVersion[4]={ 0, 0, 0, 0 }; | |
188 | static UBool formatVersion_2_1=FALSE, formatVersion_2_2=FALSE; | |
189 | ||
190 | /* the Unicode version of the normalization data */ | |
191 | static UVersionInfo dataVersion={ 0, 0, 0, 0 }; | |
192 | ||
193 | /* cache UnicodeSets for each combination of exclusion flags */ | |
194 | static UnicodeSet *nxCache[_NORM_OPTIONS_SETS_MASK+1]={ NULL }; | |
195 | ||
196 | U_CDECL_BEGIN | |
197 | ||
198 | UBool | |
199 | unorm_cleanup() { | |
200 | int32_t i; | |
201 | ||
202 | if(normData!=NULL) { | |
203 | udata_close(normData); | |
204 | normData=NULL; | |
205 | } | |
206 | dataErrorCode=U_ZERO_ERROR; | |
207 | haveNormData=0; | |
208 | ||
209 | for(i=0; i<(int32_t)LENGTHOF(nxCache); ++i) { | |
210 | delete nxCache[i]; | |
211 | } | |
212 | uprv_memset(nxCache, 0, sizeof(nxCache)); | |
213 | ||
214 | return TRUE; | |
215 | } | |
216 | ||
217 | /* normTrie: 32-bit trie result may contain a special extraData index with the folding offset */ | |
218 | static int32_t U_CALLCONV | |
219 | getFoldingNormOffset(uint32_t norm32) { | |
220 | if(isNorm32LeadSurrogate(norm32)) { | |
221 | return | |
222 | UTRIE_BMP_INDEX_LENGTH+ | |
223 | (((int32_t)norm32>>(_NORM_EXTRA_SHIFT-UTRIE_SURROGATE_BLOCK_BITS))& | |
224 | (0x3ff<<UTRIE_SURROGATE_BLOCK_BITS)); | |
225 | } else { | |
226 | return 0; | |
227 | } | |
228 | } | |
229 | ||
230 | /* fcdTrie: the folding offset is the lead FCD value itself */ | |
231 | static int32_t U_CALLCONV | |
232 | getFoldingFCDOffset(uint32_t data) { | |
233 | return (int32_t)data; | |
234 | } | |
235 | ||
236 | /* auxTrie: the folding offset is in bits 9..0 of the 16-bit trie result */ | |
237 | static int32_t U_CALLCONV | |
238 | getFoldingAuxOffset(uint32_t data) { | |
239 | return (int32_t)(data&_NORM_AUX_FNC_MASK)<<UTRIE_SURROGATE_BLOCK_BITS; | |
240 | } | |
241 | ||
242 | static UBool U_CALLCONV | |
243 | isAcceptable(void * /* context */, | |
244 | const char * /* type */, const char * /* name */, | |
245 | const UDataInfo *pInfo) { | |
246 | if( | |
247 | pInfo->size>=20 && | |
248 | pInfo->isBigEndian==U_IS_BIG_ENDIAN && | |
249 | pInfo->charsetFamily==U_CHARSET_FAMILY && | |
250 | pInfo->dataFormat[0]==0x4e && /* dataFormat="Norm" */ | |
251 | pInfo->dataFormat[1]==0x6f && | |
252 | pInfo->dataFormat[2]==0x72 && | |
253 | pInfo->dataFormat[3]==0x6d && | |
254 | pInfo->formatVersion[0]==2 && | |
255 | pInfo->formatVersion[2]==UTRIE_SHIFT && | |
256 | pInfo->formatVersion[3]==UTRIE_INDEX_SHIFT | |
257 | ) { | |
258 | uprv_memcpy(formatVersion, pInfo->formatVersion, 4); | |
259 | uprv_memcpy(dataVersion, pInfo->dataVersion, 4); | |
260 | return TRUE; | |
261 | } else { | |
262 | return FALSE; | |
263 | } | |
264 | } | |
265 | ||
266 | static UBool U_CALLCONV | |
267 | _enumPropertyStartsRange(const void *context, UChar32 start, UChar32 /*limit*/, uint32_t /*value*/) { | |
268 | /* add the start code point to the USet */ | |
269 | uset_add((USet *)context, start); | |
270 | return TRUE; | |
271 | } | |
272 | ||
273 | U_CDECL_END | |
274 | ||
275 | static int8_t | |
276 | loadNormData(UErrorCode &errorCode) { | |
277 | /* load Unicode normalization data from file */ | |
278 | ||
279 | /* | |
280 | * This lazy intialization with double-checked locking (without mutex protection for | |
281 | * haveNormData==0) is transiently unsafe under certain circumstances. | |
282 | * Check the readme and use u_init() if necessary. | |
283 | * | |
284 | * While u_init() initializes the main normalization data via this functions, | |
285 | * it does not do so for exclusion sets (which are fully mutexed). | |
286 | * This is because | |
287 | * - there can be many exclusion sets | |
288 | * - they are rarely used | |
289 | * - they are not usually used in execution paths that are | |
290 | * as performance-sensitive as others | |
291 | * (e.g., IDNA takes more time than unorm_quickCheck() anyway) | |
292 | */ | |
293 | if(haveNormData==0) { | |
294 | UTrie _normTrie={ 0,0,0,0,0,0,0 }, _fcdTrie={ 0,0,0,0,0,0,0 }, _auxTrie={ 0,0,0,0,0,0,0 }; | |
295 | UDataMemory *data; | |
296 | const int32_t *p=NULL; | |
297 | const uint8_t *pb; | |
298 | ||
299 | if(&errorCode==NULL || U_FAILURE(errorCode)) { | |
300 | return 0; | |
301 | } | |
302 | ||
303 | /* open the data outside the mutex block */ | |
304 | data=udata_openChoice(NULL, DATA_TYPE, DATA_NAME, isAcceptable, NULL, &errorCode); | |
305 | dataErrorCode=errorCode; | |
306 | if(U_FAILURE(errorCode)) { | |
307 | return haveNormData=-1; | |
308 | } | |
309 | ||
310 | p=(const int32_t *)udata_getMemory(data); | |
311 | pb=(const uint8_t *)(p+_NORM_INDEX_TOP); | |
312 | utrie_unserialize(&_normTrie, pb, p[_NORM_INDEX_TRIE_SIZE], &errorCode); | |
313 | _normTrie.getFoldingOffset=getFoldingNormOffset; | |
314 | ||
315 | pb+=p[_NORM_INDEX_TRIE_SIZE]+p[_NORM_INDEX_UCHAR_COUNT]*2+p[_NORM_INDEX_COMBINE_DATA_COUNT]*2; | |
316 | utrie_unserialize(&_fcdTrie, pb, p[_NORM_INDEX_FCD_TRIE_SIZE], &errorCode); | |
317 | _fcdTrie.getFoldingOffset=getFoldingFCDOffset; | |
318 | ||
319 | if(p[_NORM_INDEX_FCD_TRIE_SIZE]!=0) { | |
320 | pb+=p[_NORM_INDEX_FCD_TRIE_SIZE]; | |
321 | utrie_unserialize(&_auxTrie, pb, p[_NORM_INDEX_AUX_TRIE_SIZE], &errorCode); | |
322 | _auxTrie.getFoldingOffset=getFoldingAuxOffset; | |
323 | } | |
324 | ||
325 | if(U_FAILURE(errorCode)) { | |
326 | dataErrorCode=errorCode; | |
327 | udata_close(data); | |
328 | return haveNormData=-1; | |
329 | } | |
330 | ||
331 | /* in the mutex block, set the data for this process */ | |
332 | umtx_lock(NULL); | |
333 | if(normData==NULL) { | |
334 | normData=data; | |
335 | data=NULL; | |
336 | ||
337 | uprv_memcpy(&indexes, p, sizeof(indexes)); | |
338 | uprv_memcpy(&normTrie, &_normTrie, sizeof(UTrie)); | |
339 | uprv_memcpy(&fcdTrie, &_fcdTrie, sizeof(UTrie)); | |
340 | uprv_memcpy(&auxTrie, &_auxTrie, sizeof(UTrie)); | |
341 | } else { | |
342 | p=(const int32_t *)udata_getMemory(normData); | |
343 | } | |
344 | umtx_unlock(NULL); | |
345 | ||
346 | /* initialize some variables */ | |
347 | extraData=(uint16_t *)((uint8_t *)(p+_NORM_INDEX_TOP)+indexes[_NORM_INDEX_TRIE_SIZE]); | |
348 | combiningTable=extraData+indexes[_NORM_INDEX_UCHAR_COUNT]; | |
349 | formatVersion_2_1=formatVersion[0]>2 || (formatVersion[0]==2 && formatVersion[1]>=1); | |
350 | formatVersion_2_2=formatVersion[0]>2 || (formatVersion[0]==2 && formatVersion[1]>=2); | |
351 | if(formatVersion_2_1) { | |
352 | canonStartSets=combiningTable+ | |
353 | indexes[_NORM_INDEX_COMBINE_DATA_COUNT]+ | |
354 | (indexes[_NORM_INDEX_FCD_TRIE_SIZE]+indexes[_NORM_INDEX_AUX_TRIE_SIZE])/2; | |
355 | } | |
356 | haveNormData=1; | |
357 | ||
358 | /* if a different thread set it first, then close the extra data */ | |
359 | if(data!=NULL) { | |
360 | udata_close(data); /* NULL if it was set correctly */ | |
361 | } | |
362 | } | |
363 | ||
364 | return haveNormData; | |
365 | } | |
366 | ||
367 | static inline UBool | |
368 | _haveData(UErrorCode &errorCode) { | |
369 | if(haveNormData!=0) { | |
370 | errorCode=dataErrorCode; | |
371 | return (UBool)(haveNormData>0); | |
372 | } else { | |
373 | return (UBool)(loadNormData(errorCode)>0); | |
374 | } | |
375 | } | |
376 | ||
377 | U_CAPI UBool U_EXPORT2 | |
378 | unorm_haveData(UErrorCode *pErrorCode) { | |
379 | return _haveData(*pErrorCode); | |
380 | } | |
381 | ||
382 | U_CAPI const uint16_t * U_EXPORT2 | |
383 | unorm_getFCDTrie(UErrorCode *pErrorCode) { | |
384 | if(_haveData(*pErrorCode)) { | |
385 | return fcdTrie.index; | |
386 | } else { | |
387 | return NULL; | |
388 | } | |
389 | } | |
390 | ||
391 | /* data access primitives --------------------------------------------------- */ | |
392 | ||
393 | static inline uint32_t | |
394 | _getNorm32(UChar c) { | |
395 | return UTRIE_GET32_FROM_LEAD(&normTrie, c); | |
396 | } | |
397 | ||
398 | static inline uint32_t | |
399 | _getNorm32FromSurrogatePair(uint32_t norm32, UChar c2) { | |
400 | /* | |
401 | * the surrogate index in norm32 stores only the number of the surrogate index block | |
402 | * see gennorm/store.c/getFoldedNormValue() | |
403 | */ | |
404 | norm32= | |
405 | UTRIE_BMP_INDEX_LENGTH+ | |
406 | ((norm32>>(_NORM_EXTRA_SHIFT-UTRIE_SURROGATE_BLOCK_BITS))& | |
407 | (0x3ff<<UTRIE_SURROGATE_BLOCK_BITS)); | |
408 | return UTRIE_GET32_FROM_OFFSET_TRAIL(&normTrie, norm32, c2); | |
409 | } | |
410 | ||
411 | /* | |
412 | * get a norm32 from text with complete code points | |
413 | * (like from decompositions) | |
414 | */ | |
415 | static inline uint32_t | |
416 | _getNorm32(const UChar *p, uint32_t mask) { | |
417 | uint32_t norm32=_getNorm32(*p); | |
418 | if((norm32&mask) && isNorm32LeadSurrogate(norm32)) { | |
419 | /* *p is a lead surrogate, get the real norm32 */ | |
420 | norm32=_getNorm32FromSurrogatePair(norm32, *(p+1)); | |
421 | } | |
422 | return norm32; | |
423 | } | |
424 | ||
425 | static inline uint16_t | |
426 | _getFCD16(UChar c) { | |
427 | return UTRIE_GET16_FROM_LEAD(&fcdTrie, c); | |
428 | } | |
429 | ||
430 | static inline uint16_t | |
431 | _getFCD16FromSurrogatePair(uint16_t fcd16, UChar c2) { | |
432 | /* the surrogate index in fcd16 is an absolute offset over the start of stage 1 */ | |
433 | return UTRIE_GET16_FROM_OFFSET_TRAIL(&fcdTrie, fcd16, c2); | |
434 | } | |
435 | ||
436 | static inline const uint16_t * | |
437 | _getExtraData(uint32_t norm32) { | |
438 | return extraData+(norm32>>_NORM_EXTRA_SHIFT); | |
439 | } | |
440 | ||
441 | /* normalization exclusion sets --------------------------------------------- */ | |
442 | ||
443 | /* | |
444 | * Normalization exclusion UnicodeSets are used for tailored normalization; | |
445 | * see the comment near the beginning of this file. | |
446 | * | |
447 | * By specifying one or several sets of code points, | |
448 | * those code points become inert for normalization. | |
449 | */ | |
450 | ||
451 | static const UnicodeSet * | |
452 | internalGetNXHangul(UErrorCode &errorCode) { | |
453 | /* internal function, does not check for incoming U_FAILURE */ | |
454 | ||
455 | UBool isCached; | |
456 | ||
457 | /* do this because double-checked locking is broken */ | |
458 | umtx_lock(NULL); | |
459 | isCached=nxCache[UNORM_NX_HANGUL]!=NULL; | |
460 | umtx_unlock(NULL); | |
461 | ||
462 | if(!isCached) { | |
463 | UnicodeSet *set=new UnicodeSet(0xac00, 0xd7a3); | |
464 | if(set==NULL) { | |
465 | errorCode=U_MEMORY_ALLOCATION_ERROR; | |
466 | return NULL; | |
467 | } | |
468 | ||
469 | umtx_lock(NULL); | |
470 | if(nxCache[UNORM_NX_HANGUL]==NULL) { | |
471 | nxCache[UNORM_NX_HANGUL]=set; | |
472 | set=NULL; | |
473 | } | |
474 | umtx_unlock(NULL); | |
475 | ||
476 | delete set; | |
477 | } | |
478 | ||
479 | return nxCache[UNORM_NX_HANGUL]; | |
480 | } | |
481 | ||
482 | static const UnicodeSet * | |
483 | internalGetNXCJKCompat(UErrorCode &errorCode) { | |
484 | /* internal function, does not check for incoming U_FAILURE */ | |
485 | ||
486 | UBool isCached; | |
487 | ||
488 | /* do this because double-checked locking is broken */ | |
489 | umtx_lock(NULL); | |
490 | isCached=nxCache[UNORM_NX_CJK_COMPAT]!=NULL; | |
491 | umtx_unlock(NULL); | |
492 | ||
493 | if(!isCached) { | |
494 | /* build a set from [CJK Ideographs]&[has canonical decomposition] */ | |
495 | UnicodeSet *set, *hasDecomp; | |
496 | ||
497 | set=new UnicodeSet(UNICODE_STRING("[:Ideographic:]", 15), errorCode); | |
498 | if(set==NULL) { | |
499 | errorCode=U_MEMORY_ALLOCATION_ERROR; | |
500 | return NULL; | |
501 | } | |
502 | if(U_FAILURE(errorCode)) { | |
503 | delete set; | |
504 | return NULL; | |
505 | } | |
506 | ||
507 | /* start with an empty set for [has canonical decomposition] */ | |
508 | hasDecomp=new UnicodeSet(); | |
509 | if(hasDecomp==NULL) { | |
510 | delete set; | |
511 | errorCode=U_MEMORY_ALLOCATION_ERROR; | |
512 | return NULL; | |
513 | } | |
514 | ||
515 | /* iterate over all ideographs and remember which canonically decompose */ | |
516 | UnicodeSetIterator it(*set); | |
517 | UChar32 start, end; | |
518 | uint32_t norm32; | |
519 | ||
520 | while(it.nextRange() && !it.isString()) { | |
521 | start=it.getCodepoint(); | |
522 | end=it.getCodepointEnd(); | |
523 | while(start<=end) { | |
524 | UTRIE_GET32(&normTrie, start, norm32); | |
525 | if(norm32&_NORM_QC_NFD) { | |
526 | hasDecomp->add(start); | |
527 | } | |
528 | ++start; | |
529 | } | |
530 | } | |
531 | ||
532 | /* hasDecomp now contains all ideographs that decompose canonically */ | |
533 | ||
534 | umtx_lock(NULL); | |
535 | if(nxCache[UNORM_NX_CJK_COMPAT]==NULL) { | |
536 | nxCache[UNORM_NX_CJK_COMPAT]=hasDecomp; | |
537 | hasDecomp=NULL; | |
538 | } | |
539 | umtx_unlock(NULL); | |
540 | ||
541 | delete hasDecomp; | |
542 | delete set; | |
543 | } | |
544 | ||
545 | return nxCache[UNORM_NX_CJK_COMPAT]; | |
546 | } | |
547 | ||
548 | static const UnicodeSet * | |
549 | internalGetNXUnicode(uint32_t options, UErrorCode &errorCode) { | |
550 | /* internal function, does not check for incoming U_FAILURE */ | |
551 | options&=_NORM_OPTIONS_UNICODE_MASK; | |
552 | if(options==0) { | |
553 | return NULL; | |
554 | } | |
555 | ||
556 | UBool isCached; | |
557 | ||
558 | /* do this because double-checked locking is broken */ | |
559 | umtx_lock(NULL); | |
560 | isCached=nxCache[options]!=NULL; | |
561 | umtx_unlock(NULL); | |
562 | ||
563 | if(!isCached) { | |
564 | /* build a set with all code points that were not designated by the specified Unicode version */ | |
565 | UnicodeSet *set; | |
566 | ||
567 | switch(options) { | |
568 | case UNORM_UNICODE_3_2: | |
569 | set=new UnicodeSet(UNICODE_STRING("[:^Age=3.2:]", 12), errorCode); | |
570 | break; | |
571 | default: | |
572 | errorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
573 | return NULL; | |
574 | } | |
575 | ||
576 | if(set==NULL) { | |
577 | errorCode=U_MEMORY_ALLOCATION_ERROR; | |
578 | return NULL; | |
579 | } | |
580 | if(U_FAILURE(errorCode)) { | |
581 | delete set; | |
582 | return NULL; | |
583 | } | |
584 | ||
585 | umtx_lock(NULL); | |
586 | if(nxCache[options]==NULL) { | |
587 | nxCache[options]=set; | |
588 | set=NULL; | |
589 | } | |
590 | umtx_unlock(NULL); | |
591 | ||
592 | delete set; | |
593 | } | |
594 | ||
595 | return nxCache[options]; | |
596 | } | |
597 | ||
598 | /* Get a decomposition exclusion set. The data must be loaded. */ | |
599 | static const UnicodeSet * | |
600 | internalGetNX(int32_t options, UErrorCode &errorCode) { | |
601 | options&=_NORM_OPTIONS_SETS_MASK; | |
602 | ||
603 | UBool isCached; | |
604 | ||
605 | /* do this because double-checked locking is broken */ | |
606 | umtx_lock(NULL); | |
607 | isCached=nxCache[options]!=NULL; | |
608 | umtx_unlock(NULL); | |
609 | ||
610 | if(!isCached) { | |
611 | /* return basic sets */ | |
612 | if(options==UNORM_NX_HANGUL) { | |
613 | return internalGetNXHangul(errorCode); | |
614 | } | |
615 | if(options==UNORM_NX_CJK_COMPAT) { | |
616 | return internalGetNXCJKCompat(errorCode); | |
617 | } | |
618 | if((options&_NORM_OPTIONS_UNICODE_MASK)!=0 && (options&_NORM_OPTIONS_NX_MASK)==0) { | |
619 | return internalGetNXUnicode(options, errorCode); | |
620 | } | |
621 | ||
622 | /* build a set from multiple subsets */ | |
623 | UnicodeSet *set; | |
624 | const UnicodeSet *other; | |
625 | ||
626 | set=new UnicodeSet(); | |
627 | if(set==NULL) { | |
628 | errorCode=U_MEMORY_ALLOCATION_ERROR; | |
629 | return NULL; | |
630 | } | |
631 | ||
632 | if((options&UNORM_NX_HANGUL)!=0 && NULL!=(other=internalGetNXHangul(errorCode))) { | |
633 | set->addAll(*other); | |
634 | } | |
635 | if((options&UNORM_NX_CJK_COMPAT)!=0 && NULL!=(other=internalGetNXCJKCompat(errorCode))) { | |
636 | set->addAll(*other); | |
637 | } | |
638 | if((options&_NORM_OPTIONS_UNICODE_MASK)!=0 && NULL!=(other=internalGetNXUnicode(options, errorCode))) { | |
639 | set->addAll(*other); | |
640 | } | |
641 | ||
642 | if(U_FAILURE(errorCode)) { | |
643 | delete set; | |
644 | return NULL; | |
645 | } | |
646 | ||
647 | umtx_lock(NULL); | |
648 | if(nxCache[options]==NULL) { | |
649 | nxCache[options]=set; | |
650 | set=NULL; | |
651 | } | |
652 | umtx_unlock(NULL); | |
653 | ||
654 | delete set; | |
655 | } | |
656 | ||
657 | return nxCache[options]; | |
658 | } | |
659 | ||
660 | static inline const UnicodeSet * | |
661 | getNX(int32_t options, UErrorCode &errorCode) { | |
662 | if(U_FAILURE(errorCode) || (options&=_NORM_OPTIONS_SETS_MASK)==0) { | |
663 | /* incoming failure, or no decomposition exclusions requested */ | |
664 | return NULL; | |
665 | } else { | |
666 | return internalGetNX(options, errorCode); | |
667 | } | |
668 | } | |
669 | ||
670 | static inline UBool | |
671 | nx_contains(const UnicodeSet *nx, UChar32 c) { | |
672 | return nx!=NULL && nx->contains(c); | |
673 | } | |
674 | ||
675 | static inline UBool | |
676 | nx_contains(const UnicodeSet *nx, UChar c, UChar c2) { | |
677 | return nx!=NULL && nx->contains(c2==0 ? c : U16_GET_SUPPLEMENTARY(c, c2)); | |
678 | } | |
679 | ||
680 | /* other normalization primitives ------------------------------------------- */ | |
681 | ||
682 | /* get the canonical or compatibility decomposition for one character */ | |
683 | static inline const UChar * | |
684 | _decompose(uint32_t norm32, uint32_t qcMask, int32_t &length, | |
685 | uint8_t &cc, uint8_t &trailCC) { | |
686 | const UChar *p=(const UChar *)_getExtraData(norm32); | |
687 | length=*p++; | |
688 | ||
689 | if((norm32&qcMask&_NORM_QC_NFKD)!=0 && length>=0x100) { | |
690 | /* use compatibility decomposition, skip canonical data */ | |
691 | p+=((length>>7)&1)+(length&_NORM_DECOMP_LENGTH_MASK); | |
692 | length>>=8; | |
693 | } | |
694 | ||
695 | if(length&_NORM_DECOMP_FLAG_LENGTH_HAS_CC) { | |
696 | /* get the lead and trail cc's */ | |
697 | UChar bothCCs=*p++; | |
698 | cc=(uint8_t)(bothCCs>>8); | |
699 | trailCC=(uint8_t)bothCCs; | |
700 | } else { | |
701 | /* lead and trail cc's are both 0 */ | |
702 | cc=trailCC=0; | |
703 | } | |
704 | ||
705 | length&=_NORM_DECOMP_LENGTH_MASK; | |
706 | return p; | |
707 | } | |
708 | ||
709 | /* get the canonical decomposition for one character */ | |
710 | static inline const UChar * | |
711 | _decompose(uint32_t norm32, int32_t &length, | |
712 | uint8_t &cc, uint8_t &trailCC) { | |
713 | const UChar *p=(const UChar *)_getExtraData(norm32); | |
714 | length=*p++; | |
715 | ||
716 | if(length&_NORM_DECOMP_FLAG_LENGTH_HAS_CC) { | |
717 | /* get the lead and trail cc's */ | |
718 | UChar bothCCs=*p++; | |
719 | cc=(uint8_t)(bothCCs>>8); | |
720 | trailCC=(uint8_t)bothCCs; | |
721 | } else { | |
722 | /* lead and trail cc's are both 0 */ | |
723 | cc=trailCC=0; | |
724 | } | |
725 | ||
726 | length&=_NORM_DECOMP_LENGTH_MASK; | |
727 | return p; | |
728 | } | |
729 | ||
730 | /** | |
731 | * Get the canonical decomposition for one code point. | |
732 | * @param c code point | |
733 | * @param buffer out-only buffer for algorithmic decompositions of Hangul | |
734 | * @param length out-only, takes the length of the decomposition, if any | |
735 | * @return pointer to decomposition, or 0 if none | |
736 | * @internal | |
737 | */ | |
738 | static const UChar * | |
739 | _decompose(UChar32 c, UChar buffer[4], int32_t &length) { | |
740 | uint32_t norm32; | |
741 | ||
742 | UTRIE_GET32(&normTrie, c, norm32); | |
743 | if(norm32&_NORM_QC_NFD) { | |
744 | if(isNorm32HangulOrJamo(norm32)) { | |
745 | /* Hangul syllable: decompose algorithmically */ | |
746 | UChar c2; | |
747 | ||
748 | c-=HANGUL_BASE; | |
749 | ||
750 | c2=(UChar)(c%JAMO_T_COUNT); | |
751 | c/=JAMO_T_COUNT; | |
752 | if(c2>0) { | |
753 | buffer[2]=(UChar)(JAMO_T_BASE+c2); | |
754 | length=3; | |
755 | } else { | |
756 | length=2; | |
757 | } | |
758 | ||
759 | buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT); | |
760 | buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT); | |
761 | return buffer; | |
762 | } else { | |
763 | /* normal decomposition */ | |
764 | uint8_t cc, trailCC; | |
765 | return _decompose(norm32, length, cc, trailCC); | |
766 | } | |
767 | } else { | |
768 | return 0; | |
769 | } | |
770 | } | |
771 | ||
772 | /* | |
773 | * get the combining class of (c, c2)=*p++ | |
774 | * before: p<limit after: p<=limit | |
775 | * if only one code unit is used, then c2==0 | |
776 | */ | |
777 | static inline uint8_t | |
778 | _getNextCC(const UChar *&p, const UChar *limit, UChar &c, UChar &c2) { | |
779 | uint32_t norm32; | |
780 | ||
781 | c=*p++; | |
782 | norm32=_getNorm32(c); | |
783 | if((norm32&_NORM_CC_MASK)==0) { | |
784 | c2=0; | |
785 | return 0; | |
786 | } else { | |
787 | if(!isNorm32LeadSurrogate(norm32)) { | |
788 | c2=0; | |
789 | } else { | |
790 | /* c is a lead surrogate, get the real norm32 */ | |
791 | if(p!=limit && UTF_IS_SECOND_SURROGATE(c2=*p)) { | |
792 | ++p; | |
793 | norm32=_getNorm32FromSurrogatePair(norm32, c2); | |
794 | } else { | |
795 | c2=0; | |
796 | return 0; | |
797 | } | |
798 | } | |
799 | ||
800 | return (uint8_t)(norm32>>_NORM_CC_SHIFT); | |
801 | } | |
802 | } | |
803 | ||
804 | /* | |
805 | * read backwards and get norm32 | |
806 | * return 0 if the character is <minC | |
807 | * if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!) | |
808 | */ | |
809 | static inline uint32_t | |
810 | _getPrevNorm32(const UChar *start, const UChar *&src, | |
811 | uint32_t minC, uint32_t mask, | |
812 | UChar &c, UChar &c2) { | |
813 | uint32_t norm32; | |
814 | ||
815 | c=*--src; | |
816 | c2=0; | |
817 | ||
818 | /* check for a surrogate before getting norm32 to see if we need to predecrement further */ | |
819 | if(c<minC) { | |
820 | return 0; | |
821 | } else if(!UTF_IS_SURROGATE(c)) { | |
822 | return _getNorm32(c); | |
823 | } else if(UTF_IS_SURROGATE_FIRST(c)) { | |
824 | /* unpaired first surrogate */ | |
825 | return 0; | |
826 | } else if(src!=start && UTF_IS_FIRST_SURROGATE(c2=*(src-1))) { | |
827 | --src; | |
828 | norm32=_getNorm32(c2); | |
829 | ||
830 | if((norm32&mask)==0) { | |
831 | /* all surrogate pairs with this lead surrogate have only irrelevant data */ | |
832 | return 0; | |
833 | } else { | |
834 | /* norm32 must be a surrogate special */ | |
835 | return _getNorm32FromSurrogatePair(norm32, c); | |
836 | } | |
837 | } else { | |
838 | /* unpaired second surrogate */ | |
839 | c2=0; | |
840 | return 0; | |
841 | } | |
842 | } | |
843 | ||
844 | /* | |
845 | * get the combining class of (c, c2)=*--p | |
846 | * before: start<p after: start<=p | |
847 | */ | |
848 | static inline uint8_t | |
849 | _getPrevCC(const UChar *start, const UChar *&p) { | |
850 | UChar c, c2; | |
851 | ||
852 | return (uint8_t)(_getPrevNorm32(start, p, _NORM_MIN_WITH_LEAD_CC, _NORM_CC_MASK, c, c2)>>_NORM_CC_SHIFT); | |
853 | } | |
854 | ||
855 | /* | |
856 | * is this a safe boundary character for NF*D? | |
857 | * (lead cc==0) | |
858 | */ | |
859 | static inline UBool | |
860 | _isNFDSafe(uint32_t norm32, uint32_t ccOrQCMask, uint32_t decompQCMask) { | |
861 | if((norm32&ccOrQCMask)==0) { | |
862 | return TRUE; /* cc==0 and no decomposition: this is NF*D safe */ | |
863 | } | |
864 | ||
865 | /* inspect its decomposition - maybe a Hangul but not a surrogate here */ | |
866 | if(isNorm32Regular(norm32) && (norm32&decompQCMask)!=0) { | |
867 | int32_t length; | |
868 | uint8_t cc, trailCC; | |
869 | ||
870 | /* decomposes, get everything from the variable-length extra data */ | |
871 | _decompose(norm32, decompQCMask, length, cc, trailCC); | |
872 | return cc==0; | |
873 | } else { | |
874 | /* no decomposition (or Hangul), test the cc directly */ | |
875 | return (norm32&_NORM_CC_MASK)==0; | |
876 | } | |
877 | } | |
878 | ||
879 | /* | |
880 | * is this (or does its decomposition begin with) a "true starter"? | |
881 | * (cc==0 and NF*C_YES) | |
882 | */ | |
883 | static inline UBool | |
884 | _isTrueStarter(uint32_t norm32, uint32_t ccOrQCMask, uint32_t decompQCMask) { | |
885 | if((norm32&ccOrQCMask)==0) { | |
886 | return TRUE; /* this is a true starter (could be Hangul or Jamo L) */ | |
887 | } | |
888 | ||
889 | /* inspect its decomposition - not a Hangul or a surrogate here */ | |
890 | if((norm32&decompQCMask)!=0) { | |
891 | const UChar *p; | |
892 | int32_t length; | |
893 | uint8_t cc, trailCC; | |
894 | ||
895 | /* decomposes, get everything from the variable-length extra data */ | |
896 | p=_decompose(norm32, decompQCMask, length, cc, trailCC); | |
897 | if(cc==0) { | |
898 | uint32_t qcMask=ccOrQCMask&_NORM_QC_MASK; | |
899 | ||
900 | /* does it begin with NFC_YES? */ | |
901 | if((_getNorm32(p, qcMask)&qcMask)==0) { | |
902 | /* yes, the decomposition begins with a true starter */ | |
903 | return TRUE; | |
904 | } | |
905 | } | |
906 | } | |
907 | return FALSE; | |
908 | } | |
909 | ||
910 | /* uchar.h */ | |
911 | U_CAPI uint8_t U_EXPORT2 | |
912 | u_getCombiningClass(UChar32 c) { | |
913 | UErrorCode errorCode=U_ZERO_ERROR; | |
914 | if(_haveData(errorCode)) { | |
915 | uint32_t norm32; | |
916 | ||
917 | UTRIE_GET32(&normTrie, c, norm32); | |
918 | return (uint8_t)(norm32>>_NORM_CC_SHIFT); | |
919 | } else { | |
920 | return 0; | |
921 | } | |
922 | } | |
923 | ||
924 | U_CAPI UBool U_EXPORT2 | |
925 | unorm_internalIsFullCompositionExclusion(UChar32 c) { | |
926 | UErrorCode errorCode=U_ZERO_ERROR; | |
927 | if(_haveData(errorCode) && formatVersion_2_1) { | |
928 | uint16_t aux; | |
929 | ||
930 | UTRIE_GET16(&auxTrie, c, aux); | |
931 | return (UBool)((aux&_NORM_AUX_COMP_EX_MASK)!=0); | |
932 | } else { | |
933 | return FALSE; | |
934 | } | |
935 | } | |
936 | ||
937 | U_CAPI UBool U_EXPORT2 | |
938 | unorm_isCanonSafeStart(UChar32 c) { | |
939 | UErrorCode errorCode=U_ZERO_ERROR; | |
940 | if(_haveData(errorCode) && formatVersion_2_1) { | |
941 | uint16_t aux; | |
942 | ||
943 | UTRIE_GET16(&auxTrie, c, aux); | |
944 | return (UBool)((aux&_NORM_AUX_UNSAFE_MASK)==0); | |
945 | } else { | |
946 | return FALSE; | |
947 | } | |
948 | } | |
949 | ||
950 | U_CAPI UBool U_EXPORT2 | |
951 | unorm_getCanonStartSet(UChar32 c, USerializedSet *fillSet) { | |
952 | UErrorCode errorCode=U_ZERO_ERROR; | |
953 | if( fillSet!=NULL && (uint32_t)c<=0x10ffff && | |
954 | _haveData(errorCode) && canonStartSets!=NULL | |
955 | ) { | |
956 | const uint16_t *table; | |
957 | int32_t i, start, limit; | |
958 | ||
959 | /* | |
960 | * binary search for c | |
961 | * | |
962 | * There are two search tables, | |
963 | * one for BMP code points and one for supplementary ones. | |
964 | * See unormimp.h for details. | |
965 | */ | |
966 | if(c<=0xffff) { | |
967 | table=canonStartSets+canonStartSets[_NORM_SET_INDEX_CANON_SETS_LENGTH]; | |
968 | start=0; | |
969 | limit=canonStartSets[_NORM_SET_INDEX_CANON_BMP_TABLE_LENGTH]; | |
970 | ||
971 | /* each entry is a pair { c, result } */ | |
972 | while(start<limit-2) { | |
973 | i=(uint16_t)(((start+limit)/4)*2); /* (start+limit)/2 and address pairs */ | |
974 | if(c<table[i]) { | |
975 | limit=i; | |
976 | } else { | |
977 | start=i; | |
978 | } | |
979 | } | |
980 | ||
981 | /* found? */ | |
982 | if(c==table[start]) { | |
983 | i=table[start+1]; | |
984 | if((i&_NORM_CANON_SET_BMP_MASK)==_NORM_CANON_SET_BMP_IS_INDEX) { | |
985 | /* result 01xxxxxx xxxxxx contains index x to a USerializedSet */ | |
986 | i&=(_NORM_MAX_CANON_SETS-1); | |
987 | return uset_getSerializedSet(fillSet, | |
988 | canonStartSets+i, | |
989 | canonStartSets[_NORM_SET_INDEX_CANON_SETS_LENGTH]-i); | |
990 | } else { | |
991 | /* other result values are BMP code points for single-code point sets */ | |
992 | uset_setSerializedToOne(fillSet, (UChar32)i); | |
993 | return TRUE; | |
994 | } | |
995 | } | |
996 | } else { | |
997 | uint16_t high, low, h; | |
998 | ||
999 | table=canonStartSets+canonStartSets[_NORM_SET_INDEX_CANON_SETS_LENGTH]+ | |
1000 | canonStartSets[_NORM_SET_INDEX_CANON_BMP_TABLE_LENGTH]; | |
1001 | start=0; | |
1002 | limit=canonStartSets[_NORM_SET_INDEX_CANON_SUPP_TABLE_LENGTH]; | |
1003 | ||
1004 | high=(uint16_t)(c>>16); | |
1005 | low=(uint16_t)c; | |
1006 | ||
1007 | /* each entry is a triplet { high(c), low(c), result } */ | |
1008 | while(start<limit-3) { | |
1009 | i=(uint16_t)(((start+limit)/6)*3); /* (start+limit)/2 and address triplets */ | |
1010 | h=table[i]&0x1f; /* high word */ | |
1011 | if(high<h || (high==h && low<table[i+1])) { | |
1012 | limit=i; | |
1013 | } else { | |
1014 | start=i; | |
1015 | } | |
1016 | } | |
1017 | ||
1018 | /* found? */ | |
1019 | h=table[start]; | |
1020 | if(high==(h&0x1f) && low==table[start+1]) { | |
1021 | i=table[start+2]; | |
1022 | if((h&0x8000)==0) { | |
1023 | /* the result is an index to a USerializedSet */ | |
1024 | return uset_getSerializedSet(fillSet, | |
1025 | canonStartSets+i, | |
1026 | canonStartSets[_NORM_SET_INDEX_CANON_SETS_LENGTH]-i); | |
1027 | } else { | |
1028 | /* | |
1029 | * single-code point set {x} in | |
1030 | * triplet { 100xxxxx 000hhhhh llllllll llllllll xxxxxxxx xxxxxxxx } | |
1031 | */ | |
1032 | i|=((int32_t)h&0x1f00)<<8; /* add high bits from high(c) */ | |
1033 | uset_setSerializedToOne(fillSet, (UChar32)i); | |
1034 | return TRUE; | |
1035 | } | |
1036 | } | |
1037 | } | |
1038 | } | |
1039 | ||
1040 | return FALSE; /* not found */ | |
1041 | } | |
1042 | ||
1043 | U_CAPI int32_t U_EXPORT2 | |
1044 | u_getFC_NFKC_Closure(UChar32 c, UChar *dest, int32_t destCapacity, UErrorCode *pErrorCode) { | |
1045 | uint16_t aux; | |
1046 | ||
1047 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | |
1048 | return 0; | |
1049 | } | |
1050 | if(destCapacity<0 || (dest==NULL && destCapacity>0)) { | |
1051 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
1052 | return 0; | |
1053 | } | |
1054 | if(!_haveData(*pErrorCode) || !formatVersion_2_1) { | |
1055 | return 0; | |
1056 | } | |
1057 | ||
1058 | UTRIE_GET16(&auxTrie, c, aux); | |
1059 | aux&=_NORM_AUX_FNC_MASK; | |
1060 | if(aux!=0) { | |
1061 | const UChar *s; | |
1062 | int32_t length; | |
1063 | ||
1064 | s=(const UChar *)(extraData+aux); | |
1065 | if(*s<0xff00) { | |
1066 | /* s points to the single-unit string */ | |
1067 | length=1; | |
1068 | } else { | |
1069 | length=*s&0xff; | |
1070 | ++s; | |
1071 | } | |
1072 | if(0<length && length<=destCapacity) { | |
1073 | uprv_memcpy(dest, s, length*U_SIZEOF_UCHAR); | |
1074 | } | |
1075 | return u_terminateUChars(dest, destCapacity, length, pErrorCode); | |
1076 | } else { | |
1077 | return u_terminateUChars(dest, destCapacity, 0, pErrorCode); | |
1078 | } | |
1079 | } | |
1080 | ||
1081 | /* Is c an NF<mode>-skippable code point? See unormimp.h. */ | |
1082 | U_CAPI UBool U_EXPORT2 | |
1083 | unorm_isNFSkippable(UChar32 c, UNormalizationMode mode) { | |
1084 | UErrorCode errorCode; | |
1085 | uint32_t norm32, mask; | |
1086 | uint16_t aux, fcd; | |
1087 | ||
1088 | errorCode=U_ZERO_ERROR; | |
1089 | if(!_haveData(errorCode)) { | |
1090 | return FALSE; | |
1091 | } | |
1092 | ||
1093 | /* handle trivial cases; set the comparison mask for the normal ones */ | |
1094 | switch(mode) { | |
1095 | case UNORM_NONE: | |
1096 | return TRUE; | |
1097 | case UNORM_NFD: | |
1098 | mask=_NORM_CC_MASK|_NORM_QC_NFD; | |
1099 | break; | |
1100 | case UNORM_NFKD: | |
1101 | mask=_NORM_CC_MASK|_NORM_QC_NFKD; | |
1102 | break; | |
1103 | case UNORM_NFC: | |
1104 | /* case UNORM_FCC: */ | |
1105 | mask=_NORM_CC_MASK|_NORM_COMBINES_ANY|(_NORM_QC_NFC&_NORM_QC_ANY_NO); | |
1106 | break; | |
1107 | case UNORM_NFKC: | |
1108 | mask=_NORM_CC_MASK|_NORM_COMBINES_ANY|(_NORM_QC_NFKC&_NORM_QC_ANY_NO); | |
1109 | break; | |
1110 | case UNORM_FCD: | |
1111 | /* FCD: skippable if lead cc==0 and trail cc<=1 */ | |
1112 | UTRIE_GET16(&fcdTrie, c, fcd); | |
1113 | return fcd<=1; | |
1114 | default: | |
1115 | return FALSE; | |
1116 | } | |
1117 | ||
1118 | /* check conditions (a)..(e), see unormimp.h */ | |
1119 | UTRIE_GET32(&normTrie, c, norm32); | |
1120 | if((norm32&mask)!=0) { | |
1121 | return FALSE; /* fails (a)..(e), not skippable */ | |
1122 | } | |
1123 | ||
1124 | if(mode<UNORM_NFC) { | |
1125 | return TRUE; /* NF*D, passed (a)..(c), is skippable */ | |
1126 | } | |
1127 | ||
1128 | /* NF*C/FCC, passed (a)..(e) */ | |
1129 | if((norm32&_NORM_QC_NFD)==0) { | |
1130 | return TRUE; /* no canonical decomposition, is skippable */ | |
1131 | } | |
1132 | ||
1133 | /* check Hangul syllables algorithmically */ | |
1134 | if(isNorm32HangulOrJamo(norm32)) { | |
1135 | /* Jamo passed (a)..(e) above, must be Hangul */ | |
1136 | return !isHangulWithoutJamoT((UChar)c); /* LVT are skippable, LV are not */ | |
1137 | } | |
1138 | ||
1139 | /* if(mode<=UNORM_NFKC) { -- enable when implementing FCC */ | |
1140 | /* NF*C, test (f) flag */ | |
1141 | if(!formatVersion_2_2) { | |
1142 | return FALSE; /* no (f) data, say not skippable to be safe */ | |
1143 | } | |
1144 | ||
1145 | UTRIE_GET16(&auxTrie, c, aux); | |
1146 | return (aux&_NORM_AUX_NFC_SKIP_F_MASK)==0; /* TRUE=skippable if the (f) flag is not set */ | |
1147 | ||
1148 | /* } else { FCC, test fcd<=1 instead of the above } */ | |
1149 | } | |
1150 | ||
1151 | U_CAPI void U_EXPORT2 | |
1152 | unorm_addPropertyStarts(USet *set, UErrorCode *pErrorCode) { | |
1153 | UChar c; | |
1154 | ||
1155 | if(!_haveData(*pErrorCode)) { | |
1156 | return; | |
1157 | } | |
1158 | ||
1159 | /* add the start code point of each same-value range of each trie */ | |
1160 | utrie_enum(&normTrie, NULL, _enumPropertyStartsRange, set); | |
1161 | utrie_enum(&fcdTrie, NULL, _enumPropertyStartsRange, set); | |
1162 | if(formatVersion_2_1) { | |
1163 | utrie_enum(&auxTrie, NULL, _enumPropertyStartsRange, set); | |
1164 | } | |
1165 | ||
1166 | /* add Hangul LV syllables and LV+1 because of skippables */ | |
1167 | for(c=HANGUL_BASE; c<HANGUL_BASE+HANGUL_COUNT; c+=JAMO_T_COUNT) { | |
1168 | uset_add(set, c); | |
1169 | uset_add(set, c+1); | |
1170 | } | |
1171 | uset_add(set, HANGUL_BASE+HANGUL_COUNT); /* add Hangul+1 to continue with other properties */ | |
1172 | } | |
1173 | ||
1174 | /* reorder UTF-16 in-place -------------------------------------------------- */ | |
1175 | ||
1176 | /* | |
1177 | * simpler, single-character version of _mergeOrdered() - | |
1178 | * bubble-insert one single code point into the preceding string | |
1179 | * which is already canonically ordered | |
1180 | * (c, c2) may or may not yet have been inserted at [current..p[ | |
1181 | * | |
1182 | * it must be p=current+lengthof(c, c2) i.e. p=current+(c2==0 ? 1 : 2) | |
1183 | * | |
1184 | * before: [start..current[ is already ordered, and | |
1185 | * [current..p[ may or may not hold (c, c2) but | |
1186 | * must be exactly the same length as (c, c2) | |
1187 | * after: [start..p[ is ordered | |
1188 | * | |
1189 | * returns the trailing combining class | |
1190 | */ | |
1191 | static uint8_t | |
1192 | _insertOrdered(const UChar *start, UChar *current, UChar *p, | |
1193 | UChar c, UChar c2, uint8_t cc) { | |
1194 | const UChar *pBack, *pPreBack; | |
1195 | UChar *r; | |
1196 | uint8_t prevCC, trailCC=cc; | |
1197 | ||
1198 | if(start<current && cc!=0) { | |
1199 | /* search for the insertion point where cc>=prevCC */ | |
1200 | pPreBack=pBack=current; | |
1201 | prevCC=_getPrevCC(start, pPreBack); | |
1202 | if(cc<prevCC) { | |
1203 | /* this will be the last code point, so keep its cc */ | |
1204 | trailCC=prevCC; | |
1205 | pBack=pPreBack; | |
1206 | while(start<pPreBack) { | |
1207 | prevCC=_getPrevCC(start, pPreBack); | |
1208 | if(cc>=prevCC) { | |
1209 | break; | |
1210 | } | |
1211 | pBack=pPreBack; | |
1212 | } | |
1213 | ||
1214 | /* | |
1215 | * this is where we are right now with all these pointers: | |
1216 | * [start..pPreBack[ 0..? code points that we can ignore | |
1217 | * [pPreBack..pBack[ 0..1 code points with prevCC<=cc | |
1218 | * [pBack..current[ 0..n code points with >cc, move up to insert (c, c2) | |
1219 | * [current..p[ 1 code point (c, c2) with cc | |
1220 | */ | |
1221 | ||
1222 | /* move the code units in between up */ | |
1223 | r=p; | |
1224 | do { | |
1225 | *--r=*--current; | |
1226 | } while(pBack!=current); | |
1227 | } | |
1228 | } | |
1229 | ||
1230 | /* insert (c, c2) */ | |
1231 | *current=c; | |
1232 | if(c2!=0) { | |
1233 | *(current+1)=c2; | |
1234 | } | |
1235 | ||
1236 | /* we know the cc of the last code point */ | |
1237 | return trailCC; | |
1238 | } | |
1239 | ||
1240 | /* | |
1241 | * merge two UTF-16 string parts together | |
1242 | * to canonically order (order by combining classes) their concatenation | |
1243 | * | |
1244 | * the two strings may already be adjacent, so that the merging is done in-place | |
1245 | * if the two strings are not adjacent, then the buffer holding the first one | |
1246 | * must be large enough | |
1247 | * the second string may or may not be ordered in itself | |
1248 | * | |
1249 | * before: [start..current[ is already ordered, and | |
1250 | * [next..limit[ may be ordered in itself, but | |
1251 | * is not in relation to [start..current[ | |
1252 | * after: [start..current+(limit-next)[ is ordered | |
1253 | * | |
1254 | * the algorithm is a simple bubble-sort that takes the characters from *next++ | |
1255 | * and inserts them in correct combining class order into the preceding part | |
1256 | * of the string | |
1257 | * | |
1258 | * since this function is called much less often than the single-code point | |
1259 | * _insertOrdered(), it just uses that for easier maintenance | |
1260 | * (see file version from before 2001aug31 for a more optimized version) | |
1261 | * | |
1262 | * returns the trailing combining class | |
1263 | */ | |
1264 | static uint8_t | |
1265 | _mergeOrdered(UChar *start, UChar *current, | |
1266 | const UChar *next, const UChar *limit, UBool isOrdered=TRUE) { | |
1267 | UChar *r; | |
1268 | UChar c, c2; | |
1269 | uint8_t cc, trailCC=0; | |
1270 | UBool adjacent; | |
1271 | ||
1272 | adjacent= current==next; | |
1273 | ||
1274 | if(start!=current || !isOrdered) { | |
1275 | while(next<limit) { | |
1276 | cc=_getNextCC(next, limit, c, c2); | |
1277 | if(cc==0) { | |
1278 | /* does not bubble back */ | |
1279 | trailCC=0; | |
1280 | if(adjacent) { | |
1281 | current=(UChar *)next; | |
1282 | } else { | |
1283 | *current++=c; | |
1284 | if(c2!=0) { | |
1285 | *current++=c2; | |
1286 | } | |
1287 | } | |
1288 | if(isOrdered) { | |
1289 | break; | |
1290 | } else { | |
1291 | start=current; | |
1292 | } | |
1293 | } else { | |
1294 | r=current+(c2==0 ? 1 : 2); | |
1295 | trailCC=_insertOrdered(start, current, r, c, c2, cc); | |
1296 | current=r; | |
1297 | } | |
1298 | } | |
1299 | } | |
1300 | ||
1301 | if(next==limit) { | |
1302 | /* we know the cc of the last code point */ | |
1303 | return trailCC; | |
1304 | } else { | |
1305 | if(!adjacent) { | |
1306 | /* copy the second string part */ | |
1307 | do { | |
1308 | *current++=*next++; | |
1309 | } while(next!=limit); | |
1310 | limit=current; | |
1311 | } | |
1312 | return _getPrevCC(start, limit); | |
1313 | } | |
1314 | } | |
1315 | ||
1316 | /* quick check functions ---------------------------------------------------- */ | |
1317 | ||
1318 | static UBool | |
1319 | unorm_checkFCD(const UChar *src, int32_t srcLength, const UnicodeSet *nx) { | |
1320 | const UChar *limit; | |
1321 | UChar c, c2; | |
1322 | uint16_t fcd16; | |
1323 | int16_t prevCC, cc; | |
1324 | ||
1325 | /* initialize */ | |
1326 | prevCC=0; | |
1327 | ||
1328 | if(srcLength>=0) { | |
1329 | /* string with length */ | |
1330 | limit=src+srcLength; | |
1331 | } else /* srcLength==-1 */ { | |
1332 | /* zero-terminated string */ | |
1333 | limit=NULL; | |
1334 | } | |
1335 | ||
1336 | U_ALIGN_CODE(16); | |
1337 | ||
1338 | for(;;) { | |
1339 | /* skip a run of code units below the minimum or with irrelevant data for the FCD check */ | |
1340 | if(limit==NULL) { | |
1341 | for(;;) { | |
1342 | c=*src++; | |
1343 | if(c<_NORM_MIN_WITH_LEAD_CC) { | |
1344 | if(c==0) { | |
1345 | return TRUE; | |
1346 | } | |
1347 | /* | |
1348 | * delay _getFCD16(c) for any character <_NORM_MIN_WITH_LEAD_CC | |
1349 | * because chances are good that the next one will have | |
1350 | * a leading cc of 0; | |
1351 | * _getFCD16(-prevCC) is later called when necessary - | |
1352 | * -c fits into int16_t because it is <_NORM_MIN_WITH_LEAD_CC==0x300 | |
1353 | */ | |
1354 | prevCC=(int16_t)-c; | |
1355 | } else if((fcd16=_getFCD16(c))==0) { | |
1356 | prevCC=0; | |
1357 | } else { | |
1358 | break; | |
1359 | } | |
1360 | } | |
1361 | } else { | |
1362 | for(;;) { | |
1363 | if(src==limit) { | |
1364 | return TRUE; | |
1365 | } else if((c=*src++)<_NORM_MIN_WITH_LEAD_CC) { | |
1366 | prevCC=(int16_t)-c; | |
1367 | } else if((fcd16=_getFCD16(c))==0) { | |
1368 | prevCC=0; | |
1369 | } else { | |
1370 | break; | |
1371 | } | |
1372 | } | |
1373 | } | |
1374 | ||
1375 | /* check one above-minimum, relevant code unit */ | |
1376 | if(UTF_IS_FIRST_SURROGATE(c)) { | |
1377 | /* c is a lead surrogate, get the real fcd16 */ | |
1378 | if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) { | |
1379 | ++src; | |
1380 | fcd16=_getFCD16FromSurrogatePair(fcd16, c2); | |
1381 | } else { | |
1382 | c2=0; | |
1383 | fcd16=0; | |
1384 | } | |
1385 | } else { | |
1386 | c2=0; | |
1387 | } | |
1388 | ||
1389 | if(nx_contains(nx, c, c2)) { | |
1390 | prevCC=0; /* excluded: fcd16==0 */ | |
1391 | continue; | |
1392 | } | |
1393 | ||
1394 | /* | |
1395 | * prevCC has values from the following ranges: | |
1396 | * 0..0xff - the previous trail combining class | |
1397 | * <0 - the negative value of the previous code unit; | |
1398 | * that code unit was <_NORM_MIN_WITH_LEAD_CC and its _getFCD16() | |
1399 | * was deferred so that average text is checked faster | |
1400 | */ | |
1401 | ||
1402 | /* check the combining order */ | |
1403 | cc=(int16_t)(fcd16>>8); | |
1404 | if(cc!=0) { | |
1405 | if(prevCC<0) { | |
1406 | /* the previous character was <_NORM_MIN_WITH_LEAD_CC, we need to get its trail cc */ | |
1407 | if(!nx_contains(nx, (UChar32)-prevCC)) { | |
1408 | prevCC=(int16_t)(_getFCD16((UChar)-prevCC)&0xff); | |
1409 | } else { | |
1410 | prevCC=0; /* excluded: fcd16==0 */ | |
1411 | } | |
1412 | } | |
1413 | ||
1414 | if(cc<prevCC) { | |
1415 | return FALSE; | |
1416 | } | |
1417 | } | |
1418 | prevCC=(int16_t)(fcd16&0xff); | |
1419 | } | |
1420 | } | |
1421 | ||
1422 | static UNormalizationCheckResult | |
1423 | _quickCheck(const UChar *src, | |
1424 | int32_t srcLength, | |
1425 | UNormalizationMode mode, | |
1426 | UBool allowMaybe, | |
1427 | const UnicodeSet *nx, | |
1428 | UErrorCode *pErrorCode) { | |
1429 | UChar stackBuffer[_STACK_BUFFER_CAPACITY]; | |
1430 | UChar *buffer; | |
1431 | int32_t bufferCapacity; | |
1432 | ||
1433 | const UChar *start, *limit; | |
1434 | uint32_t norm32, qcNorm32, ccOrQCMask, qcMask; | |
1435 | UChar c, c2, minNoMaybe; | |
1436 | uint8_t cc, prevCC; | |
1437 | UNormalizationCheckResult result; | |
1438 | ||
1439 | /* check arguments */ | |
1440 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | |
1441 | return UNORM_MAYBE; | |
1442 | } | |
1443 | ||
1444 | if(src==NULL || srcLength<-1) { | |
1445 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
1446 | return UNORM_MAYBE; | |
1447 | } | |
1448 | ||
1449 | if(!_haveData(*pErrorCode)) { | |
1450 | return UNORM_MAYBE; | |
1451 | } | |
1452 | ||
1453 | /* check for a valid mode and set the quick check minimum and mask */ | |
1454 | switch(mode) { | |
1455 | case UNORM_NFC: | |
1456 | minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE]; | |
1457 | qcMask=_NORM_QC_NFC; | |
1458 | break; | |
1459 | case UNORM_NFKC: | |
1460 | minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE]; | |
1461 | qcMask=_NORM_QC_NFKC; | |
1462 | break; | |
1463 | case UNORM_NFD: | |
1464 | minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFD_NO_MAYBE]; | |
1465 | qcMask=_NORM_QC_NFD; | |
1466 | break; | |
1467 | case UNORM_NFKD: | |
1468 | minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFKD_NO_MAYBE]; | |
1469 | qcMask=_NORM_QC_NFKD; | |
1470 | break; | |
1471 | case UNORM_FCD: | |
1472 | return unorm_checkFCD(src, srcLength, nx) ? UNORM_YES : UNORM_NO; | |
1473 | default: | |
1474 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
1475 | return UNORM_MAYBE; | |
1476 | } | |
1477 | ||
1478 | /* initialize */ | |
1479 | buffer=stackBuffer; | |
1480 | bufferCapacity=_STACK_BUFFER_CAPACITY; | |
1481 | ||
1482 | ccOrQCMask=_NORM_CC_MASK|qcMask; | |
1483 | result=UNORM_YES; | |
1484 | prevCC=0; | |
1485 | ||
1486 | start=src; | |
1487 | if(srcLength>=0) { | |
1488 | /* string with length */ | |
1489 | limit=src+srcLength; | |
1490 | } else /* srcLength==-1 */ { | |
1491 | /* zero-terminated string */ | |
1492 | limit=NULL; | |
1493 | } | |
1494 | ||
1495 | U_ALIGN_CODE(16); | |
1496 | ||
1497 | for(;;) { | |
1498 | /* skip a run of code units below the minimum or with irrelevant data for the quick check */ | |
1499 | if(limit==NULL) { | |
1500 | for(;;) { | |
1501 | c=*src++; | |
1502 | if(c<minNoMaybe) { | |
1503 | if(c==0) { | |
1504 | goto endloop; /* break out of outer loop */ | |
1505 | } | |
1506 | } else if(((norm32=_getNorm32(c))&ccOrQCMask)!=0) { | |
1507 | break; | |
1508 | } | |
1509 | prevCC=0; | |
1510 | } | |
1511 | } else { | |
1512 | for(;;) { | |
1513 | if(src==limit) { | |
1514 | goto endloop; /* break out of outer loop */ | |
1515 | } else if((c=*src++)>=minNoMaybe && ((norm32=_getNorm32(c))&ccOrQCMask)!=0) { | |
1516 | break; | |
1517 | } | |
1518 | prevCC=0; | |
1519 | } | |
1520 | } | |
1521 | ||
1522 | /* check one above-minimum, relevant code unit */ | |
1523 | if(isNorm32LeadSurrogate(norm32)) { | |
1524 | /* c is a lead surrogate, get the real norm32 */ | |
1525 | if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) { | |
1526 | ++src; | |
1527 | norm32=_getNorm32FromSurrogatePair(norm32, c2); | |
1528 | } else { | |
1529 | c2=0; | |
1530 | norm32=0; | |
1531 | } | |
1532 | } else { | |
1533 | c2=0; | |
1534 | } | |
1535 | ||
1536 | if(nx_contains(nx, c, c2)) { | |
1537 | /* excluded: norm32==0 */ | |
1538 | norm32=0; | |
1539 | } | |
1540 | ||
1541 | /* check the combining order */ | |
1542 | cc=(uint8_t)(norm32>>_NORM_CC_SHIFT); | |
1543 | if(cc!=0 && cc<prevCC) { | |
1544 | result=UNORM_NO; | |
1545 | break; | |
1546 | } | |
1547 | prevCC=cc; | |
1548 | ||
1549 | /* check for "no" or "maybe" quick check flags */ | |
1550 | qcNorm32=norm32&qcMask; | |
1551 | if(qcNorm32&_NORM_QC_ANY_NO) { | |
1552 | result=UNORM_NO; | |
1553 | break; | |
1554 | } else if(qcNorm32!=0) { | |
1555 | /* "maybe" can only occur for NFC and NFKC */ | |
1556 | if(allowMaybe) { | |
1557 | result=UNORM_MAYBE; | |
1558 | } else { | |
1559 | /* normalize a section around here to see if it is really normalized or not */ | |
1560 | const UChar *prevStarter; | |
1561 | uint32_t decompQCMask; | |
1562 | int32_t length; | |
1563 | ||
1564 | decompQCMask=(qcMask<<2)&0xf; /* decomposition quick check mask */ | |
1565 | ||
1566 | /* find the previous starter */ | |
1567 | prevStarter=src-1; /* set prevStarter to the beginning of the current character */ | |
1568 | if(UTF_IS_TRAIL(*prevStarter)) { | |
1569 | --prevStarter; /* safe because unpaired surrogates do not result in "maybe" */ | |
1570 | } | |
1571 | prevStarter=_findPreviousStarter(start, prevStarter, ccOrQCMask, decompQCMask, minNoMaybe); | |
1572 | ||
1573 | /* find the next true starter in [src..limit[ - modifies src to point to the next starter */ | |
1574 | src=_findNextStarter(src, limit, qcMask, decompQCMask, minNoMaybe); | |
1575 | ||
1576 | /* decompose and recompose [prevStarter..src[ */ | |
1577 | _composePart(stackBuffer, buffer, bufferCapacity, | |
1578 | length, | |
1579 | prevStarter, | |
1580 | src, | |
1581 | qcMask, | |
1582 | prevCC, nx, pErrorCode); | |
1583 | if(U_FAILURE(*pErrorCode)) { | |
1584 | result=UNORM_MAYBE; /* error (out of memory) */ | |
1585 | break; | |
1586 | } | |
1587 | ||
1588 | /* compare the normalized version with the original */ | |
1589 | if(0!=uprv_strCompare(prevStarter, (int32_t)(src-prevStarter), buffer, length, FALSE, FALSE)) { | |
1590 | result=UNORM_NO; /* normalization differs */ | |
1591 | break; | |
1592 | } | |
1593 | ||
1594 | /* continue after the next starter */ | |
1595 | } | |
1596 | } | |
1597 | } | |
1598 | endloop: | |
1599 | ||
1600 | if(buffer!=stackBuffer) { | |
1601 | uprv_free(buffer); | |
1602 | } | |
1603 | ||
1604 | return result; | |
1605 | } | |
1606 | ||
1607 | U_CAPI UNormalizationCheckResult U_EXPORT2 | |
1608 | unorm_quickCheck(const UChar *src, | |
1609 | int32_t srcLength, | |
1610 | UNormalizationMode mode, | |
1611 | UErrorCode *pErrorCode) { | |
1612 | return _quickCheck(src, srcLength, mode, TRUE, NULL, pErrorCode); | |
1613 | } | |
1614 | ||
1615 | U_CAPI UNormalizationCheckResult U_EXPORT2 | |
1616 | unorm_quickCheckWithOptions(const UChar *src, int32_t srcLength, | |
1617 | UNormalizationMode mode, int32_t options, | |
1618 | UErrorCode *pErrorCode) { | |
1619 | return _quickCheck(src, srcLength, mode, TRUE, getNX(options, *pErrorCode), pErrorCode); | |
1620 | } | |
1621 | ||
1622 | U_CAPI UBool U_EXPORT2 | |
1623 | unorm_isNormalized(const UChar *src, int32_t srcLength, | |
1624 | UNormalizationMode mode, | |
1625 | UErrorCode *pErrorCode) { | |
1626 | return (UBool)(UNORM_YES==_quickCheck(src, srcLength, mode, FALSE, NULL, pErrorCode)); | |
1627 | } | |
1628 | ||
1629 | U_CAPI UBool U_EXPORT2 | |
1630 | unorm_isNormalizedWithOptions(const UChar *src, int32_t srcLength, | |
1631 | UNormalizationMode mode, int32_t options, | |
1632 | UErrorCode *pErrorCode) { | |
1633 | return (UBool)(UNORM_YES==_quickCheck(src, srcLength, mode, FALSE, getNX(options, *pErrorCode), pErrorCode)); | |
1634 | } | |
1635 | ||
1636 | /* make NFD & NFKD ---------------------------------------------------------- */ | |
1637 | ||
1638 | U_CAPI int32_t U_EXPORT2 | |
1639 | unorm_getDecomposition(UChar32 c, UBool compat, | |
1640 | UChar *dest, int32_t destCapacity) { | |
1641 | UErrorCode errorCode=U_ZERO_ERROR; | |
1642 | if( (uint32_t)c<=0x10ffff && | |
1643 | _haveData(errorCode) && | |
1644 | ((dest!=NULL && destCapacity>0) || destCapacity==0) | |
1645 | ) { | |
1646 | uint32_t norm32, qcMask; | |
1647 | UChar32 minNoMaybe; | |
1648 | int32_t length; | |
1649 | ||
1650 | /* initialize */ | |
1651 | if(!compat) { | |
1652 | minNoMaybe=(UChar32)indexes[_NORM_INDEX_MIN_NFD_NO_MAYBE]; | |
1653 | qcMask=_NORM_QC_NFD; | |
1654 | } else { | |
1655 | minNoMaybe=(UChar32)indexes[_NORM_INDEX_MIN_NFKD_NO_MAYBE]; | |
1656 | qcMask=_NORM_QC_NFKD; | |
1657 | } | |
1658 | ||
1659 | if(c<minNoMaybe) { | |
1660 | /* trivial case */ | |
1661 | if(destCapacity>0) { | |
1662 | dest[0]=(UChar)c; | |
1663 | } | |
1664 | return -1; | |
1665 | } | |
1666 | ||
1667 | /* data lookup */ | |
1668 | UTRIE_GET32(&normTrie, c, norm32); | |
1669 | if((norm32&qcMask)==0) { | |
1670 | /* simple case: no decomposition */ | |
1671 | if(c<=0xffff) { | |
1672 | if(destCapacity>0) { | |
1673 | dest[0]=(UChar)c; | |
1674 | } | |
1675 | return -1; | |
1676 | } else { | |
1677 | if(destCapacity>=2) { | |
1678 | dest[0]=UTF16_LEAD(c); | |
1679 | dest[1]=UTF16_TRAIL(c); | |
1680 | } | |
1681 | return -2; | |
1682 | } | |
1683 | } else if(isNorm32HangulOrJamo(norm32)) { | |
1684 | /* Hangul syllable: decompose algorithmically */ | |
1685 | UChar c2; | |
1686 | ||
1687 | c-=HANGUL_BASE; | |
1688 | ||
1689 | c2=(UChar)(c%JAMO_T_COUNT); | |
1690 | c/=JAMO_T_COUNT; | |
1691 | if(c2>0) { | |
1692 | if(destCapacity>=3) { | |
1693 | dest[2]=(UChar)(JAMO_T_BASE+c2); | |
1694 | } | |
1695 | length=3; | |
1696 | } else { | |
1697 | length=2; | |
1698 | } | |
1699 | ||
1700 | if(destCapacity>=2) { | |
1701 | dest[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT); | |
1702 | dest[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT); | |
1703 | } | |
1704 | return length; | |
1705 | } else { | |
1706 | /* c decomposes, get everything from the variable-length extra data */ | |
1707 | const UChar *p, *limit; | |
1708 | uint8_t cc, trailCC; | |
1709 | ||
1710 | p=_decompose(norm32, qcMask, length, cc, trailCC); | |
1711 | if(length<=destCapacity) { | |
1712 | limit=p+length; | |
1713 | do { | |
1714 | *dest++=*p++; | |
1715 | } while(p<limit); | |
1716 | } | |
1717 | return length; | |
1718 | } | |
1719 | } else { | |
1720 | return 0; | |
1721 | } | |
1722 | } | |
1723 | ||
1724 | static int32_t | |
1725 | _decompose(UChar *dest, int32_t destCapacity, | |
1726 | const UChar *src, int32_t srcLength, | |
1727 | UBool compat, const UnicodeSet *nx, | |
1728 | uint8_t &outTrailCC) { | |
1729 | UChar buffer[3]; | |
1730 | const UChar *limit, *prevSrc, *p; | |
1731 | uint32_t norm32, ccOrQCMask, qcMask; | |
1732 | int32_t destIndex, reorderStartIndex, length; | |
1733 | UChar c, c2, minNoMaybe; | |
1734 | uint8_t cc, prevCC, trailCC; | |
1735 | ||
1736 | if(!compat) { | |
1737 | minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFD_NO_MAYBE]; | |
1738 | qcMask=_NORM_QC_NFD; | |
1739 | } else { | |
1740 | minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFKD_NO_MAYBE]; | |
1741 | qcMask=_NORM_QC_NFKD; | |
1742 | } | |
1743 | ||
1744 | /* initialize */ | |
1745 | ccOrQCMask=_NORM_CC_MASK|qcMask; | |
1746 | destIndex=reorderStartIndex=0; | |
1747 | prevCC=0; | |
1748 | ||
1749 | /* avoid compiler warnings */ | |
1750 | norm32=0; | |
1751 | c=0; | |
1752 | ||
1753 | if(srcLength>=0) { | |
1754 | /* string with length */ | |
1755 | limit=src+srcLength; | |
1756 | } else /* srcLength==-1 */ { | |
1757 | /* zero-terminated string */ | |
1758 | limit=NULL; | |
1759 | } | |
1760 | ||
1761 | U_ALIGN_CODE(16); | |
1762 | ||
1763 | for(;;) { | |
1764 | /* count code units below the minimum or with irrelevant data for the quick check */ | |
1765 | prevSrc=src; | |
1766 | if(limit==NULL) { | |
1767 | while((c=*src)<minNoMaybe ? c!=0 : ((norm32=_getNorm32(c))&ccOrQCMask)==0) { | |
1768 | prevCC=0; | |
1769 | ++src; | |
1770 | } | |
1771 | } else { | |
1772 | while(src!=limit && ((c=*src)<minNoMaybe || ((norm32=_getNorm32(c))&ccOrQCMask)==0)) { | |
1773 | prevCC=0; | |
1774 | ++src; | |
1775 | } | |
1776 | } | |
1777 | ||
1778 | /* copy these code units all at once */ | |
1779 | if(src!=prevSrc) { | |
1780 | length=(int32_t)(src-prevSrc); | |
1781 | if((destIndex+length)<=destCapacity) { | |
1782 | uprv_memcpy(dest+destIndex, prevSrc, length*U_SIZEOF_UCHAR); | |
1783 | } | |
1784 | destIndex+=length; | |
1785 | reorderStartIndex=destIndex; | |
1786 | } | |
1787 | ||
1788 | /* end of source reached? */ | |
1789 | if(limit==NULL ? c==0 : src==limit) { | |
1790 | break; | |
1791 | } | |
1792 | ||
1793 | /* c already contains *src and norm32 is set for it, increment src */ | |
1794 | ++src; | |
1795 | ||
1796 | /* check one above-minimum, relevant code unit */ | |
1797 | /* | |
1798 | * generally, set p and length to the decomposition string | |
1799 | * in simple cases, p==NULL and (c, c2) will hold the length code units to append | |
1800 | * in all cases, set cc to the lead and trailCC to the trail combining class | |
1801 | * | |
1802 | * the following merge-sort of the current character into the preceding, | |
1803 | * canonically ordered result text will use the optimized _insertOrdered() | |
1804 | * if there is only one single code point to process; | |
1805 | * this is indicated with p==NULL, and (c, c2) is the character to insert | |
1806 | * ((c, 0) for a BMP character and (lead surrogate, trail surrogate) | |
1807 | * for a supplementary character) | |
1808 | * otherwise, p[length] is merged in with _mergeOrdered() | |
1809 | */ | |
1810 | if(isNorm32HangulOrJamo(norm32)) { | |
1811 | if(nx_contains(nx, c)) { | |
1812 | c2=0; | |
1813 | p=NULL; | |
1814 | length=1; | |
1815 | } else { | |
1816 | /* Hangul syllable: decompose algorithmically */ | |
1817 | p=buffer; | |
1818 | cc=trailCC=0; | |
1819 | ||
1820 | c-=HANGUL_BASE; | |
1821 | ||
1822 | c2=(UChar)(c%JAMO_T_COUNT); | |
1823 | c/=JAMO_T_COUNT; | |
1824 | if(c2>0) { | |
1825 | buffer[2]=(UChar)(JAMO_T_BASE+c2); | |
1826 | length=3; | |
1827 | } else { | |
1828 | length=2; | |
1829 | } | |
1830 | ||
1831 | buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT); | |
1832 | buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT); | |
1833 | } | |
1834 | } else { | |
1835 | if(isNorm32Regular(norm32)) { | |
1836 | c2=0; | |
1837 | length=1; | |
1838 | } else { | |
1839 | /* c is a lead surrogate, get the real norm32 */ | |
1840 | if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) { | |
1841 | ++src; | |
1842 | length=2; | |
1843 | norm32=_getNorm32FromSurrogatePair(norm32, c2); | |
1844 | } else { | |
1845 | c2=0; | |
1846 | length=1; | |
1847 | norm32=0; | |
1848 | } | |
1849 | } | |
1850 | ||
1851 | /* get the decomposition and the lead and trail cc's */ | |
1852 | if(nx_contains(nx, c, c2)) { | |
1853 | /* excluded: norm32==0 */ | |
1854 | cc=trailCC=0; | |
1855 | p=NULL; | |
1856 | } else if((norm32&qcMask)==0) { | |
1857 | /* c does not decompose */ | |
1858 | cc=trailCC=(uint8_t)(norm32>>_NORM_CC_SHIFT); | |
1859 | p=NULL; | |
1860 | } else { | |
1861 | /* c decomposes, get everything from the variable-length extra data */ | |
1862 | p=_decompose(norm32, qcMask, length, cc, trailCC); | |
1863 | if(length==1) { | |
1864 | /* fastpath a single code unit from decomposition */ | |
1865 | c=*p; | |
1866 | c2=0; | |
1867 | p=NULL; | |
1868 | } | |
1869 | } | |
1870 | } | |
1871 | ||
1872 | /* append the decomposition to the destination buffer, assume length>0 */ | |
1873 | if((destIndex+length)<=destCapacity) { | |
1874 | UChar *reorderSplit=dest+destIndex; | |
1875 | if(p==NULL) { | |
1876 | /* fastpath: single code point */ | |
1877 | if(cc!=0 && cc<prevCC) { | |
1878 | /* (c, c2) is out of order with respect to the preceding text */ | |
1879 | destIndex+=length; | |
1880 | trailCC=_insertOrdered(dest+reorderStartIndex, reorderSplit, dest+destIndex, c, c2, cc); | |
1881 | } else { | |
1882 | /* just append (c, c2) */ | |
1883 | dest[destIndex++]=c; | |
1884 | if(c2!=0) { | |
1885 | dest[destIndex++]=c2; | |
1886 | } | |
1887 | } | |
1888 | } else { | |
1889 | /* general: multiple code points (ordered by themselves) from decomposition */ | |
1890 | if(cc!=0 && cc<prevCC) { | |
1891 | /* the decomposition is out of order with respect to the preceding text */ | |
1892 | destIndex+=length; | |
1893 | trailCC=_mergeOrdered(dest+reorderStartIndex, reorderSplit, p, p+length); | |
1894 | } else { | |
1895 | /* just append the decomposition */ | |
1896 | do { | |
1897 | dest[destIndex++]=*p++; | |
1898 | } while(--length>0); | |
1899 | } | |
1900 | } | |
1901 | } else { | |
1902 | /* buffer overflow */ | |
1903 | /* keep incrementing the destIndex for preflighting */ | |
1904 | destIndex+=length; | |
1905 | } | |
1906 | ||
1907 | prevCC=trailCC; | |
1908 | if(prevCC==0) { | |
1909 | reorderStartIndex=destIndex; | |
1910 | } | |
1911 | } | |
1912 | ||
1913 | outTrailCC=prevCC; | |
1914 | return destIndex; | |
1915 | } | |
1916 | ||
1917 | U_CAPI int32_t U_EXPORT2 | |
1918 | unorm_decompose(UChar *dest, int32_t destCapacity, | |
1919 | const UChar *src, int32_t srcLength, | |
1920 | UBool compat, int32_t options, | |
1921 | UErrorCode *pErrorCode) { | |
1922 | const UnicodeSet *nx; | |
1923 | int32_t destIndex; | |
1924 | uint8_t trailCC; | |
1925 | ||
1926 | if(!_haveData(*pErrorCode)) { | |
1927 | return 0; | |
1928 | } | |
1929 | ||
1930 | nx=getNX(options, *pErrorCode); | |
1931 | if(U_FAILURE(*pErrorCode)) { | |
1932 | return 0; | |
1933 | } | |
1934 | ||
1935 | destIndex=_decompose(dest, destCapacity, | |
1936 | src, srcLength, | |
1937 | compat, nx, | |
1938 | trailCC); | |
1939 | ||
1940 | return u_terminateUChars(dest, destCapacity, destIndex, pErrorCode); | |
1941 | } | |
1942 | ||
1943 | /* make FCD ----------------------------------------------------------------- */ | |
1944 | ||
1945 | static const UChar * | |
1946 | _findSafeFCD(const UChar *src, const UChar *limit, uint16_t fcd16) { | |
1947 | UChar c, c2; | |
1948 | ||
1949 | /* | |
1950 | * find the first position in [src..limit[ after some cc==0 according to FCD data | |
1951 | * | |
1952 | * at the beginning of the loop, we have fcd16 from before src | |
1953 | * | |
1954 | * stop at positions: | |
1955 | * - after trail cc==0 | |
1956 | * - at the end of the source | |
1957 | * - before lead cc==0 | |
1958 | */ | |
1959 | for(;;) { | |
1960 | /* stop if trail cc==0 for the previous character */ | |
1961 | if((fcd16&0xff)==0) { | |
1962 | break; | |
1963 | } | |
1964 | ||
1965 | /* get c=*src - stop at end of string */ | |
1966 | if(src==limit) { | |
1967 | break; | |
1968 | } | |
1969 | c=*src; | |
1970 | ||
1971 | /* stop if lead cc==0 for this character */ | |
1972 | if(c<_NORM_MIN_WITH_LEAD_CC || (fcd16=_getFCD16(c))==0) { | |
1973 | break; /* catches terminating NUL, too */ | |
1974 | } | |
1975 | ||
1976 | if(!UTF_IS_FIRST_SURROGATE(c)) { | |
1977 | if(fcd16<=0xff) { | |
1978 | break; | |
1979 | } | |
1980 | ++src; | |
1981 | } else if((src+1)!=limit && (c2=*(src+1), UTF_IS_SECOND_SURROGATE(c2))) { | |
1982 | /* c is a lead surrogate, get the real fcd16 */ | |
1983 | fcd16=_getFCD16FromSurrogatePair(fcd16, c2); | |
1984 | if(fcd16<=0xff) { | |
1985 | break; | |
1986 | } | |
1987 | src+=2; | |
1988 | } else { | |
1989 | /* c is an unpaired first surrogate, lead cc==0 */ | |
1990 | break; | |
1991 | } | |
1992 | } | |
1993 | ||
1994 | return src; | |
1995 | } | |
1996 | ||
1997 | static uint8_t | |
1998 | _decomposeFCD(const UChar *src, const UChar *decompLimit, | |
1999 | UChar *dest, int32_t &destIndex, int32_t destCapacity, | |
2000 | const UnicodeSet *nx) { | |
2001 | const UChar *p; | |
2002 | uint32_t norm32; | |
2003 | int32_t reorderStartIndex, length; | |
2004 | UChar c, c2; | |
2005 | uint8_t cc, prevCC, trailCC; | |
2006 | ||
2007 | /* | |
2008 | * canonically decompose [src..decompLimit[ | |
2009 | * | |
2010 | * all characters in this range have some non-zero cc, | |
2011 | * directly or in decomposition, | |
2012 | * so that we do not need to check in the following for quick-check limits etc. | |
2013 | * | |
2014 | * there _are_ _no_ Hangul syllables or Jamos in here because they are FCD-safe (cc==0)! | |
2015 | * | |
2016 | * we also do not need to check for c==0 because we have an established decompLimit | |
2017 | */ | |
2018 | reorderStartIndex=destIndex; | |
2019 | prevCC=0; | |
2020 | ||
2021 | while(src<decompLimit) { | |
2022 | c=*src++; | |
2023 | norm32=_getNorm32(c); | |
2024 | if(isNorm32Regular(norm32)) { | |
2025 | c2=0; | |
2026 | length=1; | |
2027 | } else { | |
2028 | /* | |
2029 | * reminder: this function is called with [src..decompLimit[ | |
2030 | * not containing any Hangul/Jamo characters, | |
2031 | * therefore the only specials are lead surrogates | |
2032 | */ | |
2033 | /* c is a lead surrogate, get the real norm32 */ | |
2034 | if(src!=decompLimit && UTF_IS_SECOND_SURROGATE(c2=*src)) { | |
2035 | ++src; | |
2036 | length=2; | |
2037 | norm32=_getNorm32FromSurrogatePair(norm32, c2); | |
2038 | } else { | |
2039 | c2=0; | |
2040 | length=1; | |
2041 | norm32=0; | |
2042 | } | |
2043 | } | |
2044 | ||
2045 | /* get the decomposition and the lead and trail cc's */ | |
2046 | if(nx_contains(nx, c, c2)) { | |
2047 | /* excluded: norm32==0 */ | |
2048 | cc=trailCC=0; | |
2049 | p=NULL; | |
2050 | } else if((norm32&_NORM_QC_NFD)==0) { | |
2051 | /* c does not decompose */ | |
2052 | cc=trailCC=(uint8_t)(norm32>>_NORM_CC_SHIFT); | |
2053 | p=NULL; | |
2054 | } else { | |
2055 | /* c decomposes, get everything from the variable-length extra data */ | |
2056 | p=_decompose(norm32, length, cc, trailCC); | |
2057 | if(length==1) { | |
2058 | /* fastpath a single code unit from decomposition */ | |
2059 | c=*p; | |
2060 | c2=0; | |
2061 | p=NULL; | |
2062 | } | |
2063 | } | |
2064 | ||
2065 | /* append the decomposition to the destination buffer, assume length>0 */ | |
2066 | if((destIndex+length)<=destCapacity) { | |
2067 | UChar *reorderSplit=dest+destIndex; | |
2068 | if(p==NULL) { | |
2069 | /* fastpath: single code point */ | |
2070 | if(cc!=0 && cc<prevCC) { | |
2071 | /* (c, c2) is out of order with respect to the preceding text */ | |
2072 | destIndex+=length; | |
2073 | trailCC=_insertOrdered(dest+reorderStartIndex, reorderSplit, dest+destIndex, c, c2, cc); | |
2074 | } else { | |
2075 | /* just append (c, c2) */ | |
2076 | dest[destIndex++]=c; | |
2077 | if(c2!=0) { | |
2078 | dest[destIndex++]=c2; | |
2079 | } | |
2080 | } | |
2081 | } else { | |
2082 | /* general: multiple code points (ordered by themselves) from decomposition */ | |
2083 | if(cc!=0 && cc<prevCC) { | |
2084 | /* the decomposition is out of order with respect to the preceding text */ | |
2085 | destIndex+=length; | |
2086 | trailCC=_mergeOrdered(dest+reorderStartIndex, reorderSplit, p, p+length); | |
2087 | } else { | |
2088 | /* just append the decomposition */ | |
2089 | do { | |
2090 | dest[destIndex++]=*p++; | |
2091 | } while(--length>0); | |
2092 | } | |
2093 | } | |
2094 | } else { | |
2095 | /* buffer overflow */ | |
2096 | /* keep incrementing the destIndex for preflighting */ | |
2097 | destIndex+=length; | |
2098 | } | |
2099 | ||
2100 | prevCC=trailCC; | |
2101 | if(prevCC==0) { | |
2102 | reorderStartIndex=destIndex; | |
2103 | } | |
2104 | } | |
2105 | ||
2106 | return prevCC; | |
2107 | } | |
2108 | ||
2109 | static int32_t | |
2110 | unorm_makeFCD(UChar *dest, int32_t destCapacity, | |
2111 | const UChar *src, int32_t srcLength, | |
2112 | const UnicodeSet *nx, | |
2113 | UErrorCode *pErrorCode) { | |
2114 | const UChar *limit, *prevSrc, *decompStart; | |
2115 | int32_t destIndex, length; | |
2116 | UChar c, c2; | |
2117 | uint16_t fcd16; | |
2118 | int16_t prevCC, cc; | |
2119 | ||
2120 | if(!_haveData(*pErrorCode)) { | |
2121 | return 0; | |
2122 | } | |
2123 | ||
2124 | /* initialize */ | |
2125 | decompStart=src; | |
2126 | destIndex=0; | |
2127 | prevCC=0; | |
2128 | ||
2129 | /* avoid compiler warnings */ | |
2130 | c=0; | |
2131 | fcd16=0; | |
2132 | ||
2133 | if(srcLength>=0) { | |
2134 | /* string with length */ | |
2135 | limit=src+srcLength; | |
2136 | } else /* srcLength==-1 */ { | |
2137 | /* zero-terminated string */ | |
2138 | limit=NULL; | |
2139 | } | |
2140 | ||
2141 | U_ALIGN_CODE(16); | |
2142 | ||
2143 | for(;;) { | |
2144 | /* skip a run of code units below the minimum or with irrelevant data for the FCD check */ | |
2145 | prevSrc=src; | |
2146 | if(limit==NULL) { | |
2147 | for(;;) { | |
2148 | c=*src; | |
2149 | if(c<_NORM_MIN_WITH_LEAD_CC) { | |
2150 | if(c==0) { | |
2151 | break; | |
2152 | } | |
2153 | prevCC=(int16_t)-c; | |
2154 | } else if((fcd16=_getFCD16(c))==0) { | |
2155 | prevCC=0; | |
2156 | } else { | |
2157 | break; | |
2158 | } | |
2159 | ++src; | |
2160 | } | |
2161 | } else { | |
2162 | for(;;) { | |
2163 | if(src==limit) { | |
2164 | break; | |
2165 | } else if((c=*src)<_NORM_MIN_WITH_LEAD_CC) { | |
2166 | prevCC=(int16_t)-c; | |
2167 | } else if((fcd16=_getFCD16(c))==0) { | |
2168 | prevCC=0; | |
2169 | } else { | |
2170 | break; | |
2171 | } | |
2172 | ++src; | |
2173 | } | |
2174 | } | |
2175 | ||
2176 | /* | |
2177 | * prevCC has values from the following ranges: | |
2178 | * 0..0xff - the previous trail combining class | |
2179 | * <0 - the negative value of the previous code unit; | |
2180 | * that code unit was <_NORM_MIN_WITH_LEAD_CC and its _getFCD16() | |
2181 | * was deferred so that average text is checked faster | |
2182 | */ | |
2183 | ||
2184 | /* copy these code units all at once */ | |
2185 | if(src!=prevSrc) { | |
2186 | length=(int32_t)(src-prevSrc); | |
2187 | if((destIndex+length)<=destCapacity) { | |
2188 | uprv_memcpy(dest+destIndex, prevSrc, length*U_SIZEOF_UCHAR); | |
2189 | } | |
2190 | destIndex+=length; | |
2191 | prevSrc=src; | |
2192 | ||
2193 | /* prevCC<0 is only possible from the above loop, i.e., only if prevSrc<src */ | |
2194 | if(prevCC<0) { | |
2195 | /* the previous character was <_NORM_MIN_WITH_LEAD_CC, we need to get its trail cc */ | |
2196 | if(!nx_contains(nx, (UChar32)-prevCC)) { | |
2197 | prevCC=(int16_t)(_getFCD16((UChar)-prevCC)&0xff); | |
2198 | } else { | |
2199 | prevCC=0; /* excluded: fcd16==0 */ | |
2200 | } | |
2201 | ||
2202 | /* | |
2203 | * set a pointer to this below-U+0300 character; | |
2204 | * if prevCC==0 then it will moved to after this character below | |
2205 | */ | |
2206 | decompStart=prevSrc-1; | |
2207 | } | |
2208 | } | |
2209 | /* | |
2210 | * now: | |
2211 | * prevSrc==src - used later to adjust destIndex before decomposition | |
2212 | * prevCC>=0 | |
2213 | */ | |
2214 | ||
2215 | /* end of source reached? */ | |
2216 | if(limit==NULL ? c==0 : src==limit) { | |
2217 | break; | |
2218 | } | |
2219 | ||
2220 | /* set a pointer to after the last source position where prevCC==0 */ | |
2221 | if(prevCC==0) { | |
2222 | decompStart=prevSrc; | |
2223 | } | |
2224 | ||
2225 | /* c already contains *src and fcd16 is set for it, increment src */ | |
2226 | ++src; | |
2227 | ||
2228 | /* check one above-minimum, relevant code unit */ | |
2229 | if(UTF_IS_FIRST_SURROGATE(c)) { | |
2230 | /* c is a lead surrogate, get the real fcd16 */ | |
2231 | if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) { | |
2232 | ++src; | |
2233 | fcd16=_getFCD16FromSurrogatePair(fcd16, c2); | |
2234 | } else { | |
2235 | c2=0; | |
2236 | fcd16=0; | |
2237 | } | |
2238 | } else { | |
2239 | c2=0; | |
2240 | } | |
2241 | ||
2242 | /* we are looking at the character (c, c2) at [prevSrc..src[ */ | |
2243 | if(nx_contains(nx, c, c2)) { | |
2244 | fcd16=0; /* excluded: fcd16==0 */ | |
2245 | } | |
2246 | ||
2247 | /* check the combining order, get the lead cc */ | |
2248 | cc=(int16_t)(fcd16>>8); | |
2249 | if(cc==0 || cc>=prevCC) { | |
2250 | /* the order is ok */ | |
2251 | if(cc==0) { | |
2252 | decompStart=prevSrc; | |
2253 | } | |
2254 | prevCC=(int16_t)(fcd16&0xff); | |
2255 | ||
2256 | /* just append (c, c2) */ | |
2257 | length= c2==0 ? 1 : 2; | |
2258 | if((destIndex+length)<=destCapacity) { | |
2259 | dest[destIndex++]=c; | |
2260 | if(c2!=0) { | |
2261 | dest[destIndex++]=c2; | |
2262 | } | |
2263 | } else { | |
2264 | destIndex+=length; | |
2265 | } | |
2266 | } else { | |
2267 | /* | |
2268 | * back out the part of the source that we copied already but | |
2269 | * is now going to be decomposed; | |
2270 | * prevSrc is set to after what was copied | |
2271 | */ | |
2272 | destIndex-=(int32_t)(prevSrc-decompStart); | |
2273 | ||
2274 | /* | |
2275 | * find the part of the source that needs to be decomposed; | |
2276 | * to be safe and simple, decompose to before the next character with lead cc==0 | |
2277 | */ | |
2278 | src=_findSafeFCD(src, limit, fcd16); | |
2279 | ||
2280 | /* | |
2281 | * the source text does not fulfill the conditions for FCD; | |
2282 | * decompose and reorder a limited piece of the text | |
2283 | */ | |
2284 | prevCC=_decomposeFCD(decompStart, src, | |
2285 | dest, destIndex, destCapacity, | |
2286 | nx); | |
2287 | decompStart=src; | |
2288 | } | |
2289 | } | |
2290 | ||
2291 | return u_terminateUChars(dest, destCapacity, destIndex, pErrorCode); | |
2292 | } | |
2293 | ||
2294 | /* make NFC & NFKC ---------------------------------------------------------- */ | |
2295 | ||
2296 | /* get the composition properties of the next character */ | |
2297 | static inline uint32_t | |
2298 | _getNextCombining(UChar *&p, const UChar *limit, | |
2299 | UChar &c, UChar &c2, | |
2300 | uint16_t &combiningIndex, uint8_t &cc, | |
2301 | const UnicodeSet *nx) { | |
2302 | uint32_t norm32, combineFlags; | |
2303 | ||
2304 | /* get properties */ | |
2305 | c=*p++; | |
2306 | norm32=_getNorm32(c); | |
2307 | ||
2308 | /* preset output values for most characters */ | |
2309 | c2=0; | |
2310 | combiningIndex=0; | |
2311 | cc=0; | |
2312 | ||
2313 | if((norm32&(_NORM_CC_MASK|_NORM_COMBINES_ANY))==0) { | |
2314 | return 0; | |
2315 | } else { | |
2316 | if(isNorm32Regular(norm32)) { | |
2317 | /* set cc etc. below */ | |
2318 | } else if(isNorm32HangulOrJamo(norm32)) { | |
2319 | /* a compatibility decomposition contained Jamos */ | |
2320 | combiningIndex=(uint16_t)(0xfff0|(norm32>>_NORM_EXTRA_SHIFT)); | |
2321 | return norm32&_NORM_COMBINES_ANY; | |
2322 | } else { | |
2323 | /* c is a lead surrogate, get the real norm32 */ | |
2324 | if(p!=limit && UTF_IS_SECOND_SURROGATE(c2=*p)) { | |
2325 | ++p; | |
2326 | norm32=_getNorm32FromSurrogatePair(norm32, c2); | |
2327 | } else { | |
2328 | c2=0; | |
2329 | return 0; | |
2330 | } | |
2331 | } | |
2332 | ||
2333 | if(nx_contains(nx, c, c2)) { | |
2334 | return 0; /* excluded: norm32==0 */ | |
2335 | } | |
2336 | ||
2337 | cc=(uint8_t)(norm32>>_NORM_CC_SHIFT); | |
2338 | ||
2339 | combineFlags=norm32&_NORM_COMBINES_ANY; | |
2340 | if(combineFlags!=0) { | |
2341 | combiningIndex=*(_getExtraData(norm32)-1); | |
2342 | } | |
2343 | return combineFlags; | |
2344 | } | |
2345 | } | |
2346 | ||
2347 | /* | |
2348 | * given a composition-result starter (c, c2) - which means its cc==0, | |
2349 | * it combines forward, it has extra data, its norm32!=0, | |
2350 | * it is not a Hangul or Jamo, | |
2351 | * get just its combineFwdIndex | |
2352 | * | |
2353 | * norm32(c) is special if and only if c2!=0 | |
2354 | */ | |
2355 | static inline uint16_t | |
2356 | _getCombiningIndexFromStarter(UChar c, UChar c2) { | |
2357 | uint32_t norm32; | |
2358 | ||
2359 | norm32=_getNorm32(c); | |
2360 | if(c2!=0) { | |
2361 | norm32=_getNorm32FromSurrogatePair(norm32, c2); | |
2362 | } | |
2363 | return *(_getExtraData(norm32)-1); | |
2364 | } | |
2365 | ||
2366 | /* | |
2367 | * Find the recomposition result for | |
2368 | * a forward-combining character | |
2369 | * (specified with a pointer to its part of the combiningTable[]) | |
2370 | * and a backward-combining character | |
2371 | * (specified with its combineBackIndex). | |
2372 | * | |
2373 | * If these two characters combine, then set (value, value2) | |
2374 | * with the code unit(s) of the composition character. | |
2375 | * | |
2376 | * Return value: | |
2377 | * 0 do not combine | |
2378 | * 1 combine | |
2379 | * >1 combine, and the composition is a forward-combining starter | |
2380 | * | |
2381 | * See unormimp.h for a description of the composition table format. | |
2382 | */ | |
2383 | static inline uint16_t | |
2384 | _combine(const uint16_t *table, uint16_t combineBackIndex, | |
2385 | uint16_t &value, uint16_t &value2) { | |
2386 | uint16_t key; | |
2387 | ||
2388 | /* search in the starter's composition table */ | |
2389 | for(;;) { | |
2390 | key=*table++; | |
2391 | if(key>=combineBackIndex) { | |
2392 | break; | |
2393 | } | |
2394 | table+= *table&0x8000 ? 2 : 1; | |
2395 | } | |
2396 | ||
2397 | /* mask off bit 15, the last-entry-in-the-list flag */ | |
2398 | if((key&0x7fff)==combineBackIndex) { | |
2399 | /* found! combine! */ | |
2400 | value=*table; | |
2401 | ||
2402 | /* is the composition a starter that combines forward? */ | |
2403 | key=(uint16_t)((value&0x2000)+1); | |
2404 | ||
2405 | /* get the composition result code point from the variable-length result value */ | |
2406 | if(value&0x8000) { | |
2407 | if(value&0x4000) { | |
2408 | /* surrogate pair composition result */ | |
2409 | value=(uint16_t)((value&0x3ff)|0xd800); | |
2410 | value2=*(table+1); | |
2411 | } else { | |
2412 | /* BMP composition result U+2000..U+ffff */ | |
2413 | value=*(table+1); | |
2414 | value2=0; | |
2415 | } | |
2416 | } else { | |
2417 | /* BMP composition result U+0000..U+1fff */ | |
2418 | value&=0x1fff; | |
2419 | value2=0; | |
2420 | } | |
2421 | ||
2422 | return key; | |
2423 | } else { | |
2424 | /* not found */ | |
2425 | return 0; | |
2426 | } | |
2427 | } | |
2428 | ||
2429 | /* | |
2430 | * recompose the characters in [p..limit[ | |
2431 | * (which is in NFD - decomposed and canonically ordered), | |
2432 | * adjust limit, and return the trailing cc | |
2433 | * | |
2434 | * since for NFKC we may get Jamos in decompositions, we need to | |
2435 | * recompose those too | |
2436 | * | |
2437 | * note that recomposition never lengthens the text: | |
2438 | * any character consists of either one or two code units; | |
2439 | * a composition may contain at most one more code unit than the original starter, | |
2440 | * while the combining mark that is removed has at least one code unit | |
2441 | */ | |
2442 | static uint8_t | |
2443 | _recompose(UChar *p, UChar *&limit, const UnicodeSet *nx) { | |
2444 | UChar *starter, *pRemove, *q, *r; | |
2445 | uint32_t combineFlags; | |
2446 | UChar c, c2; | |
2447 | uint16_t combineFwdIndex, combineBackIndex; | |
2448 | uint16_t result, value, value2; | |
2449 | uint8_t cc, prevCC; | |
2450 | UBool starterIsSupplementary; | |
2451 | ||
2452 | starter=NULL; /* no starter */ | |
2453 | combineFwdIndex=0; /* will not be used until starter!=NULL - avoid compiler warnings */ | |
2454 | combineBackIndex=0; /* will always be set if combineFlags!=0 - avoid compiler warnings */ | |
2455 | value=value2=0; /* always set by _combine() before used - avoid compiler warnings */ | |
2456 | starterIsSupplementary=FALSE; /* will not be used until starter!=NULL - avoid compiler warnings */ | |
2457 | prevCC=0; | |
2458 | ||
2459 | for(;;) { | |
2460 | combineFlags=_getNextCombining(p, limit, c, c2, combineBackIndex, cc, nx); | |
2461 | if((combineFlags&_NORM_COMBINES_BACK) && starter!=NULL) { | |
2462 | if(combineBackIndex&0x8000) { | |
2463 | /* c is a Jamo V/T, see if we can compose it with the previous character */ | |
2464 | pRemove=NULL; /* NULL while no Hangul composition */ | |
2465 | c2=*starter; | |
2466 | if(combineBackIndex==0xfff2) { | |
2467 | /* Jamo V, compose with previous Jamo L and following Jamo T */ | |
2468 | c2=(UChar)(c2-JAMO_L_BASE); | |
2469 | if(c2<JAMO_L_COUNT) { | |
2470 | pRemove=p-1; | |
2471 | c=(UChar)(HANGUL_BASE+(c2*JAMO_V_COUNT+(c-JAMO_V_BASE))*JAMO_T_COUNT); | |
2472 | if(p!=limit && (c2=(UChar)(*p-JAMO_T_BASE))<JAMO_T_COUNT) { | |
2473 | ++p; | |
2474 | c+=c2; | |
2475 | } | |
2476 | if(!nx_contains(nx, c)) { | |
2477 | *starter=c; | |
2478 | } else { | |
2479 | /* excluded */ | |
2480 | if(!isHangulWithoutJamoT(c)) { | |
2481 | --p; /* undo the ++p from reading the Jamo T */ | |
2482 | } | |
2483 | /* c is modified but not used any more -- c=*(p-1); -- re-read the Jamo V/T */ | |
2484 | pRemove=NULL; | |
2485 | } | |
2486 | } | |
2487 | #if 0 | |
2488 | /* | |
2489 | * The following is disabled with #if 0 because it can not occur: | |
2490 | * Since the input is in NFD, there are no Hangul LV syllables that | |
2491 | * a Jamo T could combine with. | |
2492 | * All Jamo Ts are combined above when handling Jamo Vs. | |
2493 | */ | |
2494 | } else { | |
2495 | /* Jamo T, compose with previous Hangul that does not have a Jamo T */ | |
2496 | if(isHangulWithoutJamoT(c2)) { | |
2497 | pRemove=p-1; | |
2498 | *starter=(UChar)(c2+(c-JAMO_T_BASE)); | |
2499 | } | |
2500 | #endif | |
2501 | } | |
2502 | ||
2503 | if(pRemove!=NULL) { | |
2504 | /* remove the Jamo(s) */ | |
2505 | q=pRemove; | |
2506 | r=p; | |
2507 | while(r<limit) { | |
2508 | *q++=*r++; | |
2509 | } | |
2510 | p=pRemove; | |
2511 | limit=q; | |
2512 | } | |
2513 | ||
2514 | c2=0; /* c2 held *starter temporarily */ | |
2515 | ||
2516 | /* | |
2517 | * now: cc==0 and the combining index does not include "forward" -> | |
2518 | * the rest of the loop body will reset starter to NULL; | |
2519 | * technically, a composed Hangul syllable is a starter, but it | |
2520 | * does not combine forward now that we have consumed all eligible Jamos; | |
2521 | * for Jamo V/T, combineFlags does not contain _NORM_COMBINES_FWD | |
2522 | */ | |
2523 | ||
2524 | } else if( | |
2525 | /* the starter is not a Jamo V/T and */ | |
2526 | !(combineFwdIndex&0x8000) && | |
2527 | /* the combining mark is not blocked and */ | |
2528 | (prevCC<cc || prevCC==0) && | |
2529 | /* the starter and the combining mark (c, c2) do combine and */ | |
2530 | 0!=(result=_combine(combiningTable+combineFwdIndex, combineBackIndex, value, value2)) && | |
2531 | /* the composition result is not excluded */ | |
2532 | !nx_contains(nx, value, value2) | |
2533 | ) { | |
2534 | /* replace the starter with the composition, remove the combining mark */ | |
2535 | pRemove= c2==0 ? p-1 : p-2; /* pointer to the combining mark */ | |
2536 | ||
2537 | /* replace the starter with the composition */ | |
2538 | *starter=(UChar)value; | |
2539 | if(starterIsSupplementary) { | |
2540 | if(value2!=0) { | |
2541 | /* both are supplementary */ | |
2542 | *(starter+1)=(UChar)value2; | |
2543 | } else { | |
2544 | /* the composition is shorter than the starter, move the intermediate characters forward one */ | |
2545 | starterIsSupplementary=FALSE; | |
2546 | q=starter+1; | |
2547 | r=q+1; | |
2548 | while(r<pRemove) { | |
2549 | *q++=*r++; | |
2550 | } | |
2551 | --pRemove; | |
2552 | } | |
2553 | } else if(value2!=0) { | |
2554 | /* the composition is longer than the starter, move the intermediate characters back one */ | |
2555 | starterIsSupplementary=TRUE; | |
2556 | ++starter; /* temporarily increment for the loop boundary */ | |
2557 | q=pRemove; | |
2558 | r=++pRemove; | |
2559 | while(starter<q) { | |
2560 | *--r=*--q; | |
2561 | } | |
2562 | *starter=(UChar)value2; | |
2563 | --starter; /* undo the temporary increment */ | |
2564 | /* } else { both are on the BMP, nothing more to do */ | |
2565 | } | |
2566 | ||
2567 | /* remove the combining mark by moving the following text over it */ | |
2568 | if(pRemove<p) { | |
2569 | q=pRemove; | |
2570 | r=p; | |
2571 | while(r<limit) { | |
2572 | *q++=*r++; | |
2573 | } | |
2574 | p=pRemove; | |
2575 | limit=q; | |
2576 | } | |
2577 | ||
2578 | /* keep prevCC because we removed the combining mark */ | |
2579 | ||
2580 | /* done? */ | |
2581 | if(p==limit) { | |
2582 | return prevCC; | |
2583 | } | |
2584 | ||
2585 | /* is the composition a starter that combines forward? */ | |
2586 | if(result>1) { | |
2587 | combineFwdIndex=_getCombiningIndexFromStarter((UChar)value, (UChar)value2); | |
2588 | } else { | |
2589 | starter=NULL; | |
2590 | } | |
2591 | ||
2592 | /* we combined and set prevCC, continue with looking for compositions */ | |
2593 | continue; | |
2594 | } | |
2595 | } | |
2596 | ||
2597 | /* no combination this time */ | |
2598 | prevCC=cc; | |
2599 | if(p==limit) { | |
2600 | return prevCC; | |
2601 | } | |
2602 | ||
2603 | /* if (c, c2) did not combine, then check if it is a starter */ | |
2604 | if(cc==0) { | |
2605 | /* found a new starter; combineFlags==0 if (c, c2) is excluded */ | |
2606 | if(combineFlags&_NORM_COMBINES_FWD) { | |
2607 | /* it may combine with something, prepare for it */ | |
2608 | if(c2==0) { | |
2609 | starterIsSupplementary=FALSE; | |
2610 | starter=p-1; | |
2611 | } else { | |
2612 | starterIsSupplementary=TRUE; | |
2613 | starter=p-2; | |
2614 | } | |
2615 | combineFwdIndex=combineBackIndex; | |
2616 | } else { | |
2617 | /* it will not combine with anything */ | |
2618 | starter=NULL; | |
2619 | } | |
2620 | } | |
2621 | } | |
2622 | } | |
2623 | ||
2624 | /* find the last true starter in [start..src[ and return the pointer to it */ | |
2625 | static const UChar * | |
2626 | _findPreviousStarter(const UChar *start, const UChar *src, | |
2627 | uint32_t ccOrQCMask, uint32_t decompQCMask, UChar minNoMaybe) { | |
2628 | uint32_t norm32; | |
2629 | UChar c, c2; | |
2630 | ||
2631 | while(start<src) { | |
2632 | norm32=_getPrevNorm32(start, src, minNoMaybe, ccOrQCMask|decompQCMask, c, c2); | |
2633 | if(_isTrueStarter(norm32, ccOrQCMask, decompQCMask)) { | |
2634 | break; | |
2635 | } | |
2636 | } | |
2637 | return src; | |
2638 | } | |
2639 | ||
2640 | /* find the first true starter in [src..limit[ and return the pointer to it */ | |
2641 | static const UChar * | |
2642 | _findNextStarter(const UChar *src, const UChar *limit, | |
2643 | uint32_t qcMask, uint32_t decompQCMask, UChar minNoMaybe) { | |
2644 | const UChar *p; | |
2645 | uint32_t norm32, ccOrQCMask; | |
2646 | int32_t length; | |
2647 | UChar c, c2; | |
2648 | uint8_t cc, trailCC; | |
2649 | ||
2650 | ccOrQCMask=_NORM_CC_MASK|qcMask; | |
2651 | ||
2652 | for(;;) { | |
2653 | if(src==limit) { | |
2654 | break; /* end of string */ | |
2655 | } | |
2656 | c=*src; | |
2657 | if(c<minNoMaybe) { | |
2658 | break; /* catches NUL terminater, too */ | |
2659 | } | |
2660 | ||
2661 | norm32=_getNorm32(c); | |
2662 | if((norm32&ccOrQCMask)==0) { | |
2663 | break; /* true starter */ | |
2664 | } | |
2665 | ||
2666 | if(isNorm32LeadSurrogate(norm32)) { | |
2667 | /* c is a lead surrogate, get the real norm32 */ | |
2668 | if((src+1)==limit || !UTF_IS_SECOND_SURROGATE(c2=*(src+1))) { | |
2669 | break; /* unmatched first surrogate: counts as a true starter */ | |
2670 | } | |
2671 | norm32=_getNorm32FromSurrogatePair(norm32, c2); | |
2672 | ||
2673 | if((norm32&ccOrQCMask)==0) { | |
2674 | break; /* true starter */ | |
2675 | } | |
2676 | } else { | |
2677 | c2=0; | |
2678 | } | |
2679 | ||
2680 | /* (c, c2) is not a true starter but its decomposition may be */ | |
2681 | if(norm32&decompQCMask) { | |
2682 | /* (c, c2) decomposes, get everything from the variable-length extra data */ | |
2683 | p=_decompose(norm32, decompQCMask, length, cc, trailCC); | |
2684 | ||
2685 | /* get the first character's norm32 to check if it is a true starter */ | |
2686 | if(cc==0 && (_getNorm32(p, qcMask)&qcMask)==0) { | |
2687 | break; /* true starter */ | |
2688 | } | |
2689 | } | |
2690 | ||
2691 | src+= c2==0 ? 1 : 2; /* not a true starter, continue */ | |
2692 | } | |
2693 | ||
2694 | return src; | |
2695 | } | |
2696 | ||
2697 | /* decompose and recompose [prevStarter..src[ */ | |
2698 | static const UChar * | |
2699 | _composePart(UChar *stackBuffer, UChar *&buffer, int32_t &bufferCapacity, int32_t &length, | |
2700 | const UChar *prevStarter, const UChar *src, | |
2701 | uint32_t qcMask, uint8_t &prevCC, | |
2702 | const UnicodeSet *nx, | |
2703 | UErrorCode *pErrorCode) { | |
2704 | UChar *recomposeLimit; | |
2705 | uint8_t trailCC; | |
2706 | UBool compat; | |
2707 | ||
2708 | compat=(UBool)((qcMask&_NORM_QC_NFKC)!=0); | |
2709 | ||
2710 | /* decompose [prevStarter..src[ */ | |
2711 | length=_decompose(buffer, bufferCapacity, | |
2712 | prevStarter, src-prevStarter, | |
2713 | compat, nx, | |
2714 | trailCC); | |
2715 | if(length>bufferCapacity) { | |
2716 | if(!u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity, 2*length, 0)) { | |
2717 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
2718 | return NULL; | |
2719 | } | |
2720 | length=_decompose(buffer, bufferCapacity, | |
2721 | prevStarter, src-prevStarter, | |
2722 | compat, nx, | |
2723 | trailCC); | |
2724 | } | |
2725 | ||
2726 | /* recompose the decomposition */ | |
2727 | recomposeLimit=buffer+length; | |
2728 | if(length>=2) { | |
2729 | prevCC=_recompose(buffer, recomposeLimit, nx); | |
2730 | } | |
2731 | ||
2732 | /* return with a pointer to the recomposition and its length */ | |
2733 | length=recomposeLimit-buffer; | |
2734 | return buffer; | |
2735 | } | |
2736 | ||
2737 | static inline UBool | |
2738 | _composeHangul(UChar prev, UChar c, uint32_t norm32, const UChar *&src, const UChar *limit, | |
2739 | UBool compat, UChar *dest, const UnicodeSet *nx) { | |
2740 | if(isJamoVTNorm32JamoV(norm32)) { | |
2741 | /* c is a Jamo V, compose with previous Jamo L and following Jamo T */ | |
2742 | prev=(UChar)(prev-JAMO_L_BASE); | |
2743 | if(prev<JAMO_L_COUNT) { | |
2744 | c=(UChar)(HANGUL_BASE+(prev*JAMO_V_COUNT+(c-JAMO_V_BASE))*JAMO_T_COUNT); | |
2745 | ||
2746 | /* check if the next character is a Jamo T (normal or compatibility) */ | |
2747 | if(src!=limit) { | |
2748 | UChar next, t; | |
2749 | ||
2750 | next=*src; | |
2751 | if((t=(UChar)(next-JAMO_T_BASE))<JAMO_T_COUNT) { | |
2752 | /* normal Jamo T */ | |
2753 | ++src; | |
2754 | c+=t; | |
2755 | } else if(compat) { | |
2756 | /* if NFKC, then check for compatibility Jamo T (BMP only) */ | |
2757 | norm32=_getNorm32(next); | |
2758 | if(isNorm32Regular(norm32) && (norm32&_NORM_QC_NFKD)) { | |
2759 | const UChar *p; | |
2760 | int32_t length; | |
2761 | uint8_t cc, trailCC; | |
2762 | ||
2763 | p=_decompose(norm32, _NORM_QC_NFKD, length, cc, trailCC); | |
2764 | if(length==1 && (t=(UChar)(*p-JAMO_T_BASE))<JAMO_T_COUNT) { | |
2765 | /* compatibility Jamo T */ | |
2766 | ++src; | |
2767 | c+=t; | |
2768 | } | |
2769 | } | |
2770 | } | |
2771 | } | |
2772 | if(nx_contains(nx, c)) { | |
2773 | if(!isHangulWithoutJamoT(c)) { | |
2774 | --src; /* undo ++src from reading the Jamo T */ | |
2775 | } | |
2776 | return FALSE; | |
2777 | } | |
2778 | if(dest!=0) { | |
2779 | *dest=c; | |
2780 | } | |
2781 | return TRUE; | |
2782 | } | |
2783 | } else if(isHangulWithoutJamoT(prev)) { | |
2784 | /* c is a Jamo T, compose with previous Hangul LV that does not contain a Jamo T */ | |
2785 | c=(UChar)(prev+(c-JAMO_T_BASE)); | |
2786 | if(nx_contains(nx, c)) { | |
2787 | return FALSE; | |
2788 | } | |
2789 | if(dest!=0) { | |
2790 | *dest=c; | |
2791 | } | |
2792 | return TRUE; | |
2793 | } | |
2794 | return FALSE; | |
2795 | } | |
2796 | ||
2797 | static int32_t | |
2798 | _compose(UChar *dest, int32_t destCapacity, | |
2799 | const UChar *src, int32_t srcLength, | |
2800 | UBool compat, const UnicodeSet *nx, | |
2801 | UErrorCode *pErrorCode) { | |
2802 | UChar stackBuffer[_STACK_BUFFER_CAPACITY]; | |
2803 | UChar *buffer; | |
2804 | int32_t bufferCapacity; | |
2805 | ||
2806 | const UChar *limit, *prevSrc, *prevStarter; | |
2807 | uint32_t norm32, ccOrQCMask, qcMask; | |
2808 | int32_t destIndex, reorderStartIndex, length; | |
2809 | UChar c, c2, minNoMaybe; | |
2810 | uint8_t cc, prevCC; | |
2811 | ||
2812 | if(!compat) { | |
2813 | minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE]; | |
2814 | qcMask=_NORM_QC_NFC; | |
2815 | } else { | |
2816 | minNoMaybe=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE]; | |
2817 | qcMask=_NORM_QC_NFKC; | |
2818 | } | |
2819 | ||
2820 | /* initialize */ | |
2821 | buffer=stackBuffer; | |
2822 | bufferCapacity=_STACK_BUFFER_CAPACITY; | |
2823 | ||
2824 | /* | |
2825 | * prevStarter points to the last character before the current one | |
2826 | * that is a "true" starter with cc==0 and quick check "yes". | |
2827 | * | |
2828 | * prevStarter will be used instead of looking for a true starter | |
2829 | * while incrementally decomposing [prevStarter..prevSrc[ | |
2830 | * in _composePart(). Having a good prevStarter allows to just decompose | |
2831 | * the entire [prevStarter..prevSrc[. | |
2832 | * | |
2833 | * When _composePart() backs out from prevSrc back to prevStarter, | |
2834 | * then it also backs out destIndex by the same amount. | |
2835 | * Therefore, at all times, the (prevSrc-prevStarter) source units | |
2836 | * must correspond 1:1 to destination units counted with destIndex, | |
2837 | * except for reordering. | |
2838 | * This is true for the qc "yes" characters copied in the fast loop, | |
2839 | * and for pure reordering. | |
2840 | * prevStarter must be set forward to src when this is not true: | |
2841 | * In _composePart() and after composing a Hangul syllable. | |
2842 | * | |
2843 | * This mechanism relies on the assumption that the decomposition of a true starter | |
2844 | * also begins with a true starter. gennorm/store.c checks for this. | |
2845 | */ | |
2846 | prevStarter=src; | |
2847 | ||
2848 | ccOrQCMask=_NORM_CC_MASK|qcMask; | |
2849 | destIndex=reorderStartIndex=0; | |
2850 | prevCC=0; | |
2851 | ||
2852 | /* avoid compiler warnings */ | |
2853 | norm32=0; | |
2854 | c=0; | |
2855 | ||
2856 | if(srcLength>=0) { | |
2857 | /* string with length */ | |
2858 | limit=src+srcLength; | |
2859 | } else /* srcLength==-1 */ { | |
2860 | /* zero-terminated string */ | |
2861 | limit=NULL; | |
2862 | } | |
2863 | ||
2864 | U_ALIGN_CODE(16); | |
2865 | ||
2866 | for(;;) { | |
2867 | /* count code units below the minimum or with irrelevant data for the quick check */ | |
2868 | prevSrc=src; | |
2869 | if(limit==NULL) { | |
2870 | while((c=*src)<minNoMaybe ? c!=0 : ((norm32=_getNorm32(c))&ccOrQCMask)==0) { | |
2871 | prevCC=0; | |
2872 | ++src; | |
2873 | } | |
2874 | } else { | |
2875 | while(src!=limit && ((c=*src)<minNoMaybe || ((norm32=_getNorm32(c))&ccOrQCMask)==0)) { | |
2876 | prevCC=0; | |
2877 | ++src; | |
2878 | } | |
2879 | } | |
2880 | ||
2881 | /* copy these code units all at once */ | |
2882 | if(src!=prevSrc) { | |
2883 | length=(int32_t)(src-prevSrc); | |
2884 | if((destIndex+length)<=destCapacity) { | |
2885 | uprv_memcpy(dest+destIndex, prevSrc, length*U_SIZEOF_UCHAR); | |
2886 | } | |
2887 | destIndex+=length; | |
2888 | reorderStartIndex=destIndex; | |
2889 | ||
2890 | /* set prevStarter to the last character in the quick check loop */ | |
2891 | prevStarter=src-1; | |
2892 | if(UTF_IS_SECOND_SURROGATE(*prevStarter) && prevSrc<prevStarter && UTF_IS_FIRST_SURROGATE(*(prevStarter-1))) { | |
2893 | --prevStarter; | |
2894 | } | |
2895 | ||
2896 | prevSrc=src; | |
2897 | } | |
2898 | ||
2899 | /* end of source reached? */ | |
2900 | if(limit==NULL ? c==0 : src==limit) { | |
2901 | break; | |
2902 | } | |
2903 | ||
2904 | /* c already contains *src and norm32 is set for it, increment src */ | |
2905 | ++src; | |
2906 | ||
2907 | /* | |
2908 | * source buffer pointers: | |
2909 | * | |
2910 | * all done quick check current char not yet | |
2911 | * "yes" but (c, c2) processed | |
2912 | * may combine | |
2913 | * forward | |
2914 | * [-------------[-------------[-------------[-------------[ | |
2915 | * | | | | | | |
2916 | * start prevStarter prevSrc src limit | |
2917 | * | |
2918 | * | |
2919 | * destination buffer pointers and indexes: | |
2920 | * | |
2921 | * all done might take not filled yet | |
2922 | * characters for | |
2923 | * reordering | |
2924 | * [-------------[-------------[-------------[ | |
2925 | * | | | | | |
2926 | * dest reorderStartIndex destIndex destCapacity | |
2927 | */ | |
2928 | ||
2929 | /* check one above-minimum, relevant code unit */ | |
2930 | /* | |
2931 | * norm32 is for c=*(src-1), and the quick check flag is "no" or "maybe", and/or cc!=0 | |
2932 | * check for Jamo V/T, then for surrogates and regular characters | |
2933 | * c is not a Hangul syllable or Jamo L because | |
2934 | * they are not marked with no/maybe for NFC & NFKC (and their cc==0) | |
2935 | */ | |
2936 | if(isNorm32HangulOrJamo(norm32)) { | |
2937 | /* | |
2938 | * c is a Jamo V/T: | |
2939 | * try to compose with the previous character, Jamo V also with a following Jamo T, | |
2940 | * and set values here right now in case we just continue with the main loop | |
2941 | */ | |
2942 | prevCC=cc=0; | |
2943 | reorderStartIndex=destIndex; | |
2944 | ||
2945 | if( | |
2946 | destIndex>0 && | |
2947 | _composeHangul( | |
2948 | *(prevSrc-1), c, norm32, src, limit, compat, | |
2949 | destIndex<=destCapacity ? dest+(destIndex-1) : 0, | |
2950 | nx) | |
2951 | ) { | |
2952 | prevStarter=src; | |
2953 | continue; | |
2954 | } | |
2955 | ||
2956 | /* the Jamo V/T did not compose into a Hangul syllable, just append to dest */ | |
2957 | c2=0; | |
2958 | length=1; | |
2959 | prevStarter=prevSrc; | |
2960 | } else { | |
2961 | if(isNorm32Regular(norm32)) { | |
2962 | c2=0; | |
2963 | length=1; | |
2964 | } else { | |
2965 | /* c is a lead surrogate, get the real norm32 */ | |
2966 | if(src!=limit && UTF_IS_SECOND_SURROGATE(c2=*src)) { | |
2967 | ++src; | |
2968 | length=2; | |
2969 | norm32=_getNorm32FromSurrogatePair(norm32, c2); | |
2970 | } else { | |
2971 | /* c is an unpaired lead surrogate, nothing to do */ | |
2972 | c2=0; | |
2973 | length=1; | |
2974 | norm32=0; | |
2975 | } | |
2976 | } | |
2977 | ||
2978 | /* we are looking at the character (c, c2) at [prevSrc..src[ */ | |
2979 | if(nx_contains(nx, c, c2)) { | |
2980 | /* excluded: norm32==0 */ | |
2981 | cc=0; | |
2982 | } else if((norm32&qcMask)==0) { | |
2983 | cc=(uint8_t)(norm32>>_NORM_CC_SHIFT); | |
2984 | } else { | |
2985 | const UChar *p; | |
2986 | uint32_t decompQCMask; | |
2987 | ||
2988 | /* | |
2989 | * find appropriate boundaries around this character, | |
2990 | * decompose the source text from between the boundaries, | |
2991 | * and recompose it | |
2992 | * | |
2993 | * this puts the intermediate text into the side buffer because | |
2994 | * it might be longer than the recomposition end result, | |
2995 | * or the destination buffer may be too short or missing | |
2996 | * | |
2997 | * note that destIndex may be adjusted backwards to account | |
2998 | * for source text that passed the quick check but needed to | |
2999 | * take part in the recomposition | |
3000 | */ | |
3001 | decompQCMask=(qcMask<<2)&0xf; /* decomposition quick check mask */ | |
3002 | ||
3003 | /* | |
3004 | * find the last true starter in [prevStarter..src[ | |
3005 | * it is either the decomposition of the current character (at prevSrc), | |
3006 | * or prevStarter | |
3007 | */ | |
3008 | if(_isTrueStarter(norm32, ccOrQCMask, decompQCMask)) { | |
3009 | prevStarter=prevSrc; | |
3010 | } else { | |
3011 | /* adjust destIndex: back out what had been copied with qc "yes" */ | |
3012 | destIndex-=(int32_t)(prevSrc-prevStarter); | |
3013 | } | |
3014 | ||
3015 | /* find the next true starter in [src..limit[ - modifies src to point to the next starter */ | |
3016 | src=_findNextStarter(src, limit, qcMask, decompQCMask, minNoMaybe); | |
3017 | ||
3018 | /* compose [prevStarter..src[ */ | |
3019 | p=_composePart(stackBuffer, buffer, bufferCapacity, | |
3020 | length, /* output */ | |
3021 | prevStarter, src, | |
3022 | qcMask, | |
3023 | prevCC, /* output */ | |
3024 | nx, | |
3025 | pErrorCode); | |
3026 | ||
3027 | if(p==NULL) { | |
3028 | destIndex=0; /* an error occurred (out of memory) */ | |
3029 | break; | |
3030 | } | |
3031 | ||
3032 | /* append the recomposed buffer contents to the destination buffer */ | |
3033 | if((destIndex+length)<=destCapacity) { | |
3034 | while(length>0) { | |
3035 | dest[destIndex++]=*p++; | |
3036 | --length; | |
3037 | } | |
3038 | } else { | |
3039 | /* buffer overflow */ | |
3040 | /* keep incrementing the destIndex for preflighting */ | |
3041 | destIndex+=length; | |
3042 | } | |
3043 | ||
3044 | /* set the next starter */ | |
3045 | prevStarter=src; | |
3046 | ||
3047 | continue; | |
3048 | } | |
3049 | } | |
3050 | ||
3051 | /* append the single code point (c, c2) to the destination buffer */ | |
3052 | if((destIndex+length)<=destCapacity) { | |
3053 | if(cc!=0 && cc<prevCC) { | |
3054 | /* (c, c2) is out of order with respect to the preceding text */ | |
3055 | UChar *reorderSplit=dest+destIndex; | |
3056 | destIndex+=length; | |
3057 | prevCC=_insertOrdered(dest+reorderStartIndex, reorderSplit, dest+destIndex, c, c2, cc); | |
3058 | } else { | |
3059 | /* just append (c, c2) */ | |
3060 | dest[destIndex++]=c; | |
3061 | if(c2!=0) { | |
3062 | dest[destIndex++]=c2; | |
3063 | } | |
3064 | prevCC=cc; | |
3065 | } | |
3066 | } else { | |
3067 | /* buffer overflow */ | |
3068 | /* keep incrementing the destIndex for preflighting */ | |
3069 | destIndex+=length; | |
3070 | prevCC=cc; | |
3071 | } | |
3072 | } | |
3073 | ||
3074 | /* cleanup */ | |
3075 | if(buffer!=stackBuffer) { | |
3076 | uprv_free(buffer); | |
3077 | } | |
3078 | ||
3079 | return destIndex; | |
3080 | } | |
3081 | ||
3082 | U_CAPI int32_t U_EXPORT2 | |
3083 | unorm_compose(UChar *dest, int32_t destCapacity, | |
3084 | const UChar *src, int32_t srcLength, | |
3085 | UBool compat, int32_t options, | |
3086 | UErrorCode *pErrorCode) { | |
3087 | const UnicodeSet *nx; | |
3088 | int32_t destIndex; | |
3089 | ||
3090 | if(!_haveData(*pErrorCode)) { | |
3091 | return 0; | |
3092 | } | |
3093 | ||
3094 | nx=getNX(options, *pErrorCode); | |
3095 | if(U_FAILURE(*pErrorCode)) { | |
3096 | return 0; | |
3097 | } | |
3098 | ||
3099 | destIndex=_compose(dest, destCapacity, | |
3100 | src, srcLength, | |
3101 | compat, nx, | |
3102 | pErrorCode); | |
3103 | ||
3104 | return u_terminateUChars(dest, destCapacity, destIndex, pErrorCode); | |
3105 | } | |
3106 | ||
3107 | /* normalize() API ---------------------------------------------------------- */ | |
3108 | ||
3109 | /** | |
3110 | * Internal API for normalizing. | |
3111 | * Does not check for bad input. | |
3112 | * Requires _haveData() to be true. | |
3113 | * @internal | |
3114 | */ | |
3115 | static int32_t | |
3116 | unorm_internalNormalize(UChar *dest, int32_t destCapacity, | |
3117 | const UChar *src, int32_t srcLength, | |
3118 | UNormalizationMode mode, const UnicodeSet *nx, | |
3119 | UErrorCode *pErrorCode) { | |
3120 | int32_t destLength; | |
3121 | uint8_t trailCC; | |
3122 | ||
3123 | switch(mode) { | |
3124 | case UNORM_NFD: | |
3125 | destLength=_decompose(dest, destCapacity, | |
3126 | src, srcLength, | |
3127 | FALSE, nx, trailCC); | |
3128 | break; | |
3129 | case UNORM_NFKD: | |
3130 | destLength=_decompose(dest, destCapacity, | |
3131 | src, srcLength, | |
3132 | TRUE, nx, trailCC); | |
3133 | break; | |
3134 | case UNORM_NFC: | |
3135 | destLength=_compose(dest, destCapacity, | |
3136 | src, srcLength, | |
3137 | FALSE, nx, pErrorCode); | |
3138 | break; | |
3139 | case UNORM_NFKC: | |
3140 | destLength=_compose(dest, destCapacity, | |
3141 | src, srcLength, | |
3142 | TRUE, nx, pErrorCode); | |
3143 | break; | |
3144 | case UNORM_FCD: | |
3145 | return unorm_makeFCD(dest, destCapacity, | |
3146 | src, srcLength, | |
3147 | nx, | |
3148 | pErrorCode); | |
3149 | case UNORM_NONE: | |
3150 | /* just copy the string */ | |
3151 | if(srcLength==-1) { | |
3152 | srcLength=u_strlen(src); | |
3153 | } | |
3154 | if(srcLength>0 && srcLength<=destCapacity) { | |
3155 | uprv_memcpy(dest, src, srcLength*U_SIZEOF_UCHAR); | |
3156 | } | |
3157 | destLength=srcLength; | |
3158 | break; | |
3159 | default: | |
3160 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
3161 | return 0; | |
3162 | } | |
3163 | ||
3164 | return u_terminateUChars(dest, destCapacity, destLength, pErrorCode); | |
3165 | } | |
3166 | ||
3167 | /** | |
3168 | * Internal API for normalizing. | |
3169 | * Does not check for bad input. | |
3170 | * @internal | |
3171 | */ | |
3172 | U_CAPI int32_t U_EXPORT2 | |
3173 | unorm_internalNormalize(UChar *dest, int32_t destCapacity, | |
3174 | const UChar *src, int32_t srcLength, | |
3175 | UNormalizationMode mode, int32_t options, | |
3176 | UErrorCode *pErrorCode) { | |
3177 | const UnicodeSet *nx; | |
3178 | ||
3179 | if(!_haveData(*pErrorCode)) { | |
3180 | return 0; | |
3181 | } | |
3182 | ||
3183 | nx=getNX(options, *pErrorCode); | |
3184 | if(U_FAILURE(*pErrorCode)) { | |
3185 | return 0; | |
3186 | } | |
3187 | ||
3188 | return unorm_internalNormalize(dest, destCapacity, | |
3189 | src, srcLength, | |
3190 | mode, nx, | |
3191 | pErrorCode); | |
3192 | } | |
3193 | ||
3194 | /** Public API for normalizing. */ | |
3195 | U_CAPI int32_t U_EXPORT2 | |
3196 | unorm_normalize(const UChar *src, int32_t srcLength, | |
3197 | UNormalizationMode mode, int32_t options, | |
3198 | UChar *dest, int32_t destCapacity, | |
3199 | UErrorCode *pErrorCode) { | |
3200 | /* check argument values */ | |
3201 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | |
3202 | return 0; | |
3203 | } | |
3204 | ||
3205 | if( destCapacity<0 || (dest==NULL && destCapacity>0) || | |
3206 | src==NULL || srcLength<-1 | |
3207 | ) { | |
3208 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
3209 | return 0; | |
3210 | } | |
3211 | ||
3212 | /* check for overlapping src and destination */ | |
3213 | if( dest!=NULL && | |
3214 | ((src>=dest && src<(dest+destCapacity)) || | |
3215 | (srcLength>0 && dest>=src && dest<(src+srcLength))) | |
3216 | ) { | |
3217 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
3218 | return 0; | |
3219 | } | |
3220 | ||
3221 | return unorm_internalNormalize(dest, destCapacity, | |
3222 | src, srcLength, | |
3223 | mode, options, | |
3224 | pErrorCode); | |
3225 | } | |
3226 | ||
3227 | ||
3228 | /* iteration functions ------------------------------------------------------ */ | |
3229 | ||
3230 | /* | |
3231 | * These iteration functions are the core implementations of the | |
3232 | * Normalizer class iteration API. | |
3233 | * They read from a UCharIterator into their own buffer | |
3234 | * and normalize into the Normalizer iteration buffer. | |
3235 | * Normalizer itself then iterates over its buffer until that needs to be | |
3236 | * filled again. | |
3237 | */ | |
3238 | ||
3239 | /* | |
3240 | * ### TODO: | |
3241 | * Now that UCharIterator.next/previous return (int32_t)-1 not (UChar)0xffff | |
3242 | * if iteration bounds are reached, | |
3243 | * try to not call hasNext/hasPrevious and instead check for >=0. | |
3244 | */ | |
3245 | ||
3246 | /* backward iteration ------------------------------------------------------- */ | |
3247 | ||
3248 | /* | |
3249 | * read backwards and get norm32 | |
3250 | * return 0 if the character is <minC | |
3251 | * if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!) | |
3252 | */ | |
3253 | static inline uint32_t | |
3254 | _getPrevNorm32(UCharIterator &src, uint32_t minC, uint32_t mask, UChar &c, UChar &c2) { | |
3255 | uint32_t norm32; | |
3256 | ||
3257 | /* need src.hasPrevious() */ | |
3258 | c=(UChar)src.previous(&src); | |
3259 | c2=0; | |
3260 | ||
3261 | /* check for a surrogate before getting norm32 to see if we need to predecrement further */ | |
3262 | if(c<minC) { | |
3263 | return 0; | |
3264 | } else if(!UTF_IS_SURROGATE(c)) { | |
3265 | return _getNorm32(c); | |
3266 | } else if(UTF_IS_SURROGATE_FIRST(c) || !src.hasPrevious(&src)) { | |
3267 | /* unpaired surrogate */ | |
3268 | return 0; | |
3269 | } else if(UTF_IS_FIRST_SURROGATE(c2=(UChar)src.previous(&src))) { | |
3270 | norm32=_getNorm32(c2); | |
3271 | if((norm32&mask)==0) { | |
3272 | /* all surrogate pairs with this lead surrogate have irrelevant data */ | |
3273 | return 0; | |
3274 | } else { | |
3275 | /* norm32 must be a surrogate special */ | |
3276 | return _getNorm32FromSurrogatePair(norm32, c); | |
3277 | } | |
3278 | } else { | |
3279 | /* unpaired second surrogate, undo the c2=src.previous() movement */ | |
3280 | src.move(&src, 1, UITER_CURRENT); | |
3281 | c2=0; | |
3282 | return 0; | |
3283 | } | |
3284 | } | |
3285 | ||
3286 | /* | |
3287 | * read backwards and check if the character is a previous-iteration boundary | |
3288 | * if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!) | |
3289 | */ | |
3290 | typedef UBool | |
3291 | IsPrevBoundaryFn(UCharIterator &src, uint32_t minC, uint32_t mask, UChar &c, UChar &c2); | |
3292 | ||
3293 | /* | |
3294 | * for NF*D: | |
3295 | * read backwards and check if the lead combining class is 0 | |
3296 | * if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!) | |
3297 | */ | |
3298 | static UBool | |
3299 | _isPrevNFDSafe(UCharIterator &src, uint32_t minC, uint32_t ccOrQCMask, UChar &c, UChar &c2) { | |
3300 | return _isNFDSafe(_getPrevNorm32(src, minC, ccOrQCMask, c, c2), ccOrQCMask, ccOrQCMask&_NORM_QC_MASK); | |
3301 | } | |
3302 | ||
3303 | /* | |
3304 | * read backwards and check if the character is (or its decomposition begins with) | |
3305 | * a "true starter" (cc==0 and NF*C_YES) | |
3306 | * if c2!=0 then (c2, c) is a surrogate pair (reversed - c2 is first surrogate but read second!) | |
3307 | */ | |
3308 | static UBool | |
3309 | _isPrevTrueStarter(UCharIterator &src, uint32_t minC, uint32_t ccOrQCMask, UChar &c, UChar &c2) { | |
3310 | uint32_t norm32, decompQCMask; | |
3311 | ||
3312 | decompQCMask=(ccOrQCMask<<2)&0xf; /* decomposition quick check mask */ | |
3313 | norm32=_getPrevNorm32(src, minC, ccOrQCMask|decompQCMask, c, c2); | |
3314 | return _isTrueStarter(norm32, ccOrQCMask, decompQCMask); | |
3315 | } | |
3316 | ||
3317 | static int32_t | |
3318 | _findPreviousIterationBoundary(UCharIterator &src, | |
3319 | IsPrevBoundaryFn *isPrevBoundary, uint32_t minC, uint32_t mask, | |
3320 | UChar *&buffer, int32_t &bufferCapacity, | |
3321 | int32_t &startIndex, | |
3322 | UErrorCode *pErrorCode) { | |
3323 | UChar *stackBuffer; | |
3324 | UChar c, c2; | |
3325 | UBool isBoundary; | |
3326 | ||
3327 | /* initialize */ | |
3328 | stackBuffer=buffer; | |
3329 | startIndex=bufferCapacity; /* fill the buffer from the end backwards */ | |
3330 | ||
3331 | while(src.hasPrevious(&src)) { | |
3332 | isBoundary=isPrevBoundary(src, minC, mask, c, c2); | |
3333 | ||
3334 | /* always write this character to the front of the buffer */ | |
3335 | /* make sure there is enough space in the buffer */ | |
3336 | if(startIndex < (c2==0 ? 1 : 2)) { | |
3337 | int32_t bufferLength=bufferCapacity; | |
3338 | ||
3339 | if(!u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity, 2*bufferCapacity, bufferLength)) { | |
3340 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
3341 | src.move(&src, 0, UITER_START); | |
3342 | return 0; | |
3343 | } | |
3344 | ||
3345 | /* move the current buffer contents up */ | |
3346 | uprv_memmove(buffer+(bufferCapacity-bufferLength), buffer, bufferLength*U_SIZEOF_UCHAR); | |
3347 | startIndex+=bufferCapacity-bufferLength; | |
3348 | } | |
3349 | ||
3350 | buffer[--startIndex]=c; | |
3351 | if(c2!=0) { | |
3352 | buffer[--startIndex]=c2; | |
3353 | } | |
3354 | ||
3355 | /* stop if this just-copied character is a boundary */ | |
3356 | if(isBoundary) { | |
3357 | break; | |
3358 | } | |
3359 | } | |
3360 | ||
3361 | /* return the length of the buffer contents */ | |
3362 | return bufferCapacity-startIndex; | |
3363 | } | |
3364 | ||
3365 | U_CAPI int32_t U_EXPORT2 | |
3366 | unorm_previous(UCharIterator *src, | |
3367 | UChar *dest, int32_t destCapacity, | |
3368 | UNormalizationMode mode, int32_t options, | |
3369 | UBool doNormalize, UBool *pNeededToNormalize, | |
3370 | UErrorCode *pErrorCode) { | |
3371 | UChar stackBuffer[100]; | |
3372 | UChar *buffer=NULL; | |
3373 | IsPrevBoundaryFn *isPreviousBoundary=NULL; | |
3374 | uint32_t mask=0; | |
3375 | int32_t startIndex=0, bufferLength=0, bufferCapacity=0, destLength=0; | |
3376 | int32_t c=0, c2=0; | |
3377 | UChar minC=0; | |
3378 | ||
3379 | /* check argument values */ | |
3380 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | |
3381 | return 0; | |
3382 | } | |
3383 | ||
3384 | if( destCapacity<0 || (dest==NULL && destCapacity>0) || | |
3385 | src==NULL | |
3386 | ) { | |
3387 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
3388 | return 0; | |
3389 | } | |
3390 | ||
3391 | if(!_haveData(*pErrorCode)) { | |
3392 | return 0; | |
3393 | } | |
3394 | ||
3395 | if(pNeededToNormalize!=NULL) { | |
3396 | *pNeededToNormalize=FALSE; | |
3397 | } | |
3398 | ||
3399 | switch(mode) { | |
3400 | case UNORM_NFD: | |
3401 | case UNORM_FCD: | |
3402 | isPreviousBoundary=_isPrevNFDSafe; | |
3403 | minC=_NORM_MIN_WITH_LEAD_CC; | |
3404 | mask=_NORM_CC_MASK|_NORM_QC_NFD; | |
3405 | break; | |
3406 | case UNORM_NFKD: | |
3407 | isPreviousBoundary=_isPrevNFDSafe; | |
3408 | minC=_NORM_MIN_WITH_LEAD_CC; | |
3409 | mask=_NORM_CC_MASK|_NORM_QC_NFKD; | |
3410 | break; | |
3411 | case UNORM_NFC: | |
3412 | isPreviousBoundary=_isPrevTrueStarter; | |
3413 | minC=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE]; | |
3414 | mask=_NORM_CC_MASK|_NORM_QC_NFC; | |
3415 | break; | |
3416 | case UNORM_NFKC: | |
3417 | isPreviousBoundary=_isPrevTrueStarter; | |
3418 | minC=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE]; | |
3419 | mask=_NORM_CC_MASK|_NORM_QC_NFKC; | |
3420 | break; | |
3421 | case UNORM_NONE: | |
3422 | destLength=0; | |
3423 | if((c=src->previous(src))>=0) { | |
3424 | destLength=1; | |
3425 | if(UTF_IS_TRAIL(c) && (c2=src->previous(src))>=0) { | |
3426 | if(UTF_IS_LEAD(c2)) { | |
3427 | if(destCapacity>=2) { | |
3428 | dest[1]=(UChar)c; /* trail surrogate */ | |
3429 | destLength=2; | |
3430 | } | |
3431 | c=c2; /* lead surrogate to be written below */ | |
3432 | } else { | |
3433 | src->move(src, 1, UITER_CURRENT); | |
3434 | } | |
3435 | } | |
3436 | ||
3437 | if(destCapacity>0) { | |
3438 | dest[0]=(UChar)c; | |
3439 | } | |
3440 | } | |
3441 | return u_terminateUChars(dest, destCapacity, destLength, pErrorCode); | |
3442 | default: | |
3443 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
3444 | return 0; | |
3445 | } | |
3446 | ||
3447 | buffer=stackBuffer; | |
3448 | bufferCapacity=(int32_t)(sizeof(stackBuffer)/U_SIZEOF_UCHAR); | |
3449 | bufferLength=_findPreviousIterationBoundary(*src, | |
3450 | isPreviousBoundary, minC, mask, | |
3451 | buffer, bufferCapacity, | |
3452 | startIndex, | |
3453 | pErrorCode); | |
3454 | if(bufferLength>0) { | |
3455 | if(doNormalize) { | |
3456 | destLength=unorm_internalNormalize(dest, destCapacity, | |
3457 | buffer+startIndex, bufferLength, | |
3458 | mode, options, | |
3459 | pErrorCode); | |
3460 | if(pNeededToNormalize!=0 && U_SUCCESS(*pErrorCode)) { | |
3461 | *pNeededToNormalize= | |
3462 | (UBool)(destLength!=bufferLength || | |
3463 | 0!=uprv_memcmp(dest, buffer+startIndex, destLength*U_SIZEOF_UCHAR)); | |
3464 | } | |
3465 | } else { | |
3466 | /* just copy the source characters */ | |
3467 | if(destCapacity>0) { | |
3468 | uprv_memcpy(dest, buffer+startIndex, uprv_min(bufferLength, destCapacity)*U_SIZEOF_UCHAR); | |
3469 | } | |
3470 | destLength=u_terminateUChars(dest, destCapacity, bufferLength, pErrorCode); | |
3471 | } | |
3472 | } else { | |
3473 | destLength=u_terminateUChars(dest, destCapacity, 0, pErrorCode); | |
3474 | } | |
3475 | ||
3476 | /* cleanup */ | |
3477 | if(buffer!=stackBuffer) { | |
3478 | uprv_free(buffer); | |
3479 | } | |
3480 | ||
3481 | return destLength; | |
3482 | } | |
3483 | ||
3484 | /* forward iteration -------------------------------------------------------- */ | |
3485 | ||
3486 | /* | |
3487 | * read forward and get norm32 | |
3488 | * return 0 if the character is <minC | |
3489 | * if c2!=0 then (c2, c) is a surrogate pair | |
3490 | * always reads complete characters | |
3491 | */ | |
3492 | static inline uint32_t | |
3493 | _getNextNorm32(UCharIterator &src, uint32_t minC, uint32_t mask, UChar &c, UChar &c2) { | |
3494 | uint32_t norm32; | |
3495 | ||
3496 | /* need src.hasNext() to be true */ | |
3497 | c=(UChar)src.next(&src); | |
3498 | c2=0; | |
3499 | ||
3500 | if(c<minC) { | |
3501 | return 0; | |
3502 | } | |
3503 | ||
3504 | norm32=_getNorm32(c); | |
3505 | if(UTF_IS_FIRST_SURROGATE(c)) { | |
3506 | if(src.hasNext(&src) && UTF_IS_SECOND_SURROGATE(c2=(UChar)src.current(&src))) { | |
3507 | src.move(&src, 1, UITER_CURRENT); /* skip the c2 surrogate */ | |
3508 | if((norm32&mask)==0) { | |
3509 | /* irrelevant data */ | |
3510 | return 0; | |
3511 | } else { | |
3512 | /* norm32 must be a surrogate special */ | |
3513 | return _getNorm32FromSurrogatePair(norm32, c2); | |
3514 | } | |
3515 | } else { | |
3516 | /* unmatched surrogate */ | |
3517 | c2=0; | |
3518 | return 0; | |
3519 | } | |
3520 | } | |
3521 | return norm32; | |
3522 | } | |
3523 | ||
3524 | /* | |
3525 | * read forward and check if the character is a next-iteration boundary | |
3526 | * if c2!=0 then (c, c2) is a surrogate pair | |
3527 | */ | |
3528 | typedef UBool | |
3529 | IsNextBoundaryFn(UCharIterator &src, uint32_t minC, uint32_t mask, UChar &c, UChar &c2); | |
3530 | ||
3531 | /* | |
3532 | * for NF*D: | |
3533 | * read forward and check if the lead combining class is 0 | |
3534 | * if c2!=0 then (c, c2) is a surrogate pair | |
3535 | */ | |
3536 | static UBool | |
3537 | _isNextNFDSafe(UCharIterator &src, uint32_t minC, uint32_t ccOrQCMask, UChar &c, UChar &c2) { | |
3538 | return _isNFDSafe(_getNextNorm32(src, minC, ccOrQCMask, c, c2), ccOrQCMask, ccOrQCMask&_NORM_QC_MASK); | |
3539 | } | |
3540 | ||
3541 | /* | |
3542 | * for NF*C: | |
3543 | * read forward and check if the character is (or its decomposition begins with) | |
3544 | * a "true starter" (cc==0 and NF*C_YES) | |
3545 | * if c2!=0 then (c, c2) is a surrogate pair | |
3546 | */ | |
3547 | static UBool | |
3548 | _isNextTrueStarter(UCharIterator &src, uint32_t minC, uint32_t ccOrQCMask, UChar &c, UChar &c2) { | |
3549 | uint32_t norm32, decompQCMask; | |
3550 | ||
3551 | decompQCMask=(ccOrQCMask<<2)&0xf; /* decomposition quick check mask */ | |
3552 | norm32=_getNextNorm32(src, minC, ccOrQCMask|decompQCMask, c, c2); | |
3553 | return _isTrueStarter(norm32, ccOrQCMask, decompQCMask); | |
3554 | } | |
3555 | ||
3556 | static int32_t | |
3557 | _findNextIterationBoundary(UCharIterator &src, | |
3558 | IsNextBoundaryFn *isNextBoundary, uint32_t minC, uint32_t mask, | |
3559 | UChar *&buffer, int32_t &bufferCapacity, | |
3560 | UErrorCode *pErrorCode) { | |
3561 | UChar *stackBuffer; | |
3562 | int32_t bufferIndex; | |
3563 | UChar c, c2; | |
3564 | ||
3565 | if(!src.hasNext(&src)) { | |
3566 | return 0; | |
3567 | } | |
3568 | ||
3569 | /* initialize */ | |
3570 | stackBuffer=buffer; | |
3571 | ||
3572 | /* get one character and ignore its properties */ | |
3573 | buffer[0]=c=(UChar)src.next(&src); | |
3574 | bufferIndex=1; | |
3575 | if(UTF_IS_FIRST_SURROGATE(c) && src.hasNext(&src)) { | |
3576 | if(UTF_IS_SECOND_SURROGATE(c2=(UChar)src.next(&src))) { | |
3577 | buffer[bufferIndex++]=c2; | |
3578 | } else { | |
3579 | src.move(&src, -1, UITER_CURRENT); /* back out the non-trail-surrogate */ | |
3580 | } | |
3581 | } | |
3582 | ||
3583 | /* get all following characters until we see a boundary */ | |
3584 | /* checking hasNext() instead of c!=DONE on the off-chance that U+ffff is part of the string */ | |
3585 | while(src.hasNext(&src)) { | |
3586 | if(isNextBoundary(src, minC, mask, c, c2)) { | |
3587 | /* back out the latest movement to stop at the boundary */ | |
3588 | src.move(&src, c2==0 ? -1 : -2, UITER_CURRENT); | |
3589 | break; | |
3590 | } else { | |
3591 | if(bufferIndex+(c2==0 ? 1 : 2)<=bufferCapacity || | |
3592 | /* attempt to grow the buffer */ | |
3593 | u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity, | |
3594 | 2*bufferCapacity, | |
3595 | bufferIndex) | |
3596 | ) { | |
3597 | buffer[bufferIndex++]=c; | |
3598 | if(c2!=0) { | |
3599 | buffer[bufferIndex++]=c2; | |
3600 | } | |
3601 | } else { | |
3602 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
3603 | src.move(&src, 0, UITER_LIMIT); | |
3604 | return 0; | |
3605 | } | |
3606 | } | |
3607 | } | |
3608 | ||
3609 | /* return the length of the buffer contents */ | |
3610 | return bufferIndex; | |
3611 | } | |
3612 | ||
3613 | U_CAPI int32_t U_EXPORT2 | |
3614 | unorm_next(UCharIterator *src, | |
3615 | UChar *dest, int32_t destCapacity, | |
3616 | UNormalizationMode mode, int32_t options, | |
3617 | UBool doNormalize, UBool *pNeededToNormalize, | |
3618 | UErrorCode *pErrorCode) { | |
3619 | UChar stackBuffer[100]; | |
3620 | UChar *buffer; | |
3621 | IsNextBoundaryFn *isNextBoundary; | |
3622 | uint32_t mask; | |
3623 | int32_t bufferLength, bufferCapacity, destLength; | |
3624 | int32_t c, c2; | |
3625 | UChar minC; | |
3626 | ||
3627 | /* check argument values */ | |
3628 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | |
3629 | return 0; | |
3630 | } | |
3631 | ||
3632 | if( destCapacity<0 || (dest==NULL && destCapacity>0) || | |
3633 | src==NULL | |
3634 | ) { | |
3635 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
3636 | return 0; | |
3637 | } | |
3638 | ||
3639 | if(!_haveData(*pErrorCode)) { | |
3640 | return 0; | |
3641 | } | |
3642 | ||
3643 | if(pNeededToNormalize!=NULL) { | |
3644 | *pNeededToNormalize=FALSE; | |
3645 | } | |
3646 | ||
3647 | switch(mode) { | |
3648 | case UNORM_NFD: | |
3649 | case UNORM_FCD: | |
3650 | isNextBoundary=_isNextNFDSafe; | |
3651 | minC=_NORM_MIN_WITH_LEAD_CC; | |
3652 | mask=_NORM_CC_MASK|_NORM_QC_NFD; | |
3653 | break; | |
3654 | case UNORM_NFKD: | |
3655 | isNextBoundary=_isNextNFDSafe; | |
3656 | minC=_NORM_MIN_WITH_LEAD_CC; | |
3657 | mask=_NORM_CC_MASK|_NORM_QC_NFKD; | |
3658 | break; | |
3659 | case UNORM_NFC: | |
3660 | isNextBoundary=_isNextTrueStarter; | |
3661 | minC=(UChar)indexes[_NORM_INDEX_MIN_NFC_NO_MAYBE]; | |
3662 | mask=_NORM_CC_MASK|_NORM_QC_NFC; | |
3663 | break; | |
3664 | case UNORM_NFKC: | |
3665 | isNextBoundary=_isNextTrueStarter; | |
3666 | minC=(UChar)indexes[_NORM_INDEX_MIN_NFKC_NO_MAYBE]; | |
3667 | mask=_NORM_CC_MASK|_NORM_QC_NFKC; | |
3668 | break; | |
3669 | case UNORM_NONE: | |
3670 | destLength=0; | |
3671 | if((c=src->next(src))>=0) { | |
3672 | destLength=1; | |
3673 | if(UTF_IS_LEAD(c) && (c2=src->next(src))>=0) { | |
3674 | if(UTF_IS_TRAIL(c2)) { | |
3675 | if(destCapacity>=2) { | |
3676 | dest[1]=(UChar)c2; /* trail surrogate */ | |
3677 | destLength=2; | |
3678 | } | |
3679 | /* lead surrogate to be written below */ | |
3680 | } else { | |
3681 | src->move(src, -1, UITER_CURRENT); | |
3682 | } | |
3683 | } | |
3684 | ||
3685 | if(destCapacity>0) { | |
3686 | dest[0]=(UChar)c; | |
3687 | } | |
3688 | } | |
3689 | return u_terminateUChars(dest, destCapacity, destLength, pErrorCode); | |
3690 | default: | |
3691 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
3692 | return 0; | |
3693 | } | |
3694 | ||
3695 | buffer=stackBuffer; | |
3696 | bufferCapacity=(int32_t)(sizeof(stackBuffer)/U_SIZEOF_UCHAR); | |
3697 | bufferLength=_findNextIterationBoundary(*src, | |
3698 | isNextBoundary, minC, mask, | |
3699 | buffer, bufferCapacity, | |
3700 | pErrorCode); | |
3701 | if(bufferLength>0) { | |
3702 | if(doNormalize) { | |
3703 | destLength=unorm_internalNormalize(dest, destCapacity, | |
3704 | buffer, bufferLength, | |
3705 | mode, options, | |
3706 | pErrorCode); | |
3707 | if(pNeededToNormalize!=0 && U_SUCCESS(*pErrorCode)) { | |
3708 | *pNeededToNormalize= | |
3709 | (UBool)(destLength!=bufferLength || | |
3710 | 0!=uprv_memcmp(dest, buffer, destLength*U_SIZEOF_UCHAR)); | |
3711 | } | |
3712 | } else { | |
3713 | /* just copy the source characters */ | |
3714 | if(destCapacity>0) { | |
3715 | uprv_memcpy(dest, buffer, uprv_min(bufferLength, destCapacity)*U_SIZEOF_UCHAR); | |
3716 | } | |
3717 | destLength=u_terminateUChars(dest, destCapacity, bufferLength, pErrorCode); | |
3718 | } | |
3719 | } else { | |
3720 | destLength=u_terminateUChars(dest, destCapacity, 0, pErrorCode); | |
3721 | } | |
3722 | ||
3723 | /* cleanup */ | |
3724 | if(buffer!=stackBuffer) { | |
3725 | uprv_free(buffer); | |
3726 | } | |
3727 | ||
3728 | return destLength; | |
3729 | } | |
3730 | ||
3731 | /* | |
3732 | * ### TODO: check if NF*D and FCD iteration finds optimal boundaries | |
3733 | * and if not, how hard it would be to improve it. | |
3734 | * For example, see _findSafeFCD(). | |
3735 | */ | |
3736 | ||
3737 | /* Concatenation of normalized strings -------------------------------------- */ | |
3738 | ||
3739 | U_CAPI int32_t U_EXPORT2 | |
3740 | unorm_concatenate(const UChar *left, int32_t leftLength, | |
3741 | const UChar *right, int32_t rightLength, | |
3742 | UChar *dest, int32_t destCapacity, | |
3743 | UNormalizationMode mode, int32_t options, | |
3744 | UErrorCode *pErrorCode) { | |
3745 | UChar stackBuffer[100]; | |
3746 | UChar *buffer; | |
3747 | int32_t bufferLength, bufferCapacity; | |
3748 | ||
3749 | UCharIterator iter; | |
3750 | int32_t leftBoundary, rightBoundary, destLength; | |
3751 | ||
3752 | /* check argument values */ | |
3753 | if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { | |
3754 | return 0; | |
3755 | } | |
3756 | ||
3757 | if( destCapacity<0 || (dest==NULL && destCapacity>0) || | |
3758 | left==NULL || leftLength<-1 || | |
3759 | right==NULL || rightLength<-1 | |
3760 | ) { | |
3761 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
3762 | return 0; | |
3763 | } | |
3764 | ||
3765 | /* check for overlapping right and destination */ | |
3766 | if( dest!=NULL && | |
3767 | ((right>=dest && right<(dest+destCapacity)) || | |
3768 | (rightLength>0 && dest>=right && dest<(right+rightLength))) | |
3769 | ) { | |
3770 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
3771 | return 0; | |
3772 | } | |
3773 | ||
3774 | /* allow left==dest */ | |
3775 | ||
3776 | /* set up intermediate buffer */ | |
3777 | buffer=stackBuffer; | |
3778 | bufferCapacity=(int32_t)(sizeof(stackBuffer)/U_SIZEOF_UCHAR); | |
3779 | ||
3780 | /* | |
3781 | * Input: left[0..leftLength[ + right[0..rightLength[ | |
3782 | * | |
3783 | * Find normalization-safe boundaries leftBoundary and rightBoundary | |
3784 | * and copy the end parts together: | |
3785 | * buffer=left[leftBoundary..leftLength[ + right[0..rightBoundary[ | |
3786 | * | |
3787 | * dest=left[0..leftBoundary[ + | |
3788 | * normalize(buffer) + | |
3789 | * right[rightBoundary..rightLength[ | |
3790 | */ | |
3791 | ||
3792 | /* | |
3793 | * find a normalization boundary at the end of the left string | |
3794 | * and copy the end part into the buffer | |
3795 | */ | |
3796 | uiter_setString(&iter, left, leftLength); | |
3797 | iter.index=leftLength=iter.length; /* end of left string */ | |
3798 | ||
3799 | bufferLength=unorm_previous(&iter, buffer, bufferCapacity, | |
3800 | mode, options, | |
3801 | FALSE, NULL, | |
3802 | pErrorCode); | |
3803 | leftBoundary=iter.index; | |
3804 | if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) { | |
3805 | *pErrorCode=U_ZERO_ERROR; | |
3806 | if(!u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity, 2*bufferLength, 0)) { | |
3807 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
3808 | /* dont need to cleanup here since | |
3809 | * u_growBufferFromStatic frees buffer if(buffer!=stackBuffer) | |
3810 | */ | |
3811 | return 0; | |
3812 | } | |
3813 | ||
3814 | /* just copy from the left string: we know the boundary already */ | |
3815 | uprv_memcpy(buffer, left+leftBoundary, bufferLength*U_SIZEOF_UCHAR); | |
3816 | } | |
3817 | ||
3818 | /* | |
3819 | * find a normalization boundary at the beginning of the right string | |
3820 | * and concatenate the beginning part to the buffer | |
3821 | */ | |
3822 | uiter_setString(&iter, right, rightLength); | |
3823 | rightLength=iter.length; /* in case it was -1 */ | |
3824 | ||
3825 | rightBoundary=unorm_next(&iter, buffer+bufferLength, bufferCapacity-bufferLength, | |
3826 | mode, options, | |
3827 | FALSE, NULL, | |
3828 | pErrorCode); | |
3829 | if(*pErrorCode==U_BUFFER_OVERFLOW_ERROR) { | |
3830 | *pErrorCode=U_ZERO_ERROR; | |
3831 | if(!u_growBufferFromStatic(stackBuffer, &buffer, &bufferCapacity, bufferLength+rightBoundary, 0)) { | |
3832 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
3833 | /* dont need to cleanup here since | |
3834 | * u_growBufferFromStatic frees buffer if(buffer!=stackBuffer) | |
3835 | */ | |
3836 | return 0; | |
3837 | } | |
3838 | ||
3839 | /* just copy from the right string: we know the boundary already */ | |
3840 | uprv_memcpy(buffer+bufferLength, right, rightBoundary*U_SIZEOF_UCHAR); | |
3841 | } | |
3842 | ||
3843 | bufferLength+=rightBoundary; | |
3844 | ||
3845 | /* copy left[0..leftBoundary[ to dest */ | |
3846 | if(left!=dest && leftBoundary>0 && destCapacity>0) { | |
3847 | uprv_memcpy(dest, left, uprv_min(leftBoundary, destCapacity)*U_SIZEOF_UCHAR); | |
3848 | } | |
3849 | destLength=leftBoundary; | |
3850 | ||
3851 | /* concatenate the normalization of the buffer to dest */ | |
3852 | if(destCapacity>destLength) { | |
3853 | destLength+=unorm_internalNormalize(dest+destLength, destCapacity-destLength, | |
3854 | buffer, bufferLength, | |
3855 | mode, options, | |
3856 | pErrorCode); | |
3857 | } else { | |
3858 | destLength+=unorm_internalNormalize(NULL, 0, | |
3859 | buffer, bufferLength, | |
3860 | mode, options, | |
3861 | pErrorCode); | |
3862 | } | |
3863 | /* | |
3864 | * only errorCode that is expected is a U_BUFFER_OVERFLOW_ERROR | |
3865 | * so we dont check for the error code here..just let it pass through | |
3866 | */ | |
3867 | /* concatenate right[rightBoundary..rightLength[ to dest */ | |
3868 | right+=rightBoundary; | |
3869 | rightLength-=rightBoundary; | |
3870 | if(rightLength>0 && destCapacity>destLength) { | |
3871 | uprv_memcpy(dest+destLength, right, uprv_min(rightLength, destCapacity-destLength)*U_SIZEOF_UCHAR); | |
3872 | } | |
3873 | destLength+=rightLength; | |
3874 | ||
3875 | /* cleanup */ | |
3876 | if(buffer!=stackBuffer) { | |
3877 | uprv_free(buffer); | |
3878 | } | |
3879 | ||
3880 | return u_terminateUChars(dest, destCapacity, destLength, pErrorCode); | |
3881 | } | |
3882 | ||
3883 | /* compare canonically equivalent ------------------------------------------- */ | |
3884 | ||
3885 | #else | |
3886 | ||
3887 | /* | |
3888 | * Normalization is not built into the ICU library, but case-insensitive | |
3889 | * comparisons are possible using unorm_cmpEquivFold(). | |
3890 | * The following simply disables the decomposition part. | |
3891 | */ | |
3892 | ||
3893 | static inline UBool | |
3894 | _haveData(UErrorCode &errorCode) { | |
3895 | if(U_SUCCESS(errorCode)) { | |
3896 | errorCode=U_INTERNAL_PROGRAM_ERROR; | |
3897 | } | |
3898 | return FALSE; | |
3899 | } | |
3900 | ||
3901 | static inline const UChar * | |
3902 | _decompose(UChar32 /*c*/, UChar /*buffer*/[4], int32_t &/*length*/) { | |
3903 | return NULL; | |
3904 | } | |
3905 | ||
3906 | #endif /* #if !UCONFIG_NO_NORMALIZATION */ | |
3907 | ||
3908 | /* | |
3909 | * Compare two strings for canonical equivalence. | |
3910 | * Further options include case-insensitive comparison and | |
3911 | * code point order (as opposed to code unit order). | |
3912 | * | |
3913 | * In this function, canonical equivalence is optional as well. | |
3914 | * If canonical equivalence is tested, then both strings must fulfill | |
3915 | * the FCD check. | |
3916 | * | |
3917 | * Semantically, this is equivalent to | |
3918 | * strcmp[CodePointOrder](NFD(foldCase(s1)), NFD(foldCase(s2))) | |
3919 | * where code point order, NFD and foldCase are all optional. | |
3920 | * | |
3921 | * String comparisons almost always yield results before processing both strings | |
3922 | * completely. | |
3923 | * They are generally more efficient working incrementally instead of | |
3924 | * performing the sub-processing (strlen, normalization, case-folding) | |
3925 | * on the entire strings first. | |
3926 | * | |
3927 | * It is also unnecessary to not normalize identical characters. | |
3928 | * | |
3929 | * This function works in principle as follows: | |
3930 | * | |
3931 | * loop { | |
3932 | * get one code unit c1 from s1 (-1 if end of source) | |
3933 | * get one code unit c2 from s2 (-1 if end of source) | |
3934 | * | |
3935 | * if(either string finished) { | |
3936 | * return result; | |
3937 | * } | |
3938 | * if(c1==c2) { | |
3939 | * continue; | |
3940 | * } | |
3941 | * | |
3942 | * // c1!=c2 | |
3943 | * try to decompose/case-fold c1/c2, and continue if one does; | |
3944 | * | |
3945 | * // still c1!=c2 and neither decomposes/case-folds, return result | |
3946 | * return c1-c2; | |
3947 | * } | |
3948 | * | |
3949 | * When a character decomposes, then the pointer for that source changes to | |
3950 | * the decomposition, pushing the previous pointer onto a stack. | |
3951 | * When the end of the decomposition is reached, then the code unit reader | |
3952 | * pops the previous source from the stack. | |
3953 | * (Same for case-folding.) | |
3954 | * | |
3955 | * This is complicated further by operating on variable-width UTF-16. | |
3956 | * The top part of the loop works on code units, while lookups for decomposition | |
3957 | * and case-folding need code points. | |
3958 | * Code points are assembled after the equality/end-of-source part. | |
3959 | * The source pointer is only advanced beyond all code units when the code point | |
3960 | * actually decomposes/case-folds. | |
3961 | * | |
3962 | * If we were on a trail surrogate unit when assembling a code point, | |
3963 | * and the code point decomposes/case-folds, then the decomposition/folding | |
3964 | * result must be compared with the part of the other string that corresponds to | |
3965 | * this string's lead surrogate. | |
3966 | * Since we only assemble a code point when hitting a trail unit when the | |
3967 | * preceding lead units were identical, we back up the other string by one unit | |
3968 | * in such a case. | |
3969 | * | |
3970 | * The optional code point order comparison at the end works with | |
3971 | * the same fix-up as the other code point order comparison functions. | |
3972 | * See ustring.c and the comment near the end of this function. | |
3973 | * | |
3974 | * Assumption: A decomposition or case-folding result string never contains | |
3975 | * a single surrogate. This is a safe assumption in the Unicode Standard. | |
3976 | * Therefore, we do not need to check for surrogate pairs across | |
3977 | * decomposition/case-folding boundaries. | |
3978 | * | |
3979 | * Further assumptions (see verifications tstnorm.cpp): | |
3980 | * The API function checks for FCD first, while the core function | |
3981 | * first case-folds and then decomposes. This requires that case-folding does not | |
3982 | * un-FCD any strings. | |
3983 | * | |
3984 | * The API function may also NFD the input and turn off decomposition. | |
3985 | * This requires that case-folding does not un-NFD strings either. | |
3986 | * | |
3987 | * TODO If any of the above two assumptions is violated, | |
3988 | * then this entire code must be re-thought. | |
3989 | * If this happens, then a simple solution is to case-fold both strings up front | |
3990 | * and to turn off UNORM_INPUT_IS_FCD. | |
3991 | * We already do this when not both strings are in FCD because makeFCD | |
3992 | * would be a partial NFD before the case folding, which does not work. | |
3993 | * Note that all of this is only a problem when case-folding _and_ | |
3994 | * canonical equivalence come together. | |
3995 | * | |
3996 | * This function could be moved to a different source file, at increased cost | |
3997 | * for calling the decomposition access function. | |
3998 | */ | |
3999 | ||
4000 | // stack element for previous-level source/decomposition pointers | |
4001 | struct CmpEquivLevel { | |
4002 | const UChar *start, *s, *limit; | |
4003 | }; | |
4004 | typedef struct CmpEquivLevel CmpEquivLevel; | |
4005 | ||
4006 | // internal function | |
4007 | U_CAPI int32_t U_EXPORT2 | |
4008 | unorm_cmpEquivFold(const UChar *s1, int32_t length1, | |
4009 | const UChar *s2, int32_t length2, | |
4010 | uint32_t options, | |
4011 | UErrorCode *pErrorCode) { | |
4012 | // current-level start/limit - s1/s2 as current | |
4013 | const UChar *start1, *start2, *limit1, *limit2; | |
4014 | ||
4015 | // decomposition variables | |
4016 | const UChar *p; | |
4017 | int32_t length; | |
4018 | ||
4019 | // stacks of previous-level start/current/limit | |
4020 | CmpEquivLevel stack1[2], stack2[2]; | |
4021 | ||
4022 | // decomposition buffers for Hangul | |
4023 | UChar decomp1[4], decomp2[4]; | |
4024 | ||
4025 | // case folding buffers, only use current-level start/limit | |
4026 | UChar fold1[32], fold2[32]; | |
4027 | ||
4028 | // track which is the current level per string | |
4029 | int32_t level1, level2; | |
4030 | ||
4031 | // current code units, and code points for lookups | |
4032 | int32_t c1, c2, cp1, cp2; | |
4033 | ||
4034 | // no argument error checking because this itself is not an API | |
4035 | ||
4036 | // assume that at least one of the options _COMPARE_EQUIV and U_COMPARE_IGNORE_CASE is set | |
4037 | // otherwise this function must behave exactly as uprv_strCompare() | |
4038 | // not checking for that here makes testing this function easier | |
4039 | ||
4040 | // normalization/properties data loaded? | |
4041 | if( ((options&_COMPARE_EQUIV)!=0 && !_haveData(*pErrorCode)) || | |
4042 | ((options&U_COMPARE_IGNORE_CASE)!=0 && !uprv_haveProperties(pErrorCode)) | |
4043 | ) { | |
4044 | return 0; | |
4045 | } | |
4046 | ||
4047 | // initialize | |
4048 | start1=s1; | |
4049 | if(length1==-1) { | |
4050 | limit1=NULL; | |
4051 | } else { | |
4052 | limit1=s1+length1; | |
4053 | } | |
4054 | ||
4055 | start2=s2; | |
4056 | if(length2==-1) { | |
4057 | limit2=NULL; | |
4058 | } else { | |
4059 | limit2=s2+length2; | |
4060 | } | |
4061 | ||
4062 | level1=level2=0; | |
4063 | c1=c2=-1; | |
4064 | ||
4065 | // comparison loop | |
4066 | for(;;) { | |
4067 | // here a code unit value of -1 means "get another code unit" | |
4068 | // below it will mean "this source is finished" | |
4069 | ||
4070 | if(c1<0) { | |
4071 | // get next code unit from string 1, post-increment | |
4072 | for(;;) { | |
4073 | if(s1==limit1 || ((c1=*s1)==0 && (limit1==NULL || (options&_STRNCMP_STYLE)))) { | |
4074 | if(level1==0) { | |
4075 | c1=-1; | |
4076 | break; | |
4077 | } | |
4078 | } else { | |
4079 | ++s1; | |
4080 | break; | |
4081 | } | |
4082 | ||
4083 | // reached end of level buffer, pop one level | |
4084 | do { | |
4085 | --level1; | |
4086 | start1=stack1[level1].start; | |
4087 | } while(start1==NULL); | |
4088 | s1=stack1[level1].s; | |
4089 | limit1=stack1[level1].limit; | |
4090 | } | |
4091 | } | |
4092 | ||
4093 | if(c2<0) { | |
4094 | // get next code unit from string 2, post-increment | |
4095 | for(;;) { | |
4096 | if(s2==limit2 || ((c2=*s2)==0 && (limit2==NULL || (options&_STRNCMP_STYLE)))) { | |
4097 | if(level2==0) { | |
4098 | c2=-1; | |
4099 | break; | |
4100 | } | |
4101 | } else { | |
4102 | ++s2; | |
4103 | break; | |
4104 | } | |
4105 | ||
4106 | // reached end of level buffer, pop one level | |
4107 | do { | |
4108 | --level2; | |
4109 | start2=stack2[level2].start; | |
4110 | } while(start2==NULL); | |
4111 | s2=stack2[level2].s; | |
4112 | limit2=stack2[level2].limit; | |
4113 | } | |
4114 | } | |
4115 | ||
4116 | // compare c1 and c2 | |
4117 | // either variable c1, c2 is -1 only if the corresponding string is finished | |
4118 | if(c1==c2) { | |
4119 | if(c1<0) { | |
4120 | return 0; // c1==c2==-1 indicating end of strings | |
4121 | } | |
4122 | c1=c2=-1; // make us fetch new code units | |
4123 | continue; | |
4124 | } else if(c1<0) { | |
4125 | return -1; // string 1 ends before string 2 | |
4126 | } else if(c2<0) { | |
4127 | return 1; // string 2 ends before string 1 | |
4128 | } | |
4129 | // c1!=c2 && c1>=0 && c2>=0 | |
4130 | ||
4131 | // get complete code points for c1, c2 for lookups if either is a surrogate | |
4132 | cp1=c1; | |
4133 | if(UTF_IS_SURROGATE(c1)) { | |
4134 | UChar c; | |
4135 | ||
4136 | if(UTF_IS_SURROGATE_FIRST(c1)) { | |
4137 | if(s1!=limit1 && UTF_IS_TRAIL(c=*s1)) { | |
4138 | // advance ++s1; only below if cp1 decomposes/case-folds | |
4139 | cp1=UTF16_GET_PAIR_VALUE(c1, c); | |
4140 | } | |
4141 | } else /* isTrail(c1) */ { | |
4142 | if(start1<=(s1-2) && UTF_IS_LEAD(c=*(s1-2))) { | |
4143 | cp1=UTF16_GET_PAIR_VALUE(c, c1); | |
4144 | } | |
4145 | } | |
4146 | } | |
4147 | ||
4148 | cp2=c2; | |
4149 | if(UTF_IS_SURROGATE(c2)) { | |
4150 | UChar c; | |
4151 | ||
4152 | if(UTF_IS_SURROGATE_FIRST(c2)) { | |
4153 | if(s2!=limit2 && UTF_IS_TRAIL(c=*s2)) { | |
4154 | // advance ++s2; only below if cp2 decomposes/case-folds | |
4155 | cp2=UTF16_GET_PAIR_VALUE(c2, c); | |
4156 | } | |
4157 | } else /* isTrail(c2) */ { | |
4158 | if(start2<=(s2-2) && UTF_IS_LEAD(c=*(s2-2))) { | |
4159 | cp2=UTF16_GET_PAIR_VALUE(c, c2); | |
4160 | } | |
4161 | } | |
4162 | } | |
4163 | ||
4164 | // go down one level for each string | |
4165 | // continue with the main loop as soon as there is a real change | |
4166 | ||
4167 | if( level1==0 && (options&U_COMPARE_IGNORE_CASE) && | |
4168 | (length=u_internalFoldCase((UChar32)cp1, fold1, 32, options))>=0 | |
4169 | ) { | |
4170 | // cp1 case-folds to fold1[length] | |
4171 | if(UTF_IS_SURROGATE(c1)) { | |
4172 | if(UTF_IS_SURROGATE_FIRST(c1)) { | |
4173 | // advance beyond source surrogate pair if it case-folds | |
4174 | ++s1; | |
4175 | } else /* isTrail(c1) */ { | |
4176 | // we got a supplementary code point when hitting its trail surrogate, | |
4177 | // therefore the lead surrogate must have been the same as in the other string; | |
4178 | // compare this decomposition with the lead surrogate in the other string | |
4179 | // remember that this simulates bulk text replacement: | |
4180 | // the decomposition would replace the entire code point | |
4181 | --s2; | |
4182 | c2=*(s2-1); | |
4183 | } | |
4184 | } | |
4185 | ||
4186 | // push current level pointers | |
4187 | stack1[0].start=start1; | |
4188 | stack1[0].s=s1; | |
4189 | stack1[0].limit=limit1; | |
4190 | ++level1; | |
4191 | ||
4192 | // set next level pointers to case folding | |
4193 | start1=s1=fold1; | |
4194 | limit1=fold1+length; | |
4195 | ||
4196 | // get ready to read from decomposition, continue with loop | |
4197 | c1=-1; | |
4198 | continue; | |
4199 | } | |
4200 | ||
4201 | if( level2==0 && (options&U_COMPARE_IGNORE_CASE) && | |
4202 | (length=u_internalFoldCase((UChar32)cp2, fold2, 32, options))>=0 | |
4203 | ) { | |
4204 | // cp2 case-folds to fold2[length] | |
4205 | if(UTF_IS_SURROGATE(c2)) { | |
4206 | if(UTF_IS_SURROGATE_FIRST(c2)) { | |
4207 | // advance beyond source surrogate pair if it case-folds | |
4208 | ++s2; | |
4209 | } else /* isTrail(c2) */ { | |
4210 | // we got a supplementary code point when hitting its trail surrogate, | |
4211 | // therefore the lead surrogate must have been the same as in the other string; | |
4212 | // compare this decomposition with the lead surrogate in the other string | |
4213 | // remember that this simulates bulk text replacement: | |
4214 | // the decomposition would replace the entire code point | |
4215 | --s1; | |
4216 | c1=*(s1-1); | |
4217 | } | |
4218 | } | |
4219 | ||
4220 | // push current level pointers | |
4221 | stack2[0].start=start2; | |
4222 | stack2[0].s=s2; | |
4223 | stack2[0].limit=limit2; | |
4224 | ++level2; | |
4225 | ||
4226 | // set next level pointers to case folding | |
4227 | start2=s2=fold2; | |
4228 | limit2=fold2+length; | |
4229 | ||
4230 | // get ready to read from decomposition, continue with loop | |
4231 | c2=-1; | |
4232 | continue; | |
4233 | } | |
4234 | ||
4235 | if( level1<2 && (options&_COMPARE_EQUIV) && | |
4236 | 0!=(p=_decompose((UChar32)cp1, decomp1, length)) | |
4237 | ) { | |
4238 | // cp1 decomposes into p[length] | |
4239 | if(UTF_IS_SURROGATE(c1)) { | |
4240 | if(UTF_IS_SURROGATE_FIRST(c1)) { | |
4241 | // advance beyond source surrogate pair if it decomposes | |
4242 | ++s1; | |
4243 | } else /* isTrail(c1) */ { | |
4244 | // we got a supplementary code point when hitting its trail surrogate, | |
4245 | // therefore the lead surrogate must have been the same as in the other string; | |
4246 | // compare this decomposition with the lead surrogate in the other string | |
4247 | // remember that this simulates bulk text replacement: | |
4248 | // the decomposition would replace the entire code point | |
4249 | --s2; | |
4250 | c2=*(s2-1); | |
4251 | } | |
4252 | } | |
4253 | ||
4254 | // push current level pointers | |
4255 | stack1[level1].start=start1; | |
4256 | stack1[level1].s=s1; | |
4257 | stack1[level1].limit=limit1; | |
4258 | ++level1; | |
4259 | ||
4260 | // set empty intermediate level if skipped | |
4261 | if(level1<2) { | |
4262 | stack1[level1++].start=NULL; | |
4263 | } | |
4264 | ||
4265 | // set next level pointers to decomposition | |
4266 | start1=s1=p; | |
4267 | limit1=p+length; | |
4268 | ||
4269 | // get ready to read from decomposition, continue with loop | |
4270 | c1=-1; | |
4271 | continue; | |
4272 | } | |
4273 | ||
4274 | if( level2<2 && (options&_COMPARE_EQUIV) && | |
4275 | 0!=(p=_decompose((UChar32)cp2, decomp2, length)) | |
4276 | ) { | |
4277 | // cp2 decomposes into p[length] | |
4278 | if(UTF_IS_SURROGATE(c2)) { | |
4279 | if(UTF_IS_SURROGATE_FIRST(c2)) { | |
4280 | // advance beyond source surrogate pair if it decomposes | |
4281 | ++s2; | |
4282 | } else /* isTrail(c2) */ { | |
4283 | // we got a supplementary code point when hitting its trail surrogate, | |
4284 | // therefore the lead surrogate must have been the same as in the other string; | |
4285 | // compare this decomposition with the lead surrogate in the other string | |
4286 | // remember that this simulates bulk text replacement: | |
4287 | // the decomposition would replace the entire code point | |
4288 | --s1; | |
4289 | c1=*(s1-1); | |
4290 | } | |
4291 | } | |
4292 | ||
4293 | // push current level pointers | |
4294 | stack2[level2].start=start2; | |
4295 | stack2[level2].s=s2; | |
4296 | stack2[level2].limit=limit2; | |
4297 | ++level2; | |
4298 | ||
4299 | // set empty intermediate level if skipped | |
4300 | if(level2<2) { | |
4301 | stack2[level2++].start=NULL; | |
4302 | } | |
4303 | ||
4304 | // set next level pointers to decomposition | |
4305 | start2=s2=p; | |
4306 | limit2=p+length; | |
4307 | ||
4308 | // get ready to read from decomposition, continue with loop | |
4309 | c2=-1; | |
4310 | continue; | |
4311 | } | |
4312 | ||
4313 | // no decomposition/case folding, max level for both sides: | |
4314 | // return difference result | |
4315 | ||
4316 | // code point order comparison must not just return cp1-cp2 | |
4317 | // because when single surrogates are present then the surrogate pairs | |
4318 | // that formed cp1 and cp2 may be from different string indexes | |
4319 | ||
4320 | // example: { d800 d800 dc01 } vs. { d800 dc00 }, compare at second code units | |
4321 | // c1=d800 cp1=10001 c2=dc00 cp2=10000 | |
4322 | // cp1-cp2>0 but c1-c2<0 and in fact in UTF-32 it is { d800 10001 } < { 10000 } | |
4323 | ||
4324 | // therefore, use same fix-up as in ustring.c/uprv_strCompare() | |
4325 | // except: uprv_strCompare() fetches c=*s while this functions fetches c=*s++ | |
4326 | // so we have slightly different pointer/start/limit comparisons here | |
4327 | ||
4328 | if(c1>=0xd800 && c2>=0xd800 && (options&U_COMPARE_CODE_POINT_ORDER)) { | |
4329 | /* subtract 0x2800 from BMP code points to make them smaller than supplementary ones */ | |
4330 | if( | |
4331 | (c1<=0xdbff && s1!=limit1 && UTF_IS_TRAIL(*s1)) || | |
4332 | (UTF_IS_TRAIL(c1) && start1!=(s1-1) && UTF_IS_LEAD(*(s1-2))) | |
4333 | ) { | |
4334 | /* part of a surrogate pair, leave >=d800 */ | |
4335 | } else { | |
4336 | /* BMP code point - may be surrogate code point - make <d800 */ | |
4337 | c1-=0x2800; | |
4338 | } | |
4339 | ||
4340 | if( | |
4341 | (c2<=0xdbff && s2!=limit2 && UTF_IS_TRAIL(*s2)) || | |
4342 | (UTF_IS_TRAIL(c2) && start2!=(s2-1) && UTF_IS_LEAD(*(s2-2))) | |
4343 | ) { | |
4344 | /* part of a surrogate pair, leave >=d800 */ | |
4345 | } else { | |
4346 | /* BMP code point - may be surrogate code point - make <d800 */ | |
4347 | c2-=0x2800; | |
4348 | } | |
4349 | } | |
4350 | ||
4351 | return c1-c2; | |
4352 | } | |
4353 | } | |
4354 | ||
4355 | #if !UCONFIG_NO_NORMALIZATION | |
4356 | ||
4357 | U_CAPI int32_t U_EXPORT2 | |
4358 | unorm_compare(const UChar *s1, int32_t length1, | |
4359 | const UChar *s2, int32_t length2, | |
4360 | uint32_t options, | |
4361 | UErrorCode *pErrorCode) { | |
4362 | UChar fcd1[300], fcd2[300]; | |
4363 | UChar *d1, *d2; | |
4364 | const UnicodeSet *nx; | |
4365 | UNormalizationMode mode; | |
4366 | int32_t result; | |
4367 | ||
4368 | /* argument checking */ | |
4369 | if(pErrorCode==0 || U_FAILURE(*pErrorCode)) { | |
4370 | return 0; | |
4371 | } | |
4372 | if(s1==0 || length1<-1 || s2==0 || length2<-1) { | |
4373 | *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; | |
4374 | return 0; | |
4375 | } | |
4376 | ||
4377 | if(!_haveData(*pErrorCode)) { | |
4378 | return 0; | |
4379 | } | |
4380 | if(!uprv_haveProperties(pErrorCode)) { | |
4381 | return 0; | |
4382 | } | |
4383 | ||
4384 | nx=getNX((int32_t)(options>>UNORM_COMPARE_NORM_OPTIONS_SHIFT), *pErrorCode); | |
4385 | if(U_FAILURE(*pErrorCode)) { | |
4386 | return 0; | |
4387 | } | |
4388 | ||
4389 | d1=d2=0; | |
4390 | options|=_COMPARE_EQUIV; | |
4391 | result=0; | |
4392 | ||
4393 | /* | |
4394 | * UAX #21 Case Mappings, as fixed for Unicode version 4 | |
4395 | * (see Jitterbug 2021), defines a canonical caseless match as | |
4396 | * | |
4397 | * A string X is a canonical caseless match | |
4398 | * for a string Y if and only if | |
4399 | * NFD(toCasefold(NFD(X))) = NFD(toCasefold(NFD(Y))) | |
4400 | * | |
4401 | * For better performance, we check for FCD (or let the caller tell us that | |
4402 | * both strings are in FCD) for the inner normalization. | |
4403 | * BasicNormalizerTest::FindFoldFCDExceptions() makes sure that | |
4404 | * case-folding preserves the FCD-ness of a string. | |
4405 | * The outer normalization is then only performed by unorm_cmpEquivFold() | |
4406 | * when there is a difference. | |
4407 | * | |
4408 | * Exception: When using the Turkic case-folding option, we do perform | |
4409 | * full NFD first. This is because in the Turkic case precomposed characters | |
4410 | * with 0049 capital I or 0069 small i fold differently whether they | |
4411 | * are first decomposed or not, so an FCD check - a check only for | |
4412 | * canonical order - is not sufficient. | |
4413 | */ | |
4414 | if(options&U_FOLD_CASE_EXCLUDE_SPECIAL_I) { | |
4415 | mode=UNORM_NFD; | |
4416 | options&=~UNORM_INPUT_IS_FCD; | |
4417 | } else { | |
4418 | mode=UNORM_FCD; | |
4419 | } | |
4420 | ||
4421 | if(!(options&UNORM_INPUT_IS_FCD)) { | |
4422 | int32_t _len1, _len2; | |
4423 | UBool isFCD1, isFCD2; | |
4424 | ||
4425 | // check if s1 and/or s2 fulfill the FCD conditions | |
4426 | isFCD1= UNORM_YES==_quickCheck(s1, length1, mode, TRUE, nx, pErrorCode); | |
4427 | isFCD2= UNORM_YES==_quickCheck(s2, length2, mode, TRUE, nx, pErrorCode); | |
4428 | if(U_FAILURE(*pErrorCode)) { | |
4429 | return 0; | |
4430 | } | |
4431 | ||
4432 | /* | |
4433 | * ICU 2.4 had a further optimization: | |
4434 | * If both strings were not in FCD, then they were both NFD'ed, | |
4435 | * and the _COMPARE_EQUIV option was turned off. | |
4436 | * It is not entirely clear that this is valid with the current | |
4437 | * definition of the canonical caseless match. | |
4438 | * Therefore, ICU 2.6 removes that optimization. | |
4439 | */ | |
4440 | ||
4441 | if(!isFCD1) { | |
4442 | _len1=unorm_internalNormalize(fcd1, LENGTHOF(fcd1), | |
4443 | s1, length1, | |
4444 | mode, nx, | |
4445 | pErrorCode); | |
4446 | if(*pErrorCode!=U_BUFFER_OVERFLOW_ERROR) { | |
4447 | s1=fcd1; | |
4448 | } else { | |
4449 | d1=(UChar *)uprv_malloc(_len1*U_SIZEOF_UCHAR); | |
4450 | if(d1==0) { | |
4451 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
4452 | goto cleanup; | |
4453 | } | |
4454 | ||
4455 | *pErrorCode=U_ZERO_ERROR; | |
4456 | _len1=unorm_internalNormalize(d1, _len1, | |
4457 | s1, length1, | |
4458 | mode, nx, | |
4459 | pErrorCode); | |
4460 | if(U_FAILURE(*pErrorCode)) { | |
4461 | goto cleanup; | |
4462 | } | |
4463 | ||
4464 | s1=d1; | |
4465 | } | |
4466 | length1=_len1; | |
4467 | } | |
4468 | ||
4469 | if(!isFCD2) { | |
4470 | _len2=unorm_internalNormalize(fcd2, LENGTHOF(fcd2), | |
4471 | s2, length2, | |
4472 | mode, nx, | |
4473 | pErrorCode); | |
4474 | if(*pErrorCode!=U_BUFFER_OVERFLOW_ERROR) { | |
4475 | s2=fcd2; | |
4476 | } else { | |
4477 | d2=(UChar *)uprv_malloc(_len2*U_SIZEOF_UCHAR); | |
4478 | if(d2==0) { | |
4479 | *pErrorCode=U_MEMORY_ALLOCATION_ERROR; | |
4480 | goto cleanup; | |
4481 | } | |
4482 | ||
4483 | *pErrorCode=U_ZERO_ERROR; | |
4484 | _len2=unorm_internalNormalize(d2, _len2, | |
4485 | s2, length2, | |
4486 | mode, nx, | |
4487 | pErrorCode); | |
4488 | if(U_FAILURE(*pErrorCode)) { | |
4489 | goto cleanup; | |
4490 | } | |
4491 | ||
4492 | s2=d2; | |
4493 | } | |
4494 | length2=_len2; | |
4495 | } | |
4496 | } | |
4497 | ||
4498 | if(U_SUCCESS(*pErrorCode)) { | |
4499 | result=unorm_cmpEquivFold(s1, length1, s2, length2, options, pErrorCode); | |
4500 | } | |
4501 | ||
4502 | cleanup: | |
4503 | if(d1!=0) { | |
4504 | uprv_free(d1); | |
4505 | } | |
4506 | if(d2!=0) { | |
4507 | uprv_free(d2); | |
4508 | } | |
4509 | ||
4510 | return result; | |
4511 | } | |
4512 | ||
4513 | #endif /* #if !UCONFIG_NO_NORMALIZATION */ |