]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | /* |
2 | ********************************************************************** | |
3 | * Copyright (C) 2000-2003, International Business Machines | |
4 | * Corporation and others. All Rights Reserved. | |
5 | ********************************************************************** | |
6 | * file name: ucnv_lmb.cpp | |
7 | * encoding: US-ASCII | |
8 | * tab size: 4 (not used) | |
9 | * indentation:4 | |
10 | * | |
11 | * created on: 2000feb09 | |
12 | * created by: Brendan Murray | |
13 | * extensively hacked up by: Jim Snyder-Grant | |
14 | * | |
15 | * Modification History: | |
16 | * | |
17 | * Date Name Description | |
18 | * | |
19 | * 06/20/2000 helena OS/400 port changes; mostly typecast. | |
20 | * 06/27/2000 Jim Snyder-Grant Deal with partial characters and small buffers. | |
21 | * Add comments to document LMBCS format and implementation | |
22 | * restructured order & breakdown of functions | |
23 | * 06/28/2000 helena Major rewrite for the callback API changes. | |
24 | */ | |
25 | ||
26 | #include "unicode/utypes.h" | |
27 | ||
28 | #if !UCONFIG_NO_LEGACY_CONVERSION | |
29 | ||
30 | #include "cmemory.h" | |
31 | #include "unicode/ucnv_err.h" | |
32 | #include "ucnv_bld.h" | |
33 | #include "unicode/ucnv.h" | |
34 | #include "ucnv_cnv.h" | |
35 | ||
36 | /* | |
37 | LMBCS | |
38 | ||
39 | (Lotus Multi-Byte Character Set) | |
40 | ||
41 | LMBCS was invented in the late 1980's and is primarily used in Lotus Notes | |
42 | databases and in Lotus 1-2-3 files. Programmers who work with the APIs | |
43 | into these products will sometimes need to deal with strings in this format. | |
44 | ||
45 | The code in this file provides an implementation for an ICU converter of | |
46 | LMBCS to and from Unicode. | |
47 | ||
48 | Since the LMBCS character set is only sparsely documented in existing | |
49 | printed or online material, we have added extensive annotation to this | |
50 | file to serve as a guide to understanding LMBCS. | |
51 | ||
52 | LMBCS was originally designed with these four sometimes-competing design goals: | |
53 | ||
54 | -Provide encodings for the characters in 12 existing national standards | |
55 | (plus a few other characters) | |
56 | -Minimal memory footprint | |
57 | -Maximal speed of conversion into the existing national character sets | |
58 | -No need to track a changing state as you interpret a string. | |
59 | ||
60 | ||
61 | All of the national character sets LMBCS was trying to encode are 'ANSI' | |
62 | based, in that the bytes from 0x20 - 0x7F are almost exactly the | |
63 | same common Latin unaccented characters and symbols in all character sets. | |
64 | ||
65 | So, in order to help meet the speed & memory design goals, the common ANSI | |
66 | bytes from 0x20-0x7F are represented by the same single-byte values in LMBCS. | |
67 | ||
68 | The general LMBCS code unit is from 1-3 bytes. We can describe the 3 bytes as | |
69 | follows: | |
70 | ||
71 | [G] D1 [D2] | |
72 | ||
73 | That is, a sometimes-optional 'group' byte, followed by 1 and sometimes 2 | |
74 | data bytes. The maximum size of a LMBCS chjaracter is 3 bytes: | |
75 | */ | |
76 | #define ULMBCS_CHARSIZE_MAX 3 | |
77 | /* | |
78 | The single-byte values from 0x20 to 0x7F are examples of single D1 bytes. | |
79 | We often have to figure out if byte values are below or above this, so we | |
80 | use the ANSI nomenclature 'C0' and 'C1' to refer to the range of control | |
81 | characters just above & below the common lower-ANSI range */ | |
82 | #define ULMBCS_C0END 0x1F | |
83 | #define ULMBCS_C1START 0x80 | |
84 | /* | |
85 | Since LMBCS is always dealing in byte units. we create a local type here for | |
86 | dealing with these units of LMBCS code units: | |
87 | ||
88 | */ | |
89 | typedef uint8_t ulmbcs_byte_t; | |
90 | ||
91 | /* | |
92 | Most of the values less than 0x20 are reserved in LMBCS to announce | |
93 | which national character standard is being used for the 'D' bytes. | |
94 | In the comments we show the common name and the IBM character-set ID | |
95 | for these character-set announcers: | |
96 | */ | |
97 | ||
98 | #define ULMBCS_GRP_L1 0x01 /* Latin-1 :ibm-850 */ | |
99 | #define ULMBCS_GRP_GR 0x02 /* Greek :ibm-851 */ | |
100 | #define ULMBCS_GRP_HE 0x03 /* Hebrew :ibm-1255 */ | |
101 | #define ULMBCS_GRP_AR 0x04 /* Arabic :ibm-1256 */ | |
102 | #define ULMBCS_GRP_RU 0x05 /* Cyrillic :ibm-1251 */ | |
103 | #define ULMBCS_GRP_L2 0x06 /* Latin-2 :ibm-852 */ | |
104 | #define ULMBCS_GRP_TR 0x08 /* Turkish :ibm-1254 */ | |
105 | #define ULMBCS_GRP_TH 0x0B /* Thai :ibm-874 */ | |
106 | #define ULMBCS_GRP_JA 0x10 /* Japanese :ibm-943 */ | |
107 | #define ULMBCS_GRP_KO 0x11 /* Korean :ibm-1261 */ | |
108 | #define ULMBCS_GRP_TW 0x12 /* Chinese SC :ibm-950 */ | |
109 | #define ULMBCS_GRP_CN 0x13 /* Chinese TC :ibm-1386 */ | |
110 | ||
111 | /* | |
112 | So, the beginning of understanding LMBCS is that IF the first byte of a LMBCS | |
113 | character is one of those 12 values, you can interpret the remaining bytes of | |
114 | that character as coming from one of those character sets. Since the lower | |
115 | ANSI bytes already are represented in single bytes, using one of the character | |
116 | set announcers is used to announce a character that starts with a byte of | |
117 | 0x80 or greater. | |
118 | ||
119 | The character sets are arranged so that the single byte sets all appear | |
120 | before the multi-byte character sets. When we need to tell whether a | |
121 | group byte is for a single byte char set or not we use this define: */ | |
122 | ||
123 | #define ULMBCS_DOUBLEOPTGROUP_START 0x10 | |
124 | ||
125 | /* | |
126 | However, to fully understand LMBCS, you must also understand a series of | |
127 | exceptions & optimizations made in service of the design goals. | |
128 | ||
129 | First, those of you who are character set mavens may have noticed that | |
130 | the 'double-byte' character sets are actually multi-byte character sets | |
131 | that can have 1 or two bytes, even in the upper-ascii range. To force | |
132 | each group byte to introduce a fixed-width encoding (to make it faster to | |
133 | count characters), we use a convention of doubling up on the group byte | |
134 | to introduce any single-byte character > 0x80 in an otherwise double-byte | |
135 | character set. So, for example, the LMBCS sequence x10 x10 xAE is the | |
136 | same as '0xAE' in the Japanese code page 943. | |
137 | ||
138 | Next, you will notice that the list of group bytes has some gaps. | |
139 | These are used in various ways. | |
140 | ||
141 | We reserve a few special single byte values for common control | |
142 | characters. These are in the same place as their ANSI eqivalents for speed. | |
143 | */ | |
144 | ||
145 | #define ULMBCS_HT 0x09 /* Fixed control char - Horizontal Tab */ | |
146 | #define ULMBCS_LF 0x0A /* Fixed control char - Line Feed */ | |
147 | #define ULMBCS_CR 0x0D /* Fixed control char - Carriage Return */ | |
148 | ||
149 | /* Then, 1-2-3 reserved a special single-byte character to put at the | |
150 | beginning of internal 'system' range names: */ | |
151 | ||
152 | #define ULMBCS_123SYSTEMRANGE 0x19 | |
153 | ||
154 | /* Then we needed a place to put all the other ansi control characters | |
155 | that must be moved to different values because LMBCS reserves those | |
156 | values for other purposes. To represent the control characters, we start | |
157 | with a first byte of 0xF & add the control chaarcter value as the | |
158 | second byte */ | |
159 | #define ULMBCS_GRP_CTRL 0x0F | |
160 | ||
161 | /* For the C0 controls (less than 0x20), we add 0x20 to preserve the | |
162 | useful doctrine that any byte less than 0x20 in a LMBCS char must be | |
163 | the first byte of a character:*/ | |
164 | #define ULMBCS_CTRLOFFSET 0x20 | |
165 | ||
166 | /* | |
167 | Where to put the characters that aren't part of any of the 12 national | |
168 | character sets? The first thing that was done, in the earlier years of | |
169 | LMBCS, was to use up the spaces of the form | |
170 | ||
171 | [G] D1, | |
172 | ||
173 | where 'G' was one of the single-byte character groups, and | |
174 | D1 was less than 0x80. These sequences are gathered together | |
175 | into a Lotus-invented doublebyte character set to represent a | |
176 | lot of stray values. Internally, in this implementation, we track this | |
177 | as group '0', as a place to tuck this exceptions list.*/ | |
178 | ||
179 | #define ULMBCS_GRP_EXCEPT 0x00 | |
180 | /* | |
181 | Finally, as the durability and usefulness of UNICODE became clear, | |
182 | LOTUS added a new group 0x14 to hold Unicode values not otherwise | |
183 | represented in LMBCS: */ | |
184 | #define ULMBCS_GRP_UNICODE 0x14 | |
185 | /* The two bytes appearing after a 0x14 are intrepreted as UFT-16 BE | |
186 | (Big-Endian) characters. The exception comes when the UTF16 | |
187 | representation would have a zero as the second byte. In that case, | |
188 | 'F6' is used in its place, and the bytes are swapped. (This prevents | |
189 | LMBCS from encoding any Unicode values of the form U+F6xx, but that's OK: | |
190 | 0xF6xx is in the middle of the Private Use Area.)*/ | |
191 | #define ULMBCS_UNICOMPATZERO 0xF6 | |
192 | ||
193 | /* It is also useful in our code to have a constant for the size of | |
194 | a LMBCS char that holds a literal Unicode value */ | |
195 | #define ULMBCS_UNICODE_SIZE 3 | |
196 | ||
197 | /* | |
198 | To squish the LMBCS representations down even further, and to make | |
199 | translations even faster,sometimes the optimization group byte can be dropped | |
200 | from a LMBCS character. This is decided on a process-by-process basis. The | |
201 | group byte that is dropped is called the 'optimization group'. | |
202 | ||
203 | For Notes, the optimzation group is always 0x1.*/ | |
204 | #define ULMBCS_DEFAULTOPTGROUP 0x1 | |
205 | /* For 1-2-3 files, the optimzation group is stored in the header of the 1-2-3 | |
206 | file. | |
207 | ||
208 | In any case, when using ICU, you either pass in the | |
209 | optimization group as part of the name of the converter (LMBCS-1, LMBCS-2, | |
210 | etc.). Using plain 'LMBCS' as the name of the converter will give you | |
211 | LMBCS-1. | |
212 | ||
213 | ||
214 | *** Implementation strategy *** | |
215 | ||
216 | ||
217 | Because of the extensive use of other character sets, the LMBCS converter | |
218 | keeps a mapping between optimization groups and IBM character sets, so that | |
219 | ICU converters can be created and used as needed. */ | |
220 | ||
221 | static const char * const OptGroupByteToCPName[ULMBCS_CTRLOFFSET] = { | |
222 | /* 0x0000 */ "lmb-excp", /* internal home for the LOTUS exceptions list */ | |
223 | /* 0x0001 */ "ibm-850", | |
224 | /* 0x0002 */ "ibm-851", | |
225 | /* 0x0003 */ "windows-1255", | |
226 | /* 0x0004 */ "windows-1256", | |
227 | /* 0x0005 */ "windows-1251", | |
228 | /* 0x0006 */ "ibm-852", | |
229 | /* 0x0007 */ NULL, /* Unused */ | |
230 | /* 0x0008 */ "windows-1254", | |
231 | /* 0x0009 */ NULL, /* Control char HT */ | |
232 | /* 0x000A */ NULL, /* Control char LF */ | |
233 | /* 0x000B */ "windows-874", | |
234 | /* 0x000C */ NULL, /* Unused */ | |
235 | /* 0x000D */ NULL, /* Control char CR */ | |
236 | /* 0x000E */ NULL, /* Unused */ | |
237 | /* 0x000F */ NULL, /* Control chars: 0x0F20 + C0/C1 character: algorithmic */ | |
238 | /* 0x0010 */ "windows-932", | |
239 | /* 0x0011 */ "windows-949", | |
240 | /* 0x0012 */ "windows-950", | |
241 | /* 0x0013 */ "windows-936" | |
242 | ||
243 | /* The rest are null, including the 0x0014 Unicode compatibility region | |
244 | and 0x0019, the 1-2-3 system range control char */ | |
245 | }; | |
246 | ||
247 | /* As you can see, even though any byte below 0x20 could be an optimization | |
248 | byte, only those at 0x13 or below can map to an actual converter. To limit | |
249 | some loops and searches, we define a value for that last group converter:*/ | |
250 | ||
251 | #define ULMBCS_GRP_LAST 0x13 /* last LMBCS group that has a converter */ | |
252 | ||
253 | ||
254 | /* That's approximately all the data that's needed for translating | |
255 | LMBCS to Unicode. | |
256 | ||
257 | ||
258 | However, to translate Unicode to LMBCS, we need some more support. | |
259 | ||
260 | That's because there are often more than one possible mappings from a Unicode | |
261 | code point back into LMBCS. The first thing we do is look up into a table | |
262 | to figure out if there are more than one possible mappings. This table, | |
263 | arranged by Unicode values (including ranges) either lists which group | |
264 | to use, or says that it could go into one or more of the SBCS sets, or | |
265 | into one or more of the DBCS sets. (If the character exists in both DBCS & | |
266 | SBCS, the table will place it in the SBCS sets, to make the LMBCS code point | |
267 | length as small as possible. Here's the two special markers we use to indicate | |
268 | ambiguous mappings: */ | |
269 | ||
270 | #define ULMBCS_AMBIGUOUS_SBCS 0x80 /* could fit in more than one | |
271 | LMBCS sbcs native encoding | |
272 | (example: most accented latin) */ | |
273 | #define ULMBCS_AMBIGUOUS_MBCS 0x81 /* could fit in more than one | |
274 | LMBCS mbcs native encoding | |
275 | (example: Unihan) */ | |
276 | ||
277 | /* And here's a simple way to see if a group falls in an appropriate range */ | |
278 | #define ULMBCS_AMBIGUOUS_MATCH(agroup, xgroup) \ | |
279 | ((((agroup) == ULMBCS_AMBIGUOUS_SBCS) && \ | |
280 | (xgroup) < ULMBCS_DOUBLEOPTGROUP_START) || \ | |
281 | (((agroup) == ULMBCS_AMBIGUOUS_MBCS) && \ | |
282 | (xgroup) >= ULMBCS_DOUBLEOPTGROUP_START)) | |
283 | ||
284 | ||
285 | /* The table & some code to use it: */ | |
286 | ||
287 | ||
288 | static const struct _UniLMBCSGrpMap | |
289 | { | |
290 | const UChar uniStartRange; | |
291 | const UChar uniEndRange; | |
292 | const ulmbcs_byte_t GrpType; | |
293 | } UniLMBCSGrpMap[] | |
294 | = | |
295 | { | |
296 | ||
297 | {0x0001, 0x001F, ULMBCS_GRP_CTRL}, | |
298 | {0x0080, 0x009F, ULMBCS_GRP_CTRL}, | |
299 | {0x00A0, 0x01CD, ULMBCS_AMBIGUOUS_SBCS}, | |
300 | {0x01CE, 0x01CE, ULMBCS_GRP_TW }, | |
301 | {0x01CF, 0x02B9, ULMBCS_AMBIGUOUS_SBCS}, | |
302 | {0x02BA, 0x02BA, ULMBCS_GRP_CN}, | |
303 | {0x02BC, 0x02C8, ULMBCS_AMBIGUOUS_SBCS}, | |
304 | {0x02C9, 0x02D0, ULMBCS_AMBIGUOUS_MBCS}, | |
305 | {0x02D8, 0x02DD, ULMBCS_AMBIGUOUS_SBCS}, | |
306 | {0x0384, 0x03CE, ULMBCS_AMBIGUOUS_SBCS}, | |
307 | {0x0400, 0x044E, ULMBCS_GRP_RU}, | |
308 | {0x044F, 0x044F, ULMBCS_AMBIGUOUS_MBCS}, | |
309 | {0x0450, 0x0491, ULMBCS_GRP_RU}, | |
310 | {0x05B0, 0x05F2, ULMBCS_GRP_HE}, | |
311 | {0x060C, 0x06AF, ULMBCS_GRP_AR}, | |
312 | {0x0E01, 0x0E5B, ULMBCS_GRP_TH}, | |
313 | {0x200C, 0x200F, ULMBCS_AMBIGUOUS_SBCS}, | |
314 | {0x2010, 0x2010, ULMBCS_AMBIGUOUS_MBCS}, | |
315 | {0x2013, 0x2015, ULMBCS_AMBIGUOUS_SBCS}, | |
316 | {0x2016, 0x2016, ULMBCS_AMBIGUOUS_MBCS}, | |
317 | {0x2017, 0x2024, ULMBCS_AMBIGUOUS_SBCS}, | |
318 | {0x2025, 0x2025, ULMBCS_AMBIGUOUS_MBCS}, | |
319 | {0x2026, 0x2026, ULMBCS_AMBIGUOUS_SBCS}, | |
320 | {0x2027, 0x2027, ULMBCS_GRP_CN}, | |
321 | {0x2030, 0x2033, ULMBCS_AMBIGUOUS_SBCS}, | |
322 | {0x2035, 0x2035, ULMBCS_AMBIGUOUS_MBCS}, | |
323 | {0x2039, 0x203A, ULMBCS_AMBIGUOUS_SBCS}, | |
324 | {0x203B, 0x203B, ULMBCS_AMBIGUOUS_MBCS}, | |
325 | {0x2074, 0x2074, ULMBCS_GRP_KO}, | |
326 | {0x207F, 0x207F, ULMBCS_GRP_EXCEPT}, | |
327 | {0x2081, 0x2084, ULMBCS_GRP_KO}, | |
328 | {0x20A4, 0x20AC, ULMBCS_AMBIGUOUS_SBCS}, | |
329 | {0x2103, 0x2109, ULMBCS_AMBIGUOUS_MBCS}, | |
330 | {0x2111, 0x2126, ULMBCS_AMBIGUOUS_SBCS}, | |
331 | {0x212B, 0x212B, ULMBCS_AMBIGUOUS_MBCS}, | |
332 | {0x2135, 0x2135, ULMBCS_AMBIGUOUS_SBCS}, | |
333 | {0x2153, 0x2154, ULMBCS_GRP_KO}, | |
334 | {0x215B, 0x215E, ULMBCS_GRP_EXCEPT}, | |
335 | {0x2160, 0x2179, ULMBCS_AMBIGUOUS_MBCS}, | |
336 | {0x2190, 0x2195, ULMBCS_GRP_EXCEPT}, | |
337 | {0x2196, 0x2199, ULMBCS_AMBIGUOUS_MBCS}, | |
338 | {0x21A8, 0x21A8, ULMBCS_GRP_EXCEPT}, | |
339 | {0x21B8, 0x21B9, ULMBCS_GRP_CN}, | |
340 | {0x21D0, 0x21D5, ULMBCS_GRP_EXCEPT}, | |
341 | {0x21E7, 0x21E7, ULMBCS_GRP_CN}, | |
342 | {0x2200, 0x220B, ULMBCS_GRP_EXCEPT}, | |
343 | {0x220F, 0x2215, ULMBCS_AMBIGUOUS_MBCS}, | |
344 | {0x2219, 0x2220, ULMBCS_GRP_EXCEPT}, | |
345 | {0x2223, 0x2228, ULMBCS_AMBIGUOUS_MBCS}, | |
346 | {0x2229, 0x222B, ULMBCS_GRP_EXCEPT}, | |
347 | {0x222C, 0x223D, ULMBCS_AMBIGUOUS_MBCS}, | |
348 | {0x2245, 0x2248, ULMBCS_GRP_EXCEPT}, | |
349 | {0x224C, 0x224C, ULMBCS_GRP_TW}, | |
350 | {0x2252, 0x2252, ULMBCS_AMBIGUOUS_MBCS}, | |
351 | {0x2260, 0x2265, ULMBCS_GRP_EXCEPT}, | |
352 | {0x2266, 0x226F, ULMBCS_AMBIGUOUS_MBCS}, | |
353 | {0x2282, 0x2297, ULMBCS_GRP_EXCEPT}, | |
354 | {0x2299, 0x22BF, ULMBCS_AMBIGUOUS_MBCS}, | |
355 | {0x22C0, 0x22C0, ULMBCS_GRP_EXCEPT}, | |
356 | {0x2310, 0x2310, ULMBCS_GRP_EXCEPT}, | |
357 | {0x2312, 0x2312, ULMBCS_AMBIGUOUS_MBCS}, | |
358 | {0x2318, 0x2321, ULMBCS_GRP_EXCEPT}, | |
359 | {0x2318, 0x2321, ULMBCS_GRP_CN}, | |
360 | {0x2460, 0x24E9, ULMBCS_AMBIGUOUS_MBCS}, | |
361 | {0x2500, 0x2500, ULMBCS_AMBIGUOUS_SBCS}, | |
362 | {0x2501, 0x2501, ULMBCS_AMBIGUOUS_MBCS}, | |
363 | {0x2502, 0x2502, ULMBCS_AMBIGUOUS_SBCS}, | |
364 | {0x2503, 0x2503, ULMBCS_AMBIGUOUS_MBCS}, | |
365 | {0x2504, 0x2505, ULMBCS_GRP_TW}, | |
366 | {0x2506, 0x2665, ULMBCS_AMBIGUOUS_MBCS}, | |
367 | {0x2666, 0x2666, ULMBCS_GRP_EXCEPT}, | |
368 | {0x2666, 0x2666, ULMBCS_GRP_EXCEPT}, | |
369 | {0x2667, 0x2E7F, ULMBCS_AMBIGUOUS_SBCS}, | |
370 | {0x2E80, 0xF861, ULMBCS_AMBIGUOUS_MBCS}, | |
371 | {0xF862, 0xF8FF, ULMBCS_GRP_EXCEPT}, | |
372 | {0xF900, 0xFA2D, ULMBCS_AMBIGUOUS_MBCS}, | |
373 | {0xFB00, 0xFEFF, ULMBCS_AMBIGUOUS_SBCS}, | |
374 | {0xFF01, 0xFFEE, ULMBCS_AMBIGUOUS_MBCS}, | |
375 | {0xFFFF, 0xFFFF, ULMBCS_GRP_UNICODE} | |
376 | }; | |
377 | ||
378 | static ulmbcs_byte_t | |
379 | FindLMBCSUniRange(UChar uniChar) | |
380 | { | |
381 | const struct _UniLMBCSGrpMap * pTable = UniLMBCSGrpMap; | |
382 | ||
383 | while (uniChar > pTable->uniEndRange) | |
384 | { | |
385 | pTable++; | |
386 | } | |
387 | ||
388 | if (uniChar >= pTable->uniStartRange) | |
389 | { | |
390 | return pTable->GrpType; | |
391 | } | |
392 | return ULMBCS_GRP_UNICODE; | |
393 | } | |
394 | ||
395 | /* | |
396 | We also ask the creator of a converter to send in a preferred locale | |
397 | that we can use in resolving ambiguous mappings. They send the locale | |
398 | in as a string, and we map it, if possible, to one of the | |
399 | LMBCS groups. We use this table, and the associated code, to | |
400 | do the lookup: */ | |
401 | ||
402 | /************************************************** | |
403 | This table maps locale ID's to LMBCS opt groups. | |
404 | The default return is group 0x01. Note that for | |
405 | performance reasons, the table is sorted in | |
406 | increasing alphabetic order, with the notable | |
407 | exception of zhTW. This is to force the check | |
408 | for Traditonal Chinese before dropping back to | |
409 | Simplified. | |
410 | ||
411 | Note too that the Latin-1 groups have been | |
412 | commented out because it's the default, and | |
413 | this shortens the table, allowing a serial | |
414 | search to go quickly. | |
415 | *************************************************/ | |
416 | ||
417 | static const struct _LocaleLMBCSGrpMap | |
418 | { | |
419 | const char *LocaleID; | |
420 | const ulmbcs_byte_t OptGroup; | |
421 | } LocaleLMBCSGrpMap[] = | |
422 | { | |
423 | {"ar", ULMBCS_GRP_AR}, | |
424 | {"be", ULMBCS_GRP_RU}, | |
425 | {"bg", ULMBCS_GRP_L2}, | |
426 | /* {"ca", ULMBCS_GRP_L1}, */ | |
427 | {"cs", ULMBCS_GRP_L2}, | |
428 | /* {"da", ULMBCS_GRP_L1}, */ | |
429 | /* {"de", ULMBCS_GRP_L1}, */ | |
430 | {"el", ULMBCS_GRP_GR}, | |
431 | /* {"en", ULMBCS_GRP_L1}, */ | |
432 | /* {"es", ULMBCS_GRP_L1}, */ | |
433 | /* {"et", ULMBCS_GRP_L1}, */ | |
434 | /* {"fi", ULMBCS_GRP_L1}, */ | |
435 | /* {"fr", ULMBCS_GRP_L1}, */ | |
436 | {"he", ULMBCS_GRP_HE}, | |
437 | {"hu", ULMBCS_GRP_L2}, | |
438 | /* {"is", ULMBCS_GRP_L1}, */ | |
439 | /* {"it", ULMBCS_GRP_L1}, */ | |
440 | {"iw", ULMBCS_GRP_HE}, | |
441 | {"ja", ULMBCS_GRP_JA}, | |
442 | {"ko", ULMBCS_GRP_KO}, | |
443 | /* {"lt", ULMBCS_GRP_L1}, */ | |
444 | /* {"lv", ULMBCS_GRP_L1}, */ | |
445 | {"mk", ULMBCS_GRP_RU}, | |
446 | /* {"nl", ULMBCS_GRP_L1}, */ | |
447 | /* {"no", ULMBCS_GRP_L1}, */ | |
448 | {"pl", ULMBCS_GRP_L2}, | |
449 | /* {"pt", ULMBCS_GRP_L1}, */ | |
450 | {"ro", ULMBCS_GRP_L2}, | |
451 | {"ru", ULMBCS_GRP_RU}, | |
452 | {"sh", ULMBCS_GRP_L2}, | |
453 | {"sk", ULMBCS_GRP_L2}, | |
454 | {"sl", ULMBCS_GRP_L2}, | |
455 | {"sq", ULMBCS_GRP_L2}, | |
456 | {"sr", ULMBCS_GRP_RU}, | |
457 | /* {"sv", ULMBCS_GRP_L1}, */ | |
458 | {"th", ULMBCS_GRP_TH}, | |
459 | {"tr", ULMBCS_GRP_TR}, | |
460 | {"uk", ULMBCS_GRP_RU}, | |
461 | /* {"vi", ULMBCS_GRP_L1}, */ | |
462 | {"zhTW", ULMBCS_GRP_TW}, | |
463 | {"zh", ULMBCS_GRP_CN}, | |
464 | {NULL, ULMBCS_GRP_L1} | |
465 | }; | |
466 | ||
467 | ||
468 | static ulmbcs_byte_t | |
469 | FindLMBCSLocale(const char *LocaleID) | |
470 | { | |
471 | const struct _LocaleLMBCSGrpMap *pTable = LocaleLMBCSGrpMap; | |
472 | ||
473 | if ((!LocaleID) || (!*LocaleID)) | |
474 | { | |
475 | return 0; | |
476 | } | |
477 | ||
478 | while (pTable->LocaleID) | |
479 | { | |
480 | if (*pTable->LocaleID == *LocaleID) /* Check only first char for speed */ | |
481 | { | |
482 | /* First char matches - check whole name, for entry-length */ | |
483 | if (strncmp(pTable->LocaleID, LocaleID, strlen(pTable->LocaleID)) == 0) | |
484 | return pTable->OptGroup; | |
485 | } | |
486 | else | |
487 | if (*pTable->LocaleID > *LocaleID) /* Sorted alphabetically - exit */ | |
488 | break; | |
489 | pTable++; | |
490 | } | |
491 | return ULMBCS_GRP_L1; | |
492 | } | |
493 | ||
494 | ||
495 | /* | |
496 | Before we get to the main body of code, here's how we hook up to the rest | |
497 | of ICU. ICU converters are required to define a structure that includes | |
498 | some function pointers, and some common data, in the style of a C++ | |
499 | vtable. There is also room in there for converter-specific data. LMBCS | |
500 | uses that converter-specific data to keep track of the 12 subconverters | |
501 | we use, the optimization group, and the group (if any) that matches the | |
502 | locale. We have one structure instantiated for each of the 12 possible | |
503 | optimization groups. To avoid typos & to avoid boring the reader, we | |
504 | put the declarations of these structures and functions into macros. To see | |
505 | the definitions of these structures, see unicode\ucnv_bld.h | |
506 | */ | |
507 | ||
508 | ||
509 | ||
510 | #define DECLARE_LMBCS_DATA(n) \ | |
511 | static const UConverterImpl _LMBCSImpl##n={\ | |
512 | UCNV_LMBCS_##n,\ | |
513 | NULL,NULL,\ | |
514 | _LMBCSOpen##n,\ | |
515 | _LMBCSClose,\ | |
516 | NULL,\ | |
517 | _LMBCSToUnicodeWithOffsets,\ | |
518 | _LMBCSToUnicodeWithOffsets,\ | |
519 | _LMBCSFromUnicode,\ | |
520 | _LMBCSFromUnicode,\ | |
521 | _LMBCSGetNextUChar,\ | |
522 | NULL,\ | |
523 | NULL,\ | |
524 | NULL,\ | |
525 | NULL,\ | |
526 | ucnv_getCompleteUnicodeSet\ | |
527 | };\ | |
528 | static const UConverterStaticData _LMBCSStaticData##n={\ | |
529 | sizeof(UConverterStaticData),\ | |
530 | "LMBCS-" #n,\ | |
531 | 0, UCNV_IBM, UCNV_LMBCS_##n, 1, 2,\ | |
532 | { 0x3f, 0, 0, 0 },1,FALSE,FALSE,0,0,{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} \ | |
533 | };\ | |
534 | const UConverterSharedData _LMBCSData##n={\ | |
535 | sizeof(UConverterSharedData), ~((uint32_t) 0),\ | |
536 | NULL, NULL, &_LMBCSStaticData##n, FALSE, &_LMBCSImpl##n, \ | |
537 | 0 \ | |
538 | }; | |
539 | ||
540 | /* The only function we needed to duplicate 12 times was the 'open' | |
541 | function, which will do basically the same thing except set a different | |
542 | optimization group. So, we put the common stuff into a worker function, | |
543 | and set up another macro to stamp out the 12 open functions:*/ | |
544 | #define DEFINE_LMBCS_OPEN(n) \ | |
545 | static void \ | |
546 | _LMBCSOpen##n(UConverter* _this,const char* name,const char* locale,uint32_t options,UErrorCode* err) \ | |
547 | { _LMBCSOpenWorker(_this, name,locale,options, err, n);} | |
548 | ||
549 | ||
550 | ||
551 | /* Here's the open worker & the common close function */ | |
552 | static void | |
553 | _LMBCSOpenWorker(UConverter* _this, | |
554 | const char* name, | |
555 | const char* locale, | |
556 | uint32_t options, | |
557 | UErrorCode* err, | |
558 | ulmbcs_byte_t OptGroup | |
559 | ) | |
560 | { | |
561 | UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS*)uprv_malloc (sizeof (UConverterDataLMBCS)); | |
562 | if(extraInfo != NULL) | |
563 | { | |
564 | ulmbcs_byte_t i; | |
565 | ulmbcs_byte_t imax; | |
566 | imax = sizeof(extraInfo->OptGrpConverter)/sizeof(extraInfo->OptGrpConverter[0]); | |
567 | ||
568 | for (i=0; i < imax; i++) | |
569 | { | |
570 | extraInfo->OptGrpConverter[i] = | |
571 | (OptGroupByteToCPName[i] != NULL) ? | |
572 | ucnv_open(OptGroupByteToCPName[i], err) : NULL; | |
573 | } | |
574 | extraInfo->OptGroup = OptGroup; | |
575 | extraInfo->localeConverterIndex = FindLMBCSLocale(locale); | |
576 | } | |
577 | else | |
578 | { | |
579 | *err = U_MEMORY_ALLOCATION_ERROR; | |
580 | } | |
581 | _this->extraInfo = extraInfo; | |
582 | } | |
583 | ||
584 | static void | |
585 | _LMBCSClose(UConverter * _this) | |
586 | { | |
587 | if (_this->extraInfo != NULL && !_this->isExtraLocal) | |
588 | { | |
589 | ulmbcs_byte_t Ix; | |
590 | UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) _this->extraInfo; | |
591 | ||
592 | for (Ix=0; Ix < ULMBCS_GRP_UNICODE; Ix++) | |
593 | { | |
594 | if (extraInfo->OptGrpConverter[Ix] != NULL) | |
595 | ucnv_close (extraInfo->OptGrpConverter[Ix]); | |
596 | } | |
597 | uprv_free (_this->extraInfo); | |
598 | } | |
599 | } | |
600 | ||
601 | /* | |
602 | Here's an all-crash stop for debugging, since ICU does not have asserts. | |
603 | Turn this on by defining LMBCS_DEBUG, or by changing it to | |
604 | #if 1 | |
605 | */ | |
606 | #if LMBCS_DEBUG | |
607 | #define MyAssert(b) {if (!(b)) {*(char *)0 = 1;}} | |
608 | #else | |
609 | #define MyAssert(b) | |
610 | #endif | |
611 | ||
612 | /* | |
613 | Here's the basic helper function that we use when converting from | |
614 | Unicode to LMBCS, and we suspect that a Unicode character will fit into | |
615 | one of the 12 groups. The return value is the number of bytes written | |
616 | starting at pStartLMBCS (if any). | |
617 | */ | |
618 | ||
619 | static size_t | |
620 | LMBCSConversionWorker ( | |
621 | UConverterDataLMBCS * extraInfo, /* subconverters, opt & locale groups */ | |
622 | ulmbcs_byte_t group, /* The group to try */ | |
623 | ulmbcs_byte_t * pStartLMBCS, /* where to put the results */ | |
624 | UChar * pUniChar, /* The input unicode character */ | |
625 | ulmbcs_byte_t * lastConverterIndex, /* output: track last successful group used */ | |
626 | UBool * groups_tried /* output: track any unsuccessful groups */ | |
627 | ) | |
628 | { | |
629 | ulmbcs_byte_t * pLMBCS = pStartLMBCS; | |
630 | UConverter * xcnv = extraInfo->OptGrpConverter[group]; | |
631 | ||
632 | int bytesConverted; | |
633 | uint32_t value; | |
634 | ulmbcs_byte_t firstByte; | |
635 | ||
636 | MyAssert(xcnv); | |
637 | MyAssert(group<ULMBCS_GRP_UNICODE); | |
638 | ||
639 | bytesConverted = _MBCSFromUChar32(xcnv->sharedData, *pUniChar, &value, FALSE); | |
640 | ||
641 | /* get the first result byte */ | |
642 | switch(bytesConverted) | |
643 | { | |
644 | case 4: | |
645 | firstByte = (ulmbcs_byte_t)(value >> 24); | |
646 | break; | |
647 | case 3: | |
648 | firstByte = (ulmbcs_byte_t)(value >> 16); | |
649 | break; | |
650 | case 2: | |
651 | firstByte = (ulmbcs_byte_t)(value >> 8); | |
652 | break; | |
653 | case 1: | |
654 | firstByte = (ulmbcs_byte_t)value; | |
655 | break; | |
656 | default: | |
657 | /* most common failure mode is an unassigned character */ | |
658 | groups_tried[group] = TRUE; | |
659 | return 0; | |
660 | } | |
661 | ||
662 | *lastConverterIndex = group; | |
663 | ||
664 | /* All initial byte values in lower ascii range should have been caught by now, | |
665 | except with the exception group. | |
666 | */ | |
667 | MyAssert((firstByte <= ULMBCS_C0END) || (firstByte >= ULMBCS_C1START) || (group == ULMBCS_GRP_EXCEPT)); | |
668 | ||
669 | /* use converted data: first write 0, 1 or two group bytes */ | |
670 | if (group != ULMBCS_GRP_EXCEPT && extraInfo->OptGroup != group) | |
671 | { | |
672 | *pLMBCS++ = group; | |
673 | if (bytesConverted == 1 && group >= ULMBCS_DOUBLEOPTGROUP_START) | |
674 | { | |
675 | *pLMBCS++ = group; | |
676 | } | |
677 | } | |
678 | ||
679 | /* don't emit control chars */ | |
680 | if ( bytesConverted == 1 && firstByte < 0x20 ) | |
681 | return 0; | |
682 | ||
683 | ||
684 | /* then move over the converted data */ | |
685 | switch(bytesConverted) | |
686 | { | |
687 | case 4: | |
688 | *pLMBCS++ = (ulmbcs_byte_t)(value >> 24); | |
689 | case 3: | |
690 | *pLMBCS++ = (ulmbcs_byte_t)(value >> 16); | |
691 | case 2: | |
692 | *pLMBCS++ = (ulmbcs_byte_t)(value >> 8); | |
693 | case 1: | |
694 | *pLMBCS++ = (ulmbcs_byte_t)value; | |
695 | default: | |
696 | /* will never occur */ | |
697 | break; | |
698 | } | |
699 | ||
700 | return (pLMBCS - pStartLMBCS); | |
701 | } | |
702 | ||
703 | ||
704 | /* This is a much simpler version of above, when we | |
705 | know we are writing LMBCS using the Unicode group | |
706 | */ | |
707 | static size_t | |
708 | LMBCSConvertUni(ulmbcs_byte_t * pLMBCS, UChar uniChar) | |
709 | { | |
710 | /* encode into LMBCS Unicode range */ | |
711 | uint8_t LowCh = (uint8_t)(uniChar & 0x00FF); | |
712 | uint8_t HighCh = (uint8_t)(uniChar >> 8); | |
713 | ||
714 | *pLMBCS++ = ULMBCS_GRP_UNICODE; | |
715 | ||
716 | if (LowCh == 0) | |
717 | { | |
718 | *pLMBCS++ = ULMBCS_UNICOMPATZERO; | |
719 | *pLMBCS++ = HighCh; | |
720 | } | |
721 | else | |
722 | { | |
723 | *pLMBCS++ = HighCh; | |
724 | *pLMBCS++ = LowCh; | |
725 | } | |
726 | return ULMBCS_UNICODE_SIZE; | |
727 | } | |
728 | ||
729 | ||
730 | ||
731 | /* The main Unicode to LMBCS conversion function */ | |
732 | static void | |
733 | _LMBCSFromUnicode(UConverterFromUnicodeArgs* args, | |
734 | UErrorCode* err) | |
735 | { | |
736 | ulmbcs_byte_t lastConverterIndex = 0; | |
737 | UChar uniChar; | |
738 | ulmbcs_byte_t LMBCS[ULMBCS_CHARSIZE_MAX]; | |
739 | ulmbcs_byte_t * pLMBCS; | |
740 | int bytes_written; | |
741 | UBool groups_tried[ULMBCS_GRP_LAST+1]; | |
742 | UConverterDataLMBCS * extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo; | |
743 | int sourceIndex = 0; | |
744 | ||
745 | ||
746 | /* Basic strategy: attempt to fill in local LMBCS 1-char buffer.(LMBCS) | |
747 | If that succeeds, see if it will all fit into the target & copy it over | |
748 | if it does. | |
749 | ||
750 | We try conversions in the following order: | |
751 | ||
752 | 1. Single-byte ascii & special fixed control chars (&null) | |
753 | 2. Look up group in table & try that (could be | |
754 | A) Unicode group | |
755 | B) control group, | |
756 | C) national encoding, | |
757 | or ambiguous SBCS or MBCS group (on to step 4...) | |
758 | ||
759 | 3. If its ambiguous, try this order: | |
760 | A) The optimization group | |
761 | B) The locale group | |
762 | C) The last group that succeeded with this string. | |
763 | D) every other group that's relevent (single or double) | |
764 | E) If its single-byte ambiguous, try the exceptions group | |
765 | ||
766 | 4. And as a grand fallback: Unicode | |
767 | */ | |
768 | ||
769 | while (args->source < args->sourceLimit && !U_FAILURE(*err)) | |
770 | { | |
771 | if (args->target >= args->targetLimit) | |
772 | { | |
773 | *err = U_BUFFER_OVERFLOW_ERROR; | |
774 | break; | |
775 | } | |
776 | uniChar = *(args->source); | |
777 | bytes_written = 0; | |
778 | pLMBCS = LMBCS; | |
779 | ||
780 | /* check cases in rough order of how common they are, for speed */ | |
781 | ||
782 | /* single byte matches: strategy 1 */ | |
783 | ||
784 | if (((uniChar > ULMBCS_C0END) && (uniChar < ULMBCS_C1START)) || | |
785 | uniChar == 0 || uniChar == ULMBCS_HT || uniChar == ULMBCS_CR || | |
786 | uniChar == ULMBCS_LF || uniChar == ULMBCS_123SYSTEMRANGE | |
787 | ) | |
788 | { | |
789 | *pLMBCS++ = (ulmbcs_byte_t ) uniChar; | |
790 | bytes_written = 1; | |
791 | } | |
792 | ||
793 | ||
794 | if (!bytes_written) | |
795 | { | |
796 | /* Check by UNICODE range (Strategy 2) */ | |
797 | ulmbcs_byte_t group = FindLMBCSUniRange(uniChar); | |
798 | ||
799 | if (group == ULMBCS_GRP_UNICODE) /* (Strategy 2A) */ | |
800 | { | |
801 | pLMBCS += LMBCSConvertUni(pLMBCS,uniChar); | |
802 | ||
803 | bytes_written = pLMBCS - LMBCS; | |
804 | } | |
805 | else if (group == ULMBCS_GRP_CTRL) /* (Strategy 2B) */ | |
806 | { | |
807 | /* Handle control characters here */ | |
808 | if (uniChar <= ULMBCS_C0END) | |
809 | { | |
810 | *pLMBCS++ = ULMBCS_GRP_CTRL; | |
811 | *pLMBCS++ = (ulmbcs_byte_t)(ULMBCS_CTRLOFFSET + uniChar); | |
812 | } | |
813 | else if (uniChar >= ULMBCS_C1START && uniChar <= ULMBCS_C1START + ULMBCS_CTRLOFFSET) | |
814 | { | |
815 | *pLMBCS++ = ULMBCS_GRP_CTRL; | |
816 | *pLMBCS++ = (ulmbcs_byte_t ) (uniChar & 0x00FF); | |
817 | } | |
818 | bytes_written = pLMBCS - LMBCS; | |
819 | } | |
820 | else if (group < ULMBCS_GRP_UNICODE) /* (Strategy 2C) */ | |
821 | { | |
822 | /* a specific converter has been identified - use it */ | |
823 | bytes_written = LMBCSConversionWorker ( | |
824 | extraInfo, group, pLMBCS, &uniChar, | |
825 | &lastConverterIndex, groups_tried); | |
826 | } | |
827 | if (!bytes_written) /* the ambiguous group cases (Strategy 3) */ | |
828 | { | |
829 | memset(groups_tried, 0, sizeof(groups_tried)); | |
830 | ||
831 | /* check for non-default optimization group (Strategy 3A )*/ | |
832 | if (extraInfo->OptGroup != 1 | |
833 | && ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->OptGroup)) | |
834 | { | |
835 | bytes_written = LMBCSConversionWorker (extraInfo, | |
836 | extraInfo->OptGroup, pLMBCS, &uniChar, | |
837 | &lastConverterIndex, groups_tried); | |
838 | } | |
839 | /* check for locale optimization group (Strategy 3B) */ | |
840 | if (!bytes_written | |
841 | && (extraInfo->localeConverterIndex) | |
842 | && (ULMBCS_AMBIGUOUS_MATCH(group, extraInfo->localeConverterIndex))) | |
843 | { | |
844 | bytes_written = LMBCSConversionWorker (extraInfo, | |
845 | extraInfo->localeConverterIndex, pLMBCS, &uniChar, | |
846 | &lastConverterIndex, groups_tried); | |
847 | } | |
848 | /* check for last optimization group used for this string (Strategy 3C) */ | |
849 | if (!bytes_written | |
850 | && (lastConverterIndex) | |
851 | && (ULMBCS_AMBIGUOUS_MATCH(group, lastConverterIndex))) | |
852 | { | |
853 | bytes_written = LMBCSConversionWorker (extraInfo, | |
854 | lastConverterIndex, pLMBCS, &uniChar, | |
855 | &lastConverterIndex, groups_tried); | |
856 | ||
857 | } | |
858 | if (!bytes_written) | |
859 | { | |
860 | /* just check every possible matching converter (Strategy 3D) */ | |
861 | ulmbcs_byte_t grp_start; | |
862 | ulmbcs_byte_t grp_end; | |
863 | ulmbcs_byte_t grp_ix; | |
864 | grp_start = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS) | |
865 | ? ULMBCS_DOUBLEOPTGROUP_START | |
866 | : ULMBCS_GRP_L1); | |
867 | grp_end = (ulmbcs_byte_t)((group == ULMBCS_AMBIGUOUS_MBCS) | |
868 | ? ULMBCS_GRP_LAST | |
869 | : ULMBCS_GRP_TH); | |
870 | for (grp_ix = grp_start; | |
871 | grp_ix <= grp_end && !bytes_written; | |
872 | grp_ix++) | |
873 | { | |
874 | if (extraInfo->OptGrpConverter [grp_ix] && !groups_tried [grp_ix]) | |
875 | { | |
876 | bytes_written = LMBCSConversionWorker (extraInfo, | |
877 | grp_ix, pLMBCS, &uniChar, | |
878 | &lastConverterIndex, groups_tried); | |
879 | } | |
880 | } | |
881 | /* a final conversion fallback to the exceptions group if its likely | |
882 | to be single byte (Strategy 3E) */ | |
883 | if (!bytes_written && grp_start == ULMBCS_GRP_L1) | |
884 | { | |
885 | bytes_written = LMBCSConversionWorker (extraInfo, | |
886 | ULMBCS_GRP_EXCEPT, pLMBCS, &uniChar, | |
887 | &lastConverterIndex, groups_tried); | |
888 | } | |
889 | } | |
890 | /* all of our other strategies failed. Fallback to Unicode. (Strategy 4)*/ | |
891 | if (!bytes_written) | |
892 | { | |
893 | ||
894 | pLMBCS += LMBCSConvertUni(pLMBCS, uniChar); | |
895 | bytes_written = pLMBCS - LMBCS; | |
896 | } | |
897 | } | |
898 | } | |
899 | ||
900 | /* we have a translation. increment source and write as much as posible to target */ | |
901 | args->source++; | |
902 | pLMBCS = LMBCS; | |
903 | while (args->target < args->targetLimit && bytes_written--) | |
904 | { | |
905 | *(args->target)++ = *pLMBCS++; | |
906 | if (args->offsets) | |
907 | { | |
908 | *(args->offsets)++ = sourceIndex; | |
909 | } | |
910 | } | |
911 | sourceIndex++; | |
912 | if (bytes_written > 0) | |
913 | { | |
914 | /* write any bytes that didn't fit in target to the error buffer, | |
915 | common code will move this to target if we get called back with | |
916 | enough target room | |
917 | */ | |
918 | uint8_t * pErrorBuffer = args->converter->charErrorBuffer; | |
919 | *err = U_BUFFER_OVERFLOW_ERROR; | |
920 | args->converter->charErrorBufferLength = (int8_t)bytes_written; | |
921 | while (bytes_written--) | |
922 | { | |
923 | *pErrorBuffer++ = *pLMBCS++; | |
924 | } | |
925 | } | |
926 | } | |
927 | } | |
928 | ||
929 | ||
930 | /* Now, the Unicode from LMBCS section */ | |
931 | ||
932 | ||
933 | /* | |
934 | Special codes for the getNextUnicodeWorker -- usually as the result of | |
935 | special error-callback behavior: | |
936 | ULMBCS_SKIP To control skipping over LMBCS sequences | |
937 | ULMBCS_MULTI To indicate that a single LMBCS char translates to | |
938 | multiple uniChars | |
939 | */ | |
940 | #define ULMBCS_SKIP U_ERROR_LIMIT | |
941 | #define ULMBCS_MULTI ULMBCS_SKIP+1 | |
942 | ||
943 | /* A function to call when we are looking at the Unicode group byte in LMBCS */ | |
944 | static UChar | |
945 | GetUniFromLMBCSUni(char const ** ppLMBCSin) /* Called with LMBCS-style Unicode byte stream */ | |
946 | { | |
947 | uint8_t HighCh = *(*ppLMBCSin)++; /* Big-endian Unicode in LMBCS compatibility group*/ | |
948 | uint8_t LowCh = *(*ppLMBCSin)++; | |
949 | ||
950 | if (HighCh == ULMBCS_UNICOMPATZERO ) | |
951 | { | |
952 | HighCh = LowCh; | |
953 | LowCh = 0; /* zero-byte in LSB special character */ | |
954 | } | |
955 | return (UChar)((HighCh << 8) | LowCh); | |
956 | } | |
957 | ||
958 | ||
959 | ||
960 | /* CHECK_SOURCE_LIMIT: Helper macro to verify that there are at least'index' | |
961 | bytes left in source up to sourceLimit.Errors appropriately if not | |
962 | */ | |
963 | ||
964 | #define CHECK_SOURCE_LIMIT(index) \ | |
965 | if (args->source+index > args->sourceLimit){\ | |
966 | *err = U_TRUNCATED_CHAR_FOUND;\ | |
967 | args->source = saveSource;\ | |
968 | return 0xffff;} | |
969 | ||
970 | /* Return the Unicode representation for the current LMBCS character | |
971 | ||
972 | This worker function is used by both ucnv_getNextUChar() and ucnv_ToUnicode(). | |
973 | The last parameter says whether the return value should be treated as UTF-16 or | |
974 | UTF-32. The only difference is in surrogate handling | |
975 | */ | |
976 | ||
977 | static UChar32 | |
978 | _LMBCSGetNextUCharWorker(UConverterToUnicodeArgs* args, | |
979 | UErrorCode* err, | |
980 | UBool returnUTF32) | |
981 | { | |
982 | UChar32 uniChar = 0; /* an output UNICODE char */ | |
983 | ulmbcs_byte_t CurByte; /* A byte from the input stream */ | |
984 | const char * saveSource; | |
985 | ||
986 | /* error check */ | |
987 | if (args->source >= args->sourceLimit) | |
988 | { | |
989 | *err = U_ILLEGAL_ARGUMENT_ERROR; | |
990 | return 0xffff; | |
991 | } | |
992 | /* Grab first byte & save address for error recovery */ | |
993 | CurByte = *((ulmbcs_byte_t *) (saveSource = args->source++)); | |
994 | ||
995 | /* | |
996 | * at entry of each if clause: | |
997 | * 1. 'CurByte' points at the first byte of a LMBCS character | |
998 | * 2. '*source'points to the next byte of the source stream after 'CurByte' | |
999 | * | |
1000 | * the job of each if clause is: | |
1001 | * 1. set '*source' to point at the beginning of next char (nop if LMBCS char is only 1 byte) | |
1002 | * 2. set 'uniChar' up with the right Unicode value, or set 'err' appropriately | |
1003 | */ | |
1004 | ||
1005 | /* First lets check the simple fixed values. */ | |
1006 | ||
1007 | if(((CurByte > ULMBCS_C0END) && (CurByte < ULMBCS_C1START)) /* ascii range */ | |
1008 | || (CurByte == 0) | |
1009 | || CurByte == ULMBCS_HT || CurByte == ULMBCS_CR | |
1010 | || CurByte == ULMBCS_LF || CurByte == ULMBCS_123SYSTEMRANGE) | |
1011 | { | |
1012 | uniChar = CurByte; | |
1013 | } | |
1014 | else | |
1015 | { | |
1016 | UConverterDataLMBCS * extraInfo; | |
1017 | ulmbcs_byte_t group; | |
1018 | UConverter* cnv; | |
1019 | ||
1020 | if (CurByte == ULMBCS_GRP_CTRL) /* Control character group - no opt group update */ | |
1021 | { | |
1022 | ulmbcs_byte_t C0C1byte; | |
1023 | CHECK_SOURCE_LIMIT(1); | |
1024 | C0C1byte = *(args->source)++; | |
1025 | uniChar = (C0C1byte < ULMBCS_C1START) ? C0C1byte - ULMBCS_CTRLOFFSET : C0C1byte; | |
1026 | } | |
1027 | else | |
1028 | if (CurByte == ULMBCS_GRP_UNICODE) /* Unicode compatibility group: BigEndian UTF16 */ | |
1029 | { | |
1030 | UChar second; | |
1031 | CHECK_SOURCE_LIMIT(2); | |
1032 | ||
1033 | uniChar = GetUniFromLMBCSUni(&(args->source)); | |
1034 | ||
1035 | /* at this point we are usually done, but we need to make sure we are not in | |
1036 | a situation where we can successfully put together a surrogate pair */ | |
1037 | ||
1038 | if(returnUTF32 && UTF_IS_FIRST_SURROGATE(uniChar) && (args->source+3 <= args->sourceLimit) | |
1039 | && *(args->source)++ == ULMBCS_GRP_UNICODE | |
1040 | && UTF_IS_SECOND_SURROGATE(second = GetUniFromLMBCSUni(&(args->source)))) | |
1041 | { | |
1042 | uniChar = UTF16_GET_PAIR_VALUE(uniChar, second); | |
1043 | } | |
1044 | } | |
1045 | else if (CurByte <= ULMBCS_CTRLOFFSET) | |
1046 | { | |
1047 | group = CurByte; /* group byte is in the source */ | |
1048 | extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo; | |
1049 | cnv = extraInfo->OptGrpConverter[group]; | |
1050 | if (!cnv) | |
1051 | { | |
1052 | /* this is not a valid group byte - no converter*/ | |
1053 | *err = U_INVALID_CHAR_FOUND; | |
1054 | } | |
1055 | else if (group >= ULMBCS_DOUBLEOPTGROUP_START) /* double byte conversion */ | |
1056 | { | |
1057 | ||
1058 | CHECK_SOURCE_LIMIT(2); | |
1059 | ||
1060 | /* check for LMBCS doubled-group-byte case */ | |
1061 | if (*args->source == group) { | |
1062 | /* single byte */ | |
1063 | ++args->source; | |
1064 | uniChar = _MBCSSimpleGetNextUChar(cnv->sharedData, &args->source, args->source + 1, FALSE); | |
1065 | } else { | |
1066 | /* double byte */ | |
1067 | const char *newLimit = args->source + 2; | |
1068 | uniChar = _MBCSSimpleGetNextUChar(cnv->sharedData, &args->source, newLimit, FALSE); | |
1069 | args->source = newLimit; /* set the correct limit even in case of an error */ | |
1070 | } | |
1071 | } | |
1072 | else { /* single byte conversion */ | |
1073 | CHECK_SOURCE_LIMIT(1); | |
1074 | CurByte = *(args->source)++; | |
1075 | ||
1076 | if (CurByte >= ULMBCS_C1START) | |
1077 | { | |
1078 | uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv->sharedData, CurByte); | |
1079 | } | |
1080 | else | |
1081 | { | |
1082 | /* The non-optimizable oddballs where there is an explicit byte | |
1083 | * AND the second byte is not in the upper ascii range | |
1084 | */ | |
1085 | const char *s; | |
1086 | char bytes[2]; | |
1087 | ||
1088 | extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo; | |
1089 | cnv = extraInfo->OptGrpConverter [ULMBCS_GRP_EXCEPT]; | |
1090 | ||
1091 | /* Lookup value must include opt group */ | |
1092 | bytes[0] = group; | |
1093 | bytes[1] = CurByte; | |
1094 | s = bytes; | |
1095 | uniChar = _MBCSSimpleGetNextUChar(cnv->sharedData, &s, bytes + 2, FALSE); | |
1096 | } | |
1097 | } | |
1098 | } | |
1099 | else if (CurByte >= ULMBCS_C1START) /* group byte is implicit */ | |
1100 | { | |
1101 | extraInfo = (UConverterDataLMBCS *) args->converter->extraInfo; | |
1102 | group = extraInfo->OptGroup; | |
1103 | cnv = extraInfo->OptGrpConverter[group]; | |
1104 | if (group >= ULMBCS_DOUBLEOPTGROUP_START) /* double byte conversion */ | |
1105 | { | |
1106 | if (!_MBCSIsLeadByte(cnv->sharedData, CurByte)) | |
1107 | { | |
1108 | CHECK_SOURCE_LIMIT(0); | |
1109 | ||
1110 | /* let the MBCS conversion consume CurByte again */ | |
1111 | --args->source; | |
1112 | uniChar = _MBCSSimpleGetNextUChar(cnv->sharedData, &args->source, args->source + 1, FALSE); | |
1113 | } | |
1114 | else | |
1115 | { | |
1116 | CHECK_SOURCE_LIMIT(1); | |
1117 | /* let the MBCS conversion consume CurByte again */ | |
1118 | --args->source; | |
1119 | /* since we know that we start at a lead byte, args->source _will_ be incremented by 2 */ | |
1120 | uniChar = _MBCSSimpleGetNextUChar(cnv->sharedData, &args->source, args->source + 2, FALSE); | |
1121 | } | |
1122 | } | |
1123 | else /* single byte conversion */ | |
1124 | { | |
1125 | uniChar = _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP(cnv->sharedData, CurByte); | |
1126 | } | |
1127 | } | |
1128 | } | |
1129 | if (((uint32_t)uniChar - 0xfffe) <= 1) /* 0xfffe<=uniChar<=0xffff */ | |
1130 | { | |
1131 | UConverterToUnicodeArgs cbArgs = *args; | |
1132 | UConverterCallbackReason reason; | |
1133 | UChar UCh; | |
1134 | ||
1135 | if (uniChar == 0xfffe) | |
1136 | { | |
1137 | reason = UCNV_UNASSIGNED; | |
1138 | *err = U_INVALID_CHAR_FOUND; | |
1139 | } | |
1140 | else | |
1141 | { | |
1142 | reason = UCNV_ILLEGAL; | |
1143 | *err = U_ILLEGAL_CHAR_FOUND; | |
1144 | } | |
1145 | ||
1146 | cbArgs.target = &UCh; | |
1147 | cbArgs.targetLimit = &UCh + 1; | |
1148 | cbArgs.converter->fromCharErrorBehaviour(cbArgs.converter->toUContext, | |
1149 | &cbArgs, | |
1150 | saveSource, | |
1151 | args->source - saveSource, | |
1152 | reason, | |
1153 | err); | |
1154 | ||
1155 | if (cbArgs.target != &UCh) | |
1156 | { | |
1157 | uniChar = (UChar32) UCh; | |
1158 | } | |
1159 | /* Did error functor skip */ | |
1160 | if (U_SUCCESS(*err) && cbArgs.target == &UCh) | |
1161 | { | |
1162 | *err = ULMBCS_SKIP; | |
1163 | } | |
1164 | /* Did error functor try to write multiple UChars? */ | |
1165 | else if (*err == U_BUFFER_OVERFLOW_ERROR) | |
1166 | { | |
1167 | *err = ULMBCS_MULTI; | |
1168 | } | |
1169 | } | |
1170 | return uniChar; | |
1171 | } | |
1172 | ||
1173 | ||
1174 | /* The exported function that gets one UTF32 character from a LMBCS stream | |
1175 | */ | |
1176 | static UChar32 | |
1177 | _LMBCSGetNextUChar(UConverterToUnicodeArgs* args, | |
1178 | UErrorCode* err) | |
1179 | { | |
1180 | UChar32 nextUChar; | |
1181 | do { | |
1182 | nextUChar = _LMBCSGetNextUCharWorker(args, err, TRUE); | |
1183 | } while (*err == ULMBCS_SKIP); | |
1184 | ||
1185 | if (*err == ULMBCS_MULTI) | |
1186 | { | |
1187 | *err = U_ZERO_ERROR; | |
1188 | } | |
1189 | return nextUChar; | |
1190 | } | |
1191 | ||
1192 | /* The exported function that converts lmbcs to one or more | |
1193 | UChars - currently UTF-16 | |
1194 | */ | |
1195 | static void | |
1196 | _LMBCSToUnicodeWithOffsets(UConverterToUnicodeArgs* args, | |
1197 | UErrorCode* err) | |
1198 | { | |
1199 | UChar uniChar; /* one output UNICODE char */ | |
1200 | const char * saveSource = args->source; /* beginning of current code point */ | |
1201 | const char * pStartLMBCS = args->source; /* beginning of whole string */ | |
1202 | ||
1203 | if (args->targetLimit == args->target) /* error check may belong in common code */ | |
1204 | { | |
1205 | *err = U_BUFFER_OVERFLOW_ERROR; | |
1206 | return; | |
1207 | } | |
1208 | ||
1209 | /* Process from source to limit, or until error */ | |
1210 | while (!*err && args->sourceLimit > args->source && args->targetLimit > args->target) | |
1211 | { | |
1212 | saveSource = args->source; /* beginning of current code point */ | |
1213 | ||
1214 | if (args->converter->invalidCharLength) /* reassemble char from previous call */ | |
1215 | { | |
1216 | char LMBCS [ULMBCS_CHARSIZE_MAX]; | |
1217 | const char *pLMBCS = LMBCS, *saveSourceLimit; | |
1218 | size_t size_old = args->converter->invalidCharLength; | |
1219 | ||
1220 | /* limit from source is either reminder of temp buffer, or user limit on source */ | |
1221 | size_t size_new_maybe_1 = sizeof(LMBCS) - size_old; | |
1222 | size_t size_new_maybe_2 = args->sourceLimit - args->source; | |
1223 | size_t size_new = (size_new_maybe_1 < size_new_maybe_2) ? size_new_maybe_1 : size_new_maybe_2; | |
1224 | ||
1225 | ||
1226 | uprv_memcpy(LMBCS, args->converter->invalidCharBuffer, size_old); | |
1227 | uprv_memcpy(LMBCS + size_old, args->source, size_new); | |
1228 | saveSourceLimit = args->sourceLimit; | |
1229 | args->source = pLMBCS; | |
1230 | args->sourceLimit = pLMBCS+size_old+size_new; | |
1231 | uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err, FALSE); | |
1232 | pLMBCS = args->source; | |
1233 | args->source =saveSource; | |
1234 | args->sourceLimit = saveSourceLimit; | |
1235 | args->source += (pLMBCS - LMBCS - size_old); | |
1236 | ||
1237 | if (*err == U_TRUNCATED_CHAR_FOUND && !args->flush) | |
1238 | { | |
1239 | /* evil special case: source buffers so small a char spans more than 2 buffers */ | |
1240 | int8_t savebytes = (int8_t)(size_old+size_new); | |
1241 | args->converter->invalidCharLength = savebytes; | |
1242 | uprv_memcpy(args->converter->invalidCharBuffer, LMBCS, savebytes); | |
1243 | args->source = args->sourceLimit; | |
1244 | *err = U_ZERO_ERROR; | |
1245 | return; | |
1246 | } | |
1247 | else | |
1248 | { | |
1249 | /* clear the partial-char marker */ | |
1250 | args->converter->invalidCharLength = 0; | |
1251 | } | |
1252 | } | |
1253 | else | |
1254 | { | |
1255 | uniChar = (UChar) _LMBCSGetNextUCharWorker(args, err, FALSE); | |
1256 | } | |
1257 | if (U_SUCCESS(*err)) | |
1258 | { | |
1259 | if (uniChar < 0xfffe) | |
1260 | { | |
1261 | *(args->target)++ = uniChar; | |
1262 | if(args->offsets) | |
1263 | { | |
1264 | *(args->offsets)++ = saveSource - pStartLMBCS; | |
1265 | } | |
1266 | } | |
1267 | else if (uniChar == 0xfffe) | |
1268 | { | |
1269 | *err = U_INVALID_CHAR_FOUND; | |
1270 | } | |
1271 | else /* if (uniChar == 0xffff) */ | |
1272 | { | |
1273 | *err = U_ILLEGAL_CHAR_FOUND; | |
1274 | } | |
1275 | } | |
1276 | else if (*err == ULMBCS_MULTI) | |
1277 | { | |
1278 | UChar * pUChar = args->converter->UCharErrorBuffer; | |
1279 | int8_t BufferLength = args->converter->UCharErrorBufferLength; | |
1280 | ||
1281 | *err = U_ZERO_ERROR; | |
1282 | do | |
1283 | { /* error functor wants to write multiple UniChars */ | |
1284 | *(args->target)++ = uniChar; | |
1285 | if(args->offsets) | |
1286 | { | |
1287 | *(args->offsets)++ = saveSource - pStartLMBCS; | |
1288 | } | |
1289 | uniChar = *pUChar++; | |
1290 | } | |
1291 | while(BufferLength-- && args->targetLimit > args->target); | |
1292 | ||
1293 | if (++BufferLength > 0) | |
1294 | { /* fix up remaining UChars that can't fit in caller's buffer */ | |
1295 | uprv_memmove( args->converter->UCharErrorBuffer, | |
1296 | args->converter->UCharErrorBuffer + args->converter->UCharErrorBufferLength - BufferLength, | |
1297 | sizeof(UChar) * BufferLength); | |
1298 | } | |
1299 | args->converter->UCharErrorBufferLength = BufferLength; | |
1300 | } | |
1301 | else if (*err == ULMBCS_SKIP) | |
1302 | { | |
1303 | *err = U_ZERO_ERROR; /* and just go around again..*/ | |
1304 | } | |
1305 | } | |
1306 | /* if target ran out before source, return U_BUFFER_OVERFLOW_ERROR */ | |
1307 | if (U_SUCCESS(*err) && args->sourceLimit > args->source && args->targetLimit <= args->target) | |
1308 | { | |
1309 | *err = U_BUFFER_OVERFLOW_ERROR; | |
1310 | } | |
1311 | ||
1312 | /* If character incomplete, store away partial char if more to come */ | |
1313 | if (*err == U_TRUNCATED_CHAR_FOUND) | |
1314 | { | |
1315 | args->source = args->sourceLimit; | |
1316 | if (!args->flush ) | |
1317 | { | |
1318 | int8_t savebytes = (int8_t)(args->sourceLimit - saveSource); | |
1319 | args->converter->invalidCharLength = (int8_t)savebytes; | |
1320 | uprv_memcpy(args->converter->invalidCharBuffer, saveSource, savebytes); | |
1321 | *err = U_ZERO_ERROR; | |
1322 | } | |
1323 | } | |
1324 | } | |
1325 | ||
1326 | /* And now, the macroized declarations of data & functions: */ | |
1327 | DEFINE_LMBCS_OPEN(1) | |
1328 | DEFINE_LMBCS_OPEN(2) | |
1329 | DEFINE_LMBCS_OPEN(3) | |
1330 | DEFINE_LMBCS_OPEN(4) | |
1331 | DEFINE_LMBCS_OPEN(5) | |
1332 | DEFINE_LMBCS_OPEN(6) | |
1333 | DEFINE_LMBCS_OPEN(8) | |
1334 | DEFINE_LMBCS_OPEN(11) | |
1335 | DEFINE_LMBCS_OPEN(16) | |
1336 | DEFINE_LMBCS_OPEN(17) | |
1337 | DEFINE_LMBCS_OPEN(18) | |
1338 | DEFINE_LMBCS_OPEN(19) | |
1339 | ||
1340 | ||
1341 | DECLARE_LMBCS_DATA(1) | |
1342 | DECLARE_LMBCS_DATA(2) | |
1343 | DECLARE_LMBCS_DATA(3) | |
1344 | DECLARE_LMBCS_DATA(4) | |
1345 | DECLARE_LMBCS_DATA(5) | |
1346 | DECLARE_LMBCS_DATA(6) | |
1347 | DECLARE_LMBCS_DATA(8) | |
1348 | DECLARE_LMBCS_DATA(11) | |
1349 | DECLARE_LMBCS_DATA(16) | |
1350 | DECLARE_LMBCS_DATA(17) | |
1351 | DECLARE_LMBCS_DATA(18) | |
1352 | DECLARE_LMBCS_DATA(19) | |
1353 | ||
1354 | #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */ |