]>
Commit | Line | Data |
---|---|---|
f3c0d7a5 A |
1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
374ca955 A |
3 | /* |
4 | ****************************************************************************** | |
57a6839d | 5 | * Copyright (C) 2007-2014, International Business Machines Corporation |
46f4442e | 6 | * and others. All Rights Reserved. |
374ca955 A |
7 | ****************************************************************************** |
8 | * | |
46f4442e | 9 | * File CHNSECAL.CPP |
374ca955 | 10 | * |
46f4442e A |
11 | * Modification History: |
12 | * | |
13 | * Date Name Description | |
14 | * 9/18/2007 ajmacher ported from java ChineseCalendar | |
15 | ***************************************************************************** | |
374ca955 | 16 | */ |
46f4442e | 17 | |
374ca955 A |
18 | #include "chnsecal.h" |
19 | ||
46f4442e A |
20 | #if !UCONFIG_NO_FORMATTING |
21 | ||
22 | #include "umutex.h" | |
23 | #include <float.h> | |
24 | #include "gregoimp.h" // Math | |
25 | #include "astro.h" // CalendarAstronomer | |
51004dcb | 26 | #include "unicode/simpletz.h" |
46f4442e A |
27 | #include "uhash.h" |
28 | #include "ucln_in.h" | |
29 | ||
30 | // Debugging | |
31 | #ifdef U_DEBUG_CHNSECAL | |
32 | # include <stdio.h> | |
33 | # include <stdarg.h> | |
34 | static void debug_chnsecal_loc(const char *f, int32_t l) | |
35 | { | |
36 | fprintf(stderr, "%s:%d: ", f, l); | |
37 | } | |
38 | ||
39 | static void debug_chnsecal_msg(const char *pat, ...) | |
40 | { | |
41 | va_list ap; | |
42 | va_start(ap, pat); | |
43 | vfprintf(stderr, pat, ap); | |
44 | fflush(stderr); | |
45 | } | |
46 | // must use double parens, i.e.: U_DEBUG_CHNSECAL_MSG(("four is: %d",4)); | |
47 | #define U_DEBUG_CHNSECAL_MSG(x) {debug_chnsecal_loc(__FILE__,__LINE__);debug_chnsecal_msg x;} | |
48 | #else | |
49 | #define U_DEBUG_CHNSECAL_MSG(x) | |
50 | #endif | |
51 | ||
52 | ||
53 | // --- The cache -- | |
3d1f044b A |
54 | static icu::UMutex *astroLock() { // Protects access to gChineseCalendarAstro. |
55 | static icu::UMutex *m = STATIC_NEW(icu::UMutex); | |
56 | return m; | |
57 | } | |
4388f060 | 58 | static icu::CalendarAstronomer *gChineseCalendarAstro = NULL; |
b331163b A |
59 | |
60 | // Lazy Creation & Access synchronized by class CalendarCache with a mutex. | |
4388f060 A |
61 | static icu::CalendarCache *gChineseCalendarWinterSolsticeCache = NULL; |
62 | static icu::CalendarCache *gChineseCalendarNewYearCache = NULL; | |
b331163b | 63 | |
51004dcb | 64 | static icu::TimeZone *gChineseCalendarZoneAstroCalc = NULL; |
57a6839d | 65 | static icu::UInitOnce gChineseCalendarZoneAstroCalcInitOnce = U_INITONCE_INITIALIZER; |
46f4442e A |
66 | |
67 | /** | |
68 | * The start year of the Chinese calendar, the 61st year of the reign | |
69 | * of Huang Di. Some sources use the first year of his reign, | |
70 | * resulting in EXTENDED_YEAR values 60 years greater and ERA (cycle) | |
71 | * values one greater. | |
72 | */ | |
73 | static const int32_t CHINESE_EPOCH_YEAR = -2636; // Gregorian year | |
74 | ||
75 | /** | |
76 | * The offset from GMT in milliseconds at which we perform astronomical | |
77 | * computations. Some sources use a different historically accurate | |
78 | * offset of GMT+7:45:40 for years before 1929; we do not do this. | |
79 | */ | |
51004dcb | 80 | static const int32_t CHINA_OFFSET = 8 * kOneHour; |
46f4442e A |
81 | |
82 | /** | |
83 | * Value to be added or subtracted from the local days of a new moon to | |
84 | * get close to the next or prior new moon, but not cross it. Must be | |
85 | * >= 1 and < CalendarAstronomer.SYNODIC_MONTH. | |
86 | */ | |
87 | static const int32_t SYNODIC_GAP = 25; | |
88 | ||
89 | ||
90 | U_CDECL_BEGIN | |
91 | static UBool calendar_chinese_cleanup(void) { | |
92 | if (gChineseCalendarAstro) { | |
93 | delete gChineseCalendarAstro; | |
94 | gChineseCalendarAstro = NULL; | |
95 | } | |
96 | if (gChineseCalendarWinterSolsticeCache) { | |
97 | delete gChineseCalendarWinterSolsticeCache; | |
98 | gChineseCalendarWinterSolsticeCache = NULL; | |
99 | } | |
100 | if (gChineseCalendarNewYearCache) { | |
101 | delete gChineseCalendarNewYearCache; | |
102 | gChineseCalendarNewYearCache = NULL; | |
103 | } | |
51004dcb A |
104 | if (gChineseCalendarZoneAstroCalc) { |
105 | delete gChineseCalendarZoneAstroCalc; | |
106 | gChineseCalendarZoneAstroCalc = NULL; | |
107 | } | |
57a6839d | 108 | gChineseCalendarZoneAstroCalcInitOnce.reset(); |
46f4442e A |
109 | return TRUE; |
110 | } | |
111 | U_CDECL_END | |
112 | ||
113 | U_NAMESPACE_BEGIN | |
114 | ||
115 | ||
116 | // Implementation of the ChineseCalendar class | |
117 | ||
118 | ||
119 | //------------------------------------------------------------------------- | |
120 | // Constructors... | |
121 | //------------------------------------------------------------------------- | |
122 | ||
123 | ||
124 | Calendar* ChineseCalendar::clone() const { | |
125 | return new ChineseCalendar(*this); | |
126 | } | |
127 | ||
128 | ChineseCalendar::ChineseCalendar(const Locale& aLocale, UErrorCode& success) | |
51004dcb A |
129 | : Calendar(TimeZone::createDefault(), aLocale, success), |
130 | isLeapYear(FALSE), | |
131 | fEpochYear(CHINESE_EPOCH_YEAR), | |
132 | fZoneAstroCalc(getChineseCalZoneAstroCalc()) | |
133 | { | |
134 | setTimeInMillis(getNow(), success); // Call this again now that the vtable is set up properly. | |
135 | } | |
136 | ||
137 | ChineseCalendar::ChineseCalendar(const Locale& aLocale, int32_t epochYear, | |
138 | const TimeZone* zoneAstroCalc, UErrorCode &success) | |
139 | : Calendar(TimeZone::createDefault(), aLocale, success), | |
140 | isLeapYear(FALSE), | |
141 | fEpochYear(epochYear), | |
142 | fZoneAstroCalc(zoneAstroCalc) | |
46f4442e | 143 | { |
46f4442e A |
144 | setTimeInMillis(getNow(), success); // Call this again now that the vtable is set up properly. |
145 | } | |
146 | ||
147 | ChineseCalendar::ChineseCalendar(const ChineseCalendar& other) : Calendar(other) { | |
148 | isLeapYear = other.isLeapYear; | |
51004dcb A |
149 | fEpochYear = other.fEpochYear; |
150 | fZoneAstroCalc = other.fZoneAstroCalc; | |
46f4442e A |
151 | } |
152 | ||
153 | ChineseCalendar::~ChineseCalendar() | |
154 | { | |
155 | } | |
156 | ||
157 | const char *ChineseCalendar::getType() const { | |
158 | return "chinese"; | |
159 | } | |
160 | ||
57a6839d A |
161 | static void U_CALLCONV initChineseCalZoneAstroCalc() { |
162 | gChineseCalendarZoneAstroCalc = new SimpleTimeZone(CHINA_OFFSET, UNICODE_STRING_SIMPLE("CHINA_ZONE") ); | |
163 | ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup); | |
164 | } | |
165 | ||
51004dcb | 166 | const TimeZone* ChineseCalendar::getChineseCalZoneAstroCalc(void) const { |
57a6839d | 167 | umtx_initOnce(gChineseCalendarZoneAstroCalcInitOnce, &initChineseCalZoneAstroCalc); |
51004dcb A |
168 | return gChineseCalendarZoneAstroCalc; |
169 | } | |
170 | ||
46f4442e A |
171 | //------------------------------------------------------------------------- |
172 | // Minimum / Maximum access functions | |
173 | //------------------------------------------------------------------------- | |
174 | ||
175 | ||
176 | static const int32_t LIMITS[UCAL_FIELD_COUNT][4] = { | |
177 | // Minimum Greatest Least Maximum | |
178 | // Minimum Maximum | |
179 | { 1, 1, 83333, 83333}, // ERA | |
180 | { 1, 1, 60, 60}, // YEAR | |
181 | { 0, 0, 11, 11}, // MONTH | |
182 | { 1, 1, 50, 55}, // WEEK_OF_YEAR | |
183 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH | |
184 | { 1, 1, 29, 30}, // DAY_OF_MONTH | |
185 | { 1, 1, 353, 385}, // DAY_OF_YEAR | |
186 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK | |
187 | { -1, -1, 5, 5}, // DAY_OF_WEEK_IN_MONTH | |
188 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM | |
189 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR | |
190 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY | |
191 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE | |
192 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND | |
193 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND | |
194 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET | |
195 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET | |
196 | { -5000000, -5000000, 5000000, 5000000}, // YEAR_WOY | |
197 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL | |
198 | { -5000000, -5000000, 5000000, 5000000}, // EXTENDED_YEAR | |
199 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY | |
200 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY | |
201 | { 0, 0, 1, 1}, // IS_LEAP_MONTH | |
202 | }; | |
203 | ||
204 | ||
205 | /** | |
206 | * @draft ICU 2.4 | |
207 | */ | |
208 | int32_t ChineseCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const { | |
209 | return LIMITS[field][limitType]; | |
210 | } | |
211 | ||
212 | ||
213 | //---------------------------------------------------------------------- | |
214 | // Calendar framework | |
215 | //---------------------------------------------------------------------- | |
216 | ||
217 | /** | |
218 | * Implement abstract Calendar method to return the extended year | |
219 | * defined by the current fields. This will use either the ERA and | |
220 | * YEAR field as the cycle and year-of-cycle, or the EXTENDED_YEAR | |
221 | * field as the continuous year count, depending on which is newer. | |
222 | * @stable ICU 2.8 | |
223 | */ | |
224 | int32_t ChineseCalendar::handleGetExtendedYear() { | |
225 | int32_t year; | |
226 | if (newestStamp(UCAL_ERA, UCAL_YEAR, kUnset) <= fStamp[UCAL_EXTENDED_YEAR]) { | |
227 | year = internalGet(UCAL_EXTENDED_YEAR, 1); // Default to year 1 | |
228 | } else { | |
229 | int32_t cycle = internalGet(UCAL_ERA, 1) - 1; // 0-based cycle | |
51004dcb A |
230 | // adjust to the instance specific epoch |
231 | year = cycle * 60 + internalGet(UCAL_YEAR, 1) - (fEpochYear - CHINESE_EPOCH_YEAR); | |
46f4442e A |
232 | } |
233 | return year; | |
234 | } | |
235 | ||
236 | /** | |
237 | * Override Calendar method to return the number of days in the given | |
238 | * extended year and month. | |
239 | * | |
240 | * <p>Note: This method also reads the IS_LEAP_MONTH field to determine | |
241 | * whether or not the given month is a leap month. | |
242 | * @stable ICU 2.8 | |
243 | */ | |
244 | int32_t ChineseCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month) const { | |
245 | int32_t thisStart = handleComputeMonthStart(extendedYear, month, TRUE) - | |
246 | kEpochStartAsJulianDay + 1; // Julian day -> local days | |
247 | int32_t nextStart = newMoonNear(thisStart + SYNODIC_GAP, TRUE); | |
248 | return nextStart - thisStart; | |
249 | } | |
250 | ||
251 | /** | |
252 | * Override Calendar to compute several fields specific to the Chinese | |
253 | * calendar system. These are: | |
254 | * | |
255 | * <ul><li>ERA | |
256 | * <li>YEAR | |
257 | * <li>MONTH | |
258 | * <li>DAY_OF_MONTH | |
259 | * <li>DAY_OF_YEAR | |
260 | * <li>EXTENDED_YEAR</ul> | |
261 | * | |
262 | * The DAY_OF_WEEK and DOW_LOCAL fields are already set when this | |
263 | * method is called. The getGregorianXxx() methods return Gregorian | |
264 | * calendar equivalents for the given Julian day. | |
265 | * | |
266 | * <p>Compute the ChineseCalendar-specific field IS_LEAP_MONTH. | |
267 | * @stable ICU 2.8 | |
268 | */ | |
269 | void ChineseCalendar::handleComputeFields(int32_t julianDay, UErrorCode &/*status*/) { | |
270 | ||
271 | computeChineseFields(julianDay - kEpochStartAsJulianDay, // local days | |
272 | getGregorianYear(), getGregorianMonth(), | |
273 | TRUE); // set all fields | |
274 | } | |
275 | ||
276 | /** | |
277 | * Field resolution table that incorporates IS_LEAP_MONTH. | |
278 | */ | |
279 | const UFieldResolutionTable ChineseCalendar::CHINESE_DATE_PRECEDENCE[] = | |
280 | { | |
281 | { | |
282 | { UCAL_DAY_OF_MONTH, kResolveSTOP }, | |
283 | { UCAL_WEEK_OF_YEAR, UCAL_DAY_OF_WEEK, kResolveSTOP }, | |
284 | { UCAL_WEEK_OF_MONTH, UCAL_DAY_OF_WEEK, kResolveSTOP }, | |
285 | { UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DAY_OF_WEEK, kResolveSTOP }, | |
286 | { UCAL_WEEK_OF_YEAR, UCAL_DOW_LOCAL, kResolveSTOP }, | |
287 | { UCAL_WEEK_OF_MONTH, UCAL_DOW_LOCAL, kResolveSTOP }, | |
288 | { UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DOW_LOCAL, kResolveSTOP }, | |
289 | { UCAL_DAY_OF_YEAR, kResolveSTOP }, | |
290 | { kResolveRemap | UCAL_DAY_OF_MONTH, UCAL_IS_LEAP_MONTH, kResolveSTOP }, | |
291 | { kResolveSTOP } | |
292 | }, | |
293 | { | |
294 | { UCAL_WEEK_OF_YEAR, kResolveSTOP }, | |
295 | { UCAL_WEEK_OF_MONTH, kResolveSTOP }, | |
296 | { UCAL_DAY_OF_WEEK_IN_MONTH, kResolveSTOP }, | |
297 | { kResolveRemap | UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DAY_OF_WEEK, kResolveSTOP }, | |
298 | { kResolveRemap | UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DOW_LOCAL, kResolveSTOP }, | |
299 | { kResolveSTOP } | |
300 | }, | |
301 | {{kResolveSTOP}} | |
302 | }; | |
303 | ||
304 | /** | |
305 | * Override Calendar to add IS_LEAP_MONTH to the field resolution | |
306 | * table. | |
307 | * @stable ICU 2.8 | |
308 | */ | |
309 | const UFieldResolutionTable* ChineseCalendar::getFieldResolutionTable() const { | |
310 | return CHINESE_DATE_PRECEDENCE; | |
311 | } | |
312 | ||
313 | /** | |
314 | * Return the Julian day number of day before the first day of the | |
315 | * given month in the given extended year. | |
316 | * | |
317 | * <p>Note: This method reads the IS_LEAP_MONTH field to determine | |
318 | * whether the given month is a leap month. | |
319 | * @param eyear the extended year | |
320 | * @param month the zero-based month. The month is also determined | |
321 | * by reading the IS_LEAP_MONTH field. | |
322 | * @return the Julian day number of the day before the first | |
323 | * day of the given month and year | |
324 | * @stable ICU 2.8 | |
325 | */ | |
326 | int32_t ChineseCalendar::handleComputeMonthStart(int32_t eyear, int32_t month, UBool useMonth) const { | |
327 | ||
328 | ChineseCalendar *nonConstThis = (ChineseCalendar*)this; // cast away const | |
329 | ||
330 | // If the month is out of range, adjust it into range, and | |
331 | // modify the extended year value accordingly. | |
332 | if (month < 0 || month > 11) { | |
333 | double m = month; | |
729e4ab9 | 334 | eyear += (int32_t)ClockMath::floorDivide(m, 12.0, m); |
46f4442e A |
335 | month = (int32_t)m; |
336 | } | |
337 | ||
51004dcb | 338 | int32_t gyear = eyear + fEpochYear - 1; // Gregorian year |
46f4442e A |
339 | int32_t theNewYear = newYear(gyear); |
340 | int32_t newMoon = newMoonNear(theNewYear + month * 29, TRUE); | |
341 | ||
342 | int32_t julianDay = newMoon + kEpochStartAsJulianDay; | |
343 | ||
344 | // Save fields for later restoration | |
345 | int32_t saveMonth = internalGet(UCAL_MONTH); | |
346 | int32_t saveIsLeapMonth = internalGet(UCAL_IS_LEAP_MONTH); | |
347 | ||
348 | // Ignore IS_LEAP_MONTH field if useMonth is false | |
349 | int32_t isLeapMonth = useMonth ? saveIsLeapMonth : 0; | |
350 | ||
351 | UErrorCode status = U_ZERO_ERROR; | |
352 | nonConstThis->computeGregorianFields(julianDay, status); | |
353 | if (U_FAILURE(status)) | |
354 | return 0; | |
355 | ||
356 | // This will modify the MONTH and IS_LEAP_MONTH fields (only) | |
357 | nonConstThis->computeChineseFields(newMoon, getGregorianYear(), | |
358 | getGregorianMonth(), FALSE); | |
359 | ||
360 | if (month != internalGet(UCAL_MONTH) || | |
361 | isLeapMonth != internalGet(UCAL_IS_LEAP_MONTH)) { | |
362 | newMoon = newMoonNear(newMoon + SYNODIC_GAP, TRUE); | |
363 | julianDay = newMoon + kEpochStartAsJulianDay; | |
364 | } | |
365 | ||
366 | nonConstThis->internalSet(UCAL_MONTH, saveMonth); | |
367 | nonConstThis->internalSet(UCAL_IS_LEAP_MONTH, saveIsLeapMonth); | |
368 | ||
369 | return julianDay - 1; | |
370 | } | |
371 | ||
372 | ||
373 | /** | |
374 | * Override Calendar to handle leap months properly. | |
375 | * @stable ICU 2.8 | |
376 | */ | |
377 | void ChineseCalendar::add(UCalendarDateFields field, int32_t amount, UErrorCode& status) { | |
378 | switch (field) { | |
379 | case UCAL_MONTH: | |
380 | if (amount != 0) { | |
381 | int32_t dom = get(UCAL_DAY_OF_MONTH, status); | |
382 | if (U_FAILURE(status)) break; | |
383 | int32_t day = get(UCAL_JULIAN_DAY, status) - kEpochStartAsJulianDay; // Get local day | |
384 | if (U_FAILURE(status)) break; | |
385 | int32_t moon = day - dom + 1; // New moon | |
386 | offsetMonth(moon, dom, amount); | |
387 | } | |
388 | break; | |
389 | default: | |
390 | Calendar::add(field, amount, status); | |
391 | break; | |
392 | } | |
393 | } | |
394 | ||
395 | /** | |
396 | * Override Calendar to handle leap months properly. | |
397 | * @stable ICU 2.8 | |
398 | */ | |
399 | void ChineseCalendar::add(EDateFields field, int32_t amount, UErrorCode& status) { | |
400 | add((UCalendarDateFields)field, amount, status); | |
401 | } | |
402 | ||
403 | /** | |
404 | * Override Calendar to handle leap months properly. | |
405 | * @stable ICU 2.8 | |
406 | */ | |
407 | void ChineseCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status) { | |
408 | switch (field) { | |
409 | case UCAL_MONTH: | |
410 | if (amount != 0) { | |
411 | int32_t dom = get(UCAL_DAY_OF_MONTH, status); | |
412 | if (U_FAILURE(status)) break; | |
413 | int32_t day = get(UCAL_JULIAN_DAY, status) - kEpochStartAsJulianDay; // Get local day | |
414 | if (U_FAILURE(status)) break; | |
415 | int32_t moon = day - dom + 1; // New moon (start of this month) | |
416 | ||
417 | // Note throughout the following: Months 12 and 1 are never | |
418 | // followed by a leap month (D&R p. 185). | |
419 | ||
420 | // Compute the adjusted month number m. This is zero-based | |
421 | // value from 0..11 in a non-leap year, and from 0..12 in a | |
422 | // leap year. | |
423 | int32_t m = get(UCAL_MONTH, status); // 0-based month | |
424 | if (U_FAILURE(status)) break; | |
425 | if (isLeapYear) { // (member variable) | |
426 | if (get(UCAL_IS_LEAP_MONTH, status) == 1) { | |
427 | ++m; | |
428 | } else { | |
429 | // Check for a prior leap month. (In the | |
430 | // following, month 0 is the first month of the | |
431 | // year.) Month 0 is never followed by a leap | |
432 | // month, and we know month m is not a leap month. | |
433 | // moon1 will be the start of month 0 if there is | |
434 | // no leap month between month 0 and month m; | |
435 | // otherwise it will be the start of month 1. | |
436 | int moon1 = moon - | |
437 | (int) (CalendarAstronomer::SYNODIC_MONTH * (m - 0.5)); | |
438 | moon1 = newMoonNear(moon1, TRUE); | |
439 | if (isLeapMonthBetween(moon1, moon)) { | |
440 | ++m; | |
441 | } | |
442 | } | |
443 | if (U_FAILURE(status)) break; | |
444 | } | |
445 | ||
446 | // Now do the standard roll computation on m, with the | |
447 | // allowed range of 0..n-1, where n is 12 or 13. | |
448 | int32_t n = isLeapYear ? 13 : 12; // Months in this year | |
449 | int32_t newM = (m + amount) % n; | |
450 | if (newM < 0) { | |
451 | newM += n; | |
452 | } | |
453 | ||
454 | if (newM != m) { | |
455 | offsetMonth(moon, dom, newM - m); | |
456 | } | |
457 | } | |
458 | break; | |
459 | default: | |
460 | Calendar::roll(field, amount, status); | |
461 | break; | |
462 | } | |
463 | } | |
464 | ||
465 | void ChineseCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) { | |
466 | roll((UCalendarDateFields)field, amount, status); | |
467 | } | |
468 | ||
469 | ||
470 | //------------------------------------------------------------------ | |
471 | // Support methods and constants | |
472 | //------------------------------------------------------------------ | |
473 | ||
474 | /** | |
475 | * Convert local days to UTC epoch milliseconds. | |
51004dcb A |
476 | * This is not an accurate conversion in that getTimezoneOffset |
477 | * takes the milliseconds in GMT (not local time). In theory, more | |
478 | * accurate algorithm can be implemented but practically we do not need | |
479 | * to go through that complication as long as the historical timezone | |
480 | * changes did not happen around the 'tricky' new moon (new moon around | |
481 | * midnight). | |
482 | * | |
483 | * @param days days after January 1, 1970 0:00 in the astronomical base zone | |
46f4442e A |
484 | * @return milliseconds after January 1, 1970 0:00 GMT |
485 | */ | |
51004dcb A |
486 | double ChineseCalendar::daysToMillis(double days) const { |
487 | double millis = days * (double)kOneDay; | |
488 | if (fZoneAstroCalc != NULL) { | |
489 | int32_t rawOffset, dstOffset; | |
490 | UErrorCode status = U_ZERO_ERROR; | |
491 | fZoneAstroCalc->getOffset(millis, FALSE, rawOffset, dstOffset, status); | |
492 | if (U_SUCCESS(status)) { | |
57a6839d | 493 | return millis - (double)(rawOffset + dstOffset); |
51004dcb A |
494 | } |
495 | } | |
496 | return millis - (double)CHINA_OFFSET; | |
46f4442e A |
497 | } |
498 | ||
499 | /** | |
500 | * Convert UTC epoch milliseconds to local days. | |
501 | * @param millis milliseconds after January 1, 1970 0:00 GMT | |
51004dcb | 502 | * @return days after January 1, 1970 0:00 in the astronomical base zone |
46f4442e | 503 | */ |
51004dcb A |
504 | double ChineseCalendar::millisToDays(double millis) const { |
505 | if (fZoneAstroCalc != NULL) { | |
506 | int32_t rawOffset, dstOffset; | |
507 | UErrorCode status = U_ZERO_ERROR; | |
508 | fZoneAstroCalc->getOffset(millis, FALSE, rawOffset, dstOffset, status); | |
509 | if (U_SUCCESS(status)) { | |
57a6839d | 510 | return ClockMath::floorDivide(millis + (double)(rawOffset + dstOffset), kOneDay); |
51004dcb A |
511 | } |
512 | } | |
513 | return ClockMath::floorDivide(millis + (double)CHINA_OFFSET, kOneDay); | |
46f4442e A |
514 | } |
515 | ||
516 | //------------------------------------------------------------------ | |
517 | // Astronomical computations | |
518 | //------------------------------------------------------------------ | |
519 | ||
57a6839d A |
520 | // bit array for gregorian 1900-2100 indicating years in |
521 | // which the linear estimate needs to be adjusted by -1 | |
522 | static const uint16_t winterSolsticeAdj[] = { | |
523 | 0x0001, // 1900-1915, deltas for 1900 | |
524 | 0x0444, // 1916-1931, deltas for 1918, 1922, 1926 | |
525 | 0x0000, // 1932-1947 | |
526 | 0x8880, // 1948-1963, deltas for 1955, 1959, 1963 | |
527 | 0x0000, // 1964-1979 | |
528 | 0x1100, // 1980-1995, deltas for 1988, 1992 | |
529 | 0x0011, // 1996-2011, deltas for 1996, 2000 | |
530 | 0x2200, // 2012-2027, deltas for 2021, 2025 | |
531 | 0x0022, // 2028-2043, deltas for 2029, 2033 | |
532 | 0x4000, // 2044-2059, deltas for 2058 | |
533 | 0x0444, // 2060-2075, deltas for 2062, 2066, 2070 | |
534 | 0x8000, // 2076-2091, deltas for 2091 | |
535 | 0x0088, // 2092-2100, deltas for 2095, 2099 | |
536 | }; | |
46f4442e A |
537 | |
538 | /** | |
539 | * Return the major solar term on or after December 15 of the given | |
540 | * Gregorian year, that is, the winter solstice of the given year. | |
541 | * Computations are relative to Asia/Shanghai time zone. | |
542 | * @param gyear a Gregorian year | |
543 | * @return days after January 1, 1970 0:00 Asia/Shanghai of the | |
544 | * winter solstice of the given year | |
545 | */ | |
546 | int32_t ChineseCalendar::winterSolstice(int32_t gyear) const { | |
57a6839d A |
547 | if (gyear >= 1900 && gyear <= 2100) { |
548 | // Don't use cache, just return linear estimate + table correction | |
549 | int32_t gyearadj = gyear - 1900; | |
550 | int32_t result = (int32_t)(365.243*((double)gyearadj) - 0.3) - 25211; | |
551 | uint16_t bitmap = winterSolsticeAdj[gyearadj / 16]; | |
552 | if (bitmap != 0) { | |
553 | uint16_t bitmask = 1 << (gyearadj % 16); | |
554 | if ((bitmask & bitmap) != 0) { | |
555 | result--; | |
556 | } | |
557 | } | |
558 | return result; | |
559 | } | |
46f4442e A |
560 | |
561 | UErrorCode status = U_ZERO_ERROR; | |
562 | int32_t cacheValue = CalendarCache::get(&gChineseCalendarWinterSolsticeCache, gyear, status); | |
563 | ||
564 | if (cacheValue == 0) { | |
565 | // In books December 15 is used, but it fails for some years | |
566 | // using our algorithms, e.g.: 1298 1391 1492 1553 1560. That | |
567 | // is, winterSolstice(1298) starts search at Dec 14 08:00:00 | |
568 | // PST 1298 with a final result of Dec 14 10:31:59 PST 1299. | |
569 | double ms = daysToMillis(Grego::fieldsToDay(gyear, UCAL_DECEMBER, 1)); | |
570 | ||
3d1f044b | 571 | umtx_lock(astroLock()); |
46f4442e A |
572 | if(gChineseCalendarAstro == NULL) { |
573 | gChineseCalendarAstro = new CalendarAstronomer(); | |
574 | ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup); | |
575 | } | |
576 | gChineseCalendarAstro->setTime(ms); | |
577 | UDate solarLong = gChineseCalendarAstro->getSunTime(CalendarAstronomer::WINTER_SOLSTICE(), TRUE); | |
3d1f044b | 578 | umtx_unlock(astroLock()); |
46f4442e A |
579 | |
580 | // Winter solstice is 270 degrees solar longitude aka Dongzhi | |
581 | cacheValue = (int32_t)millisToDays(solarLong); | |
582 | CalendarCache::put(&gChineseCalendarWinterSolsticeCache, gyear, cacheValue, status); | |
583 | } | |
584 | if(U_FAILURE(status)) { | |
585 | cacheValue = 0; | |
586 | } | |
587 | return cacheValue; | |
588 | } | |
589 | ||
590 | /** | |
591 | * Return the closest new moon to the given date, searching either | |
592 | * forward or backward in time. | |
593 | * @param days days after January 1, 1970 0:00 Asia/Shanghai | |
594 | * @param after if true, search for a new moon on or after the given | |
595 | * date; otherwise, search for a new moon before it | |
596 | * @return days after January 1, 1970 0:00 Asia/Shanghai of the nearest | |
597 | * new moon after or before <code>days</code> | |
598 | */ | |
599 | int32_t ChineseCalendar::newMoonNear(double days, UBool after) const { | |
57a6839d A |
600 | double ms = daysToMillis(days); |
601 | // Try to get the new moon via static function directly from the table in | |
602 | // CalendarAstronomer (for approx gregorian range 1900-2100) without having | |
603 | // to use a CalendarAstronomer instance which requires a lock. This still | |
604 | // involves extra conversion to/from millis. If static function returns 0 | |
605 | // we are out of its range and need to use the full machinery. | |
606 | UDate newMoon = CalendarAstronomer::getNewMoonTimeInRange(ms, after); | |
607 | if (newMoon == 0.0) { | |
3d1f044b | 608 | umtx_lock(astroLock()); |
57a6839d A |
609 | if(gChineseCalendarAstro == NULL) { |
610 | gChineseCalendarAstro = new CalendarAstronomer(); | |
611 | ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup); | |
612 | } | |
613 | gChineseCalendarAstro->setTime(ms); | |
614 | newMoon = gChineseCalendarAstro->getMoonTime(CalendarAstronomer::NEW_MOON(), after); | |
3d1f044b | 615 | umtx_unlock(astroLock()); |
46f4442e | 616 | } |
3d1f044b | 617 | |
46f4442e A |
618 | return (int32_t) millisToDays(newMoon); |
619 | } | |
620 | ||
621 | /** | |
622 | * Return the nearest integer number of synodic months between | |
623 | * two dates. | |
624 | * @param day1 days after January 1, 1970 0:00 Asia/Shanghai | |
625 | * @param day2 days after January 1, 1970 0:00 Asia/Shanghai | |
626 | * @return the nearest integer number of months between day1 and day2 | |
627 | */ | |
628 | int32_t ChineseCalendar::synodicMonthsBetween(int32_t day1, int32_t day2) const { | |
629 | double roundme = ((day2 - day1) / CalendarAstronomer::SYNODIC_MONTH); | |
630 | return (int32_t) (roundme + (roundme >= 0 ? .5 : -.5)); | |
631 | } | |
632 | ||
633 | /** | |
634 | * Return the major solar term on or before a given date. This | |
635 | * will be an integer from 1..12, with 1 corresponding to 330 degrees, | |
636 | * 2 to 0 degrees, 3 to 30 degrees,..., and 12 to 300 degrees. | |
637 | * @param days days after January 1, 1970 0:00 Asia/Shanghai | |
638 | */ | |
639 | int32_t ChineseCalendar::majorSolarTerm(int32_t days) const { | |
640 | ||
57a6839d A |
641 | double ms = daysToMillis(days); |
642 | UDate solarLongitude = CalendarAstronomer::getSunLongitudeForTime(ms); | |
643 | ||
644 | // There was almost never any benefit to using the CalendarAstronomer instance; | |
645 | // it could cache intermediate results, but we rarely used it multiple times in | |
646 | // succession for the same setTime value, so the intermediate results got | |
647 | // discarded anyway. | |
648 | // | |
649 | // Deleted call to gChineseCalendarAstro->getSunLongitude() now that | |
650 | // we use CalendarAstronomer::getSunLongitudeForTime() | |
46f4442e A |
651 | |
652 | // Compute (floor(solarLongitude / (pi/6)) + 2) % 12 | |
653 | int32_t term = ( ((int32_t)(6 * solarLongitude / CalendarAstronomer::PI)) + 2 ) % 12; | |
654 | if (term < 1) { | |
655 | term += 12; | |
656 | } | |
657 | return term; | |
658 | } | |
659 | ||
660 | /** | |
661 | * Return true if the given month lacks a major solar term. | |
662 | * @param newMoon days after January 1, 1970 0:00 Asia/Shanghai of a new | |
663 | * moon | |
664 | */ | |
665 | UBool ChineseCalendar::hasNoMajorSolarTerm(int32_t newMoon) const { | |
666 | return majorSolarTerm(newMoon) == | |
667 | majorSolarTerm(newMoonNear(newMoon + SYNODIC_GAP, TRUE)); | |
668 | } | |
669 | ||
670 | ||
671 | //------------------------------------------------------------------ | |
672 | // Time to fields | |
673 | //------------------------------------------------------------------ | |
674 | ||
675 | /** | |
676 | * Return true if there is a leap month on or after month newMoon1 and | |
677 | * at or before month newMoon2. | |
51004dcb A |
678 | * @param newMoon1 days after January 1, 1970 0:00 astronomical base zone |
679 | * of a new moon | |
680 | * @param newMoon2 days after January 1, 1970 0:00 astronomical base zone | |
681 | * of a new moon | |
46f4442e A |
682 | */ |
683 | UBool ChineseCalendar::isLeapMonthBetween(int32_t newMoon1, int32_t newMoon2) const { | |
684 | ||
685 | #ifdef U_DEBUG_CHNSECAL | |
686 | // This is only needed to debug the timeOfAngle divergence bug. | |
687 | // Remove this later. Liu 11/9/00 | |
688 | if (synodicMonthsBetween(newMoon1, newMoon2) >= 50) { | |
689 | U_DEBUG_CHNSECAL_MSG(( | |
690 | "isLeapMonthBetween(%d, %d): Invalid parameters", newMoon1, newMoon2 | |
691 | )); | |
692 | } | |
693 | #endif | |
694 | ||
695 | return (newMoon2 >= newMoon1) && | |
696 | (isLeapMonthBetween(newMoon1, newMoonNear(newMoon2 - SYNODIC_GAP, FALSE)) || | |
697 | hasNoMajorSolarTerm(newMoon2)); | |
698 | } | |
699 | ||
700 | /** | |
701 | * Compute fields for the Chinese calendar system. This method can | |
702 | * either set all relevant fields, as required by | |
703 | * <code>handleComputeFields()</code>, or it can just set the MONTH and | |
704 | * IS_LEAP_MONTH fields, as required by | |
705 | * <code>handleComputeMonthStart()</code>. | |
706 | * | |
707 | * <p>As a side effect, this method sets {@link #isLeapYear}. | |
51004dcb A |
708 | * @param days days after January 1, 1970 0:00 astronomical base zone |
709 | * of the date to compute fields for | |
46f4442e A |
710 | * @param gyear the Gregorian year of the given date |
711 | * @param gmonth the Gregorian month of the given date | |
712 | * @param setAllFields if true, set the EXTENDED_YEAR, ERA, YEAR, | |
713 | * DAY_OF_MONTH, and DAY_OF_YEAR fields. In either case set the MONTH | |
714 | * and IS_LEAP_MONTH fields. | |
715 | */ | |
716 | void ChineseCalendar::computeChineseFields(int32_t days, int32_t gyear, int32_t gmonth, | |
717 | UBool setAllFields) { | |
718 | ||
719 | // Find the winter solstices before and after the target date. | |
720 | // These define the boundaries of this Chinese year, specifically, | |
721 | // the position of month 11, which always contains the solstice. | |
722 | // We want solsticeBefore <= date < solsticeAfter. | |
723 | int32_t solsticeBefore; | |
724 | int32_t solsticeAfter = winterSolstice(gyear); | |
725 | if (days < solsticeAfter) { | |
726 | solsticeBefore = winterSolstice(gyear - 1); | |
727 | } else { | |
728 | solsticeBefore = solsticeAfter; | |
729 | solsticeAfter = winterSolstice(gyear + 1); | |
730 | } | |
731 | ||
732 | // Find the start of the month after month 11. This will be either | |
733 | // the prior month 12 or leap month 11 (very rare). Also find the | |
734 | // start of the following month 11. | |
735 | int32_t firstMoon = newMoonNear(solsticeBefore + 1, TRUE); | |
736 | int32_t lastMoon = newMoonNear(solsticeAfter + 1, FALSE); | |
737 | int32_t thisMoon = newMoonNear(days + 1, FALSE); // Start of this month | |
738 | // Note: isLeapYear is a member variable | |
739 | isLeapYear = synodicMonthsBetween(firstMoon, lastMoon) == 12; | |
740 | ||
741 | int32_t month = synodicMonthsBetween(firstMoon, thisMoon); | |
742 | if (isLeapYear && isLeapMonthBetween(firstMoon, thisMoon)) { | |
743 | month--; | |
744 | } | |
745 | if (month < 1) { | |
746 | month += 12; | |
747 | } | |
748 | ||
749 | UBool isLeapMonth = isLeapYear && | |
750 | hasNoMajorSolarTerm(thisMoon) && | |
751 | !isLeapMonthBetween(firstMoon, newMoonNear(thisMoon - SYNODIC_GAP, FALSE)); | |
752 | ||
753 | internalSet(UCAL_MONTH, month-1); // Convert from 1-based to 0-based | |
754 | internalSet(UCAL_IS_LEAP_MONTH, isLeapMonth?1:0); | |
755 | ||
756 | if (setAllFields) { | |
757 | ||
51004dcb A |
758 | // Extended year and cycle year is based on the epoch year |
759 | ||
760 | int32_t extended_year = gyear - fEpochYear; | |
761 | int cycle_year = gyear - CHINESE_EPOCH_YEAR; | |
46f4442e A |
762 | if (month < 11 || |
763 | gmonth >= UCAL_JULY) { | |
51004dcb A |
764 | extended_year++; |
765 | cycle_year++; | |
46f4442e A |
766 | } |
767 | int32_t dayOfMonth = days - thisMoon + 1; | |
768 | ||
51004dcb | 769 | internalSet(UCAL_EXTENDED_YEAR, extended_year); |
46f4442e A |
770 | |
771 | // 0->0,60 1->1,1 60->1,60 61->2,1 etc. | |
772 | int32_t yearOfCycle; | |
51004dcb | 773 | int32_t cycle = ClockMath::floorDivide(cycle_year - 1, 60, yearOfCycle); |
46f4442e A |
774 | internalSet(UCAL_ERA, cycle + 1); |
775 | internalSet(UCAL_YEAR, yearOfCycle + 1); | |
776 | ||
777 | internalSet(UCAL_DAY_OF_MONTH, dayOfMonth); | |
778 | ||
779 | // Days will be before the first new year we compute if this | |
780 | // date is in month 11, leap 11, 12. There is never a leap 12. | |
781 | // New year computations are cached so this should be cheap in | |
782 | // the long run. | |
783 | int32_t theNewYear = newYear(gyear); | |
784 | if (days < theNewYear) { | |
785 | theNewYear = newYear(gyear-1); | |
786 | } | |
787 | internalSet(UCAL_DAY_OF_YEAR, days - theNewYear + 1); | |
788 | } | |
789 | } | |
790 | ||
791 | ||
792 | //------------------------------------------------------------------ | |
793 | // Fields to time | |
794 | //------------------------------------------------------------------ | |
795 | ||
57a6839d A |
796 | // for gyear 1900 through 2100, corrections to linear estimate of newYear |
797 | static const int8_t newYearAdj[] = { | |
798 | -5, 14, 3, -7, 11, -1, -11, 8, -3, -14, 5, -6, 13, 1, -10, 9, -1, -13, 6, -4, // 1900-1919 | |
799 | 15, 3, -8, 11, 0, -12, 8, -3, -13, 5, -6, 12, 1, -10, 9, -1, -12, 6, -5, 14, // 1920-1939 | |
800 | 3, -9, 10, 0, -11, 9, -3, -14, 5, -6, 12, 1, -9, 10, -2, -12, 7, -4, 13, 3, // 1940-1959 | |
801 | -8, 11, 0, -11, 8, -2, -15, 4, -6, 13, 1, -9, 10, -1, -13, 6, -5, 14, 2, -8, // 1960-1979 | |
802 | 11, 1, -11, 8, -3, 16, 5, -7, 12, 2, -8, 10, -1, -12, 6, -5, 14, 3, -7, 11, // 1980-1999 | |
803 | 0, -11, 8, -4, -14, 5, -6, 13, 2, -9, 10, -2, -13, 6, -4, 14, 3, -7, 12, 0, // 2000-2019 | |
804 | -11, 8, -3, -14, 5, -6, 13, 2, -10, 9, -1, -12, 6, -4, 15, 4, -8, 11, 0, -11, // 2020-2039 | |
805 | 7, -3, -13, 6, -6, 13, 2, -9, 9, -2, -12, 7, -4, 15, 4, -7, 10, 0, -11, 8, // 2040-2059 | |
806 | -3, -14, 5, -6, 12, 1, -9, 10, -1, -12, 7, -4, 15, 3, -8, 11, 1, -11, 8, -2, // 2060-2079 | |
807 | -13, 5, -6, 13, 2, -9, 10, -1, -11, 6, -5, 14, 3, -8, 11, 1, -10, 8, -3, -14, // 2080-2099 | |
808 | 5 // 2100 | |
809 | }; | |
810 | ||
46f4442e A |
811 | /** |
812 | * Return the Chinese new year of the given Gregorian year. | |
813 | * @param gyear a Gregorian year | |
51004dcb | 814 | * @return days after January 1, 1970 0:00 astronomical base zone of the |
46f4442e A |
815 | * Chinese new year of the given year (this will be a new moon) |
816 | */ | |
817 | int32_t ChineseCalendar::newYear(int32_t gyear) const { | |
57a6839d A |
818 | if (gyear >= 1900 && gyear <= 2100) { |
819 | // Don't use cache, just return linear estimate + table correction | |
820 | int32_t gyearadj = gyear - 1900; | |
821 | return (int32_t)(365.244*((double)gyearadj)) - 25532 + newYearAdj[gyearadj]; | |
822 | } | |
823 | ||
46f4442e A |
824 | UErrorCode status = U_ZERO_ERROR; |
825 | int32_t cacheValue = CalendarCache::get(&gChineseCalendarNewYearCache, gyear, status); | |
826 | ||
827 | if (cacheValue == 0) { | |
828 | ||
829 | int32_t solsticeBefore= winterSolstice(gyear - 1); | |
830 | int32_t solsticeAfter = winterSolstice(gyear); | |
831 | int32_t newMoon1 = newMoonNear(solsticeBefore + 1, TRUE); | |
832 | int32_t newMoon2 = newMoonNear(newMoon1 + SYNODIC_GAP, TRUE); | |
833 | int32_t newMoon11 = newMoonNear(solsticeAfter + 1, FALSE); | |
834 | ||
835 | if (synodicMonthsBetween(newMoon1, newMoon11) == 12 && | |
836 | (hasNoMajorSolarTerm(newMoon1) || hasNoMajorSolarTerm(newMoon2))) { | |
837 | cacheValue = newMoonNear(newMoon2 + SYNODIC_GAP, TRUE); | |
838 | } else { | |
839 | cacheValue = newMoon2; | |
840 | } | |
841 | ||
842 | CalendarCache::put(&gChineseCalendarNewYearCache, gyear, cacheValue, status); | |
843 | } | |
844 | if(U_FAILURE(status)) { | |
845 | cacheValue = 0; | |
846 | } | |
847 | return cacheValue; | |
848 | } | |
849 | ||
850 | /** | |
851 | * Adjust this calendar to be delta months before or after a given | |
852 | * start position, pinning the day of month if necessary. The start | |
853 | * position is given as a local days number for the start of the month | |
854 | * and a day-of-month. Used by add() and roll(). | |
855 | * @param newMoon the local days of the first day of the month of the | |
856 | * start position (days after January 1, 1970 0:00 Asia/Shanghai) | |
857 | * @param dom the 1-based day-of-month of the start position | |
858 | * @param delta the number of months to move forward or backward from | |
859 | * the start position | |
860 | */ | |
861 | void ChineseCalendar::offsetMonth(int32_t newMoon, int32_t dom, int32_t delta) { | |
862 | UErrorCode status = U_ZERO_ERROR; | |
863 | ||
864 | // Move to the middle of the month before our target month. | |
865 | newMoon += (int32_t) (CalendarAstronomer::SYNODIC_MONTH * (delta - 0.5)); | |
866 | ||
867 | // Search forward to the target month's new moon | |
868 | newMoon = newMoonNear(newMoon, TRUE); | |
869 | ||
870 | // Find the target dom | |
871 | int32_t jd = newMoon + kEpochStartAsJulianDay - 1 + dom; | |
872 | ||
873 | // Pin the dom. In this calendar all months are 29 or 30 days | |
874 | // so pinning just means handling dom 30. | |
875 | if (dom > 29) { | |
876 | set(UCAL_JULIAN_DAY, jd-1); | |
877 | // TODO Fix this. We really shouldn't ever have to | |
878 | // explicitly call complete(). This is either a bug in | |
879 | // this method, in ChineseCalendar, or in | |
880 | // Calendar.getActualMaximum(). I suspect the last. | |
881 | complete(status); | |
882 | if (U_FAILURE(status)) return; | |
883 | if (getActualMaximum(UCAL_DAY_OF_MONTH, status) >= dom) { | |
884 | if (U_FAILURE(status)) return; | |
885 | set(UCAL_JULIAN_DAY, jd); | |
886 | } | |
887 | } else { | |
888 | set(UCAL_JULIAN_DAY, jd); | |
889 | } | |
890 | } | |
891 | ||
892 | ||
893 | UBool | |
894 | ChineseCalendar::inDaylightTime(UErrorCode& status) const | |
895 | { | |
896 | // copied from GregorianCalendar | |
897 | if (U_FAILURE(status) || !getTimeZone().useDaylightTime()) | |
898 | return FALSE; | |
899 | ||
900 | // Force an update of the state of the Calendar. | |
901 | ((ChineseCalendar*)this)->complete(status); // cast away const | |
902 | ||
903 | return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE); | |
904 | } | |
905 | ||
906 | // default century | |
46f4442e | 907 | |
57a6839d A |
908 | static UDate gSystemDefaultCenturyStart = DBL_MIN; |
909 | static int32_t gSystemDefaultCenturyStartYear = -1; | |
910 | static icu::UInitOnce gSystemDefaultCenturyInitOnce = U_INITONCE_INITIALIZER; | |
46f4442e A |
911 | |
912 | ||
913 | UBool ChineseCalendar::haveDefaultCentury() const | |
914 | { | |
915 | return TRUE; | |
916 | } | |
917 | ||
918 | UDate ChineseCalendar::defaultCenturyStart() const | |
919 | { | |
920 | return internalGetDefaultCenturyStart(); | |
921 | } | |
922 | ||
923 | int32_t ChineseCalendar::defaultCenturyStartYear() const | |
924 | { | |
925 | return internalGetDefaultCenturyStartYear(); | |
926 | } | |
927 | ||
57a6839d | 928 | static void U_CALLCONV initializeSystemDefaultCentury() |
46f4442e A |
929 | { |
930 | // initialize systemDefaultCentury and systemDefaultCenturyYear based | |
931 | // on the current time. They'll be set to 80 years before | |
932 | // the current time. | |
729e4ab9 A |
933 | UErrorCode status = U_ZERO_ERROR; |
934 | ChineseCalendar calendar(Locale("@calendar=chinese"),status); | |
57a6839d | 935 | if (U_SUCCESS(status)) { |
729e4ab9 A |
936 | calendar.setTime(Calendar::getNow(), status); |
937 | calendar.add(UCAL_YEAR, -80, status); | |
57a6839d A |
938 | gSystemDefaultCenturyStart = calendar.getTime(status); |
939 | gSystemDefaultCenturyStartYear = calendar.get(UCAL_YEAR, status); | |
46f4442e | 940 | } |
729e4ab9 A |
941 | // We have no recourse upon failure unless we want to propagate the failure |
942 | // out. | |
46f4442e A |
943 | } |
944 | ||
57a6839d A |
945 | UDate |
946 | ChineseCalendar::internalGetDefaultCenturyStart() const | |
947 | { | |
948 | // lazy-evaluate systemDefaultCenturyStart | |
949 | umtx_initOnce(gSystemDefaultCenturyInitOnce, &initializeSystemDefaultCentury); | |
950 | return gSystemDefaultCenturyStart; | |
951 | } | |
952 | ||
953 | int32_t | |
954 | ChineseCalendar::internalGetDefaultCenturyStartYear() const | |
955 | { | |
956 | // lazy-evaluate systemDefaultCenturyStartYear | |
957 | umtx_initOnce(gSystemDefaultCenturyInitOnce, &initializeSystemDefaultCentury); | |
958 | return gSystemDefaultCenturyStartYear; | |
959 | } | |
960 | ||
46f4442e A |
961 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(ChineseCalendar) |
962 | ||
963 | U_NAMESPACE_END | |
964 | ||
965 | #endif | |
374ca955 | 966 |