]>
Commit | Line | Data |
---|---|---|
374ca955 A |
1 | /* |
2 | ****************************************************************************** | |
57a6839d | 3 | * Copyright (C) 2007-2014, International Business Machines Corporation |
46f4442e | 4 | * and others. All Rights Reserved. |
374ca955 A |
5 | ****************************************************************************** |
6 | * | |
46f4442e | 7 | * File CHNSECAL.CPP |
374ca955 | 8 | * |
46f4442e A |
9 | * Modification History: |
10 | * | |
11 | * Date Name Description | |
12 | * 9/18/2007 ajmacher ported from java ChineseCalendar | |
13 | ***************************************************************************** | |
374ca955 | 14 | */ |
46f4442e | 15 | |
374ca955 A |
16 | #include "chnsecal.h" |
17 | ||
46f4442e A |
18 | #if !UCONFIG_NO_FORMATTING |
19 | ||
20 | #include "umutex.h" | |
21 | #include <float.h> | |
22 | #include "gregoimp.h" // Math | |
23 | #include "astro.h" // CalendarAstronomer | |
51004dcb | 24 | #include "unicode/simpletz.h" |
46f4442e A |
25 | #include "uhash.h" |
26 | #include "ucln_in.h" | |
27 | ||
28 | // Debugging | |
29 | #ifdef U_DEBUG_CHNSECAL | |
30 | # include <stdio.h> | |
31 | # include <stdarg.h> | |
32 | static void debug_chnsecal_loc(const char *f, int32_t l) | |
33 | { | |
34 | fprintf(stderr, "%s:%d: ", f, l); | |
35 | } | |
36 | ||
37 | static void debug_chnsecal_msg(const char *pat, ...) | |
38 | { | |
39 | va_list ap; | |
40 | va_start(ap, pat); | |
41 | vfprintf(stderr, pat, ap); | |
42 | fflush(stderr); | |
43 | } | |
44 | // must use double parens, i.e.: U_DEBUG_CHNSECAL_MSG(("four is: %d",4)); | |
45 | #define U_DEBUG_CHNSECAL_MSG(x) {debug_chnsecal_loc(__FILE__,__LINE__);debug_chnsecal_msg x;} | |
46 | #else | |
47 | #define U_DEBUG_CHNSECAL_MSG(x) | |
48 | #endif | |
49 | ||
50 | ||
51 | // --- The cache -- | |
b331163b | 52 | static UMutex astroLock = U_MUTEX_INITIALIZER; // Protects access to gChineseCalendarAstro. |
4388f060 | 53 | static icu::CalendarAstronomer *gChineseCalendarAstro = NULL; |
b331163b A |
54 | |
55 | // Lazy Creation & Access synchronized by class CalendarCache with a mutex. | |
4388f060 A |
56 | static icu::CalendarCache *gChineseCalendarWinterSolsticeCache = NULL; |
57 | static icu::CalendarCache *gChineseCalendarNewYearCache = NULL; | |
b331163b | 58 | |
51004dcb | 59 | static icu::TimeZone *gChineseCalendarZoneAstroCalc = NULL; |
57a6839d | 60 | static icu::UInitOnce gChineseCalendarZoneAstroCalcInitOnce = U_INITONCE_INITIALIZER; |
46f4442e A |
61 | |
62 | /** | |
63 | * The start year of the Chinese calendar, the 61st year of the reign | |
64 | * of Huang Di. Some sources use the first year of his reign, | |
65 | * resulting in EXTENDED_YEAR values 60 years greater and ERA (cycle) | |
66 | * values one greater. | |
67 | */ | |
68 | static const int32_t CHINESE_EPOCH_YEAR = -2636; // Gregorian year | |
69 | ||
70 | /** | |
71 | * The offset from GMT in milliseconds at which we perform astronomical | |
72 | * computations. Some sources use a different historically accurate | |
73 | * offset of GMT+7:45:40 for years before 1929; we do not do this. | |
74 | */ | |
51004dcb | 75 | static const int32_t CHINA_OFFSET = 8 * kOneHour; |
46f4442e A |
76 | |
77 | /** | |
78 | * Value to be added or subtracted from the local days of a new moon to | |
79 | * get close to the next or prior new moon, but not cross it. Must be | |
80 | * >= 1 and < CalendarAstronomer.SYNODIC_MONTH. | |
81 | */ | |
82 | static const int32_t SYNODIC_GAP = 25; | |
83 | ||
84 | ||
85 | U_CDECL_BEGIN | |
86 | static UBool calendar_chinese_cleanup(void) { | |
87 | if (gChineseCalendarAstro) { | |
88 | delete gChineseCalendarAstro; | |
89 | gChineseCalendarAstro = NULL; | |
90 | } | |
91 | if (gChineseCalendarWinterSolsticeCache) { | |
92 | delete gChineseCalendarWinterSolsticeCache; | |
93 | gChineseCalendarWinterSolsticeCache = NULL; | |
94 | } | |
95 | if (gChineseCalendarNewYearCache) { | |
96 | delete gChineseCalendarNewYearCache; | |
97 | gChineseCalendarNewYearCache = NULL; | |
98 | } | |
51004dcb A |
99 | if (gChineseCalendarZoneAstroCalc) { |
100 | delete gChineseCalendarZoneAstroCalc; | |
101 | gChineseCalendarZoneAstroCalc = NULL; | |
102 | } | |
57a6839d | 103 | gChineseCalendarZoneAstroCalcInitOnce.reset(); |
46f4442e A |
104 | return TRUE; |
105 | } | |
106 | U_CDECL_END | |
107 | ||
108 | U_NAMESPACE_BEGIN | |
109 | ||
110 | ||
111 | // Implementation of the ChineseCalendar class | |
112 | ||
113 | ||
114 | //------------------------------------------------------------------------- | |
115 | // Constructors... | |
116 | //------------------------------------------------------------------------- | |
117 | ||
118 | ||
119 | Calendar* ChineseCalendar::clone() const { | |
120 | return new ChineseCalendar(*this); | |
121 | } | |
122 | ||
123 | ChineseCalendar::ChineseCalendar(const Locale& aLocale, UErrorCode& success) | |
51004dcb A |
124 | : Calendar(TimeZone::createDefault(), aLocale, success), |
125 | isLeapYear(FALSE), | |
126 | fEpochYear(CHINESE_EPOCH_YEAR), | |
127 | fZoneAstroCalc(getChineseCalZoneAstroCalc()) | |
128 | { | |
129 | setTimeInMillis(getNow(), success); // Call this again now that the vtable is set up properly. | |
130 | } | |
131 | ||
132 | ChineseCalendar::ChineseCalendar(const Locale& aLocale, int32_t epochYear, | |
133 | const TimeZone* zoneAstroCalc, UErrorCode &success) | |
134 | : Calendar(TimeZone::createDefault(), aLocale, success), | |
135 | isLeapYear(FALSE), | |
136 | fEpochYear(epochYear), | |
137 | fZoneAstroCalc(zoneAstroCalc) | |
46f4442e | 138 | { |
46f4442e A |
139 | setTimeInMillis(getNow(), success); // Call this again now that the vtable is set up properly. |
140 | } | |
141 | ||
142 | ChineseCalendar::ChineseCalendar(const ChineseCalendar& other) : Calendar(other) { | |
143 | isLeapYear = other.isLeapYear; | |
51004dcb A |
144 | fEpochYear = other.fEpochYear; |
145 | fZoneAstroCalc = other.fZoneAstroCalc; | |
46f4442e A |
146 | } |
147 | ||
148 | ChineseCalendar::~ChineseCalendar() | |
149 | { | |
150 | } | |
151 | ||
152 | const char *ChineseCalendar::getType() const { | |
153 | return "chinese"; | |
154 | } | |
155 | ||
57a6839d A |
156 | static void U_CALLCONV initChineseCalZoneAstroCalc() { |
157 | gChineseCalendarZoneAstroCalc = new SimpleTimeZone(CHINA_OFFSET, UNICODE_STRING_SIMPLE("CHINA_ZONE") ); | |
158 | ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup); | |
159 | } | |
160 | ||
51004dcb | 161 | const TimeZone* ChineseCalendar::getChineseCalZoneAstroCalc(void) const { |
57a6839d | 162 | umtx_initOnce(gChineseCalendarZoneAstroCalcInitOnce, &initChineseCalZoneAstroCalc); |
51004dcb A |
163 | return gChineseCalendarZoneAstroCalc; |
164 | } | |
165 | ||
46f4442e A |
166 | //------------------------------------------------------------------------- |
167 | // Minimum / Maximum access functions | |
168 | //------------------------------------------------------------------------- | |
169 | ||
170 | ||
171 | static const int32_t LIMITS[UCAL_FIELD_COUNT][4] = { | |
172 | // Minimum Greatest Least Maximum | |
173 | // Minimum Maximum | |
174 | { 1, 1, 83333, 83333}, // ERA | |
175 | { 1, 1, 60, 60}, // YEAR | |
176 | { 0, 0, 11, 11}, // MONTH | |
177 | { 1, 1, 50, 55}, // WEEK_OF_YEAR | |
178 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH | |
179 | { 1, 1, 29, 30}, // DAY_OF_MONTH | |
180 | { 1, 1, 353, 385}, // DAY_OF_YEAR | |
181 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK | |
182 | { -1, -1, 5, 5}, // DAY_OF_WEEK_IN_MONTH | |
183 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM | |
184 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR | |
185 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY | |
186 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE | |
187 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND | |
188 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND | |
189 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET | |
190 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET | |
191 | { -5000000, -5000000, 5000000, 5000000}, // YEAR_WOY | |
192 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL | |
193 | { -5000000, -5000000, 5000000, 5000000}, // EXTENDED_YEAR | |
194 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY | |
195 | {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY | |
196 | { 0, 0, 1, 1}, // IS_LEAP_MONTH | |
197 | }; | |
198 | ||
199 | ||
200 | /** | |
201 | * @draft ICU 2.4 | |
202 | */ | |
203 | int32_t ChineseCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const { | |
204 | return LIMITS[field][limitType]; | |
205 | } | |
206 | ||
207 | ||
208 | //---------------------------------------------------------------------- | |
209 | // Calendar framework | |
210 | //---------------------------------------------------------------------- | |
211 | ||
212 | /** | |
213 | * Implement abstract Calendar method to return the extended year | |
214 | * defined by the current fields. This will use either the ERA and | |
215 | * YEAR field as the cycle and year-of-cycle, or the EXTENDED_YEAR | |
216 | * field as the continuous year count, depending on which is newer. | |
217 | * @stable ICU 2.8 | |
218 | */ | |
219 | int32_t ChineseCalendar::handleGetExtendedYear() { | |
220 | int32_t year; | |
221 | if (newestStamp(UCAL_ERA, UCAL_YEAR, kUnset) <= fStamp[UCAL_EXTENDED_YEAR]) { | |
222 | year = internalGet(UCAL_EXTENDED_YEAR, 1); // Default to year 1 | |
223 | } else { | |
224 | int32_t cycle = internalGet(UCAL_ERA, 1) - 1; // 0-based cycle | |
51004dcb A |
225 | // adjust to the instance specific epoch |
226 | year = cycle * 60 + internalGet(UCAL_YEAR, 1) - (fEpochYear - CHINESE_EPOCH_YEAR); | |
46f4442e A |
227 | } |
228 | return year; | |
229 | } | |
230 | ||
231 | /** | |
232 | * Override Calendar method to return the number of days in the given | |
233 | * extended year and month. | |
234 | * | |
235 | * <p>Note: This method also reads the IS_LEAP_MONTH field to determine | |
236 | * whether or not the given month is a leap month. | |
237 | * @stable ICU 2.8 | |
238 | */ | |
239 | int32_t ChineseCalendar::handleGetMonthLength(int32_t extendedYear, int32_t month) const { | |
240 | int32_t thisStart = handleComputeMonthStart(extendedYear, month, TRUE) - | |
241 | kEpochStartAsJulianDay + 1; // Julian day -> local days | |
242 | int32_t nextStart = newMoonNear(thisStart + SYNODIC_GAP, TRUE); | |
243 | return nextStart - thisStart; | |
244 | } | |
245 | ||
246 | /** | |
247 | * Override Calendar to compute several fields specific to the Chinese | |
248 | * calendar system. These are: | |
249 | * | |
250 | * <ul><li>ERA | |
251 | * <li>YEAR | |
252 | * <li>MONTH | |
253 | * <li>DAY_OF_MONTH | |
254 | * <li>DAY_OF_YEAR | |
255 | * <li>EXTENDED_YEAR</ul> | |
256 | * | |
257 | * The DAY_OF_WEEK and DOW_LOCAL fields are already set when this | |
258 | * method is called. The getGregorianXxx() methods return Gregorian | |
259 | * calendar equivalents for the given Julian day. | |
260 | * | |
261 | * <p>Compute the ChineseCalendar-specific field IS_LEAP_MONTH. | |
262 | * @stable ICU 2.8 | |
263 | */ | |
264 | void ChineseCalendar::handleComputeFields(int32_t julianDay, UErrorCode &/*status*/) { | |
265 | ||
266 | computeChineseFields(julianDay - kEpochStartAsJulianDay, // local days | |
267 | getGregorianYear(), getGregorianMonth(), | |
268 | TRUE); // set all fields | |
269 | } | |
270 | ||
271 | /** | |
272 | * Field resolution table that incorporates IS_LEAP_MONTH. | |
273 | */ | |
274 | const UFieldResolutionTable ChineseCalendar::CHINESE_DATE_PRECEDENCE[] = | |
275 | { | |
276 | { | |
277 | { UCAL_DAY_OF_MONTH, kResolveSTOP }, | |
278 | { UCAL_WEEK_OF_YEAR, UCAL_DAY_OF_WEEK, kResolveSTOP }, | |
279 | { UCAL_WEEK_OF_MONTH, UCAL_DAY_OF_WEEK, kResolveSTOP }, | |
280 | { UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DAY_OF_WEEK, kResolveSTOP }, | |
281 | { UCAL_WEEK_OF_YEAR, UCAL_DOW_LOCAL, kResolveSTOP }, | |
282 | { UCAL_WEEK_OF_MONTH, UCAL_DOW_LOCAL, kResolveSTOP }, | |
283 | { UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DOW_LOCAL, kResolveSTOP }, | |
284 | { UCAL_DAY_OF_YEAR, kResolveSTOP }, | |
285 | { kResolveRemap | UCAL_DAY_OF_MONTH, UCAL_IS_LEAP_MONTH, kResolveSTOP }, | |
286 | { kResolveSTOP } | |
287 | }, | |
288 | { | |
289 | { UCAL_WEEK_OF_YEAR, kResolveSTOP }, | |
290 | { UCAL_WEEK_OF_MONTH, kResolveSTOP }, | |
291 | { UCAL_DAY_OF_WEEK_IN_MONTH, kResolveSTOP }, | |
292 | { kResolveRemap | UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DAY_OF_WEEK, kResolveSTOP }, | |
293 | { kResolveRemap | UCAL_DAY_OF_WEEK_IN_MONTH, UCAL_DOW_LOCAL, kResolveSTOP }, | |
294 | { kResolveSTOP } | |
295 | }, | |
296 | {{kResolveSTOP}} | |
297 | }; | |
298 | ||
299 | /** | |
300 | * Override Calendar to add IS_LEAP_MONTH to the field resolution | |
301 | * table. | |
302 | * @stable ICU 2.8 | |
303 | */ | |
304 | const UFieldResolutionTable* ChineseCalendar::getFieldResolutionTable() const { | |
305 | return CHINESE_DATE_PRECEDENCE; | |
306 | } | |
307 | ||
308 | /** | |
309 | * Return the Julian day number of day before the first day of the | |
310 | * given month in the given extended year. | |
311 | * | |
312 | * <p>Note: This method reads the IS_LEAP_MONTH field to determine | |
313 | * whether the given month is a leap month. | |
314 | * @param eyear the extended year | |
315 | * @param month the zero-based month. The month is also determined | |
316 | * by reading the IS_LEAP_MONTH field. | |
317 | * @return the Julian day number of the day before the first | |
318 | * day of the given month and year | |
319 | * @stable ICU 2.8 | |
320 | */ | |
321 | int32_t ChineseCalendar::handleComputeMonthStart(int32_t eyear, int32_t month, UBool useMonth) const { | |
322 | ||
323 | ChineseCalendar *nonConstThis = (ChineseCalendar*)this; // cast away const | |
324 | ||
325 | // If the month is out of range, adjust it into range, and | |
326 | // modify the extended year value accordingly. | |
327 | if (month < 0 || month > 11) { | |
328 | double m = month; | |
729e4ab9 | 329 | eyear += (int32_t)ClockMath::floorDivide(m, 12.0, m); |
46f4442e A |
330 | month = (int32_t)m; |
331 | } | |
332 | ||
51004dcb | 333 | int32_t gyear = eyear + fEpochYear - 1; // Gregorian year |
46f4442e A |
334 | int32_t theNewYear = newYear(gyear); |
335 | int32_t newMoon = newMoonNear(theNewYear + month * 29, TRUE); | |
336 | ||
337 | int32_t julianDay = newMoon + kEpochStartAsJulianDay; | |
338 | ||
339 | // Save fields for later restoration | |
340 | int32_t saveMonth = internalGet(UCAL_MONTH); | |
341 | int32_t saveIsLeapMonth = internalGet(UCAL_IS_LEAP_MONTH); | |
342 | ||
343 | // Ignore IS_LEAP_MONTH field if useMonth is false | |
344 | int32_t isLeapMonth = useMonth ? saveIsLeapMonth : 0; | |
345 | ||
346 | UErrorCode status = U_ZERO_ERROR; | |
347 | nonConstThis->computeGregorianFields(julianDay, status); | |
348 | if (U_FAILURE(status)) | |
349 | return 0; | |
350 | ||
351 | // This will modify the MONTH and IS_LEAP_MONTH fields (only) | |
352 | nonConstThis->computeChineseFields(newMoon, getGregorianYear(), | |
353 | getGregorianMonth(), FALSE); | |
354 | ||
355 | if (month != internalGet(UCAL_MONTH) || | |
356 | isLeapMonth != internalGet(UCAL_IS_LEAP_MONTH)) { | |
357 | newMoon = newMoonNear(newMoon + SYNODIC_GAP, TRUE); | |
358 | julianDay = newMoon + kEpochStartAsJulianDay; | |
359 | } | |
360 | ||
361 | nonConstThis->internalSet(UCAL_MONTH, saveMonth); | |
362 | nonConstThis->internalSet(UCAL_IS_LEAP_MONTH, saveIsLeapMonth); | |
363 | ||
364 | return julianDay - 1; | |
365 | } | |
366 | ||
367 | ||
368 | /** | |
369 | * Override Calendar to handle leap months properly. | |
370 | * @stable ICU 2.8 | |
371 | */ | |
372 | void ChineseCalendar::add(UCalendarDateFields field, int32_t amount, UErrorCode& status) { | |
373 | switch (field) { | |
374 | case UCAL_MONTH: | |
375 | if (amount != 0) { | |
376 | int32_t dom = get(UCAL_DAY_OF_MONTH, status); | |
377 | if (U_FAILURE(status)) break; | |
378 | int32_t day = get(UCAL_JULIAN_DAY, status) - kEpochStartAsJulianDay; // Get local day | |
379 | if (U_FAILURE(status)) break; | |
380 | int32_t moon = day - dom + 1; // New moon | |
381 | offsetMonth(moon, dom, amount); | |
382 | } | |
383 | break; | |
384 | default: | |
385 | Calendar::add(field, amount, status); | |
386 | break; | |
387 | } | |
388 | } | |
389 | ||
390 | /** | |
391 | * Override Calendar to handle leap months properly. | |
392 | * @stable ICU 2.8 | |
393 | */ | |
394 | void ChineseCalendar::add(EDateFields field, int32_t amount, UErrorCode& status) { | |
395 | add((UCalendarDateFields)field, amount, status); | |
396 | } | |
397 | ||
398 | /** | |
399 | * Override Calendar to handle leap months properly. | |
400 | * @stable ICU 2.8 | |
401 | */ | |
402 | void ChineseCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& status) { | |
403 | switch (field) { | |
404 | case UCAL_MONTH: | |
405 | if (amount != 0) { | |
406 | int32_t dom = get(UCAL_DAY_OF_MONTH, status); | |
407 | if (U_FAILURE(status)) break; | |
408 | int32_t day = get(UCAL_JULIAN_DAY, status) - kEpochStartAsJulianDay; // Get local day | |
409 | if (U_FAILURE(status)) break; | |
410 | int32_t moon = day - dom + 1; // New moon (start of this month) | |
411 | ||
412 | // Note throughout the following: Months 12 and 1 are never | |
413 | // followed by a leap month (D&R p. 185). | |
414 | ||
415 | // Compute the adjusted month number m. This is zero-based | |
416 | // value from 0..11 in a non-leap year, and from 0..12 in a | |
417 | // leap year. | |
418 | int32_t m = get(UCAL_MONTH, status); // 0-based month | |
419 | if (U_FAILURE(status)) break; | |
420 | if (isLeapYear) { // (member variable) | |
421 | if (get(UCAL_IS_LEAP_MONTH, status) == 1) { | |
422 | ++m; | |
423 | } else { | |
424 | // Check for a prior leap month. (In the | |
425 | // following, month 0 is the first month of the | |
426 | // year.) Month 0 is never followed by a leap | |
427 | // month, and we know month m is not a leap month. | |
428 | // moon1 will be the start of month 0 if there is | |
429 | // no leap month between month 0 and month m; | |
430 | // otherwise it will be the start of month 1. | |
431 | int moon1 = moon - | |
432 | (int) (CalendarAstronomer::SYNODIC_MONTH * (m - 0.5)); | |
433 | moon1 = newMoonNear(moon1, TRUE); | |
434 | if (isLeapMonthBetween(moon1, moon)) { | |
435 | ++m; | |
436 | } | |
437 | } | |
438 | if (U_FAILURE(status)) break; | |
439 | } | |
440 | ||
441 | // Now do the standard roll computation on m, with the | |
442 | // allowed range of 0..n-1, where n is 12 or 13. | |
443 | int32_t n = isLeapYear ? 13 : 12; // Months in this year | |
444 | int32_t newM = (m + amount) % n; | |
445 | if (newM < 0) { | |
446 | newM += n; | |
447 | } | |
448 | ||
449 | if (newM != m) { | |
450 | offsetMonth(moon, dom, newM - m); | |
451 | } | |
452 | } | |
453 | break; | |
454 | default: | |
455 | Calendar::roll(field, amount, status); | |
456 | break; | |
457 | } | |
458 | } | |
459 | ||
460 | void ChineseCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) { | |
461 | roll((UCalendarDateFields)field, amount, status); | |
462 | } | |
463 | ||
464 | ||
465 | //------------------------------------------------------------------ | |
466 | // Support methods and constants | |
467 | //------------------------------------------------------------------ | |
468 | ||
469 | /** | |
470 | * Convert local days to UTC epoch milliseconds. | |
51004dcb A |
471 | * This is not an accurate conversion in that getTimezoneOffset |
472 | * takes the milliseconds in GMT (not local time). In theory, more | |
473 | * accurate algorithm can be implemented but practically we do not need | |
474 | * to go through that complication as long as the historical timezone | |
475 | * changes did not happen around the 'tricky' new moon (new moon around | |
476 | * midnight). | |
477 | * | |
478 | * @param days days after January 1, 1970 0:00 in the astronomical base zone | |
46f4442e A |
479 | * @return milliseconds after January 1, 1970 0:00 GMT |
480 | */ | |
51004dcb A |
481 | double ChineseCalendar::daysToMillis(double days) const { |
482 | double millis = days * (double)kOneDay; | |
483 | if (fZoneAstroCalc != NULL) { | |
484 | int32_t rawOffset, dstOffset; | |
485 | UErrorCode status = U_ZERO_ERROR; | |
486 | fZoneAstroCalc->getOffset(millis, FALSE, rawOffset, dstOffset, status); | |
487 | if (U_SUCCESS(status)) { | |
57a6839d | 488 | return millis - (double)(rawOffset + dstOffset); |
51004dcb A |
489 | } |
490 | } | |
491 | return millis - (double)CHINA_OFFSET; | |
46f4442e A |
492 | } |
493 | ||
494 | /** | |
495 | * Convert UTC epoch milliseconds to local days. | |
496 | * @param millis milliseconds after January 1, 1970 0:00 GMT | |
51004dcb | 497 | * @return days after January 1, 1970 0:00 in the astronomical base zone |
46f4442e | 498 | */ |
51004dcb A |
499 | double ChineseCalendar::millisToDays(double millis) const { |
500 | if (fZoneAstroCalc != NULL) { | |
501 | int32_t rawOffset, dstOffset; | |
502 | UErrorCode status = U_ZERO_ERROR; | |
503 | fZoneAstroCalc->getOffset(millis, FALSE, rawOffset, dstOffset, status); | |
504 | if (U_SUCCESS(status)) { | |
57a6839d | 505 | return ClockMath::floorDivide(millis + (double)(rawOffset + dstOffset), kOneDay); |
51004dcb A |
506 | } |
507 | } | |
508 | return ClockMath::floorDivide(millis + (double)CHINA_OFFSET, kOneDay); | |
46f4442e A |
509 | } |
510 | ||
511 | //------------------------------------------------------------------ | |
512 | // Astronomical computations | |
513 | //------------------------------------------------------------------ | |
514 | ||
57a6839d A |
515 | // bit array for gregorian 1900-2100 indicating years in |
516 | // which the linear estimate needs to be adjusted by -1 | |
517 | static const uint16_t winterSolsticeAdj[] = { | |
518 | 0x0001, // 1900-1915, deltas for 1900 | |
519 | 0x0444, // 1916-1931, deltas for 1918, 1922, 1926 | |
520 | 0x0000, // 1932-1947 | |
521 | 0x8880, // 1948-1963, deltas for 1955, 1959, 1963 | |
522 | 0x0000, // 1964-1979 | |
523 | 0x1100, // 1980-1995, deltas for 1988, 1992 | |
524 | 0x0011, // 1996-2011, deltas for 1996, 2000 | |
525 | 0x2200, // 2012-2027, deltas for 2021, 2025 | |
526 | 0x0022, // 2028-2043, deltas for 2029, 2033 | |
527 | 0x4000, // 2044-2059, deltas for 2058 | |
528 | 0x0444, // 2060-2075, deltas for 2062, 2066, 2070 | |
529 | 0x8000, // 2076-2091, deltas for 2091 | |
530 | 0x0088, // 2092-2100, deltas for 2095, 2099 | |
531 | }; | |
46f4442e A |
532 | |
533 | /** | |
534 | * Return the major solar term on or after December 15 of the given | |
535 | * Gregorian year, that is, the winter solstice of the given year. | |
536 | * Computations are relative to Asia/Shanghai time zone. | |
537 | * @param gyear a Gregorian year | |
538 | * @return days after January 1, 1970 0:00 Asia/Shanghai of the | |
539 | * winter solstice of the given year | |
540 | */ | |
541 | int32_t ChineseCalendar::winterSolstice(int32_t gyear) const { | |
57a6839d A |
542 | if (gyear >= 1900 && gyear <= 2100) { |
543 | // Don't use cache, just return linear estimate + table correction | |
544 | int32_t gyearadj = gyear - 1900; | |
545 | int32_t result = (int32_t)(365.243*((double)gyearadj) - 0.3) - 25211; | |
546 | uint16_t bitmap = winterSolsticeAdj[gyearadj / 16]; | |
547 | if (bitmap != 0) { | |
548 | uint16_t bitmask = 1 << (gyearadj % 16); | |
549 | if ((bitmask & bitmap) != 0) { | |
550 | result--; | |
551 | } | |
552 | } | |
553 | return result; | |
554 | } | |
46f4442e A |
555 | |
556 | UErrorCode status = U_ZERO_ERROR; | |
557 | int32_t cacheValue = CalendarCache::get(&gChineseCalendarWinterSolsticeCache, gyear, status); | |
558 | ||
559 | if (cacheValue == 0) { | |
560 | // In books December 15 is used, but it fails for some years | |
561 | // using our algorithms, e.g.: 1298 1391 1492 1553 1560. That | |
562 | // is, winterSolstice(1298) starts search at Dec 14 08:00:00 | |
563 | // PST 1298 with a final result of Dec 14 10:31:59 PST 1299. | |
564 | double ms = daysToMillis(Grego::fieldsToDay(gyear, UCAL_DECEMBER, 1)); | |
565 | ||
566 | umtx_lock(&astroLock); | |
567 | if(gChineseCalendarAstro == NULL) { | |
568 | gChineseCalendarAstro = new CalendarAstronomer(); | |
569 | ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup); | |
570 | } | |
571 | gChineseCalendarAstro->setTime(ms); | |
572 | UDate solarLong = gChineseCalendarAstro->getSunTime(CalendarAstronomer::WINTER_SOLSTICE(), TRUE); | |
573 | umtx_unlock(&astroLock); | |
574 | ||
575 | // Winter solstice is 270 degrees solar longitude aka Dongzhi | |
576 | cacheValue = (int32_t)millisToDays(solarLong); | |
577 | CalendarCache::put(&gChineseCalendarWinterSolsticeCache, gyear, cacheValue, status); | |
578 | } | |
579 | if(U_FAILURE(status)) { | |
580 | cacheValue = 0; | |
581 | } | |
582 | return cacheValue; | |
583 | } | |
584 | ||
585 | /** | |
586 | * Return the closest new moon to the given date, searching either | |
587 | * forward or backward in time. | |
588 | * @param days days after January 1, 1970 0:00 Asia/Shanghai | |
589 | * @param after if true, search for a new moon on or after the given | |
590 | * date; otherwise, search for a new moon before it | |
591 | * @return days after January 1, 1970 0:00 Asia/Shanghai of the nearest | |
592 | * new moon after or before <code>days</code> | |
593 | */ | |
594 | int32_t ChineseCalendar::newMoonNear(double days, UBool after) const { | |
57a6839d A |
595 | double ms = daysToMillis(days); |
596 | // Try to get the new moon via static function directly from the table in | |
597 | // CalendarAstronomer (for approx gregorian range 1900-2100) without having | |
598 | // to use a CalendarAstronomer instance which requires a lock. This still | |
599 | // involves extra conversion to/from millis. If static function returns 0 | |
600 | // we are out of its range and need to use the full machinery. | |
601 | UDate newMoon = CalendarAstronomer::getNewMoonTimeInRange(ms, after); | |
602 | if (newMoon == 0.0) { | |
603 | umtx_lock(&astroLock); | |
604 | if(gChineseCalendarAstro == NULL) { | |
605 | gChineseCalendarAstro = new CalendarAstronomer(); | |
606 | ucln_i18n_registerCleanup(UCLN_I18N_CHINESE_CALENDAR, calendar_chinese_cleanup); | |
607 | } | |
608 | gChineseCalendarAstro->setTime(ms); | |
609 | newMoon = gChineseCalendarAstro->getMoonTime(CalendarAstronomer::NEW_MOON(), after); | |
610 | umtx_unlock(&astroLock); | |
46f4442e | 611 | } |
46f4442e A |
612 | |
613 | return (int32_t) millisToDays(newMoon); | |
614 | } | |
615 | ||
616 | /** | |
617 | * Return the nearest integer number of synodic months between | |
618 | * two dates. | |
619 | * @param day1 days after January 1, 1970 0:00 Asia/Shanghai | |
620 | * @param day2 days after January 1, 1970 0:00 Asia/Shanghai | |
621 | * @return the nearest integer number of months between day1 and day2 | |
622 | */ | |
623 | int32_t ChineseCalendar::synodicMonthsBetween(int32_t day1, int32_t day2) const { | |
624 | double roundme = ((day2 - day1) / CalendarAstronomer::SYNODIC_MONTH); | |
625 | return (int32_t) (roundme + (roundme >= 0 ? .5 : -.5)); | |
626 | } | |
627 | ||
628 | /** | |
629 | * Return the major solar term on or before a given date. This | |
630 | * will be an integer from 1..12, with 1 corresponding to 330 degrees, | |
631 | * 2 to 0 degrees, 3 to 30 degrees,..., and 12 to 300 degrees. | |
632 | * @param days days after January 1, 1970 0:00 Asia/Shanghai | |
633 | */ | |
634 | int32_t ChineseCalendar::majorSolarTerm(int32_t days) const { | |
635 | ||
57a6839d A |
636 | double ms = daysToMillis(days); |
637 | UDate solarLongitude = CalendarAstronomer::getSunLongitudeForTime(ms); | |
638 | ||
639 | // There was almost never any benefit to using the CalendarAstronomer instance; | |
640 | // it could cache intermediate results, but we rarely used it multiple times in | |
641 | // succession for the same setTime value, so the intermediate results got | |
642 | // discarded anyway. | |
643 | // | |
644 | // Deleted call to gChineseCalendarAstro->getSunLongitude() now that | |
645 | // we use CalendarAstronomer::getSunLongitudeForTime() | |
46f4442e A |
646 | |
647 | // Compute (floor(solarLongitude / (pi/6)) + 2) % 12 | |
648 | int32_t term = ( ((int32_t)(6 * solarLongitude / CalendarAstronomer::PI)) + 2 ) % 12; | |
649 | if (term < 1) { | |
650 | term += 12; | |
651 | } | |
652 | return term; | |
653 | } | |
654 | ||
655 | /** | |
656 | * Return true if the given month lacks a major solar term. | |
657 | * @param newMoon days after January 1, 1970 0:00 Asia/Shanghai of a new | |
658 | * moon | |
659 | */ | |
660 | UBool ChineseCalendar::hasNoMajorSolarTerm(int32_t newMoon) const { | |
661 | return majorSolarTerm(newMoon) == | |
662 | majorSolarTerm(newMoonNear(newMoon + SYNODIC_GAP, TRUE)); | |
663 | } | |
664 | ||
665 | ||
666 | //------------------------------------------------------------------ | |
667 | // Time to fields | |
668 | //------------------------------------------------------------------ | |
669 | ||
670 | /** | |
671 | * Return true if there is a leap month on or after month newMoon1 and | |
672 | * at or before month newMoon2. | |
51004dcb A |
673 | * @param newMoon1 days after January 1, 1970 0:00 astronomical base zone |
674 | * of a new moon | |
675 | * @param newMoon2 days after January 1, 1970 0:00 astronomical base zone | |
676 | * of a new moon | |
46f4442e A |
677 | */ |
678 | UBool ChineseCalendar::isLeapMonthBetween(int32_t newMoon1, int32_t newMoon2) const { | |
679 | ||
680 | #ifdef U_DEBUG_CHNSECAL | |
681 | // This is only needed to debug the timeOfAngle divergence bug. | |
682 | // Remove this later. Liu 11/9/00 | |
683 | if (synodicMonthsBetween(newMoon1, newMoon2) >= 50) { | |
684 | U_DEBUG_CHNSECAL_MSG(( | |
685 | "isLeapMonthBetween(%d, %d): Invalid parameters", newMoon1, newMoon2 | |
686 | )); | |
687 | } | |
688 | #endif | |
689 | ||
690 | return (newMoon2 >= newMoon1) && | |
691 | (isLeapMonthBetween(newMoon1, newMoonNear(newMoon2 - SYNODIC_GAP, FALSE)) || | |
692 | hasNoMajorSolarTerm(newMoon2)); | |
693 | } | |
694 | ||
695 | /** | |
696 | * Compute fields for the Chinese calendar system. This method can | |
697 | * either set all relevant fields, as required by | |
698 | * <code>handleComputeFields()</code>, or it can just set the MONTH and | |
699 | * IS_LEAP_MONTH fields, as required by | |
700 | * <code>handleComputeMonthStart()</code>. | |
701 | * | |
702 | * <p>As a side effect, this method sets {@link #isLeapYear}. | |
51004dcb A |
703 | * @param days days after January 1, 1970 0:00 astronomical base zone |
704 | * of the date to compute fields for | |
46f4442e A |
705 | * @param gyear the Gregorian year of the given date |
706 | * @param gmonth the Gregorian month of the given date | |
707 | * @param setAllFields if true, set the EXTENDED_YEAR, ERA, YEAR, | |
708 | * DAY_OF_MONTH, and DAY_OF_YEAR fields. In either case set the MONTH | |
709 | * and IS_LEAP_MONTH fields. | |
710 | */ | |
711 | void ChineseCalendar::computeChineseFields(int32_t days, int32_t gyear, int32_t gmonth, | |
712 | UBool setAllFields) { | |
713 | ||
714 | // Find the winter solstices before and after the target date. | |
715 | // These define the boundaries of this Chinese year, specifically, | |
716 | // the position of month 11, which always contains the solstice. | |
717 | // We want solsticeBefore <= date < solsticeAfter. | |
718 | int32_t solsticeBefore; | |
719 | int32_t solsticeAfter = winterSolstice(gyear); | |
720 | if (days < solsticeAfter) { | |
721 | solsticeBefore = winterSolstice(gyear - 1); | |
722 | } else { | |
723 | solsticeBefore = solsticeAfter; | |
724 | solsticeAfter = winterSolstice(gyear + 1); | |
725 | } | |
726 | ||
727 | // Find the start of the month after month 11. This will be either | |
728 | // the prior month 12 or leap month 11 (very rare). Also find the | |
729 | // start of the following month 11. | |
730 | int32_t firstMoon = newMoonNear(solsticeBefore + 1, TRUE); | |
731 | int32_t lastMoon = newMoonNear(solsticeAfter + 1, FALSE); | |
732 | int32_t thisMoon = newMoonNear(days + 1, FALSE); // Start of this month | |
733 | // Note: isLeapYear is a member variable | |
734 | isLeapYear = synodicMonthsBetween(firstMoon, lastMoon) == 12; | |
735 | ||
736 | int32_t month = synodicMonthsBetween(firstMoon, thisMoon); | |
737 | if (isLeapYear && isLeapMonthBetween(firstMoon, thisMoon)) { | |
738 | month--; | |
739 | } | |
740 | if (month < 1) { | |
741 | month += 12; | |
742 | } | |
743 | ||
744 | UBool isLeapMonth = isLeapYear && | |
745 | hasNoMajorSolarTerm(thisMoon) && | |
746 | !isLeapMonthBetween(firstMoon, newMoonNear(thisMoon - SYNODIC_GAP, FALSE)); | |
747 | ||
748 | internalSet(UCAL_MONTH, month-1); // Convert from 1-based to 0-based | |
749 | internalSet(UCAL_IS_LEAP_MONTH, isLeapMonth?1:0); | |
750 | ||
751 | if (setAllFields) { | |
752 | ||
51004dcb A |
753 | // Extended year and cycle year is based on the epoch year |
754 | ||
755 | int32_t extended_year = gyear - fEpochYear; | |
756 | int cycle_year = gyear - CHINESE_EPOCH_YEAR; | |
46f4442e A |
757 | if (month < 11 || |
758 | gmonth >= UCAL_JULY) { | |
51004dcb A |
759 | extended_year++; |
760 | cycle_year++; | |
46f4442e A |
761 | } |
762 | int32_t dayOfMonth = days - thisMoon + 1; | |
763 | ||
51004dcb | 764 | internalSet(UCAL_EXTENDED_YEAR, extended_year); |
46f4442e A |
765 | |
766 | // 0->0,60 1->1,1 60->1,60 61->2,1 etc. | |
767 | int32_t yearOfCycle; | |
51004dcb | 768 | int32_t cycle = ClockMath::floorDivide(cycle_year - 1, 60, yearOfCycle); |
46f4442e A |
769 | internalSet(UCAL_ERA, cycle + 1); |
770 | internalSet(UCAL_YEAR, yearOfCycle + 1); | |
771 | ||
772 | internalSet(UCAL_DAY_OF_MONTH, dayOfMonth); | |
773 | ||
774 | // Days will be before the first new year we compute if this | |
775 | // date is in month 11, leap 11, 12. There is never a leap 12. | |
776 | // New year computations are cached so this should be cheap in | |
777 | // the long run. | |
778 | int32_t theNewYear = newYear(gyear); | |
779 | if (days < theNewYear) { | |
780 | theNewYear = newYear(gyear-1); | |
781 | } | |
782 | internalSet(UCAL_DAY_OF_YEAR, days - theNewYear + 1); | |
783 | } | |
784 | } | |
785 | ||
786 | ||
787 | //------------------------------------------------------------------ | |
788 | // Fields to time | |
789 | //------------------------------------------------------------------ | |
790 | ||
57a6839d A |
791 | // for gyear 1900 through 2100, corrections to linear estimate of newYear |
792 | static const int8_t newYearAdj[] = { | |
793 | -5, 14, 3, -7, 11, -1, -11, 8, -3, -14, 5, -6, 13, 1, -10, 9, -1, -13, 6, -4, // 1900-1919 | |
794 | 15, 3, -8, 11, 0, -12, 8, -3, -13, 5, -6, 12, 1, -10, 9, -1, -12, 6, -5, 14, // 1920-1939 | |
795 | 3, -9, 10, 0, -11, 9, -3, -14, 5, -6, 12, 1, -9, 10, -2, -12, 7, -4, 13, 3, // 1940-1959 | |
796 | -8, 11, 0, -11, 8, -2, -15, 4, -6, 13, 1, -9, 10, -1, -13, 6, -5, 14, 2, -8, // 1960-1979 | |
797 | 11, 1, -11, 8, -3, 16, 5, -7, 12, 2, -8, 10, -1, -12, 6, -5, 14, 3, -7, 11, // 1980-1999 | |
798 | 0, -11, 8, -4, -14, 5, -6, 13, 2, -9, 10, -2, -13, 6, -4, 14, 3, -7, 12, 0, // 2000-2019 | |
799 | -11, 8, -3, -14, 5, -6, 13, 2, -10, 9, -1, -12, 6, -4, 15, 4, -8, 11, 0, -11, // 2020-2039 | |
800 | 7, -3, -13, 6, -6, 13, 2, -9, 9, -2, -12, 7, -4, 15, 4, -7, 10, 0, -11, 8, // 2040-2059 | |
801 | -3, -14, 5, -6, 12, 1, -9, 10, -1, -12, 7, -4, 15, 3, -8, 11, 1, -11, 8, -2, // 2060-2079 | |
802 | -13, 5, -6, 13, 2, -9, 10, -1, -11, 6, -5, 14, 3, -8, 11, 1, -10, 8, -3, -14, // 2080-2099 | |
803 | 5 // 2100 | |
804 | }; | |
805 | ||
46f4442e A |
806 | /** |
807 | * Return the Chinese new year of the given Gregorian year. | |
808 | * @param gyear a Gregorian year | |
51004dcb | 809 | * @return days after January 1, 1970 0:00 astronomical base zone of the |
46f4442e A |
810 | * Chinese new year of the given year (this will be a new moon) |
811 | */ | |
812 | int32_t ChineseCalendar::newYear(int32_t gyear) const { | |
57a6839d A |
813 | if (gyear >= 1900 && gyear <= 2100) { |
814 | // Don't use cache, just return linear estimate + table correction | |
815 | int32_t gyearadj = gyear - 1900; | |
816 | return (int32_t)(365.244*((double)gyearadj)) - 25532 + newYearAdj[gyearadj]; | |
817 | } | |
818 | ||
46f4442e A |
819 | UErrorCode status = U_ZERO_ERROR; |
820 | int32_t cacheValue = CalendarCache::get(&gChineseCalendarNewYearCache, gyear, status); | |
821 | ||
822 | if (cacheValue == 0) { | |
823 | ||
824 | int32_t solsticeBefore= winterSolstice(gyear - 1); | |
825 | int32_t solsticeAfter = winterSolstice(gyear); | |
826 | int32_t newMoon1 = newMoonNear(solsticeBefore + 1, TRUE); | |
827 | int32_t newMoon2 = newMoonNear(newMoon1 + SYNODIC_GAP, TRUE); | |
828 | int32_t newMoon11 = newMoonNear(solsticeAfter + 1, FALSE); | |
829 | ||
830 | if (synodicMonthsBetween(newMoon1, newMoon11) == 12 && | |
831 | (hasNoMajorSolarTerm(newMoon1) || hasNoMajorSolarTerm(newMoon2))) { | |
832 | cacheValue = newMoonNear(newMoon2 + SYNODIC_GAP, TRUE); | |
833 | } else { | |
834 | cacheValue = newMoon2; | |
835 | } | |
836 | ||
837 | CalendarCache::put(&gChineseCalendarNewYearCache, gyear, cacheValue, status); | |
838 | } | |
839 | if(U_FAILURE(status)) { | |
840 | cacheValue = 0; | |
841 | } | |
842 | return cacheValue; | |
843 | } | |
844 | ||
845 | /** | |
846 | * Adjust this calendar to be delta months before or after a given | |
847 | * start position, pinning the day of month if necessary. The start | |
848 | * position is given as a local days number for the start of the month | |
849 | * and a day-of-month. Used by add() and roll(). | |
850 | * @param newMoon the local days of the first day of the month of the | |
851 | * start position (days after January 1, 1970 0:00 Asia/Shanghai) | |
852 | * @param dom the 1-based day-of-month of the start position | |
853 | * @param delta the number of months to move forward or backward from | |
854 | * the start position | |
855 | */ | |
856 | void ChineseCalendar::offsetMonth(int32_t newMoon, int32_t dom, int32_t delta) { | |
857 | UErrorCode status = U_ZERO_ERROR; | |
858 | ||
859 | // Move to the middle of the month before our target month. | |
860 | newMoon += (int32_t) (CalendarAstronomer::SYNODIC_MONTH * (delta - 0.5)); | |
861 | ||
862 | // Search forward to the target month's new moon | |
863 | newMoon = newMoonNear(newMoon, TRUE); | |
864 | ||
865 | // Find the target dom | |
866 | int32_t jd = newMoon + kEpochStartAsJulianDay - 1 + dom; | |
867 | ||
868 | // Pin the dom. In this calendar all months are 29 or 30 days | |
869 | // so pinning just means handling dom 30. | |
870 | if (dom > 29) { | |
871 | set(UCAL_JULIAN_DAY, jd-1); | |
872 | // TODO Fix this. We really shouldn't ever have to | |
873 | // explicitly call complete(). This is either a bug in | |
874 | // this method, in ChineseCalendar, or in | |
875 | // Calendar.getActualMaximum(). I suspect the last. | |
876 | complete(status); | |
877 | if (U_FAILURE(status)) return; | |
878 | if (getActualMaximum(UCAL_DAY_OF_MONTH, status) >= dom) { | |
879 | if (U_FAILURE(status)) return; | |
880 | set(UCAL_JULIAN_DAY, jd); | |
881 | } | |
882 | } else { | |
883 | set(UCAL_JULIAN_DAY, jd); | |
884 | } | |
885 | } | |
886 | ||
887 | ||
888 | UBool | |
889 | ChineseCalendar::inDaylightTime(UErrorCode& status) const | |
890 | { | |
891 | // copied from GregorianCalendar | |
892 | if (U_FAILURE(status) || !getTimeZone().useDaylightTime()) | |
893 | return FALSE; | |
894 | ||
895 | // Force an update of the state of the Calendar. | |
896 | ((ChineseCalendar*)this)->complete(status); // cast away const | |
897 | ||
898 | return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE); | |
899 | } | |
900 | ||
901 | // default century | |
46f4442e | 902 | |
57a6839d A |
903 | static UDate gSystemDefaultCenturyStart = DBL_MIN; |
904 | static int32_t gSystemDefaultCenturyStartYear = -1; | |
905 | static icu::UInitOnce gSystemDefaultCenturyInitOnce = U_INITONCE_INITIALIZER; | |
46f4442e A |
906 | |
907 | ||
908 | UBool ChineseCalendar::haveDefaultCentury() const | |
909 | { | |
910 | return TRUE; | |
911 | } | |
912 | ||
913 | UDate ChineseCalendar::defaultCenturyStart() const | |
914 | { | |
915 | return internalGetDefaultCenturyStart(); | |
916 | } | |
917 | ||
918 | int32_t ChineseCalendar::defaultCenturyStartYear() const | |
919 | { | |
920 | return internalGetDefaultCenturyStartYear(); | |
921 | } | |
922 | ||
57a6839d | 923 | static void U_CALLCONV initializeSystemDefaultCentury() |
46f4442e A |
924 | { |
925 | // initialize systemDefaultCentury and systemDefaultCenturyYear based | |
926 | // on the current time. They'll be set to 80 years before | |
927 | // the current time. | |
729e4ab9 A |
928 | UErrorCode status = U_ZERO_ERROR; |
929 | ChineseCalendar calendar(Locale("@calendar=chinese"),status); | |
57a6839d | 930 | if (U_SUCCESS(status)) { |
729e4ab9 A |
931 | calendar.setTime(Calendar::getNow(), status); |
932 | calendar.add(UCAL_YEAR, -80, status); | |
57a6839d A |
933 | gSystemDefaultCenturyStart = calendar.getTime(status); |
934 | gSystemDefaultCenturyStartYear = calendar.get(UCAL_YEAR, status); | |
46f4442e | 935 | } |
729e4ab9 A |
936 | // We have no recourse upon failure unless we want to propagate the failure |
937 | // out. | |
46f4442e A |
938 | } |
939 | ||
57a6839d A |
940 | UDate |
941 | ChineseCalendar::internalGetDefaultCenturyStart() const | |
942 | { | |
943 | // lazy-evaluate systemDefaultCenturyStart | |
944 | umtx_initOnce(gSystemDefaultCenturyInitOnce, &initializeSystemDefaultCentury); | |
945 | return gSystemDefaultCenturyStart; | |
946 | } | |
947 | ||
948 | int32_t | |
949 | ChineseCalendar::internalGetDefaultCenturyStartYear() const | |
950 | { | |
951 | // lazy-evaluate systemDefaultCenturyStartYear | |
952 | umtx_initOnce(gSystemDefaultCenturyInitOnce, &initializeSystemDefaultCentury); | |
953 | return gSystemDefaultCenturyStartYear; | |
954 | } | |
955 | ||
46f4442e A |
956 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(ChineseCalendar) |
957 | ||
958 | U_NAMESPACE_END | |
959 | ||
960 | #endif | |
374ca955 | 961 |