]> git.saurik.com Git - apple/icu.git/blame - icuSources/common/uhash.cpp
ICU-59173.0.1.tar.gz
[apple/icu.git] / icuSources / common / uhash.cpp
CommitLineData
f3c0d7a5
A
1// © 2016 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
b75a7d8f
A
3/*
4******************************************************************************
2ca993e8 5* Copyright (C) 1997-2016, International Business Machines
b75a7d8f
A
6* Corporation and others. All Rights Reserved.
7******************************************************************************
8* Date Name Description
9* 03/22/00 aliu Adapted from original C++ ICU Hashtable.
10* 07/06/01 aliu Modified to support int32_t keys on
11* platforms with sizeof(void*) < 32.
12******************************************************************************
13*/
14
15#include "uhash.h"
16#include "unicode/ustring.h"
17#include "cstring.h"
18#include "cmemory.h"
19#include "uassert.h"
4388f060 20#include "ustr_imp.h"
b75a7d8f
A
21
22/* This hashtable is implemented as a double hash. All elements are
23 * stored in a single array with no secondary storage for collision
24 * resolution (no linked list, etc.). When there is a hash collision
25 * (when two unequal keys have the same hashcode) we resolve this by
26 * using a secondary hash. The secondary hash is an increment
27 * computed as a hash function (a different one) of the primary
28 * hashcode. This increment is added to the initial hash value to
29 * obtain further slots assigned to the same hash code. For this to
30 * work, the length of the array and the increment must be relatively
31 * prime. The easiest way to achieve this is to have the length of
32 * the array be prime, and the increment be any value from
33 * 1..length-1.
34 *
35 * Hashcodes are 32-bit integers. We make sure all hashcodes are
36 * non-negative by masking off the top bit. This has two effects: (1)
37 * modulo arithmetic is simplified. If we allowed negative hashcodes,
38 * then when we computed hashcode % length, we could get a negative
39 * result, which we would then have to adjust back into range. It's
40 * simpler to just make hashcodes non-negative. (2) It makes it easy
41 * to check for empty vs. occupied slots in the table. We just mark
42 * empty or deleted slots with a negative hashcode.
43 *
44 * The central function is _uhash_find(). This function looks for a
45 * slot matching the given key and hashcode. If one is found, it
46 * returns a pointer to that slot. If the table is full, and no match
47 * is found, it returns NULL -- in theory. This would make the code
48 * more complicated, since all callers of _uhash_find() would then
49 * have to check for a NULL result. To keep this from happening, we
50 * don't allow the table to fill. When there is only one
51 * empty/deleted slot left, uhash_put() will refuse to increase the
52 * count, and fail. This simplifies the code. In practice, one will
53 * seldom encounter this using default UHashtables. However, if a
54 * hashtable is set to a U_FIXED resize policy, or if memory is
55 * exhausted, then the table may fill.
56 *
57 * High and low water ratios control rehashing. They establish levels
58 * of fullness (from 0 to 1) outside of which the data array is
59 * reallocated and repopulated. Setting the low water ratio to zero
60 * means the table will never shrink. Setting the high water ratio to
61 * one means the table will never grow. The ratios should be
62 * coordinated with the ratio between successive elements of the
63 * PRIMES table, so that when the primeIndex is incremented or
64 * decremented during rehashing, it brings the ratio of count / length
65 * back into the desired range (between low and high water ratios).
66 */
67
68/********************************************************************
69 * PRIVATE Constants, Macros
70 ********************************************************************/
71
72/* This is a list of non-consecutive primes chosen such that
73 * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81
74 * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this
75 * ratio is changed, the low and high water ratios should also be
76 * adjusted to suit.
374ca955
A
77 *
78 * These prime numbers were also chosen so that they are the largest
79 * prime number while being less than a power of two.
b75a7d8f
A
80 */
81static const int32_t PRIMES[] = {
2ca993e8 82 7, 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749,
374ca955
A
83 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593,
84 16777213, 33554393, 67108859, 134217689, 268435399, 536870909,
85 1073741789, 2147483647 /*, 4294967291 */
b75a7d8f
A
86};
87
2ca993e8
A
88#define PRIMES_LENGTH UPRV_LENGTHOF(PRIMES)
89#define DEFAULT_PRIME_INDEX 4
b75a7d8f
A
90
91/* These ratios are tuned to the PRIMES array such that a resize
92 * places the table back into the zone of non-resizing. That is,
93 * after a call to _uhash_rehash(), a subsequent call to
94 * _uhash_rehash() should do nothing (should not churn). This is only
95 * a potential problem with U_GROW_AND_SHRINK.
96 */
97static const float RESIZE_POLICY_RATIO_TABLE[6] = {
98 /* low, high water ratio */
99 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */
100 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */
101 0.0F, 1.0F /* U_FIXED: Never change size */
102};
103
104/*
105 Invariants for hashcode values:
106
107 * DELETED < 0
108 * EMPTY < 0
109 * Real hashes >= 0
110
111 Hashcodes may not start out this way, but internally they are
112 adjusted so that they are always positive. We assume 32-bit
113 hashcodes; adjust these constants for other hashcode sizes.
114*/
115#define HASH_DELETED ((int32_t) 0x80000000)
116#define HASH_EMPTY ((int32_t) HASH_DELETED + 1)
117
118#define IS_EMPTY_OR_DELETED(x) ((x) < 0)
119
120/* This macro expects a UHashTok.pointer as its keypointer and
121 valuepointer parameters */
122#define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \
123 if (hash->keyDeleter != NULL && keypointer != NULL) { \
124 (*hash->keyDeleter)(keypointer); \
125 } \
126 if (hash->valueDeleter != NULL && valuepointer != NULL) { \
127 (*hash->valueDeleter)(valuepointer); \
128 }
129
130/*
131 * Constants for hinting whether a key or value is an integer
132 * or a pointer. If a hint bit is zero, then the associated
133 * token is assumed to be an integer.
134 */
135#define HINT_KEY_POINTER (1)
136#define HINT_VALUE_POINTER (2)
137
138/********************************************************************
73c04bcf 139 * PRIVATE Implementation
b75a7d8f
A
140 ********************************************************************/
141
73c04bcf
A
142static UHashTok
143_uhash_setElement(UHashtable *hash, UHashElement* e,
144 int32_t hashcode,
145 UHashTok key, UHashTok value, int8_t hint) {
b75a7d8f 146
73c04bcf
A
147 UHashTok oldValue = e->value;
148 if (hash->keyDeleter != NULL && e->key.pointer != NULL &&
149 e->key.pointer != key.pointer) { /* Avoid double deletion */
150 (*hash->keyDeleter)(e->key.pointer);
151 }
152 if (hash->valueDeleter != NULL) {
153 if (oldValue.pointer != NULL &&
154 oldValue.pointer != value.pointer) { /* Avoid double deletion */
155 (*hash->valueDeleter)(oldValue.pointer);
156 }
157 oldValue.pointer = NULL;
158 }
159 /* Compilers should copy the UHashTok union correctly, but even if
160 * they do, memory heap tools (e.g. BoundsChecker) can get
161 * confused when a pointer is cloaked in a union and then copied.
162 * TO ALLEVIATE THIS, we use hints (based on what API the user is
163 * calling) to copy pointers when we know the user thinks
164 * something is a pointer. */
165 if (hint & HINT_KEY_POINTER) {
166 e->key.pointer = key.pointer;
167 } else {
168 e->key = key;
169 }
170 if (hint & HINT_VALUE_POINTER) {
171 e->value.pointer = value.pointer;
172 } else {
173 e->value = value;
174 }
175 e->hashcode = hashcode;
176 return oldValue;
177}
b75a7d8f 178
73c04bcf
A
179/**
180 * Assumes that the given element is not empty or deleted.
181 */
182static UHashTok
183_uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) {
184 UHashTok empty;
185 U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode));
186 --hash->count;
187 empty.pointer = NULL; empty.integer = 0;
188 return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0);
189}
b75a7d8f 190
73c04bcf
A
191static void
192_uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
193 U_ASSERT(hash != NULL);
194 U_ASSERT(((int32_t)policy) >= 0);
195 U_ASSERT(((int32_t)policy) < 3);
196 hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2];
197 hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1];
198}
b75a7d8f 199
73c04bcf
A
200/**
201 * Allocate internal data array of a size determined by the given
202 * prime index. If the index is out of range it is pinned into range.
203 * If the allocation fails the status is set to
204 * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In
205 * either case the previous array pointer is overwritten.
206 *
207 * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1.
208 */
209static void
210_uhash_allocate(UHashtable *hash,
211 int32_t primeIndex,
212 UErrorCode *status) {
b75a7d8f 213
73c04bcf
A
214 UHashElement *p, *limit;
215 UHashTok emptytok;
b75a7d8f 216
73c04bcf 217 if (U_FAILURE(*status)) return;
b75a7d8f 218
73c04bcf 219 U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH);
b75a7d8f 220
73c04bcf
A
221 hash->primeIndex = primeIndex;
222 hash->length = PRIMES[primeIndex];
b75a7d8f 223
73c04bcf
A
224 p = hash->elements = (UHashElement*)
225 uprv_malloc(sizeof(UHashElement) * hash->length);
b75a7d8f 226
73c04bcf
A
227 if (hash->elements == NULL) {
228 *status = U_MEMORY_ALLOCATION_ERROR;
229 return;
230 }
b75a7d8f 231
73c04bcf
A
232 emptytok.pointer = NULL; /* Only one of these two is needed */
233 emptytok.integer = 0; /* but we don't know which one. */
234
235 limit = p + hash->length;
236 while (p < limit) {
237 p->key = emptytok;
238 p->value = emptytok;
239 p->hashcode = HASH_EMPTY;
240 ++p;
241 }
b75a7d8f 242
73c04bcf
A
243 hash->count = 0;
244 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
245 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
b75a7d8f
A
246}
247
73c04bcf
A
248static UHashtable*
249_uhash_init(UHashtable *result,
250 UHashFunction *keyHash,
251 UKeyComparator *keyComp,
252 UValueComparator *valueComp,
253 int32_t primeIndex,
254 UErrorCode *status)
255{
256 if (U_FAILURE(*status)) return NULL;
257 U_ASSERT(keyHash != NULL);
258 U_ASSERT(keyComp != NULL);
b75a7d8f 259
73c04bcf
A
260 result->keyHasher = keyHash;
261 result->keyComparator = keyComp;
262 result->valueComparator = valueComp;
263 result->keyDeleter = NULL;
264 result->valueDeleter = NULL;
265 result->allocated = FALSE;
266 _uhash_internalSetResizePolicy(result, U_GROW);
b75a7d8f 267
73c04bcf 268 _uhash_allocate(result, primeIndex, status);
b75a7d8f 269
73c04bcf
A
270 if (U_FAILURE(*status)) {
271 return NULL;
b75a7d8f 272 }
b75a7d8f 273
b75a7d8f
A
274 return result;
275}
276
73c04bcf
A
277static UHashtable*
278_uhash_create(UHashFunction *keyHash,
279 UKeyComparator *keyComp,
280 UValueComparator *valueComp,
281 int32_t primeIndex,
282 UErrorCode *status) {
283 UHashtable *result;
b75a7d8f 284
73c04bcf 285 if (U_FAILURE(*status)) return NULL;
b75a7d8f 286
73c04bcf
A
287 result = (UHashtable*) uprv_malloc(sizeof(UHashtable));
288 if (result == NULL) {
289 *status = U_MEMORY_ALLOCATION_ERROR;
290 return NULL;
291 }
b75a7d8f 292
73c04bcf
A
293 _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status);
294 result->allocated = TRUE;
b75a7d8f 295
73c04bcf
A
296 if (U_FAILURE(*status)) {
297 uprv_free(result);
298 return NULL;
299 }
b75a7d8f 300
73c04bcf 301 return result;
b75a7d8f
A
302}
303
73c04bcf
A
304/**
305 * Look for a key in the table, or if no such key exists, the first
306 * empty slot matching the given hashcode. Keys are compared using
307 * the keyComparator function.
308 *
309 * First find the start position, which is the hashcode modulo
310 * the length. Test it to see if it is:
311 *
312 * a. identical: First check the hash values for a quick check,
313 * then compare keys for equality using keyComparator.
314 * b. deleted
315 * c. empty
316 *
317 * Stop if it is identical or empty, otherwise continue by adding a
318 * "jump" value (moduloing by the length again to keep it within
319 * range) and retesting. For efficiency, there need enough empty
320 * values so that the searchs stop within a reasonable amount of time.
321 * This can be changed by changing the high/low water marks.
322 *
323 * In theory, this function can return NULL, if it is full (no empty
324 * or deleted slots) and if no matching key is found. In practice, we
325 * prevent this elsewhere (in uhash_put) by making sure the last slot
326 * in the table is never filled.
327 *
328 * The size of the table should be prime for this algorithm to work;
329 * otherwise we are not guaranteed that the jump value (the secondary
330 * hash) is relatively prime to the table length.
331 */
332static UHashElement*
333_uhash_find(const UHashtable *hash, UHashTok key,
334 int32_t hashcode) {
b75a7d8f 335
73c04bcf
A
336 int32_t firstDeleted = -1; /* assume invalid index */
337 int32_t theIndex, startIndex;
338 int32_t jump = 0; /* lazy evaluate */
339 int32_t tableHash;
340 UHashElement *elements = hash->elements;
b75a7d8f 341
73c04bcf
A
342 hashcode &= 0x7FFFFFFF; /* must be positive */
343 startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length;
374ca955 344
73c04bcf
A
345 do {
346 tableHash = elements[theIndex].hashcode;
347 if (tableHash == hashcode) { /* quick check */
348 if ((*hash->keyComparator)(key, elements[theIndex].key)) {
349 return &(elements[theIndex]);
350 }
351 } else if (!IS_EMPTY_OR_DELETED(tableHash)) {
352 /* We have hit a slot which contains a key-value pair,
353 * but for which the hash code does not match. Keep
354 * looking.
355 */
356 } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */
357 break;
358 } else if (firstDeleted < 0) { /* remember first deleted */
359 firstDeleted = theIndex;
360 }
361 if (jump == 0) { /* lazy compute jump */
362 /* The jump value must be relatively prime to the table
363 * length. As long as the length is prime, then any value
364 * 1..length-1 will be relatively prime to it.
365 */
366 jump = (hashcode % (hash->length - 1)) + 1;
367 }
368 theIndex = (theIndex + jump) % hash->length;
369 } while (theIndex != startIndex);
b75a7d8f 370
73c04bcf
A
371 if (firstDeleted >= 0) {
372 theIndex = firstDeleted; /* reset if had deleted slot */
373 } else if (tableHash != HASH_EMPTY) {
374 /* We get to this point if the hashtable is full (no empty or
375 * deleted slots), and we've failed to find a match. THIS
376 * WILL NEVER HAPPEN as long as uhash_put() makes sure that
377 * count is always < length.
378 */
379 U_ASSERT(FALSE);
380 return NULL; /* Never happens if uhash_put() behaves */
381 }
382 return &(elements[theIndex]);
b75a7d8f
A
383}
384
73c04bcf
A
385/**
386 * Attempt to grow or shrink the data arrays in order to make the
387 * count fit between the high and low water marks. hash_put() and
388 * hash_remove() call this method when the count exceeds the high or
389 * low water marks. This method may do nothing, if memory allocation
390 * fails, or if the count is already in range, or if the length is
391 * already at the low or high limit. In any case, upon return the
392 * arrays will be valid.
393 */
394static void
46f4442e 395_uhash_rehash(UHashtable *hash, UErrorCode *status) {
b75a7d8f 396
73c04bcf
A
397 UHashElement *old = hash->elements;
398 int32_t oldLength = hash->length;
399 int32_t newPrimeIndex = hash->primeIndex;
400 int32_t i;
374ca955 401
73c04bcf
A
402 if (hash->count > hash->highWaterMark) {
403 if (++newPrimeIndex >= PRIMES_LENGTH) {
404 return;
405 }
406 } else if (hash->count < hash->lowWaterMark) {
407 if (--newPrimeIndex < 0) {
408 return;
409 }
410 } else {
411 return;
412 }
374ca955 413
46f4442e 414 _uhash_allocate(hash, newPrimeIndex, status);
b75a7d8f 415
46f4442e 416 if (U_FAILURE(*status)) {
73c04bcf
A
417 hash->elements = old;
418 hash->length = oldLength;
419 return;
420 }
b75a7d8f 421
73c04bcf
A
422 for (i = oldLength - 1; i >= 0; --i) {
423 if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) {
424 UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode);
425 U_ASSERT(e != NULL);
426 U_ASSERT(e->hashcode == HASH_EMPTY);
427 e->key = old[i].key;
428 e->value = old[i].value;
429 e->hashcode = old[i].hashcode;
430 ++hash->count;
431 }
432 }
b75a7d8f 433
73c04bcf 434 uprv_free(old);
374ca955
A
435}
436
73c04bcf
A
437static UHashTok
438_uhash_remove(UHashtable *hash,
439 UHashTok key) {
440 /* First find the position of the key in the table. If the object
441 * has not been removed already, remove it. If the user wanted
442 * keys deleted, then delete it also. We have to put a special
443 * hashcode in that position that means that something has been
444 * deleted, since when we do a find, we have to continue PAST any
445 * deleted values.
446 */
447 UHashTok result;
448 UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key));
449 U_ASSERT(e != NULL);
46f4442e
A
450 result.pointer = NULL;
451 result.integer = 0;
73c04bcf
A
452 if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
453 result = _uhash_internalRemoveElement(hash, e);
454 if (hash->count < hash->lowWaterMark) {
46f4442e
A
455 UErrorCode status = U_ZERO_ERROR;
456 _uhash_rehash(hash, &status);
b75a7d8f
A
457 }
458 }
73c04bcf 459 return result;
b75a7d8f
A
460}
461
73c04bcf
A
462static UHashTok
463_uhash_put(UHashtable *hash,
464 UHashTok key,
465 UHashTok value,
466 int8_t hint,
467 UErrorCode *status) {
b75a7d8f 468
73c04bcf
A
469 /* Put finds the position in the table for the new value. If the
470 * key is already in the table, it is deleted, if there is a
471 * non-NULL keyDeleter. Then the key, the hash and the value are
472 * all put at the position in their respective arrays.
b75a7d8f 473 */
73c04bcf
A
474 int32_t hashcode;
475 UHashElement* e;
476 UHashTok emptytok;
477
478 if (U_FAILURE(*status)) {
479 goto err;
480 }
b75a7d8f 481 U_ASSERT(hash != NULL);
73c04bcf
A
482 /* Cannot always check pointer here or iSeries sees NULL every time. */
483 if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) {
484 /* Disallow storage of NULL values, since NULL is returned by
485 * get() to indicate an absent key. Storing NULL == removing.
486 */
487 return _uhash_remove(hash, key);
488 }
489 if (hash->count > hash->highWaterMark) {
46f4442e
A
490 _uhash_rehash(hash, status);
491 if (U_FAILURE(*status)) {
492 goto err;
493 }
b75a7d8f
A
494 }
495
73c04bcf
A
496 hashcode = (*hash->keyHasher)(key);
497 e = _uhash_find(hash, key, hashcode);
b75a7d8f 498 U_ASSERT(e != NULL);
73c04bcf
A
499
500 if (IS_EMPTY_OR_DELETED(e->hashcode)) {
501 /* Important: We must never actually fill the table up. If we
502 * do so, then _uhash_find() will return NULL, and we'll have
503 * to check for NULL after every call to _uhash_find(). To
504 * avoid this we make sure there is always at least one empty
505 * or deleted slot in the table. This only is a problem if we
506 * are out of memory and rehash isn't working.
507 */
508 ++hash->count;
509 if (hash->count == hash->length) {
510 /* Don't allow count to reach length */
511 --hash->count;
512 *status = U_MEMORY_ALLOCATION_ERROR;
513 goto err;
514 }
b75a7d8f 515 }
b75a7d8f 516
73c04bcf
A
517 /* We must in all cases handle storage properly. If there was an
518 * old key, then it must be deleted (if the deleter != NULL).
519 * Make hashcodes stored in table positive.
520 */
521 return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint);
b75a7d8f 522
73c04bcf
A
523 err:
524 /* If the deleters are non-NULL, this method adopts its key and/or
525 * value arguments, and we must be sure to delete the key and/or
526 * value in all cases, even upon failure.
527 */
528 HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer);
529 emptytok.pointer = NULL; emptytok.integer = 0;
530 return emptytok;
b75a7d8f
A
531}
532
b75a7d8f
A
533
534/********************************************************************
73c04bcf 535 * PUBLIC API
b75a7d8f
A
536 ********************************************************************/
537
73c04bcf
A
538U_CAPI UHashtable* U_EXPORT2
539uhash_open(UHashFunction *keyHash,
540 UKeyComparator *keyComp,
541 UValueComparator *valueComp,
542 UErrorCode *status) {
b75a7d8f 543
73c04bcf 544 return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
b75a7d8f
A
545}
546
73c04bcf
A
547U_CAPI UHashtable* U_EXPORT2
548uhash_openSize(UHashFunction *keyHash,
549 UKeyComparator *keyComp,
550 UValueComparator *valueComp,
551 int32_t size,
552 UErrorCode *status) {
b75a7d8f 553
73c04bcf
A
554 /* Find the smallest index i for which PRIMES[i] >= size. */
555 int32_t i = 0;
556 while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
557 ++i;
558 }
b75a7d8f 559
73c04bcf 560 return _uhash_create(keyHash, keyComp, valueComp, i, status);
b75a7d8f
A
561}
562
73c04bcf
A
563U_CAPI UHashtable* U_EXPORT2
564uhash_init(UHashtable *fillinResult,
565 UHashFunction *keyHash,
566 UKeyComparator *keyComp,
567 UValueComparator *valueComp,
568 UErrorCode *status) {
b75a7d8f 569
73c04bcf 570 return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, status);
b75a7d8f
A
571}
572
2ca993e8
A
573U_CAPI UHashtable* U_EXPORT2
574uhash_initSize(UHashtable *fillinResult,
575 UHashFunction *keyHash,
576 UKeyComparator *keyComp,
577 UValueComparator *valueComp,
578 int32_t size,
579 UErrorCode *status) {
580
581 /* Find the smallest index i for which PRIMES[i] >= size. */
582 int32_t i = 0;
583 while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) {
584 ++i;
585 }
586
587 return _uhash_init(fillinResult, keyHash, keyComp, valueComp, i, status);
588}
589
73c04bcf
A
590U_CAPI void U_EXPORT2
591uhash_close(UHashtable *hash) {
729e4ab9
A
592 if (hash == NULL) {
593 return;
594 }
73c04bcf
A
595 if (hash->elements != NULL) {
596 if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) {
b331163b 597 int32_t pos=UHASH_FIRST;
73c04bcf
A
598 UHashElement *e;
599 while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL) {
600 HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer);
601 }
602 }
603 uprv_free(hash->elements);
604 hash->elements = NULL;
b75a7d8f 605 }
73c04bcf
A
606 if (hash->allocated) {
607 uprv_free(hash);
b75a7d8f 608 }
b75a7d8f
A
609}
610
73c04bcf
A
611U_CAPI UHashFunction *U_EXPORT2
612uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) {
613 UHashFunction *result = hash->keyHasher;
614 hash->keyHasher = fn;
615 return result;
b75a7d8f
A
616}
617
73c04bcf
A
618U_CAPI UKeyComparator *U_EXPORT2
619uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) {
620 UKeyComparator *result = hash->keyComparator;
621 hash->keyComparator = fn;
622 return result;
623}
624U_CAPI UValueComparator *U_EXPORT2
625uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){
626 UValueComparator *result = hash->valueComparator;
627 hash->valueComparator = fn;
628 return result;
b75a7d8f
A
629}
630
73c04bcf
A
631U_CAPI UObjectDeleter *U_EXPORT2
632uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) {
633 UObjectDeleter *result = hash->keyDeleter;
634 hash->keyDeleter = fn;
635 return result;
b75a7d8f
A
636}
637
73c04bcf
A
638U_CAPI UObjectDeleter *U_EXPORT2
639uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) {
640 UObjectDeleter *result = hash->valueDeleter;
641 hash->valueDeleter = fn;
642 return result;
643}
b75a7d8f
A
644
645U_CAPI void U_EXPORT2
73c04bcf 646uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) {
46f4442e 647 UErrorCode status = U_ZERO_ERROR;
73c04bcf
A
648 _uhash_internalSetResizePolicy(hash, policy);
649 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio);
650 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio);
46f4442e 651 _uhash_rehash(hash, &status);
b75a7d8f
A
652}
653
73c04bcf
A
654U_CAPI int32_t U_EXPORT2
655uhash_count(const UHashtable *hash) {
656 return hash->count;
657}
b75a7d8f 658
73c04bcf
A
659U_CAPI void* U_EXPORT2
660uhash_get(const UHashtable *hash,
661 const void* key) {
662 UHashTok keyholder;
663 keyholder.pointer = (void*) key;
664 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
665}
b75a7d8f 666
73c04bcf
A
667U_CAPI void* U_EXPORT2
668uhash_iget(const UHashtable *hash,
669 int32_t key) {
670 UHashTok keyholder;
671 keyholder.integer = key;
672 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.pointer;
673}
b75a7d8f 674
73c04bcf
A
675U_CAPI int32_t U_EXPORT2
676uhash_geti(const UHashtable *hash,
677 const void* key) {
678 UHashTok keyholder;
679 keyholder.pointer = (void*) key;
680 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
681}
b75a7d8f 682
73c04bcf
A
683U_CAPI int32_t U_EXPORT2
684uhash_igeti(const UHashtable *hash,
685 int32_t key) {
686 UHashTok keyholder;
687 keyholder.integer = key;
688 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integer;
689}
b75a7d8f 690
73c04bcf
A
691U_CAPI void* U_EXPORT2
692uhash_put(UHashtable *hash,
693 void* key,
694 void* value,
695 UErrorCode *status) {
696 UHashTok keyholder, valueholder;
697 keyholder.pointer = key;
698 valueholder.pointer = value;
699 return _uhash_put(hash, keyholder, valueholder,
700 HINT_KEY_POINTER | HINT_VALUE_POINTER,
701 status).pointer;
702}
b75a7d8f 703
73c04bcf
A
704U_CAPI void* U_EXPORT2
705uhash_iput(UHashtable *hash,
706 int32_t key,
707 void* value,
708 UErrorCode *status) {
709 UHashTok keyholder, valueholder;
710 keyholder.integer = key;
711 valueholder.pointer = value;
712 return _uhash_put(hash, keyholder, valueholder,
713 HINT_VALUE_POINTER,
714 status).pointer;
b75a7d8f
A
715}
716
73c04bcf
A
717U_CAPI int32_t U_EXPORT2
718uhash_puti(UHashtable *hash,
719 void* key,
720 int32_t value,
721 UErrorCode *status) {
722 UHashTok keyholder, valueholder;
723 keyholder.pointer = key;
724 valueholder.integer = value;
725 return _uhash_put(hash, keyholder, valueholder,
726 HINT_KEY_POINTER,
727 status).integer;
728}
b75a7d8f 729
b75a7d8f 730
73c04bcf
A
731U_CAPI int32_t U_EXPORT2
732uhash_iputi(UHashtable *hash,
733 int32_t key,
734 int32_t value,
735 UErrorCode *status) {
736 UHashTok keyholder, valueholder;
737 keyholder.integer = key;
738 valueholder.integer = value;
739 return _uhash_put(hash, keyholder, valueholder,
740 0, /* neither is a ptr */
741 status).integer;
742}
b75a7d8f 743
73c04bcf
A
744U_CAPI void* U_EXPORT2
745uhash_remove(UHashtable *hash,
746 const void* key) {
747 UHashTok keyholder;
748 keyholder.pointer = (void*) key;
749 return _uhash_remove(hash, keyholder).pointer;
750}
b75a7d8f 751
73c04bcf
A
752U_CAPI void* U_EXPORT2
753uhash_iremove(UHashtable *hash,
754 int32_t key) {
755 UHashTok keyholder;
756 keyholder.integer = key;
757 return _uhash_remove(hash, keyholder).pointer;
758}
b75a7d8f 759
73c04bcf
A
760U_CAPI int32_t U_EXPORT2
761uhash_removei(UHashtable *hash,
762 const void* key) {
763 UHashTok keyholder;
764 keyholder.pointer = (void*) key;
765 return _uhash_remove(hash, keyholder).integer;
766}
b75a7d8f 767
73c04bcf
A
768U_CAPI int32_t U_EXPORT2
769uhash_iremovei(UHashtable *hash,
770 int32_t key) {
771 UHashTok keyholder;
772 keyholder.integer = key;
773 return _uhash_remove(hash, keyholder).integer;
774}
b75a7d8f 775
73c04bcf
A
776U_CAPI void U_EXPORT2
777uhash_removeAll(UHashtable *hash) {
b331163b 778 int32_t pos = UHASH_FIRST;
73c04bcf
A
779 const UHashElement *e;
780 U_ASSERT(hash != NULL);
781 if (hash->count != 0) {
782 while ((e = uhash_nextElement(hash, &pos)) != NULL) {
783 uhash_removeElement(hash, e);
784 }
b75a7d8f 785 }
73c04bcf 786 U_ASSERT(hash->count == 0);
b75a7d8f
A
787}
788
73c04bcf
A
789U_CAPI const UHashElement* U_EXPORT2
790uhash_find(const UHashtable *hash, const void* key) {
791 UHashTok keyholder;
792 const UHashElement *e;
793 keyholder.pointer = (void*) key;
794 e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder));
795 return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e;
796}
b75a7d8f 797
73c04bcf
A
798U_CAPI const UHashElement* U_EXPORT2
799uhash_nextElement(const UHashtable *hash, int32_t *pos) {
800 /* Walk through the array until we find an element that is not
801 * EMPTY and not DELETED.
802 */
b75a7d8f 803 int32_t i;
73c04bcf
A
804 U_ASSERT(hash != NULL);
805 for (i = *pos + 1; i < hash->length; ++i) {
806 if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) {
807 *pos = i;
808 return &(hash->elements[i]);
b75a7d8f 809 }
b75a7d8f
A
810 }
811
73c04bcf
A
812 /* No more elements */
813 return NULL;
814}
b75a7d8f 815
73c04bcf
A
816U_CAPI void* U_EXPORT2
817uhash_removeElement(UHashtable *hash, const UHashElement* e) {
818 U_ASSERT(hash != NULL);
819 U_ASSERT(e != NULL);
820 if (!IS_EMPTY_OR_DELETED(e->hashcode)) {
729e4ab9
A
821 UHashElement *nce = (UHashElement *)e;
822 return _uhash_internalRemoveElement(hash, nce).pointer;
b75a7d8f 823 }
73c04bcf
A
824 return NULL;
825}
b75a7d8f 826
73c04bcf
A
827/********************************************************************
828 * UHashTok convenience
829 ********************************************************************/
b75a7d8f 830
73c04bcf
A
831/**
832 * Return a UHashTok for an integer.
833 */
834/*U_CAPI UHashTok U_EXPORT2
835uhash_toki(int32_t i) {
836 UHashTok tok;
837 tok.integer = i;
838 return tok;
839}*/
b75a7d8f
A
840
841/**
73c04bcf 842 * Return a UHashTok for a pointer.
b75a7d8f 843 */
73c04bcf
A
844/*U_CAPI UHashTok U_EXPORT2
845uhash_tokp(void* p) {
846 UHashTok tok;
847 tok.pointer = p;
848 return tok;
849}*/
b75a7d8f 850
73c04bcf
A
851/********************************************************************
852 * PUBLIC Key Hash Functions
853 ********************************************************************/
854
73c04bcf
A
855U_CAPI int32_t U_EXPORT2
856uhash_hashUChars(const UHashTok key) {
4388f060
A
857 const UChar *s = (const UChar *)key.pointer;
858 return s == NULL ? 0 : ustr_hashUCharsN(s, u_strlen(s));
73c04bcf 859}
b75a7d8f 860
73c04bcf
A
861U_CAPI int32_t U_EXPORT2
862uhash_hashChars(const UHashTok key) {
4388f060
A
863 const char *s = (const char *)key.pointer;
864 return s == NULL ? 0 : ustr_hashCharsN(s, uprv_strlen(s));
b75a7d8f
A
865}
866
73c04bcf
A
867U_CAPI int32_t U_EXPORT2
868uhash_hashIChars(const UHashTok key) {
4388f060
A
869 const char *s = (const char *)key.pointer;
870 return s == NULL ? 0 : ustr_hashICharsN(s, uprv_strlen(s));
73c04bcf 871}
b75a7d8f 872
73c04bcf
A
873U_CAPI UBool U_EXPORT2
874uhash_equals(const UHashtable* hash1, const UHashtable* hash2){
73c04bcf 875 int32_t count1, count2, pos, i;
b75a7d8f 876
73c04bcf
A
877 if(hash1==hash2){
878 return TRUE;
b75a7d8f 879 }
73c04bcf 880
46f4442e
A
881 /*
882 * Make sure that we are comparing 2 valid hashes of the same type
883 * with valid comparison functions.
884 * Without valid comparison functions, a binary comparison
885 * of the hash values will yield random results on machines
886 * with 64-bit pointers and 32-bit integer hashes.
887 * A valueComparator is normally optional.
888 */
889 if (hash1==NULL || hash2==NULL ||
890 hash1->keyComparator != hash2->keyComparator ||
891 hash1->valueComparator != hash2->valueComparator ||
892 hash1->valueComparator == NULL)
893 {
894 /*
895 Normally we would return an error here about incompatible hash tables,
896 but we return FALSE instead.
897 */
73c04bcf 898 return FALSE;
b75a7d8f
A
899 }
900
73c04bcf
A
901 count1 = uhash_count(hash1);
902 count2 = uhash_count(hash2);
903 if(count1!=count2){
904 return FALSE;
905 }
906
b331163b 907 pos=UHASH_FIRST;
73c04bcf
A
908 for(i=0; i<count1; i++){
909 const UHashElement* elem1 = uhash_nextElement(hash1, &pos);
910 const UHashTok key1 = elem1->key;
911 const UHashTok val1 = elem1->value;
912 /* here the keys are not compared, instead the key form hash1 is used to fetch
913 * value from hash2. If the hashes are equal then then both hashes should
914 * contain equal values for the same key!
b75a7d8f 915 */
73c04bcf
A
916 const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(key1));
917 const UHashTok val2 = elem2->value;
918 if(hash1->valueComparator(val1, val2)==FALSE){
919 return FALSE;
b75a7d8f
A
920 }
921 }
73c04bcf
A
922 return TRUE;
923}
b75a7d8f 924
73c04bcf
A
925/********************************************************************
926 * PUBLIC Comparator Functions
927 ********************************************************************/
b75a7d8f 928
73c04bcf
A
929U_CAPI UBool U_EXPORT2
930uhash_compareUChars(const UHashTok key1, const UHashTok key2) {
931 const UChar *p1 = (const UChar*) key1.pointer;
932 const UChar *p2 = (const UChar*) key2.pointer;
933 if (p1 == p2) {
934 return TRUE;
935 }
936 if (p1 == NULL || p2 == NULL) {
937 return FALSE;
938 }
939 while (*p1 != 0 && *p1 == *p2) {
940 ++p1;
941 ++p2;
942 }
943 return (UBool)(*p1 == *p2);
b75a7d8f
A
944}
945
73c04bcf
A
946U_CAPI UBool U_EXPORT2
947uhash_compareChars(const UHashTok key1, const UHashTok key2) {
948 const char *p1 = (const char*) key1.pointer;
949 const char *p2 = (const char*) key2.pointer;
950 if (p1 == p2) {
951 return TRUE;
b75a7d8f 952 }
73c04bcf
A
953 if (p1 == NULL || p2 == NULL) {
954 return FALSE;
955 }
956 while (*p1 != 0 && *p1 == *p2) {
957 ++p1;
958 ++p2;
959 }
960 return (UBool)(*p1 == *p2);
b75a7d8f
A
961}
962
73c04bcf
A
963U_CAPI UBool U_EXPORT2
964uhash_compareIChars(const UHashTok key1, const UHashTok key2) {
965 const char *p1 = (const char*) key1.pointer;
966 const char *p2 = (const char*) key2.pointer;
967 if (p1 == p2) {
968 return TRUE;
b75a7d8f 969 }
73c04bcf
A
970 if (p1 == NULL || p2 == NULL) {
971 return FALSE;
b75a7d8f 972 }
73c04bcf
A
973 while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) {
974 ++p1;
975 ++p2;
b75a7d8f 976 }
73c04bcf 977 return (UBool)(*p1 == *p2);
b75a7d8f
A
978}
979
73c04bcf
A
980/********************************************************************
981 * PUBLIC int32_t Support Functions
982 ********************************************************************/
983
984U_CAPI int32_t U_EXPORT2
985uhash_hashLong(const UHashTok key) {
986 return key.integer;
b75a7d8f
A
987}
988
73c04bcf
A
989U_CAPI UBool U_EXPORT2
990uhash_compareLong(const UHashTok key1, const UHashTok key2) {
991 return (UBool)(key1.integer == key2.integer);
992}