]>
Commit | Line | Data |
---|---|---|
b75a7d8f A |
1 | /* |
2 | *************************************************************************** | |
729e4ab9 A |
3 | * Copyright (C) 1999-2010 International Business Machines Corporation |
4 | * and others. All rights reserved. | |
b75a7d8f A |
5 | *************************************************************************** |
6 | */ | |
374ca955 A |
7 | // |
8 | // file: rbbi.c Contains the implementation of the rule based break iterator | |
9 | // runtime engine and the API implementation for | |
10 | // class RuleBasedBreakIterator | |
11 | // | |
b75a7d8f | 12 | |
729e4ab9 A |
13 | #include <typeinfo> // for 'typeid' to work |
14 | ||
b75a7d8f A |
15 | #include "unicode/utypes.h" |
16 | ||
17 | #if !UCONFIG_NO_BREAK_ITERATION | |
18 | ||
19 | #include "unicode/rbbi.h" | |
20 | #include "unicode/schriter.h" | |
73c04bcf | 21 | #include "unicode/uchriter.h" |
b75a7d8f | 22 | #include "unicode/udata.h" |
374ca955 | 23 | #include "unicode/uclean.h" |
b75a7d8f A |
24 | #include "rbbidata.h" |
25 | #include "rbbirb.h" | |
26 | #include "cmemory.h" | |
27 | #include "cstring.h" | |
46f4442e | 28 | #include "umutex.h" |
73c04bcf A |
29 | #include "ucln_cmn.h" |
30 | #include "brkeng.h" | |
b75a7d8f A |
31 | |
32 | #include "uassert.h" | |
73c04bcf A |
33 | #include "uvector.h" |
34 | ||
35 | // if U_LOCAL_SERVICE_HOOK is defined, then localsvc.cpp is expected to be included. | |
36 | #if U_LOCAL_SERVICE_HOOK | |
37 | #include "localsvc.h" | |
38 | #endif | |
39 | ||
40 | #ifdef RBBI_DEBUG | |
41 | static UBool fTrace = FALSE; | |
42 | #endif | |
b75a7d8f A |
43 | |
44 | U_NAMESPACE_BEGIN | |
45 | ||
46f4442e A |
46 | // The state number of the starting state |
47 | #define START_STATE 1 | |
b75a7d8f | 48 | |
46f4442e A |
49 | // The state-transition value indicating "stop" |
50 | #define STOP_STATE 0 | |
b75a7d8f | 51 | |
374ca955 A |
52 | |
53 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator) | |
b75a7d8f A |
54 | |
55 | ||
56 | //======================================================================= | |
57 | // constructors | |
58 | //======================================================================= | |
59 | ||
60 | /** | |
61 | * Constructs a RuleBasedBreakIterator that uses the already-created | |
62 | * tables object that is passed in as a parameter. | |
63 | */ | |
64 | RuleBasedBreakIterator::RuleBasedBreakIterator(RBBIDataHeader* data, UErrorCode &status) | |
65 | { | |
66 | init(); | |
374ca955 | 67 | fData = new RBBIDataWrapper(data, status); // status checked in constructor |
b75a7d8f | 68 | if (U_FAILURE(status)) {return;} |
b75a7d8f A |
69 | if(fData == 0) { |
70 | status = U_MEMORY_ALLOCATION_ERROR; | |
71 | return; | |
72 | } | |
73 | } | |
74 | ||
46f4442e A |
75 | /** |
76 | * Same as above but does not adopt memory | |
77 | */ | |
78 | RuleBasedBreakIterator::RuleBasedBreakIterator(const RBBIDataHeader* data, enum EDontAdopt, UErrorCode &status) | |
79 | { | |
80 | init(); | |
81 | fData = new RBBIDataWrapper(data, RBBIDataWrapper::kDontAdopt, status); // status checked in constructor | |
82 | if (U_FAILURE(status)) {return;} | |
83 | if(fData == 0) { | |
84 | status = U_MEMORY_ALLOCATION_ERROR; | |
85 | return; | |
86 | } | |
87 | } | |
88 | ||
b75a7d8f A |
89 | //------------------------------------------------------------------------------- |
90 | // | |
91 | // Constructor from a UDataMemory handle to precompiled break rules | |
92 | // stored in an ICU data file. | |
93 | // | |
94 | //------------------------------------------------------------------------------- | |
95 | RuleBasedBreakIterator::RuleBasedBreakIterator(UDataMemory* udm, UErrorCode &status) | |
96 | { | |
97 | init(); | |
374ca955 | 98 | fData = new RBBIDataWrapper(udm, status); // status checked in constructor |
b75a7d8f | 99 | if (U_FAILURE(status)) {return;} |
b75a7d8f A |
100 | if(fData == 0) { |
101 | status = U_MEMORY_ALLOCATION_ERROR; | |
102 | return; | |
103 | } | |
104 | } | |
105 | ||
106 | ||
107 | ||
108 | //------------------------------------------------------------------------------- | |
109 | // | |
110 | // Constructor from a set of rules supplied as a string. | |
111 | // | |
112 | //------------------------------------------------------------------------------- | |
113 | RuleBasedBreakIterator::RuleBasedBreakIterator( const UnicodeString &rules, | |
114 | UParseError &parseError, | |
115 | UErrorCode &status) | |
116 | { | |
117 | init(); | |
118 | if (U_FAILURE(status)) {return;} | |
119 | RuleBasedBreakIterator *bi = (RuleBasedBreakIterator *) | |
46f4442e | 120 | RBBIRuleBuilder::createRuleBasedBreakIterator(rules, &parseError, status); |
b75a7d8f A |
121 | // Note: This is a bit awkward. The RBBI ruleBuilder has a factory method that |
122 | // creates and returns a complete RBBI. From here, in a constructor, we | |
123 | // can't just return the object created by the builder factory, hence | |
124 | // the assignment of the factory created object to "this". | |
125 | if (U_SUCCESS(status)) { | |
126 | *this = *bi; | |
127 | delete bi; | |
128 | } | |
129 | } | |
130 | ||
131 | ||
132 | //------------------------------------------------------------------------------- | |
133 | // | |
134 | // Default Constructor. Create an empty shell that can be set up later. | |
135 | // Used when creating a RuleBasedBreakIterator from a set | |
136 | // of rules. | |
137 | //------------------------------------------------------------------------------- | |
138 | RuleBasedBreakIterator::RuleBasedBreakIterator() { | |
139 | init(); | |
140 | } | |
141 | ||
142 | ||
143 | //------------------------------------------------------------------------------- | |
144 | // | |
145 | // Copy constructor. Will produce a break iterator with the same behavior, | |
146 | // and which iterates over the same text, as the one passed in. | |
147 | // | |
148 | //------------------------------------------------------------------------------- | |
149 | RuleBasedBreakIterator::RuleBasedBreakIterator(const RuleBasedBreakIterator& other) | |
150 | : BreakIterator(other) | |
151 | { | |
152 | this->init(); | |
153 | *this = other; | |
154 | } | |
155 | ||
156 | ||
157 | /** | |
158 | * Destructor | |
159 | */ | |
160 | RuleBasedBreakIterator::~RuleBasedBreakIterator() { | |
73c04bcf A |
161 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { |
162 | // fCharIter was adopted from the outside. | |
163 | delete fCharIter; | |
164 | } | |
165 | fCharIter = NULL; | |
166 | delete fSCharIter; | |
167 | fCharIter = NULL; | |
168 | delete fDCharIter; | |
169 | fDCharIter = NULL; | |
170 | ||
171 | utext_close(fText); | |
172 | ||
b75a7d8f A |
173 | if (fData != NULL) { |
174 | fData->removeReference(); | |
175 | fData = NULL; | |
176 | } | |
73c04bcf A |
177 | if (fCachedBreakPositions) { |
178 | uprv_free(fCachedBreakPositions); | |
179 | fCachedBreakPositions = NULL; | |
180 | } | |
181 | if (fLanguageBreakEngines) { | |
182 | delete fLanguageBreakEngines; | |
183 | fLanguageBreakEngines = NULL; | |
184 | } | |
185 | if (fUnhandledBreakEngine) { | |
186 | delete fUnhandledBreakEngine; | |
187 | fUnhandledBreakEngine = NULL; | |
188 | } | |
b75a7d8f A |
189 | } |
190 | ||
191 | /** | |
192 | * Assignment operator. Sets this iterator to have the same behavior, | |
193 | * and iterate over the same text, as the one passed in. | |
194 | */ | |
195 | RuleBasedBreakIterator& | |
196 | RuleBasedBreakIterator::operator=(const RuleBasedBreakIterator& that) { | |
197 | if (this == &that) { | |
198 | return *this; | |
199 | } | |
73c04bcf A |
200 | reset(); // Delete break cache information |
201 | fBreakType = that.fBreakType; | |
202 | if (fLanguageBreakEngines != NULL) { | |
203 | delete fLanguageBreakEngines; | |
204 | fLanguageBreakEngines = NULL; // Just rebuild for now | |
205 | } | |
206 | // TODO: clone fLanguageBreakEngines from "that" | |
207 | UErrorCode status = U_ZERO_ERROR; | |
208 | fText = utext_clone(fText, that.fText, FALSE, TRUE, &status); | |
209 | ||
210 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { | |
211 | delete fCharIter; | |
212 | } | |
213 | fCharIter = NULL; | |
214 | ||
215 | if (that.fCharIter != NULL ) { | |
216 | // This is a little bit tricky - it will intially appear that | |
217 | // this->fCharIter is adopted, even if that->fCharIter was | |
218 | // not adopted. That's ok. | |
219 | fCharIter = that.fCharIter->clone(); | |
b75a7d8f A |
220 | } |
221 | ||
222 | if (fData != NULL) { | |
223 | fData->removeReference(); | |
224 | fData = NULL; | |
225 | } | |
226 | if (that.fData != NULL) { | |
227 | fData = that.fData->addReference(); | |
228 | } | |
b75a7d8f A |
229 | |
230 | return *this; | |
231 | } | |
232 | ||
233 | ||
234 | ||
235 | //----------------------------------------------------------------------------- | |
236 | // | |
237 | // init() Shared initialization routine. Used by all the constructors. | |
238 | // Initializes all fields, leaving the object in a consistent state. | |
239 | // | |
240 | //----------------------------------------------------------------------------- | |
b75a7d8f | 241 | void RuleBasedBreakIterator::init() { |
73c04bcf A |
242 | UErrorCode status = U_ZERO_ERROR; |
243 | fBufferClone = FALSE; | |
244 | fText = utext_openUChars(NULL, NULL, 0, &status); | |
245 | fCharIter = NULL; | |
246 | fSCharIter = NULL; | |
247 | fDCharIter = NULL; | |
374ca955 A |
248 | fData = NULL; |
249 | fLastRuleStatusIndex = 0; | |
250 | fLastStatusIndexValid = TRUE; | |
251 | fDictionaryCharCount = 0; | |
729e4ab9 A |
252 | fBreakType = UBRK_WORD; // Defaulting BreakType to word gives reasonable |
253 | // dictionary behavior for Break Iterators that are | |
254 | // built from rules. Even better would be the ability to | |
255 | // declare the type in the rules. | |
73c04bcf A |
256 | |
257 | fCachedBreakPositions = NULL; | |
258 | fLanguageBreakEngines = NULL; | |
259 | fUnhandledBreakEngine = NULL; | |
260 | fNumCachedBreakPositions = 0; | |
261 | fPositionInCache = 0; | |
b75a7d8f A |
262 | |
263 | #ifdef RBBI_DEBUG | |
264 | static UBool debugInitDone = FALSE; | |
265 | if (debugInitDone == FALSE) { | |
266 | char *debugEnv = getenv("U_RBBIDEBUG"); | |
267 | if (debugEnv && uprv_strstr(debugEnv, "trace")) { | |
268 | fTrace = TRUE; | |
269 | } | |
270 | debugInitDone = TRUE; | |
271 | } | |
272 | #endif | |
273 | } | |
274 | ||
275 | ||
276 | ||
277 | //----------------------------------------------------------------------------- | |
278 | // | |
279 | // clone - Returns a newly-constructed RuleBasedBreakIterator with the same | |
280 | // behavior, and iterating over the same text, as this one. | |
281 | // Virtual function: does the right thing with subclasses. | |
282 | // | |
283 | //----------------------------------------------------------------------------- | |
284 | BreakIterator* | |
285 | RuleBasedBreakIterator::clone(void) const { | |
286 | return new RuleBasedBreakIterator(*this); | |
287 | } | |
288 | ||
289 | /** | |
290 | * Equality operator. Returns TRUE if both BreakIterators are of the | |
291 | * same class, have the same behavior, and iterate over the same text. | |
292 | */ | |
293 | UBool | |
294 | RuleBasedBreakIterator::operator==(const BreakIterator& that) const { | |
729e4ab9 | 295 | if (typeid(*this) != typeid(that)) { |
73c04bcf | 296 | return FALSE; |
b75a7d8f A |
297 | } |
298 | ||
299 | const RuleBasedBreakIterator& that2 = (const RuleBasedBreakIterator&) that; | |
73c04bcf A |
300 | |
301 | if (!utext_equals(fText, that2.fText)) { | |
302 | // The two break iterators are operating on different text, | |
303 | // or have a different interation position. | |
304 | return FALSE; | |
305 | }; | |
306 | ||
307 | // TODO: need a check for when in a dictionary region at different offsets. | |
308 | ||
309 | if (that2.fData == fData || | |
310 | (fData != NULL && that2.fData != NULL && *that2.fData == *fData)) { | |
311 | // The two break iterators are using the same rules. | |
312 | return TRUE; | |
b75a7d8f | 313 | } |
73c04bcf | 314 | return FALSE; |
b75a7d8f A |
315 | } |
316 | ||
317 | /** | |
318 | * Compute a hash code for this BreakIterator | |
319 | * @return A hash code | |
320 | */ | |
321 | int32_t | |
322 | RuleBasedBreakIterator::hashCode(void) const { | |
323 | int32_t hash = 0; | |
324 | if (fData != NULL) { | |
325 | hash = fData->hashCode(); | |
326 | } | |
327 | return hash; | |
328 | } | |
329 | ||
73c04bcf A |
330 | |
331 | void RuleBasedBreakIterator::setText(UText *ut, UErrorCode &status) { | |
332 | if (U_FAILURE(status)) { | |
333 | return; | |
334 | } | |
335 | reset(); | |
336 | fText = utext_clone(fText, ut, FALSE, TRUE, &status); | |
337 | ||
338 | // Set up a dummy CharacterIterator to be returned if anyone | |
339 | // calls getText(). With input from UText, there is no reasonable | |
340 | // way to return a characterIterator over the actual input text. | |
341 | // Return one over an empty string instead - this is the closest | |
342 | // we can come to signaling a failure. | |
343 | // (GetText() is obsolete, this failure is sort of OK) | |
344 | if (fDCharIter == NULL) { | |
46f4442e | 345 | static const UChar c = 0; |
73c04bcf | 346 | fDCharIter = new UCharCharacterIterator(&c, 0); |
46f4442e A |
347 | if (fDCharIter == NULL) { |
348 | status = U_MEMORY_ALLOCATION_ERROR; | |
349 | return; | |
350 | } | |
73c04bcf A |
351 | } |
352 | ||
353 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { | |
354 | // existing fCharIter was adopted from the outside. Delete it now. | |
355 | delete fCharIter; | |
356 | } | |
357 | fCharIter = fDCharIter; | |
358 | ||
359 | this->first(); | |
360 | } | |
361 | ||
362 | ||
363 | UText *RuleBasedBreakIterator::getUText(UText *fillIn, UErrorCode &status) const { | |
364 | UText *result = utext_clone(fillIn, fText, FALSE, TRUE, &status); | |
365 | return result; | |
366 | } | |
367 | ||
368 | ||
369 | ||
b75a7d8f A |
370 | /** |
371 | * Returns the description used to create this iterator | |
372 | */ | |
373 | const UnicodeString& | |
374 | RuleBasedBreakIterator::getRules() const { | |
375 | if (fData != NULL) { | |
376 | return fData->getRuleSourceString(); | |
377 | } else { | |
378 | static const UnicodeString *s; | |
379 | if (s == NULL) { | |
380 | // TODO: something more elegant here. | |
381 | // perhaps API should return the string by value. | |
382 | // Note: thread unsafe init & leak are semi-ok, better than | |
383 | // what was before. Sould be cleaned up, though. | |
384 | s = new UnicodeString; | |
385 | } | |
386 | return *s; | |
387 | } | |
388 | } | |
389 | ||
390 | //======================================================================= | |
391 | // BreakIterator overrides | |
392 | //======================================================================= | |
393 | ||
394 | /** | |
73c04bcf | 395 | * Return a CharacterIterator over the text being analyzed. |
b75a7d8f | 396 | */ |
73c04bcf | 397 | CharacterIterator& |
b75a7d8f | 398 | RuleBasedBreakIterator::getText() const { |
73c04bcf | 399 | return *fCharIter; |
b75a7d8f A |
400 | } |
401 | ||
402 | /** | |
403 | * Set the iterator to analyze a new piece of text. This function resets | |
404 | * the current iteration position to the beginning of the text. | |
405 | * @param newText An iterator over the text to analyze. | |
406 | */ | |
407 | void | |
408 | RuleBasedBreakIterator::adoptText(CharacterIterator* newText) { | |
73c04bcf A |
409 | // If we are holding a CharacterIterator adopted from a |
410 | // previous call to this function, delete it now. | |
411 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { | |
412 | delete fCharIter; | |
413 | } | |
414 | ||
415 | fCharIter = newText; | |
416 | UErrorCode status = U_ZERO_ERROR; | |
b75a7d8f | 417 | reset(); |
73c04bcf A |
418 | if (newText==NULL || newText->startIndex() != 0) { |
419 | // startIndex !=0 wants to be an error, but there's no way to report it. | |
420 | // Make the iterator text be an empty string. | |
421 | fText = utext_openUChars(fText, NULL, 0, &status); | |
422 | } else { | |
423 | fText = utext_openCharacterIterator(fText, newText, &status); | |
424 | } | |
b75a7d8f A |
425 | this->first(); |
426 | } | |
427 | ||
428 | /** | |
429 | * Set the iterator to analyze a new piece of text. This function resets | |
430 | * the current iteration position to the beginning of the text. | |
431 | * @param newText An iterator over the text to analyze. | |
432 | */ | |
433 | void | |
434 | RuleBasedBreakIterator::setText(const UnicodeString& newText) { | |
73c04bcf | 435 | UErrorCode status = U_ZERO_ERROR; |
b75a7d8f | 436 | reset(); |
73c04bcf A |
437 | fText = utext_openConstUnicodeString(fText, &newText, &status); |
438 | ||
439 | // Set up a character iterator on the string. | |
440 | // Needed in case someone calls getText(). | |
441 | // Can not, unfortunately, do this lazily on the (probably never) | |
442 | // call to getText(), because getText is const. | |
443 | if (fSCharIter == NULL) { | |
444 | fSCharIter = new StringCharacterIterator(newText); | |
445 | } else { | |
446 | fSCharIter->setText(newText); | |
b75a7d8f | 447 | } |
73c04bcf A |
448 | |
449 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { | |
450 | // old fCharIter was adopted from the outside. Delete it. | |
451 | delete fCharIter; | |
b75a7d8f | 452 | } |
73c04bcf A |
453 | fCharIter = fSCharIter; |
454 | ||
b75a7d8f A |
455 | this->first(); |
456 | } | |
457 | ||
458 | ||
459 | ||
460 | /** | |
461 | * Sets the current iteration position to the beginning of the text. | |
b75a7d8f A |
462 | * @return The offset of the beginning of the text. |
463 | */ | |
464 | int32_t RuleBasedBreakIterator::first(void) { | |
465 | reset(); | |
374ca955 A |
466 | fLastRuleStatusIndex = 0; |
467 | fLastStatusIndexValid = TRUE; | |
73c04bcf A |
468 | //if (fText == NULL) |
469 | // return BreakIterator::DONE; | |
b75a7d8f | 470 | |
73c04bcf A |
471 | utext_setNativeIndex(fText, 0); |
472 | return 0; | |
b75a7d8f A |
473 | } |
474 | ||
475 | /** | |
476 | * Sets the current iteration position to the end of the text. | |
b75a7d8f A |
477 | * @return The text's past-the-end offset. |
478 | */ | |
479 | int32_t RuleBasedBreakIterator::last(void) { | |
480 | reset(); | |
481 | if (fText == NULL) { | |
374ca955 A |
482 | fLastRuleStatusIndex = 0; |
483 | fLastStatusIndexValid = TRUE; | |
b75a7d8f A |
484 | return BreakIterator::DONE; |
485 | } | |
486 | ||
374ca955 | 487 | fLastStatusIndexValid = FALSE; |
73c04bcf A |
488 | int32_t pos = (int32_t)utext_nativeLength(fText); |
489 | utext_setNativeIndex(fText, pos); | |
b75a7d8f A |
490 | return pos; |
491 | } | |
492 | ||
493 | /** | |
494 | * Advances the iterator either forward or backward the specified number of steps. | |
495 | * Negative values move backward, and positive values move forward. This is | |
496 | * equivalent to repeatedly calling next() or previous(). | |
497 | * @param n The number of steps to move. The sign indicates the direction | |
498 | * (negative is backwards, and positive is forwards). | |
499 | * @return The character offset of the boundary position n boundaries away from | |
500 | * the current one. | |
501 | */ | |
502 | int32_t RuleBasedBreakIterator::next(int32_t n) { | |
503 | int32_t result = current(); | |
504 | while (n > 0) { | |
73c04bcf | 505 | result = next(); |
b75a7d8f A |
506 | --n; |
507 | } | |
508 | while (n < 0) { | |
509 | result = previous(); | |
510 | ++n; | |
511 | } | |
512 | return result; | |
513 | } | |
514 | ||
515 | /** | |
516 | * Advances the iterator to the next boundary position. | |
517 | * @return The position of the first boundary after this one. | |
518 | */ | |
519 | int32_t RuleBasedBreakIterator::next(void) { | |
73c04bcf A |
520 | // if we have cached break positions and we're still in the range |
521 | // covered by them, just move one step forward in the cache | |
522 | if (fCachedBreakPositions != NULL) { | |
523 | if (fPositionInCache < fNumCachedBreakPositions - 1) { | |
524 | ++fPositionInCache; | |
525 | int32_t pos = fCachedBreakPositions[fPositionInCache]; | |
526 | utext_setNativeIndex(fText, pos); | |
527 | return pos; | |
528 | } | |
529 | else { | |
530 | reset(); | |
531 | } | |
532 | } | |
533 | ||
534 | int32_t startPos = current(); | |
535 | int32_t result = handleNext(fData->fForwardTable); | |
536 | if (fDictionaryCharCount > 0) { | |
537 | result = checkDictionary(startPos, result, FALSE); | |
538 | } | |
539 | return result; | |
b75a7d8f A |
540 | } |
541 | ||
542 | /** | |
543 | * Advances the iterator backwards, to the last boundary preceding this one. | |
544 | * @return The position of the last boundary position preceding this one. | |
545 | */ | |
546 | int32_t RuleBasedBreakIterator::previous(void) { | |
73c04bcf A |
547 | int32_t result; |
548 | int32_t startPos; | |
549 | ||
550 | // if we have cached break positions and we're still in the range | |
551 | // covered by them, just move one step backward in the cache | |
552 | if (fCachedBreakPositions != NULL) { | |
553 | if (fPositionInCache > 0) { | |
554 | --fPositionInCache; | |
555 | // If we're at the beginning of the cache, need to reevaluate the | |
556 | // rule status | |
557 | if (fPositionInCache <= 0) { | |
558 | fLastStatusIndexValid = FALSE; | |
559 | } | |
560 | int32_t pos = fCachedBreakPositions[fPositionInCache]; | |
561 | utext_setNativeIndex(fText, pos); | |
562 | return pos; | |
563 | } | |
564 | else { | |
565 | reset(); | |
566 | } | |
567 | } | |
568 | ||
b75a7d8f | 569 | // if we're already sitting at the beginning of the text, return DONE |
73c04bcf | 570 | if (fText == NULL || (startPos = current()) == 0) { |
374ca955 A |
571 | fLastRuleStatusIndex = 0; |
572 | fLastStatusIndexValid = TRUE; | |
b75a7d8f A |
573 | return BreakIterator::DONE; |
574 | } | |
575 | ||
374ca955 | 576 | if (fData->fSafeRevTable != NULL || fData->fSafeFwdTable != NULL) { |
73c04bcf A |
577 | result = handlePrevious(fData->fReverseTable); |
578 | if (fDictionaryCharCount > 0) { | |
579 | result = checkDictionary(result, startPos, TRUE); | |
580 | } | |
581 | return result; | |
374ca955 A |
582 | } |
583 | ||
584 | // old rule syntax | |
b75a7d8f A |
585 | // set things up. handlePrevious() will back us up to some valid |
586 | // break position before the current position (we back our internal | |
587 | // iterator up one step to prevent handlePrevious() from returning | |
588 | // the current position), but not necessarily the last one before | |
73c04bcf | 589 | |
b75a7d8f | 590 | // where we started |
374ca955 | 591 | |
b75a7d8f | 592 | int32_t start = current(); |
374ca955 | 593 | |
73c04bcf A |
594 | UTEXT_PREVIOUS32(fText); |
595 | int32_t lastResult = handlePrevious(fData->fReverseTable); | |
596 | if (lastResult == UBRK_DONE) { | |
597 | lastResult = 0; | |
598 | utext_setNativeIndex(fText, 0); | |
599 | } | |
600 | result = lastResult; | |
b75a7d8f A |
601 | int32_t lastTag = 0; |
602 | UBool breakTagValid = FALSE; | |
603 | ||
604 | // iterate forward from the known break position until we pass our | |
605 | // starting point. The last break position before the starting | |
606 | // point is our return value | |
374ca955 | 607 | |
b75a7d8f | 608 | for (;;) { |
73c04bcf | 609 | result = next(); |
b75a7d8f A |
610 | if (result == BreakIterator::DONE || result >= start) { |
611 | break; | |
612 | } | |
613 | lastResult = result; | |
374ca955 | 614 | lastTag = fLastRuleStatusIndex; |
b75a7d8f A |
615 | breakTagValid = TRUE; |
616 | } | |
617 | ||
618 | // fLastBreakTag wants to have the value for section of text preceding | |
619 | // the result position that we are to return (in lastResult.) If | |
620 | // the backwards rules overshot and the above loop had to do two or more | |
73c04bcf | 621 | // next()s to move up to the desired return position, we will have a valid |
374ca955 A |
622 | // tag value. But, if handlePrevious() took us to exactly the correct result positon, |
623 | // we wont have a tag value for that position, which is only set by handleNext(). | |
b75a7d8f A |
624 | |
625 | // set the current iteration position to be the last break position | |
626 | // before where we started, and then return that value | |
73c04bcf | 627 | utext_setNativeIndex(fText, lastResult); |
374ca955 A |
628 | fLastRuleStatusIndex = lastTag; // for use by getRuleStatus() |
629 | fLastStatusIndexValid = breakTagValid; | |
73c04bcf A |
630 | |
631 | // No need to check the dictionary; it will have been handled by | |
632 | // next() | |
633 | ||
b75a7d8f A |
634 | return lastResult; |
635 | } | |
636 | ||
b75a7d8f A |
637 | /** |
638 | * Sets the iterator to refer to the first boundary position following | |
639 | * the specified position. | |
640 | * @offset The position from which to begin searching for a break position. | |
641 | * @return The position of the first break after the current position. | |
642 | */ | |
643 | int32_t RuleBasedBreakIterator::following(int32_t offset) { | |
73c04bcf A |
644 | // if we have cached break positions and offset is in the range |
645 | // covered by them, use them | |
646 | // TODO: could use binary search | |
647 | // TODO: what if offset is outside range, but break is not? | |
648 | if (fCachedBreakPositions != NULL) { | |
649 | if (offset >= fCachedBreakPositions[0] | |
650 | && offset < fCachedBreakPositions[fNumCachedBreakPositions - 1]) { | |
651 | fPositionInCache = 0; | |
652 | // We are guaranteed not to leave the array due to range test above | |
653 | while (offset >= fCachedBreakPositions[fPositionInCache]) { | |
654 | ++fPositionInCache; | |
655 | } | |
656 | int32_t pos = fCachedBreakPositions[fPositionInCache]; | |
657 | utext_setNativeIndex(fText, pos); | |
658 | return pos; | |
659 | } | |
660 | else { | |
661 | reset(); | |
662 | } | |
663 | } | |
664 | ||
b75a7d8f A |
665 | // if the offset passed in is already past the end of the text, |
666 | // just return DONE; if it's before the beginning, return the | |
667 | // text's starting offset | |
374ca955 A |
668 | fLastRuleStatusIndex = 0; |
669 | fLastStatusIndexValid = TRUE; | |
73c04bcf | 670 | if (fText == NULL || offset >= utext_nativeLength(fText)) { |
b75a7d8f A |
671 | last(); |
672 | return next(); | |
673 | } | |
73c04bcf | 674 | else if (offset < 0) { |
b75a7d8f A |
675 | return first(); |
676 | } | |
677 | ||
678 | // otherwise, set our internal iteration position (temporarily) | |
679 | // to the position passed in. If this is the _beginning_ position, | |
680 | // then we can just use next() to get our return value | |
b75a7d8f | 681 | |
374ca955 A |
682 | int32_t result = 0; |
683 | ||
684 | if (fData->fSafeRevTable != NULL) { | |
685 | // new rule syntax | |
73c04bcf | 686 | utext_setNativeIndex(fText, offset); |
374ca955 A |
687 | // move forward one codepoint to prepare for moving back to a |
688 | // safe point. | |
689 | // this handles offset being between a supplementary character | |
73c04bcf | 690 | UTEXT_NEXT32(fText); |
374ca955 A |
691 | // handlePrevious will move most of the time to < 1 boundary away |
692 | handlePrevious(fData->fSafeRevTable); | |
693 | int32_t result = next(); | |
694 | while (result <= offset) { | |
695 | result = next(); | |
696 | } | |
697 | return result; | |
698 | } | |
699 | if (fData->fSafeFwdTable != NULL) { | |
700 | // backup plan if forward safe table is not available | |
73c04bcf A |
701 | utext_setNativeIndex(fText, offset); |
702 | UTEXT_PREVIOUS32(fText); | |
374ca955 A |
703 | // handle next will give result >= offset |
704 | handleNext(fData->fSafeFwdTable); | |
705 | // previous will give result 0 or 1 boundary away from offset, | |
706 | // most of the time | |
707 | // we have to | |
708 | int32_t oldresult = previous(); | |
709 | while (oldresult > offset) { | |
710 | int32_t result = previous(); | |
711 | if (result <= offset) { | |
712 | return oldresult; | |
713 | } | |
714 | oldresult = result; | |
715 | } | |
716 | int32_t result = next(); | |
717 | if (result <= offset) { | |
718 | return next(); | |
719 | } | |
720 | return result; | |
721 | } | |
b75a7d8f | 722 | // otherwise, we have to sync up first. Use handlePrevious() to back |
73c04bcf | 723 | // up to a known break position before the specified position (if |
b75a7d8f A |
724 | // we can determine that the specified position is a break position, |
725 | // we don't back up at all). This may or may not be the last break | |
726 | // position at or before our starting position. Advance forward | |
727 | // from here until we've passed the starting position. The position | |
728 | // we stop on will be the first break position after the specified one. | |
374ca955 A |
729 | // old rule syntax |
730 | ||
73c04bcf A |
731 | utext_setNativeIndex(fText, offset); |
732 | if (offset==0 || | |
729e4ab9 | 733 | (offset==1 && utext_getNativeIndex(fText)==0)) { |
73c04bcf | 734 | return next(); |
374ca955 A |
735 | } |
736 | result = previous(); | |
b75a7d8f | 737 | |
b75a7d8f A |
738 | while (result != BreakIterator::DONE && result <= offset) { |
739 | result = next(); | |
740 | } | |
741 | ||
742 | return result; | |
743 | } | |
744 | ||
745 | /** | |
746 | * Sets the iterator to refer to the last boundary position before the | |
747 | * specified position. | |
748 | * @offset The position to begin searching for a break from. | |
749 | * @return The position of the last boundary before the starting position. | |
750 | */ | |
751 | int32_t RuleBasedBreakIterator::preceding(int32_t offset) { | |
73c04bcf A |
752 | // if we have cached break positions and offset is in the range |
753 | // covered by them, use them | |
754 | if (fCachedBreakPositions != NULL) { | |
755 | // TODO: binary search? | |
756 | // TODO: What if offset is outside range, but break is not? | |
757 | if (offset > fCachedBreakPositions[0] | |
758 | && offset <= fCachedBreakPositions[fNumCachedBreakPositions - 1]) { | |
759 | fPositionInCache = 0; | |
760 | while (fPositionInCache < fNumCachedBreakPositions | |
761 | && offset > fCachedBreakPositions[fPositionInCache]) | |
762 | ++fPositionInCache; | |
763 | --fPositionInCache; | |
764 | // If we're at the beginning of the cache, need to reevaluate the | |
765 | // rule status | |
766 | if (fPositionInCache <= 0) { | |
767 | fLastStatusIndexValid = FALSE; | |
768 | } | |
769 | utext_setNativeIndex(fText, fCachedBreakPositions[fPositionInCache]); | |
770 | return fCachedBreakPositions[fPositionInCache]; | |
771 | } | |
772 | else { | |
773 | reset(); | |
774 | } | |
775 | } | |
776 | ||
b75a7d8f A |
777 | // if the offset passed in is already past the end of the text, |
778 | // just return DONE; if it's before the beginning, return the | |
779 | // text's starting offset | |
73c04bcf | 780 | if (fText == NULL || offset > utext_nativeLength(fText)) { |
b75a7d8f A |
781 | // return BreakIterator::DONE; |
782 | return last(); | |
783 | } | |
73c04bcf | 784 | else if (offset < 0) { |
b75a7d8f A |
785 | return first(); |
786 | } | |
787 | ||
788 | // if we start by updating the current iteration position to the | |
789 | // position specified by the caller, we can just use previous() | |
790 | // to carry out this operation | |
374ca955 A |
791 | |
792 | if (fData->fSafeFwdTable != NULL) { | |
374ca955 | 793 | // new rule syntax |
73c04bcf A |
794 | utext_setNativeIndex(fText, offset); |
795 | int32_t newOffset = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
796 | if (newOffset != offset) { | |
797 | // Will come here if specified offset was not a code point boundary AND | |
798 | // the underlying implmentation is using UText, which snaps any non-code-point-boundary | |
799 | // indices to the containing code point. | |
800 | // For breakitereator::preceding only, these non-code-point indices need to be moved | |
801 | // up to refer to the following codepoint. | |
802 | UTEXT_NEXT32(fText); | |
803 | offset = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
804 | } | |
805 | ||
806 | // TODO: (synwee) would it be better to just check for being in the middle of a surrogate pair, | |
374ca955 A |
807 | // rather than adjusting the position unconditionally? |
808 | // (Change would interact with safe rules.) | |
73c04bcf A |
809 | // TODO: change RBBI behavior for off-boundary indices to match that of UText? |
810 | // affects only preceding(), seems cleaner, but is slightly different. | |
811 | UTEXT_PREVIOUS32(fText); | |
374ca955 | 812 | handleNext(fData->fSafeFwdTable); |
73c04bcf | 813 | int32_t result = (int32_t)UTEXT_GETNATIVEINDEX(fText); |
374ca955 A |
814 | while (result >= offset) { |
815 | result = previous(); | |
816 | } | |
817 | return result; | |
818 | } | |
819 | if (fData->fSafeRevTable != NULL) { | |
820 | // backup plan if forward safe table is not available | |
73c04bcf A |
821 | // TODO: check whether this path can be discarded |
822 | // It's probably OK to say that rules must supply both safe tables | |
823 | // if they use safe tables at all. We have certainly never described | |
824 | // to anyone how to work with just one safe table. | |
825 | utext_setNativeIndex(fText, offset); | |
826 | UTEXT_NEXT32(fText); | |
827 | ||
374ca955 A |
828 | // handle previous will give result <= offset |
829 | handlePrevious(fData->fSafeRevTable); | |
830 | ||
831 | // next will give result 0 or 1 boundary away from offset, | |
832 | // most of the time | |
833 | // we have to | |
834 | int32_t oldresult = next(); | |
835 | while (oldresult < offset) { | |
836 | int32_t result = next(); | |
837 | if (result >= offset) { | |
838 | return oldresult; | |
839 | } | |
840 | oldresult = result; | |
841 | } | |
842 | int32_t result = previous(); | |
843 | if (result >= offset) { | |
844 | return previous(); | |
845 | } | |
846 | return result; | |
847 | } | |
848 | ||
849 | // old rule syntax | |
73c04bcf | 850 | utext_setNativeIndex(fText, offset); |
b75a7d8f A |
851 | return previous(); |
852 | } | |
853 | ||
854 | /** | |
855 | * Returns true if the specfied position is a boundary position. As a side | |
856 | * effect, leaves the iterator pointing to the first boundary position at | |
857 | * or after "offset". | |
858 | * @param offset the offset to check. | |
859 | * @return True if "offset" is a boundary position. | |
860 | */ | |
861 | UBool RuleBasedBreakIterator::isBoundary(int32_t offset) { | |
862 | // the beginning index of the iterator is always a boundary position by definition | |
73c04bcf | 863 | if (offset == 0) { |
b75a7d8f A |
864 | first(); // For side effects on current position, tag values. |
865 | return TRUE; | |
866 | } | |
867 | ||
73c04bcf | 868 | if (offset == (int32_t)utext_nativeLength(fText)) { |
374ca955 A |
869 | last(); // For side effects on current position, tag values. |
870 | return TRUE; | |
871 | } | |
872 | ||
b75a7d8f | 873 | // out-of-range indexes are never boundary positions |
73c04bcf | 874 | if (offset < 0) { |
b75a7d8f A |
875 | first(); // For side effects on current position, tag values. |
876 | return FALSE; | |
877 | } | |
878 | ||
73c04bcf | 879 | if (offset > utext_nativeLength(fText)) { |
b75a7d8f A |
880 | last(); // For side effects on current position, tag values. |
881 | return FALSE; | |
882 | } | |
883 | ||
884 | // otherwise, we can use following() on the position before the specified | |
885 | // one and return true if the position we get back is the one the user | |
886 | // specified | |
73c04bcf A |
887 | utext_previous32From(fText, offset); |
888 | int32_t backOne = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
889 | UBool result = following(backOne) == offset; | |
890 | return result; | |
b75a7d8f A |
891 | } |
892 | ||
893 | /** | |
894 | * Returns the current iteration position. | |
895 | * @return The current iteration position. | |
896 | */ | |
897 | int32_t RuleBasedBreakIterator::current(void) const { | |
73c04bcf A |
898 | int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText); |
899 | return pos; | |
b75a7d8f | 900 | } |
73c04bcf | 901 | |
b75a7d8f A |
902 | //======================================================================= |
903 | // implementation | |
904 | //======================================================================= | |
905 | ||
73c04bcf A |
906 | // |
907 | // RBBIRunMode - the state machine runs an extra iteration at the beginning and end | |
908 | // of user text. A variable with this enum type keeps track of where we | |
909 | // are. The state machine only fetches user input while in the RUN mode. | |
910 | // | |
911 | enum RBBIRunMode { | |
912 | RBBI_START, // state machine processing is before first char of input | |
913 | RBBI_RUN, // state machine processing is in the user text | |
914 | RBBI_END // state machine processing is after end of user text. | |
915 | }; | |
916 | ||
b75a7d8f A |
917 | |
918 | //----------------------------------------------------------------------------------- | |
919 | // | |
73c04bcf A |
920 | // handleNext(stateTable) |
921 | // This method is the actual implementation of the rbbi next() method. | |
922 | // This method initializes the state machine to state 1 | |
b75a7d8f A |
923 | // and advances through the text character by character until we reach the end |
924 | // of the text or the state machine transitions to state 0. We update our return | |
374ca955 | 925 | // value every time the state machine passes through an accepting state. |
b75a7d8f A |
926 | // |
927 | //----------------------------------------------------------------------------------- | |
374ca955 | 928 | int32_t RuleBasedBreakIterator::handleNext(const RBBIStateTable *statetable) { |
73c04bcf A |
929 | int32_t state; |
930 | int16_t category = 0; | |
931 | RBBIRunMode mode; | |
932 | ||
933 | RBBIStateTableRow *row; | |
934 | UChar32 c; | |
935 | int32_t lookaheadStatus = 0; | |
936 | int32_t lookaheadTagIdx = 0; | |
937 | int32_t result = 0; | |
938 | int32_t initialPosition = 0; | |
939 | int32_t lookaheadResult = 0; | |
940 | UBool lookAheadHardBreak = (statetable->fFlags & RBBI_LOOKAHEAD_HARD_BREAK) != 0; | |
941 | const char *tableData = statetable->fTableData; | |
942 | uint32_t tableRowLen = statetable->fRowLen; | |
943 | ||
944 | #ifdef RBBI_DEBUG | |
945 | if (fTrace) { | |
946 | RBBIDebugPuts("Handle Next pos char state category"); | |
947 | } | |
948 | #endif | |
b75a7d8f A |
949 | |
950 | // No matter what, handleNext alway correctly sets the break tag value. | |
374ca955 | 951 | fLastStatusIndexValid = TRUE; |
73c04bcf | 952 | fLastRuleStatusIndex = 0; |
b75a7d8f A |
953 | |
954 | // if we're already at the end of the text, return DONE. | |
73c04bcf A |
955 | initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText); |
956 | result = initialPosition; | |
957 | c = UTEXT_NEXT32(fText); | |
958 | if (fData == NULL || c==U_SENTINEL) { | |
b75a7d8f A |
959 | return BreakIterator::DONE; |
960 | } | |
961 | ||
73c04bcf A |
962 | // Set the initial state for the state machine |
963 | state = START_STATE; | |
964 | row = (RBBIStateTableRow *) | |
965 | //(statetable->fTableData + (statetable->fRowLen * state)); | |
966 | (tableData + tableRowLen * state); | |
967 | ||
968 | ||
969 | mode = RBBI_RUN; | |
970 | if (statetable->fFlags & RBBI_BOF_REQUIRED) { | |
971 | category = 2; | |
972 | mode = RBBI_START; | |
973 | } | |
b75a7d8f | 974 | |
b75a7d8f A |
975 | |
976 | // loop until we reach the end of the text or transition to state 0 | |
73c04bcf | 977 | // |
b75a7d8f | 978 | for (;;) { |
73c04bcf | 979 | if (c == U_SENTINEL) { |
374ca955 | 980 | // Reached end of input string. |
73c04bcf A |
981 | if (mode == RBBI_END) { |
982 | // We have already run the loop one last time with the | |
983 | // character set to the psueudo {eof} value. Now it is time | |
984 | // to unconditionally bail out. | |
985 | if (lookaheadResult > result) { | |
986 | // We ran off the end of the string with a pending look-ahead match. | |
987 | // Treat this as if the look-ahead condition had been met, and return | |
988 | // the match at the / position from the look-ahead rule. | |
989 | result = lookaheadResult; | |
990 | fLastRuleStatusIndex = lookaheadTagIdx; | |
991 | lookaheadStatus = 0; | |
992 | } | |
993 | break; | |
374ca955 | 994 | } |
73c04bcf A |
995 | // Run the loop one last time with the fake end-of-input character category. |
996 | mode = RBBI_END; | |
997 | category = 1; | |
b75a7d8f | 998 | } |
b75a7d8f | 999 | |
b75a7d8f | 1000 | // |
73c04bcf A |
1001 | // Get the char category. An incoming category of 1 or 2 means that |
1002 | // we are preset for doing the beginning or end of input, and | |
1003 | // that we shouldn't get a category from an actual text input character. | |
1004 | // | |
1005 | if (mode == RBBI_RUN) { | |
1006 | // look up the current character's character category, which tells us | |
1007 | // which column in the state table to look at. | |
1008 | // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned, | |
1009 | // not the size of the character going in, which is a UChar32. | |
1010 | // | |
1011 | UTRIE_GET16(&fData->fTrie, c, category); | |
1012 | ||
1013 | // Check the dictionary bit in the character's category. | |
1014 | // Counter is only used by dictionary based iterators (subclasses). | |
1015 | // Chars that need to be handled by a dictionary have a flag bit set | |
1016 | // in their category values. | |
1017 | // | |
1018 | if ((category & 0x4000) != 0) { | |
1019 | fDictionaryCharCount++; | |
1020 | // And off the dictionary flag bit. | |
1021 | category &= ~0x4000; | |
1022 | } | |
b75a7d8f A |
1023 | } |
1024 | ||
374ca955 A |
1025 | #ifdef RBBI_DEBUG |
1026 | if (fTrace) { | |
729e4ab9 | 1027 | RBBIDebugPrintf(" %4ld ", utext_getNativeIndex(fText)); |
374ca955 A |
1028 | if (0x20<=c && c<0x7f) { |
1029 | RBBIDebugPrintf("\"%c\" ", c); | |
1030 | } else { | |
1031 | RBBIDebugPrintf("%5x ", c); | |
1032 | } | |
1033 | RBBIDebugPrintf("%3d %3d\n", state, category); | |
b75a7d8f | 1034 | } |
374ca955 | 1035 | #endif |
b75a7d8f | 1036 | |
73c04bcf A |
1037 | // State Transition - move machine to its next state |
1038 | // | |
b75a7d8f A |
1039 | state = row->fNextState[category]; |
1040 | row = (RBBIStateTableRow *) | |
73c04bcf A |
1041 | // (statetable->fTableData + (statetable->fRowLen * state)); |
1042 | (tableData + tableRowLen * state); | |
b75a7d8f | 1043 | |
b75a7d8f | 1044 | |
b75a7d8f | 1045 | if (row->fAccepting == -1) { |
73c04bcf A |
1046 | // Match found, common case. |
1047 | if (mode != RBBI_START) { | |
1048 | result = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1049 | } | |
374ca955 | 1050 | fLastRuleStatusIndex = row->fTagIdx; // Remember the break status (tag) values. |
b75a7d8f A |
1051 | } |
1052 | ||
374ca955 A |
1053 | if (row->fLookAhead != 0) { |
1054 | if (lookaheadStatus != 0 | |
1055 | && row->fAccepting == lookaheadStatus) { | |
73c04bcf | 1056 | // Lookahead match is completed. |
374ca955 A |
1057 | result = lookaheadResult; |
1058 | fLastRuleStatusIndex = lookaheadTagIdx; | |
1059 | lookaheadStatus = 0; | |
73c04bcf A |
1060 | // TODO: make a standalone hard break in a rule work. |
1061 | if (lookAheadHardBreak) { | |
46f4442e | 1062 | UTEXT_SETNATIVEINDEX(fText, result); |
73c04bcf A |
1063 | return result; |
1064 | } | |
1065 | // Look-ahead completed, but other rules may match further. Continue on | |
1066 | // TODO: junk this feature? I don't think it's used anywhwere. | |
374ca955 | 1067 | goto continueOn; |
b75a7d8f | 1068 | } |
374ca955 | 1069 | |
73c04bcf | 1070 | int32_t r = (int32_t)UTEXT_GETNATIVEINDEX(fText); |
374ca955 A |
1071 | lookaheadResult = r; |
1072 | lookaheadStatus = row->fLookAhead; | |
1073 | lookaheadTagIdx = row->fTagIdx; | |
b75a7d8f A |
1074 | goto continueOn; |
1075 | } | |
1076 | ||
374ca955 | 1077 | |
73c04bcf A |
1078 | if (row->fAccepting != 0) { |
1079 | // Because this is an accepting state, any in-progress look-ahead match | |
1080 | // is no longer relavant. Clear out the pending lookahead status. | |
1081 | lookaheadStatus = 0; // clear out any pending look-ahead match. | |
b75a7d8f A |
1082 | } |
1083 | ||
1084 | continueOn: | |
1085 | if (state == STOP_STATE) { | |
374ca955 A |
1086 | // This is the normal exit from the lookup state machine. |
1087 | // We have advanced through the string until it is certain that no | |
1088 | // longer match is possible, no matter what characters follow. | |
b75a7d8f A |
1089 | break; |
1090 | } | |
73c04bcf A |
1091 | |
1092 | // Advance to the next character. | |
1093 | // If this is a beginning-of-input loop iteration, don't advance | |
1094 | // the input position. The next iteration will be processing the | |
1095 | // first real input character. | |
1096 | if (mode == RBBI_RUN) { | |
1097 | c = UTEXT_NEXT32(fText); | |
1098 | } else { | |
1099 | if (mode == RBBI_START) { | |
1100 | mode = RBBI_RUN; | |
1101 | } | |
1102 | } | |
1103 | ||
1104 | ||
b75a7d8f A |
1105 | } |
1106 | ||
374ca955 | 1107 | // The state machine is done. Check whether it found a match... |
b75a7d8f | 1108 | |
374ca955 A |
1109 | // If the iterator failed to advance in the match engine, force it ahead by one. |
1110 | // (This really indicates a defect in the break rules. They should always match | |
1111 | // at least one character.) | |
1112 | if (result == initialPosition) { | |
46f4442e | 1113 | UTEXT_SETNATIVEINDEX(fText, initialPosition); |
73c04bcf A |
1114 | UTEXT_NEXT32(fText); |
1115 | result = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
374ca955 | 1116 | } |
b75a7d8f | 1117 | |
374ca955 | 1118 | // Leave the iterator at our result position. |
46f4442e | 1119 | UTEXT_SETNATIVEINDEX(fText, result); |
73c04bcf A |
1120 | #ifdef RBBI_DEBUG |
1121 | if (fTrace) { | |
1122 | RBBIDebugPrintf("result = %d\n\n", result); | |
b75a7d8f | 1123 | } |
73c04bcf | 1124 | #endif |
b75a7d8f A |
1125 | return result; |
1126 | } | |
1127 | ||
1128 | ||
73c04bcf | 1129 | |
374ca955 A |
1130 | //----------------------------------------------------------------------------------- |
1131 | // | |
1132 | // handlePrevious() | |
1133 | // | |
73c04bcf A |
1134 | // Iterate backwards, according to the logic of the reverse rules. |
1135 | // This version handles the exact style backwards rules. | |
374ca955 A |
1136 | // |
1137 | // The logic of this function is very similar to handleNext(), above. | |
1138 | // | |
1139 | //----------------------------------------------------------------------------------- | |
1140 | int32_t RuleBasedBreakIterator::handlePrevious(const RBBIStateTable *statetable) { | |
73c04bcf A |
1141 | int32_t state; |
1142 | int16_t category = 0; | |
1143 | RBBIRunMode mode; | |
1144 | RBBIStateTableRow *row; | |
1145 | UChar32 c; | |
1146 | int32_t lookaheadStatus = 0; | |
1147 | int32_t result = 0; | |
1148 | int32_t initialPosition = 0; | |
1149 | int32_t lookaheadResult = 0; | |
1150 | UBool lookAheadHardBreak = (statetable->fFlags & RBBI_LOOKAHEAD_HARD_BREAK) != 0; | |
1151 | ||
1152 | #ifdef RBBI_DEBUG | |
1153 | if (fTrace) { | |
1154 | RBBIDebugPuts("Handle Previous pos char state category"); | |
1155 | } | |
1156 | #endif | |
1157 | ||
1158 | // handlePrevious() never gets the rule status. | |
1159 | // Flag the status as invalid; if the user ever asks for status, we will need | |
1160 | // to back up, then re-find the break position using handleNext(), which does | |
1161 | // get the status value. | |
374ca955 | 1162 | fLastStatusIndexValid = FALSE; |
73c04bcf | 1163 | fLastRuleStatusIndex = 0; |
374ca955 | 1164 | |
73c04bcf A |
1165 | // if we're already at the start of the text, return DONE. |
1166 | if (fText == NULL || fData == NULL || UTEXT_GETNATIVEINDEX(fText)==0) { | |
1167 | return BreakIterator::DONE; | |
1168 | } | |
374ca955 | 1169 | |
73c04bcf A |
1170 | // Set up the starting char. |
1171 | initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1172 | result = initialPosition; | |
1173 | c = UTEXT_PREVIOUS32(fText); | |
374ca955 | 1174 | |
73c04bcf A |
1175 | // Set the initial state for the state machine |
1176 | state = START_STATE; | |
374ca955 | 1177 | row = (RBBIStateTableRow *) |
73c04bcf A |
1178 | (statetable->fTableData + (statetable->fRowLen * state)); |
1179 | category = 3; | |
1180 | mode = RBBI_RUN; | |
1181 | if (statetable->fFlags & RBBI_BOF_REQUIRED) { | |
1182 | category = 2; | |
1183 | mode = RBBI_START; | |
374ca955 A |
1184 | } |
1185 | ||
374ca955 | 1186 | |
73c04bcf A |
1187 | // loop until we reach the start of the text or transition to state 0 |
1188 | // | |
374ca955 | 1189 | for (;;) { |
73c04bcf A |
1190 | if (c == U_SENTINEL) { |
1191 | // Reached end of input string. | |
729e4ab9 | 1192 | if (mode == RBBI_END) { |
73c04bcf A |
1193 | // We have already run the loop one last time with the |
1194 | // character set to the psueudo {eof} value. Now it is time | |
1195 | // to unconditionally bail out. | |
73c04bcf A |
1196 | if (lookaheadResult < result) { |
1197 | // We ran off the end of the string with a pending look-ahead match. | |
1198 | // Treat this as if the look-ahead condition had been met, and return | |
1199 | // the match at the / position from the look-ahead rule. | |
1200 | result = lookaheadResult; | |
1201 | lookaheadStatus = 0; | |
1202 | } else if (result == initialPosition) { | |
1203 | // Ran off start, no match found. | |
1204 | // move one index one (towards the start, since we are doing a previous()) | |
46f4442e | 1205 | UTEXT_SETNATIVEINDEX(fText, initialPosition); |
73c04bcf A |
1206 | UTEXT_PREVIOUS32(fText); // TODO: shouldn't be necessary. We're already at beginning. Check. |
1207 | } | |
1208 | break; | |
374ca955 | 1209 | } |
73c04bcf A |
1210 | // Run the loop one last time with the fake end-of-input character category. |
1211 | mode = RBBI_END; | |
1212 | category = 1; | |
374ca955 A |
1213 | } |
1214 | ||
374ca955 | 1215 | // |
73c04bcf A |
1216 | // Get the char category. An incoming category of 1 or 2 means that |
1217 | // we are preset for doing the beginning or end of input, and | |
1218 | // that we shouldn't get a category from an actual text input character. | |
1219 | // | |
1220 | if (mode == RBBI_RUN) { | |
1221 | // look up the current character's character category, which tells us | |
1222 | // which column in the state table to look at. | |
1223 | // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned, | |
1224 | // not the size of the character going in, which is a UChar32. | |
1225 | // | |
1226 | UTRIE_GET16(&fData->fTrie, c, category); | |
1227 | ||
1228 | // Check the dictionary bit in the character's category. | |
1229 | // Counter is only used by dictionary based iterators (subclasses). | |
1230 | // Chars that need to be handled by a dictionary have a flag bit set | |
1231 | // in their category values. | |
1232 | // | |
1233 | if ((category & 0x4000) != 0) { | |
1234 | fDictionaryCharCount++; | |
1235 | // And off the dictionary flag bit. | |
1236 | category &= ~0x4000; | |
1237 | } | |
374ca955 A |
1238 | } |
1239 | ||
1240 | #ifdef RBBI_DEBUG | |
1241 | if (fTrace) { | |
73c04bcf | 1242 | RBBIDebugPrintf(" %4d ", (int32_t)utext_getNativeIndex(fText)); |
374ca955 A |
1243 | if (0x20<=c && c<0x7f) { |
1244 | RBBIDebugPrintf("\"%c\" ", c); | |
1245 | } else { | |
1246 | RBBIDebugPrintf("%5x ", c); | |
1247 | } | |
1248 | RBBIDebugPrintf("%3d %3d\n", state, category); | |
1249 | } | |
1250 | #endif | |
1251 | ||
73c04bcf A |
1252 | // State Transition - move machine to its next state |
1253 | // | |
374ca955 A |
1254 | state = row->fNextState[category]; |
1255 | row = (RBBIStateTableRow *) | |
73c04bcf | 1256 | (statetable->fTableData + (statetable->fRowLen * state)); |
374ca955 A |
1257 | |
1258 | if (row->fAccepting == -1) { | |
73c04bcf A |
1259 | // Match found, common case. |
1260 | result = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
374ca955 A |
1261 | } |
1262 | ||
1263 | if (row->fLookAhead != 0) { | |
1264 | if (lookaheadStatus != 0 | |
1265 | && row->fAccepting == lookaheadStatus) { | |
73c04bcf | 1266 | // Lookahead match is completed. |
374ca955 | 1267 | result = lookaheadResult; |
374ca955 | 1268 | lookaheadStatus = 0; |
73c04bcf | 1269 | // TODO: make a standalone hard break in a rule work. |
374ca955 | 1270 | if (lookAheadHardBreak) { |
46f4442e | 1271 | UTEXT_SETNATIVEINDEX(fText, result); |
374ca955 A |
1272 | return result; |
1273 | } | |
73c04bcf A |
1274 | // Look-ahead completed, but other rules may match further. Continue on |
1275 | // TODO: junk this feature? I don't think it's used anywhwere. | |
374ca955 A |
1276 | goto continueOn; |
1277 | } | |
1278 | ||
73c04bcf A |
1279 | int32_t r = (int32_t)UTEXT_GETNATIVEINDEX(fText); |
1280 | lookaheadResult = r; | |
1281 | lookaheadStatus = row->fLookAhead; | |
374ca955 A |
1282 | goto continueOn; |
1283 | } | |
1284 | ||
374ca955 | 1285 | |
73c04bcf A |
1286 | if (row->fAccepting != 0) { |
1287 | // Because this is an accepting state, any in-progress look-ahead match | |
1288 | // is no longer relavant. Clear out the pending lookahead status. | |
1289 | lookaheadStatus = 0; | |
1290 | } | |
374ca955 A |
1291 | |
1292 | continueOn: | |
1293 | if (state == STOP_STATE) { | |
73c04bcf A |
1294 | // This is the normal exit from the lookup state machine. |
1295 | // We have advanced through the string until it is certain that no | |
1296 | // longer match is possible, no matter what characters follow. | |
374ca955 A |
1297 | break; |
1298 | } | |
1299 | ||
73c04bcf A |
1300 | // Move (backwards) to the next character to process. |
1301 | // If this is a beginning-of-input loop iteration, don't advance | |
1302 | // the input position. The next iteration will be processing the | |
1303 | // first real input character. | |
1304 | if (mode == RBBI_RUN) { | |
1305 | c = UTEXT_PREVIOUS32(fText); | |
1306 | } else { | |
1307 | if (mode == RBBI_START) { | |
1308 | mode = RBBI_RUN; | |
1309 | } | |
1310 | } | |
374ca955 A |
1311 | } |
1312 | ||
73c04bcf A |
1313 | // The state machine is done. Check whether it found a match... |
1314 | ||
1315 | // If the iterator failed to advance in the match engine, force it ahead by one. | |
1316 | // (This really indicates a defect in the break rules. They should always match | |
1317 | // at least one character.) | |
1318 | if (result == initialPosition) { | |
46f4442e | 1319 | UTEXT_SETNATIVEINDEX(fText, initialPosition); |
73c04bcf A |
1320 | UTEXT_PREVIOUS32(fText); |
1321 | result = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1322 | } | |
374ca955 | 1323 | |
73c04bcf | 1324 | // Leave the iterator at our result position. |
46f4442e | 1325 | UTEXT_SETNATIVEINDEX(fText, result); |
73c04bcf A |
1326 | #ifdef RBBI_DEBUG |
1327 | if (fTrace) { | |
1328 | RBBIDebugPrintf("result = %d\n\n", result); | |
1329 | } | |
1330 | #endif | |
374ca955 A |
1331 | return result; |
1332 | } | |
1333 | ||
1334 | ||
b75a7d8f A |
1335 | void |
1336 | RuleBasedBreakIterator::reset() | |
1337 | { | |
73c04bcf A |
1338 | if (fCachedBreakPositions) { |
1339 | uprv_free(fCachedBreakPositions); | |
1340 | } | |
1341 | fCachedBreakPositions = NULL; | |
1342 | fNumCachedBreakPositions = 0; | |
1343 | fDictionaryCharCount = 0; | |
1344 | fPositionInCache = 0; | |
b75a7d8f A |
1345 | } |
1346 | ||
1347 | ||
1348 | ||
1349 | //------------------------------------------------------------------------------- | |
1350 | // | |
1351 | // getRuleStatus() Return the break rule tag associated with the current | |
1352 | // iterator position. If the iterator arrived at its current | |
1353 | // position by iterating forwards, the value will have been | |
1354 | // cached by the handleNext() function. | |
1355 | // | |
1356 | // If no cached status value is available, the status is | |
1357 | // found by doing a previous() followed by a next(), which | |
1358 | // leaves the iterator where it started, and computes the | |
1359 | // status while doing the next(). | |
1360 | // | |
1361 | //------------------------------------------------------------------------------- | |
374ca955 A |
1362 | void RuleBasedBreakIterator::makeRuleStatusValid() { |
1363 | if (fLastStatusIndexValid == FALSE) { | |
b75a7d8f | 1364 | // No cached status is available. |
73c04bcf | 1365 | if (fText == NULL || current() == 0) { |
b75a7d8f | 1366 | // At start of text, or there is no text. Status is always zero. |
374ca955 A |
1367 | fLastRuleStatusIndex = 0; |
1368 | fLastStatusIndexValid = TRUE; | |
b75a7d8f A |
1369 | } else { |
1370 | // Not at start of text. Find status the tedious way. | |
1371 | int32_t pa = current(); | |
374ca955 | 1372 | previous(); |
73c04bcf A |
1373 | if (fNumCachedBreakPositions > 0) { |
1374 | reset(); // Blow off the dictionary cache | |
1375 | } | |
374ca955 A |
1376 | int32_t pb = next(); |
1377 | if (pa != pb) { | |
1378 | // note: the if (pa != pb) test is here only to eliminate warnings for | |
1379 | // unused local variables on gcc. Logically, it isn't needed. | |
1380 | U_ASSERT(pa == pb); | |
1381 | } | |
b75a7d8f A |
1382 | } |
1383 | } | |
374ca955 | 1384 | U_ASSERT(fLastRuleStatusIndex >= 0 && fLastRuleStatusIndex < fData->fStatusMaxIdx); |
b75a7d8f A |
1385 | } |
1386 | ||
1387 | ||
374ca955 A |
1388 | int32_t RuleBasedBreakIterator::getRuleStatus() const { |
1389 | RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this; | |
1390 | nonConstThis->makeRuleStatusValid(); | |
1391 | ||
1392 | // fLastRuleStatusIndex indexes to the start of the appropriate status record | |
1393 | // (the number of status values.) | |
1394 | // This function returns the last (largest) of the array of status values. | |
1395 | int32_t idx = fLastRuleStatusIndex + fData->fRuleStatusTable[fLastRuleStatusIndex]; | |
1396 | int32_t tagVal = fData->fRuleStatusTable[idx]; | |
1397 | ||
1398 | return tagVal; | |
1399 | } | |
1400 | ||
1401 | ||
1402 | ||
1403 | ||
1404 | int32_t RuleBasedBreakIterator::getRuleStatusVec( | |
1405 | int32_t *fillInVec, int32_t capacity, UErrorCode &status) | |
1406 | { | |
1407 | if (U_FAILURE(status)) { | |
1408 | return 0; | |
1409 | } | |
1410 | ||
1411 | RuleBasedBreakIterator *nonConstThis = (RuleBasedBreakIterator *)this; | |
1412 | nonConstThis->makeRuleStatusValid(); | |
1413 | int32_t numVals = fData->fRuleStatusTable[fLastRuleStatusIndex]; | |
1414 | int32_t numValsToCopy = numVals; | |
1415 | if (numVals > capacity) { | |
1416 | status = U_BUFFER_OVERFLOW_ERROR; | |
1417 | numValsToCopy = capacity; | |
1418 | } | |
1419 | int i; | |
1420 | for (i=0; i<numValsToCopy; i++) { | |
1421 | fillInVec[i] = fData->fRuleStatusTable[fLastRuleStatusIndex + i + 1]; | |
1422 | } | |
1423 | return numVals; | |
1424 | } | |
1425 | ||
1426 | ||
1427 | ||
b75a7d8f A |
1428 | //------------------------------------------------------------------------------- |
1429 | // | |
1430 | // getBinaryRules Access to the compiled form of the rules, | |
1431 | // for use by build system tools that save the data | |
1432 | // for standard iterator types. | |
1433 | // | |
1434 | //------------------------------------------------------------------------------- | |
1435 | const uint8_t *RuleBasedBreakIterator::getBinaryRules(uint32_t &length) { | |
1436 | const uint8_t *retPtr = NULL; | |
1437 | length = 0; | |
1438 | ||
1439 | if (fData != NULL) { | |
1440 | retPtr = (const uint8_t *)fData->fHeader; | |
1441 | length = fData->fHeader->fLength; | |
1442 | } | |
1443 | return retPtr; | |
1444 | } | |
1445 | ||
1446 | ||
1447 | ||
1448 | ||
1449 | //------------------------------------------------------------------------------- | |
1450 | // | |
1451 | // BufferClone TODO: In my (Andy) opinion, this function should be deprecated. | |
1452 | // Saving one heap allocation isn't worth the trouble. | |
1453 | // Cloning shouldn't be done in tight loops, and | |
1454 | // making the clone copy involves other heap operations anyway. | |
1455 | // And the application code for correctly dealing with buffer | |
1456 | // size problems and the eventual object destruction is ugly. | |
1457 | // | |
1458 | //------------------------------------------------------------------------------- | |
1459 | BreakIterator * RuleBasedBreakIterator::createBufferClone(void *stackBuffer, | |
1460 | int32_t &bufferSize, | |
1461 | UErrorCode &status) | |
1462 | { | |
1463 | if (U_FAILURE(status)){ | |
1464 | return NULL; | |
1465 | } | |
1466 | ||
1467 | // | |
1468 | // If user buffer size is zero this is a preflight operation to | |
1469 | // obtain the needed buffer size, allowing for worst case misalignment. | |
1470 | // | |
1471 | if (bufferSize == 0) { | |
1472 | bufferSize = sizeof(RuleBasedBreakIterator) + U_ALIGNMENT_OFFSET_UP(0); | |
1473 | return NULL; | |
1474 | } | |
1475 | ||
1476 | ||
1477 | // | |
1478 | // Check the alignment and size of the user supplied buffer. | |
1479 | // Allocate heap memory if the user supplied memory is insufficient. | |
1480 | // | |
1481 | char *buf = (char *)stackBuffer; | |
1482 | uint32_t s = bufferSize; | |
1483 | ||
1484 | if (stackBuffer == NULL) { | |
1485 | s = 0; // Ignore size, force allocation if user didn't give us a buffer. | |
1486 | } | |
1487 | if (U_ALIGNMENT_OFFSET(stackBuffer) != 0) { | |
1488 | uint32_t offsetUp = (uint32_t)U_ALIGNMENT_OFFSET_UP(buf); | |
1489 | s -= offsetUp; | |
1490 | buf += offsetUp; | |
1491 | } | |
1492 | if (s < sizeof(RuleBasedBreakIterator)) { | |
73c04bcf A |
1493 | // Not enough room in the caller-supplied buffer. |
1494 | // Do a plain-vanilla heap based clone and return that, along with | |
1495 | // a warning that the clone was allocated. | |
1496 | RuleBasedBreakIterator *clonedBI = new RuleBasedBreakIterator(*this); | |
1497 | if (clonedBI == 0) { | |
b75a7d8f | 1498 | status = U_MEMORY_ALLOCATION_ERROR; |
73c04bcf A |
1499 | } else { |
1500 | status = U_SAFECLONE_ALLOCATED_WARNING; | |
b75a7d8f | 1501 | } |
73c04bcf | 1502 | return clonedBI; |
b75a7d8f A |
1503 | } |
1504 | ||
1505 | // | |
73c04bcf | 1506 | // Clone the source BI into the caller-supplied buffer. |
b75a7d8f A |
1507 | // TODO: using an overloaded operator new to directly initialize the |
1508 | // copy in the user's buffer would be better, but it doesn't seem | |
1509 | // to get along with namespaces. Investigate why. | |
1510 | // | |
1511 | // The memcpy is only safe with an empty (default constructed) | |
1512 | // break iterator. Use on others can screw up reference counts | |
1513 | // to data. memcpy-ing objects is not really a good idea... | |
1514 | // | |
1515 | RuleBasedBreakIterator localIter; // Empty break iterator, source for memcpy | |
1516 | RuleBasedBreakIterator *clone = (RuleBasedBreakIterator *)buf; | |
73c04bcf A |
1517 | uprv_memcpy(clone, &localIter, sizeof(RuleBasedBreakIterator)); // init C++ gorp, BreakIterator base class part |
1518 | clone->init(); // Init RuleBasedBreakIterator part, (user default constructor) | |
1519 | *clone = *this; // clone = the real BI we want. | |
1520 | clone->fBufferClone = TRUE; // Flag to prevent deleting storage on close (From C code) | |
b75a7d8f A |
1521 | |
1522 | return clone; | |
1523 | } | |
1524 | ||
1525 | ||
b75a7d8f A |
1526 | //------------------------------------------------------------------------------- |
1527 | // | |
1528 | // isDictionaryChar Return true if the category lookup for this char | |
1529 | // indicates that it is in the set of dictionary lookup | |
1530 | // chars. | |
1531 | // | |
1532 | // This function is intended for use by dictionary based | |
1533 | // break iterators. | |
1534 | // | |
1535 | //------------------------------------------------------------------------------- | |
73c04bcf | 1536 | /*UBool RuleBasedBreakIterator::isDictionaryChar(UChar32 c) { |
b75a7d8f A |
1537 | if (fData == NULL) { |
1538 | return FALSE; | |
1539 | } | |
1540 | uint16_t category; | |
1541 | UTRIE_GET16(&fData->fTrie, c, category); | |
1542 | return (category & 0x4000) != 0; | |
73c04bcf A |
1543 | }*/ |
1544 | ||
1545 | ||
1546 | //------------------------------------------------------------------------------- | |
1547 | // | |
1548 | // checkDictionary This function handles all processing of characters in | |
1549 | // the "dictionary" set. It will determine the appropriate | |
1550 | // course of action, and possibly set up a cache in the | |
1551 | // process. | |
1552 | // | |
1553 | //------------------------------------------------------------------------------- | |
1554 | int32_t RuleBasedBreakIterator::checkDictionary(int32_t startPos, | |
1555 | int32_t endPos, | |
1556 | UBool reverse) { | |
1557 | // Reset the old break cache first. | |
1558 | uint32_t dictionaryCount = fDictionaryCharCount; | |
1559 | reset(); | |
1560 | ||
1561 | if (dictionaryCount <= 1 || (endPos - startPos) <= 1) { | |
1562 | return (reverse ? startPos : endPos); | |
1563 | } | |
1564 | ||
729e4ab9 A |
1565 | // Bug 5532. The dictionary code will crash if the input text is UTF-8 |
1566 | // because native indexes are different from UTF-16 indexes. | |
1567 | // Temporary hack: skip dictionary lookup for UTF-8 encoded text. | |
1568 | // It wont give the right breaks, but it's better than a crash. | |
1569 | // | |
1570 | // Check the type of the UText by checking its pFuncs field, which | |
1571 | // is UText's function dispatch table. It will be the same for all | |
1572 | // UTF-8 UTexts and different for any other UText type. | |
1573 | // | |
1574 | // We have no other type of UText available with non-UTF-16 native indexing. | |
1575 | // This whole check will go away once the dictionary code is fixed. | |
1576 | static const void *utext_utf8Funcs; | |
1577 | if (utext_utf8Funcs == NULL) { | |
1578 | // Cache the UTF-8 UText function pointer value. | |
1579 | UErrorCode status = U_ZERO_ERROR; | |
1580 | UText tempUText = UTEXT_INITIALIZER; | |
1581 | utext_openUTF8(&tempUText, NULL, 0, &status); | |
1582 | utext_utf8Funcs = tempUText.pFuncs; | |
1583 | utext_close(&tempUText); | |
1584 | } | |
1585 | if (fText->pFuncs == utext_utf8Funcs) { | |
1586 | return (reverse ? startPos : endPos); | |
1587 | } | |
1588 | ||
73c04bcf A |
1589 | // Starting from the starting point, scan towards the proposed result, |
1590 | // looking for the first dictionary character (which may be the one | |
1591 | // we're on, if we're starting in the middle of a range). | |
1592 | utext_setNativeIndex(fText, reverse ? endPos : startPos); | |
1593 | if (reverse) { | |
1594 | UTEXT_PREVIOUS32(fText); | |
1595 | } | |
1596 | ||
1597 | int32_t rangeStart = startPos; | |
1598 | int32_t rangeEnd = endPos; | |
1599 | ||
1600 | uint16_t category; | |
1601 | int32_t current; | |
1602 | UErrorCode status = U_ZERO_ERROR; | |
1603 | UStack breaks(status); | |
1604 | int32_t foundBreakCount = 0; | |
1605 | UChar32 c = utext_current32(fText); | |
1606 | ||
1607 | UTRIE_GET16(&fData->fTrie, c, category); | |
1608 | ||
1609 | // Is the character we're starting on a dictionary character? If so, we | |
1610 | // need to back up to include the entire run; otherwise the results of | |
1611 | // the break algorithm will differ depending on where we start. Since | |
1612 | // the result is cached and there is typically a non-dictionary break | |
1613 | // within a small number of words, there should be little performance impact. | |
1614 | if (category & 0x4000) { | |
1615 | if (reverse) { | |
1616 | do { | |
1617 | utext_next32(fText); // TODO: recast to work directly with postincrement. | |
1618 | c = utext_current32(fText); | |
1619 | UTRIE_GET16(&fData->fTrie, c, category); | |
1620 | } while (c != U_SENTINEL && (category & 0x4000)); | |
1621 | // Back up to the last dictionary character | |
1622 | rangeEnd = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1623 | if (c == U_SENTINEL) { | |
1624 | // c = fText->last32(); | |
1625 | // TODO: why was this if needed? | |
1626 | c = UTEXT_PREVIOUS32(fText); | |
1627 | } | |
1628 | else { | |
1629 | c = UTEXT_PREVIOUS32(fText); | |
1630 | } | |
1631 | } | |
1632 | else { | |
1633 | do { | |
1634 | c = UTEXT_PREVIOUS32(fText); | |
1635 | UTRIE_GET16(&fData->fTrie, c, category); | |
1636 | } | |
1637 | while (c != U_SENTINEL && (category & 0x4000)); | |
1638 | // Back up to the last dictionary character | |
1639 | if (c == U_SENTINEL) { | |
1640 | // c = fText->first32(); | |
1641 | c = utext_current32(fText); | |
1642 | } | |
1643 | else { | |
1644 | utext_next32(fText); | |
1645 | c = utext_current32(fText); | |
1646 | } | |
1647 | rangeStart = (int32_t)UTEXT_GETNATIVEINDEX(fText);; | |
1648 | } | |
1649 | UTRIE_GET16(&fData->fTrie, c, category); | |
1650 | } | |
1651 | ||
1652 | // Loop through the text, looking for ranges of dictionary characters. | |
1653 | // For each span, find the appropriate break engine, and ask it to find | |
1654 | // any breaks within the span. | |
1655 | // Note: we always do this in the forward direction, so that the break | |
1656 | // cache is built in the right order. | |
1657 | if (reverse) { | |
1658 | utext_setNativeIndex(fText, rangeStart); | |
1659 | c = utext_current32(fText); | |
1660 | UTRIE_GET16(&fData->fTrie, c, category); | |
1661 | } | |
1662 | while(U_SUCCESS(status)) { | |
1663 | while((current = (int32_t)UTEXT_GETNATIVEINDEX(fText)) < rangeEnd && (category & 0x4000) == 0) { | |
1664 | utext_next32(fText); // TODO: tweak for post-increment operation | |
1665 | c = utext_current32(fText); | |
1666 | UTRIE_GET16(&fData->fTrie, c, category); | |
1667 | } | |
1668 | if (current >= rangeEnd) { | |
1669 | break; | |
1670 | } | |
1671 | ||
1672 | // We now have a dictionary character. Get the appropriate language object | |
1673 | // to deal with it. | |
1674 | const LanguageBreakEngine *lbe = getLanguageBreakEngine(c); | |
1675 | ||
1676 | // Ask the language object if there are any breaks. It will leave the text | |
1677 | // pointer on the other side of its range, ready to search for the next one. | |
1678 | if (lbe != NULL) { | |
1679 | foundBreakCount += lbe->findBreaks(fText, rangeStart, rangeEnd, FALSE, fBreakType, breaks); | |
1680 | } | |
1681 | ||
1682 | // Reload the loop variables for the next go-round | |
1683 | c = utext_current32(fText); | |
1684 | UTRIE_GET16(&fData->fTrie, c, category); | |
1685 | } | |
1686 | ||
1687 | // If we found breaks, build a new break cache. The first and last entries must | |
1688 | // be the original starting and ending position. | |
1689 | if (foundBreakCount > 0) { | |
1690 | int32_t totalBreaks = foundBreakCount; | |
1691 | if (startPos < breaks.elementAti(0)) { | |
1692 | totalBreaks += 1; | |
1693 | } | |
1694 | if (endPos > breaks.peeki()) { | |
1695 | totalBreaks += 1; | |
1696 | } | |
1697 | fCachedBreakPositions = (int32_t *)uprv_malloc(totalBreaks * sizeof(int32_t)); | |
1698 | if (fCachedBreakPositions != NULL) { | |
1699 | int32_t out = 0; | |
1700 | fNumCachedBreakPositions = totalBreaks; | |
1701 | if (startPos < breaks.elementAti(0)) { | |
1702 | fCachedBreakPositions[out++] = startPos; | |
1703 | } | |
1704 | for (int32_t i = 0; i < foundBreakCount; ++i) { | |
1705 | fCachedBreakPositions[out++] = breaks.elementAti(i); | |
1706 | } | |
1707 | if (endPos > fCachedBreakPositions[out-1]) { | |
1708 | fCachedBreakPositions[out] = endPos; | |
1709 | } | |
1710 | // If there are breaks, then by definition, we are replacing the original | |
1711 | // proposed break by one of the breaks we found. Use following() and | |
1712 | // preceding() to do the work. They should never recurse in this case. | |
1713 | if (reverse) { | |
1714 | return preceding(endPos - 1); | |
1715 | } | |
1716 | else { | |
1717 | return following(startPos); | |
1718 | } | |
1719 | } | |
1720 | // If the allocation failed, just fall through to the "no breaks found" case. | |
1721 | } | |
1722 | ||
1723 | // If we get here, there were no language-based breaks. Set the text pointer | |
1724 | // to the original proposed break. | |
1725 | utext_setNativeIndex(fText, reverse ? startPos : endPos); | |
1726 | return (reverse ? startPos : endPos); | |
1727 | } | |
1728 | ||
73c04bcf A |
1729 | U_NAMESPACE_END |
1730 | ||
1731 | // defined in ucln_cmn.h | |
1732 | ||
46f4442e A |
1733 | static U_NAMESPACE_QUALIFIER UStack *gLanguageBreakFactories = NULL; |
1734 | ||
73c04bcf A |
1735 | /** |
1736 | * Release all static memory held by breakiterator. | |
1737 | */ | |
1738 | U_CDECL_BEGIN | |
1739 | static UBool U_CALLCONV breakiterator_cleanup_dict(void) { | |
1740 | if (gLanguageBreakFactories) { | |
1741 | delete gLanguageBreakFactories; | |
1742 | gLanguageBreakFactories = NULL; | |
1743 | } | |
1744 | return TRUE; | |
b75a7d8f | 1745 | } |
73c04bcf | 1746 | U_CDECL_END |
b75a7d8f | 1747 | |
73c04bcf A |
1748 | U_CDECL_BEGIN |
1749 | static void U_CALLCONV _deleteFactory(void *obj) { | |
46f4442e | 1750 | delete (U_NAMESPACE_QUALIFIER LanguageBreakFactory *) obj; |
73c04bcf A |
1751 | } |
1752 | U_CDECL_END | |
1753 | U_NAMESPACE_BEGIN | |
b75a7d8f | 1754 | |
73c04bcf A |
1755 | static const LanguageBreakEngine* |
1756 | getLanguageBreakEngineFromFactory(UChar32 c, int32_t breakType) | |
1757 | { | |
1758 | UBool needsInit; | |
1759 | UErrorCode status = U_ZERO_ERROR; | |
46f4442e | 1760 | UMTX_CHECK(NULL, (UBool)(gLanguageBreakFactories == NULL), needsInit); |
73c04bcf A |
1761 | |
1762 | if (needsInit) { | |
1763 | UStack *factories = new UStack(_deleteFactory, NULL, status); | |
46f4442e | 1764 | if (factories != NULL && U_SUCCESS(status)) { |
73c04bcf A |
1765 | ICULanguageBreakFactory *builtIn = new ICULanguageBreakFactory(status); |
1766 | factories->push(builtIn, status); | |
1767 | #ifdef U_LOCAL_SERVICE_HOOK | |
1768 | LanguageBreakFactory *extra = (LanguageBreakFactory *)uprv_svc_hook("languageBreakFactory", &status); | |
1769 | if (extra != NULL) { | |
1770 | factories->push(extra, status); | |
1771 | } | |
1772 | #endif | |
1773 | } | |
1774 | umtx_lock(NULL); | |
1775 | if (gLanguageBreakFactories == NULL) { | |
1776 | gLanguageBreakFactories = factories; | |
1777 | factories = NULL; | |
1778 | ucln_common_registerCleanup(UCLN_COMMON_BREAKITERATOR_DICT, breakiterator_cleanup_dict); | |
1779 | } | |
1780 | umtx_unlock(NULL); | |
1781 | delete factories; | |
1782 | } | |
1783 | ||
1784 | if (gLanguageBreakFactories == NULL) { | |
1785 | return NULL; | |
1786 | } | |
1787 | ||
1788 | int32_t i = gLanguageBreakFactories->size(); | |
1789 | const LanguageBreakEngine *lbe = NULL; | |
1790 | while (--i >= 0) { | |
1791 | LanguageBreakFactory *factory = (LanguageBreakFactory *)(gLanguageBreakFactories->elementAt(i)); | |
1792 | lbe = factory->getEngineFor(c, breakType); | |
1793 | if (lbe != NULL) { | |
1794 | break; | |
1795 | } | |
1796 | } | |
1797 | return lbe; | |
1798 | } | |
1799 | ||
1800 | ||
1801 | //------------------------------------------------------------------------------- | |
1802 | // | |
1803 | // getLanguageBreakEngine Find an appropriate LanguageBreakEngine for the | |
1804 | // the characer c. | |
1805 | // | |
1806 | //------------------------------------------------------------------------------- | |
1807 | const LanguageBreakEngine * | |
1808 | RuleBasedBreakIterator::getLanguageBreakEngine(UChar32 c) { | |
1809 | const LanguageBreakEngine *lbe = NULL; | |
1810 | UErrorCode status = U_ZERO_ERROR; | |
1811 | ||
1812 | if (fLanguageBreakEngines == NULL) { | |
1813 | fLanguageBreakEngines = new UStack(status); | |
46f4442e | 1814 | if (fLanguageBreakEngines == NULL || U_FAILURE(status)) { |
73c04bcf A |
1815 | delete fLanguageBreakEngines; |
1816 | fLanguageBreakEngines = 0; | |
1817 | return NULL; | |
1818 | } | |
1819 | } | |
1820 | ||
1821 | int32_t i = fLanguageBreakEngines->size(); | |
1822 | while (--i >= 0) { | |
1823 | lbe = (const LanguageBreakEngine *)(fLanguageBreakEngines->elementAt(i)); | |
1824 | if (lbe->handles(c, fBreakType)) { | |
1825 | return lbe; | |
1826 | } | |
1827 | } | |
1828 | ||
1829 | // No existing dictionary took the character. See if a factory wants to | |
1830 | // give us a new LanguageBreakEngine for this character. | |
1831 | lbe = getLanguageBreakEngineFromFactory(c, fBreakType); | |
1832 | ||
1833 | // If we got one, use it and push it on our stack. | |
1834 | if (lbe != NULL) { | |
1835 | fLanguageBreakEngines->push((void *)lbe, status); | |
1836 | // Even if we can't remember it, we can keep looking it up, so | |
1837 | // return it even if the push fails. | |
1838 | return lbe; | |
1839 | } | |
1840 | ||
1841 | // No engine is forthcoming for this character. Add it to the | |
1842 | // reject set. Create the reject break engine if needed. | |
1843 | if (fUnhandledBreakEngine == NULL) { | |
1844 | fUnhandledBreakEngine = new UnhandledEngine(status); | |
1845 | if (U_SUCCESS(status) && fUnhandledBreakEngine == NULL) { | |
1846 | status = U_MEMORY_ALLOCATION_ERROR; | |
1847 | } | |
1848 | // Put it last so that scripts for which we have an engine get tried | |
1849 | // first. | |
1850 | fLanguageBreakEngines->insertElementAt(fUnhandledBreakEngine, 0, status); | |
1851 | // If we can't insert it, or creation failed, get rid of it | |
1852 | if (U_FAILURE(status)) { | |
1853 | delete fUnhandledBreakEngine; | |
1854 | fUnhandledBreakEngine = 0; | |
1855 | return NULL; | |
1856 | } | |
1857 | } | |
1858 | ||
1859 | // Tell the reject engine about the character; at its discretion, it may | |
1860 | // add more than just the one character. | |
1861 | fUnhandledBreakEngine->handleCharacter(c, fBreakType); | |
1862 | ||
1863 | return fUnhandledBreakEngine; | |
1864 | } | |
1865 | ||
1866 | ||
1867 | ||
1868 | /*int32_t RuleBasedBreakIterator::getBreakType() const { | |
1869 | return fBreakType; | |
1870 | }*/ | |
1871 | ||
1872 | void RuleBasedBreakIterator::setBreakType(int32_t type) { | |
1873 | fBreakType = type; | |
1874 | reset(); | |
1875 | } | |
b75a7d8f A |
1876 | |
1877 | U_NAMESPACE_END | |
1878 | ||
1879 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |