]>
Commit | Line | Data |
---|---|---|
374ca955 A |
1 | /* |
2 | ********************************************************************** | |
46f4442e | 3 | * Copyright (c) 2003-2009, International Business Machines |
374ca955 A |
4 | * Corporation and others. All Rights Reserved. |
5 | ********************************************************************** | |
6 | * Author: Alan Liu | |
7 | * Created: July 21 2003 | |
8 | * Since: ICU 2.8 | |
9 | ********************************************************************** | |
10 | */ | |
11 | ||
12 | #include "olsontz.h" | |
13 | ||
14 | #if !UCONFIG_NO_FORMATTING | |
15 | ||
16 | #include "unicode/ures.h" | |
17 | #include "unicode/simpletz.h" | |
18 | #include "unicode/gregocal.h" | |
19 | #include "gregoimp.h" | |
20 | #include "cmemory.h" | |
21 | #include "uassert.h" | |
46f4442e | 22 | #include "uvector.h" |
374ca955 A |
23 | #include <float.h> // DBL_MAX |
24 | ||
25 | #ifdef U_DEBUG_TZ | |
26 | # include <stdio.h> | |
27 | # include "uresimp.h" // for debugging | |
28 | ||
29 | static void debug_tz_loc(const char *f, int32_t l) | |
30 | { | |
31 | fprintf(stderr, "%s:%d: ", f, l); | |
32 | } | |
33 | ||
34 | static void debug_tz_msg(const char *pat, ...) | |
35 | { | |
36 | va_list ap; | |
37 | va_start(ap, pat); | |
38 | vfprintf(stderr, pat, ap); | |
39 | fflush(stderr); | |
40 | } | |
41 | // must use double parens, i.e.: U_DEBUG_TZ_MSG(("four is: %d",4)); | |
42 | #define U_DEBUG_TZ_MSG(x) {debug_tz_loc(__FILE__,__LINE__);debug_tz_msg x;} | |
43 | #else | |
44 | #define U_DEBUG_TZ_MSG(x) | |
45 | #endif | |
46 | ||
47 | U_NAMESPACE_BEGIN | |
48 | ||
49 | #define SECONDS_PER_DAY (24*60*60) | |
50 | ||
51 | static const int32_t ZEROS[] = {0,0}; | |
52 | ||
53 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(OlsonTimeZone) | |
54 | ||
55 | /** | |
56 | * Default constructor. Creates a time zone with an empty ID and | |
57 | * a fixed GMT offset of zero. | |
58 | */ | |
46f4442e A |
59 | /*OlsonTimeZone::OlsonTimeZone() : finalYear(INT32_MAX), finalMillis(DBL_MAX), finalZone(0), transitionRulesInitialized(FALSE) { |
60 | clearTransitionRules(); | |
374ca955 | 61 | constructEmpty(); |
46f4442e | 62 | }*/ |
374ca955 A |
63 | |
64 | /** | |
65 | * Construct a GMT+0 zone with no transitions. This is done when a | |
66 | * constructor fails so the resultant object is well-behaved. | |
67 | */ | |
68 | void OlsonTimeZone::constructEmpty() { | |
69 | transitionCount = 0; | |
70 | typeCount = 1; | |
71 | transitionTimes = typeOffsets = ZEROS; | |
72 | typeData = (const uint8_t*) ZEROS; | |
73 | } | |
74 | ||
75 | /** | |
76 | * Construct from a resource bundle | |
77 | * @param top the top-level zoneinfo resource bundle. This is used | |
78 | * to lookup the rule that `res' may refer to, if there is one. | |
79 | * @param res the resource bundle of the zone to be constructed | |
80 | * @param ec input-output error code | |
81 | */ | |
82 | OlsonTimeZone::OlsonTimeZone(const UResourceBundle* top, | |
83 | const UResourceBundle* res, | |
84 | UErrorCode& ec) : | |
46f4442e | 85 | finalYear(INT32_MAX), finalMillis(DBL_MAX), finalZone(0), transitionRulesInitialized(FALSE) |
374ca955 | 86 | { |
46f4442e | 87 | clearTransitionRules(); |
374ca955 A |
88 | U_DEBUG_TZ_MSG(("OlsonTimeZone(%s)\n", ures_getKey((UResourceBundle*)res))); |
89 | if ((top == NULL || res == NULL) && U_SUCCESS(ec)) { | |
90 | ec = U_ILLEGAL_ARGUMENT_ERROR; | |
91 | } | |
92 | if (U_SUCCESS(ec)) { | |
93 | // TODO -- clean up -- Doesn't work if res points to an alias | |
94 | // // TODO remove nonconst casts below when ures_* API is fixed | |
95 | // setID(ures_getKey((UResourceBundle*) res)); // cast away const | |
96 | ||
97 | // Size 1 is an alias TO another zone (int) | |
98 | // HOWEVER, the caller should dereference this and never pass it in to us | |
99 | // Size 3 is a purely historical zone (no final rules) | |
100 | // Size 4 is like size 3, but with an alias list at the end | |
101 | // Size 5 is a hybrid zone, with historical and final elements | |
102 | // Size 6 is like size 5, but with an alias list at the end | |
73c04bcf | 103 | int32_t size = ures_getSize(res); |
374ca955 A |
104 | if (size < 3 || size > 6) { |
105 | ec = U_INVALID_FORMAT_ERROR; | |
106 | } | |
107 | ||
108 | // Transitions list may be empty | |
109 | int32_t i; | |
110 | UResourceBundle* r = ures_getByIndex(res, 0, NULL, &ec); | |
111 | transitionTimes = ures_getIntVector(r, &i, &ec); | |
374ca955 A |
112 | if ((i<0 || i>0x7FFF) && U_SUCCESS(ec)) { |
113 | ec = U_INVALID_FORMAT_ERROR; | |
114 | } | |
115 | transitionCount = (int16_t) i; | |
116 | ||
117 | // Type offsets list must be of even size, with size >= 2 | |
73c04bcf | 118 | r = ures_getByIndex(res, 1, r, &ec); |
374ca955 | 119 | typeOffsets = ures_getIntVector(r, &i, &ec); |
374ca955 A |
120 | if ((i<2 || i>0x7FFE || ((i&1)!=0)) && U_SUCCESS(ec)) { |
121 | ec = U_INVALID_FORMAT_ERROR; | |
122 | } | |
123 | typeCount = (int16_t) i >> 1; | |
124 | ||
125 | // Type data must be of the same size as the transitions list | |
73c04bcf | 126 | r = ures_getByIndex(res, 2, r, &ec); |
374ca955 A |
127 | int32_t len; |
128 | typeData = ures_getBinary(r, &len, &ec); | |
129 | ures_close(r); | |
130 | if (len != transitionCount && U_SUCCESS(ec)) { | |
131 | ec = U_INVALID_FORMAT_ERROR; | |
132 | } | |
133 | ||
134 | #if defined (U_DEBUG_TZ) | |
135 | U_DEBUG_TZ_MSG(("OlsonTimeZone(%s) - size = %d, typecount %d transitioncount %d - err %s\n", ures_getKey((UResourceBundle*)res), size, typeCount, transitionCount, u_errorName(ec))); | |
136 | if(U_SUCCESS(ec)) { | |
137 | int32_t jj; | |
138 | for(jj=0;jj<transitionCount;jj++) { | |
73c04bcf A |
139 | int32_t year, month, dom, dow; |
140 | double millis=0; | |
141 | double days = Math::floorDivide(((double)transitionTimes[jj])*1000.0, (double)U_MILLIS_PER_DAY, millis); | |
142 | ||
143 | Grego::dayToFields(days, year, month, dom, dow); | |
144 | U_DEBUG_TZ_MSG((" Transition %d: time %d (%04d.%02d.%02d+%.1fh), typedata%d\n", jj, transitionTimes[jj], | |
145 | year, month+1, dom, (millis/kOneHour), typeData[jj])); | |
146 | // U_DEBUG_TZ_MSG((" offset%d\n", typeOffsets[jj])); | |
147 | int16_t f = jj; | |
148 | f <<= 1; | |
149 | U_DEBUG_TZ_MSG((" offsets[%d+%d]=(%d+%d)=(%d==%d)\n", (int)f,(int)f+1,(int)typeOffsets[f],(int)typeOffsets[f+1],(int)zoneOffset(jj), | |
150 | (int)typeOffsets[f]+(int)typeOffsets[f+1])); | |
374ca955 A |
151 | } |
152 | } | |
153 | #endif | |
154 | ||
155 | // Process final rule and data, if any | |
156 | if (size >= 5) { | |
157 | int32_t ruleidLen = 0; | |
158 | const UChar* idUStr = ures_getStringByIndex(res, 3, &ruleidLen, &ec); | |
159 | UnicodeString ruleid(TRUE, idUStr, ruleidLen); | |
160 | r = ures_getByIndex(res, 4, NULL, &ec); | |
161 | const int32_t* data = ures_getIntVector(r, &len, &ec); | |
162 | #if defined U_DEBUG_TZ | |
163 | const char *rKey = ures_getKey(r); | |
164 | const char *zKey = ures_getKey((UResourceBundle*)res); | |
165 | #endif | |
166 | ures_close(r); | |
167 | if (U_SUCCESS(ec)) { | |
168 | if (data != 0 && len == 2) { | |
169 | int32_t rawOffset = data[0] * U_MILLIS_PER_SECOND; | |
170 | // Subtract one from the actual final year; we | |
171 | // actually store final year - 1, and compare | |
172 | // using > rather than >=. This allows us to use | |
173 | // INT32_MAX as an exclusive upper limit for all | |
174 | // years, including INT32_MAX. | |
175 | U_ASSERT(data[1] > INT32_MIN); | |
176 | finalYear = data[1] - 1; | |
177 | // Also compute the millis for Jan 1, 0:00 GMT of the | |
178 | // finalYear. This reduces runtime computations. | |
179 | finalMillis = Grego::fieldsToDay(data[1], 0, 1) * U_MILLIS_PER_DAY; | |
180 | U_DEBUG_TZ_MSG(("zone%s|%s: {%d,%d}, finalYear%d, finalMillis%.1lf\n", | |
181 | zKey,rKey, data[0], data[1], finalYear, finalMillis)); | |
182 | r = TimeZone::loadRule(top, ruleid, NULL, ec); | |
183 | if (U_SUCCESS(ec)) { | |
184 | // 3, 1, -1, 7200, 0, 9, -31, -1, 7200, 0, 3600 | |
185 | data = ures_getIntVector(r, &len, &ec); | |
186 | if (U_SUCCESS(ec) && len == 11) { | |
187 | UnicodeString emptyStr; | |
73c04bcf | 188 | U_DEBUG_TZ_MSG(("zone%s, rule%s: {%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d}\n", zKey, ures_getKey(r), |
374ca955 A |
189 | data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7], data[8], data[9], data[10])); |
190 | finalZone = new SimpleTimeZone(rawOffset, emptyStr, | |
191 | (int8_t)data[0], (int8_t)data[1], (int8_t)data[2], | |
192 | data[3] * U_MILLIS_PER_SECOND, | |
193 | (SimpleTimeZone::TimeMode) data[4], | |
194 | (int8_t)data[5], (int8_t)data[6], (int8_t)data[7], | |
195 | data[8] * U_MILLIS_PER_SECOND, | |
196 | (SimpleTimeZone::TimeMode) data[9], | |
197 | data[10] * U_MILLIS_PER_SECOND, ec); | |
46f4442e A |
198 | // Make sure finalZone was created |
199 | if (finalZone == NULL) { | |
200 | ec = U_MEMORY_ALLOCATION_ERROR; | |
201 | } | |
374ca955 A |
202 | } else { |
203 | ec = U_INVALID_FORMAT_ERROR; | |
204 | } | |
205 | } | |
206 | ures_close(r); | |
207 | } else { | |
208 | ec = U_INVALID_FORMAT_ERROR; | |
209 | } | |
210 | } | |
211 | } | |
212 | } | |
213 | ||
214 | if (U_FAILURE(ec)) { | |
215 | constructEmpty(); | |
216 | } | |
217 | } | |
218 | ||
219 | /** | |
220 | * Copy constructor | |
221 | */ | |
222 | OlsonTimeZone::OlsonTimeZone(const OlsonTimeZone& other) : | |
46f4442e | 223 | BasicTimeZone(other), finalZone(0) { |
374ca955 A |
224 | *this = other; |
225 | } | |
226 | ||
227 | /** | |
228 | * Assignment operator | |
229 | */ | |
230 | OlsonTimeZone& OlsonTimeZone::operator=(const OlsonTimeZone& other) { | |
231 | transitionCount = other.transitionCount; | |
232 | typeCount = other.typeCount; | |
233 | transitionTimes = other.transitionTimes; | |
234 | typeOffsets = other.typeOffsets; | |
235 | typeData = other.typeData; | |
236 | finalYear = other.finalYear; | |
237 | finalMillis = other.finalMillis; | |
238 | delete finalZone; | |
239 | finalZone = (other.finalZone != 0) ? | |
240 | (SimpleTimeZone*) other.finalZone->clone() : 0; | |
46f4442e | 241 | clearTransitionRules(); |
374ca955 A |
242 | return *this; |
243 | } | |
244 | ||
245 | /** | |
246 | * Destructor | |
247 | */ | |
248 | OlsonTimeZone::~OlsonTimeZone() { | |
46f4442e | 249 | deleteTransitionRules(); |
374ca955 A |
250 | delete finalZone; |
251 | } | |
252 | ||
253 | /** | |
254 | * Returns true if the two TimeZone objects are equal. | |
255 | */ | |
256 | UBool OlsonTimeZone::operator==(const TimeZone& other) const { | |
46f4442e A |
257 | return ((this == &other) || |
258 | (getDynamicClassID() == other.getDynamicClassID() && | |
259 | TimeZone::operator==(other) && | |
260 | hasSameRules(other))); | |
374ca955 A |
261 | } |
262 | ||
263 | /** | |
264 | * TimeZone API. | |
265 | */ | |
266 | TimeZone* OlsonTimeZone::clone() const { | |
267 | return new OlsonTimeZone(*this); | |
268 | } | |
269 | ||
270 | /** | |
271 | * TimeZone API. | |
272 | */ | |
273 | int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month, | |
274 | int32_t dom, uint8_t dow, | |
275 | int32_t millis, UErrorCode& ec) const { | |
276 | if (month < UCAL_JANUARY || month > UCAL_DECEMBER) { | |
277 | if (U_SUCCESS(ec)) { | |
278 | ec = U_ILLEGAL_ARGUMENT_ERROR; | |
279 | } | |
280 | return 0; | |
281 | } else { | |
282 | return getOffset(era, year, month, dom, dow, millis, | |
283 | Grego::monthLength(year, month), | |
284 | ec); | |
285 | } | |
286 | } | |
287 | ||
288 | /** | |
289 | * TimeZone API. | |
290 | */ | |
291 | int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month, | |
292 | int32_t dom, uint8_t dow, | |
293 | int32_t millis, int32_t monthLength, | |
294 | UErrorCode& ec) const { | |
295 | if (U_FAILURE(ec)) { | |
296 | return 0; | |
297 | } | |
298 | ||
299 | if ((era != GregorianCalendar::AD && era != GregorianCalendar::BC) | |
300 | || month < UCAL_JANUARY | |
301 | || month > UCAL_DECEMBER | |
302 | || dom < 1 | |
303 | || dom > monthLength | |
304 | || dow < UCAL_SUNDAY | |
305 | || dow > UCAL_SATURDAY | |
306 | || millis < 0 | |
307 | || millis >= U_MILLIS_PER_DAY | |
308 | || monthLength < 28 | |
309 | || monthLength > 31) { | |
310 | ec = U_ILLEGAL_ARGUMENT_ERROR; | |
311 | return 0; | |
312 | } | |
313 | ||
314 | if (era == GregorianCalendar::BC) { | |
315 | year = -year; | |
316 | } | |
317 | ||
318 | if (year > finalYear) { // [sic] >, not >=; see above | |
319 | U_ASSERT(finalZone != 0); | |
320 | return finalZone->getOffset(era, year, month, dom, dow, | |
321 | millis, monthLength, ec); | |
322 | } | |
323 | ||
46f4442e A |
324 | // Compute local epoch millis from input fields |
325 | UDate date = (UDate)(Grego::fieldsToDay(year, month, dom) * U_MILLIS_PER_DAY + millis); | |
326 | int32_t rawoff, dstoff; | |
327 | getHistoricalOffset(date, TRUE, kDaylight, kStandard, rawoff, dstoff); | |
328 | return rawoff + dstoff; | |
374ca955 A |
329 | } |
330 | ||
331 | /** | |
332 | * TimeZone API. | |
333 | */ | |
334 | void OlsonTimeZone::getOffset(UDate date, UBool local, int32_t& rawoff, | |
335 | int32_t& dstoff, UErrorCode& ec) const { | |
336 | if (U_FAILURE(ec)) { | |
337 | return; | |
338 | } | |
374ca955 A |
339 | // The check against finalMillis will suffice most of the time, except |
340 | // for the case in which finalMillis == DBL_MAX, date == DBL_MAX, | |
341 | // and finalZone == 0. For this case we add "&& finalZone != 0". | |
342 | if (date >= finalMillis && finalZone != 0) { | |
46f4442e A |
343 | finalZone->getOffset(date, local, rawoff, dstoff, ec); |
344 | } else { | |
345 | getHistoricalOffset(date, local, kFormer, kLatter, rawoff, dstoff); | |
346 | } | |
347 | } | |
374ca955 | 348 | |
46f4442e A |
349 | void |
350 | OlsonTimeZone::getOffsetFromLocal(UDate date, int32_t nonExistingTimeOpt, int32_t duplicatedTimeOpt, | |
351 | int32_t& rawoff, int32_t& dstoff, UErrorCode& ec) /*const*/ { | |
352 | if (U_FAILURE(ec)) { | |
374ca955 A |
353 | return; |
354 | } | |
46f4442e A |
355 | if (date >= finalMillis && finalZone != 0) { |
356 | finalZone->getOffsetFromLocal(date, nonExistingTimeOpt, duplicatedTimeOpt, rawoff, dstoff, ec); | |
357 | } else { | |
358 | getHistoricalOffset(date, TRUE, nonExistingTimeOpt, duplicatedTimeOpt, rawoff, dstoff); | |
359 | } | |
374ca955 A |
360 | } |
361 | ||
46f4442e | 362 | |
374ca955 A |
363 | /** |
364 | * TimeZone API. | |
365 | */ | |
366 | void OlsonTimeZone::setRawOffset(int32_t /*offsetMillis*/) { | |
367 | // We don't support this operation, since OlsonTimeZones are | |
368 | // immutable (except for the ID, which is in the base class). | |
369 | ||
370 | // Nothing to do! | |
371 | } | |
372 | ||
373 | /** | |
374 | * TimeZone API. | |
375 | */ | |
376 | int32_t OlsonTimeZone::getRawOffset() const { | |
377 | UErrorCode ec = U_ZERO_ERROR; | |
378 | int32_t raw, dst; | |
379 | getOffset((double) uprv_getUTCtime() * U_MILLIS_PER_SECOND, | |
380 | FALSE, raw, dst, ec); | |
381 | return raw; | |
382 | } | |
383 | ||
73c04bcf A |
384 | #if defined U_DEBUG_TZ |
385 | void printTime(double ms) { | |
386 | int32_t year, month, dom, dow; | |
387 | double millis=0; | |
388 | double days = Math::floorDivide(((double)ms), (double)U_MILLIS_PER_DAY, millis); | |
389 | ||
390 | Grego::dayToFields(days, year, month, dom, dow); | |
46f4442e | 391 | U_DEBUG_TZ_MSG((" getHistoricalOffset: time %.1f (%04d.%02d.%02d+%.1fh)\n", ms, |
73c04bcf A |
392 | year, month+1, dom, (millis/kOneHour))); |
393 | } | |
394 | #endif | |
395 | ||
46f4442e A |
396 | void |
397 | OlsonTimeZone::getHistoricalOffset(UDate date, UBool local, | |
398 | int32_t NonExistingTimeOpt, int32_t DuplicatedTimeOpt, | |
399 | int32_t& rawoff, int32_t& dstoff) const { | |
400 | U_DEBUG_TZ_MSG(("getHistoricalOffset(%.1f, %s, %d, %d, raw, dst)\n", | |
401 | date, local?"T":"F", NonExistingTimeOpt, DuplicatedTimeOpt)); | |
73c04bcf | 402 | #if defined U_DEBUG_TZ |
46f4442e | 403 | printTime(date*1000.0); |
73c04bcf | 404 | #endif |
374ca955 | 405 | if (transitionCount != 0) { |
46f4442e | 406 | double sec = uprv_floor(date / U_MILLIS_PER_SECOND); |
374ca955 A |
407 | // Linear search from the end is the fastest approach, since |
408 | // most lookups will happen at/near the end. | |
46f4442e | 409 | int16_t i; |
374ca955 A |
410 | for (i = transitionCount - 1; i > 0; --i) { |
411 | int32_t transition = transitionTimes[i]; | |
46f4442e | 412 | |
374ca955 | 413 | if (local) { |
46f4442e A |
414 | int32_t offsetBefore = zoneOffset(typeData[i-1]); |
415 | UBool dstBefore = dstOffset(typeData[i-1]) != 0; | |
416 | ||
417 | int32_t offsetAfter = zoneOffset(typeData[i]); | |
418 | UBool dstAfter = dstOffset(typeData[i]) != 0; | |
419 | ||
420 | UBool dstToStd = dstBefore && !dstAfter; | |
421 | UBool stdToDst = !dstBefore && dstAfter; | |
73c04bcf | 422 | |
46f4442e A |
423 | if (offsetAfter - offsetBefore >= 0) { |
424 | // Positive transition, which makes a non-existing local time range | |
425 | if (((NonExistingTimeOpt & kStdDstMask) == kStandard && dstToStd) | |
426 | || ((NonExistingTimeOpt & kStdDstMask) == kDaylight && stdToDst)) { | |
427 | transition += offsetBefore; | |
428 | } else if (((NonExistingTimeOpt & kStdDstMask) == kStandard && stdToDst) | |
429 | || ((NonExistingTimeOpt & kStdDstMask) == kDaylight && dstToStd)) { | |
430 | transition += offsetAfter; | |
431 | } else if ((NonExistingTimeOpt & kFormerLatterMask) == kLatter) { | |
432 | transition += offsetBefore; | |
433 | } else { | |
434 | // Interprets the time with rule before the transition, | |
435 | // default for non-existing time range | |
436 | transition += offsetAfter; | |
437 | } | |
73c04bcf | 438 | } else { |
46f4442e A |
439 | // Negative transition, which makes a duplicated local time range |
440 | if (((DuplicatedTimeOpt & kStdDstMask) == kStandard && dstToStd) | |
441 | || ((DuplicatedTimeOpt & kStdDstMask) == kDaylight && stdToDst)) { | |
442 | transition += offsetAfter; | |
443 | } else if (((DuplicatedTimeOpt & kStdDstMask) == kStandard && stdToDst) | |
444 | || ((DuplicatedTimeOpt & kStdDstMask) == kDaylight && dstToStd)) { | |
445 | transition += offsetBefore; | |
446 | } else if ((DuplicatedTimeOpt & kFormerLatterMask) == kFormer) { | |
447 | transition += offsetBefore; | |
448 | } else { | |
449 | // Interprets the time with rule after the transition, | |
450 | // default for duplicated local time range | |
451 | transition += offsetAfter; | |
452 | } | |
73c04bcf | 453 | } |
374ca955 | 454 | } |
46f4442e A |
455 | if (sec >= transition) { |
456 | U_DEBUG_TZ_MSG(("Found@%d: time=%.1f, localtransition=%d (orig %d) dz %d\n", i, sec, transition, transitionTimes[i], | |
73c04bcf A |
457 | zoneOffset(typeData[i-1]))); |
458 | #if defined U_DEBUG_TZ | |
46f4442e A |
459 | printTime(transition*1000.0); |
460 | printTime(transitionTimes[i]*1000.0); | |
73c04bcf | 461 | #endif |
374ca955 | 462 | break; |
73c04bcf | 463 | } else { |
46f4442e | 464 | U_DEBUG_TZ_MSG(("miss@%d: time=%.1f, localtransition=%d (orig %d) dz %d\n", i, sec, transition, transitionTimes[i], |
73c04bcf A |
465 | zoneOffset(typeData[i-1]))); |
466 | #if defined U_DEBUG_TZ | |
46f4442e A |
467 | printTime(transition*1000.0); |
468 | printTime(transitionTimes[i]*1000.0); | |
73c04bcf | 469 | #endif |
374ca955 A |
470 | } |
471 | } | |
472 | ||
473 | U_ASSERT(i>=0 && i<transitionCount); | |
474 | ||
475 | // Check invariants for GMT times; if these pass for GMT times | |
476 | // the local logic should be working too. | |
46f4442e A |
477 | U_ASSERT(local || sec < transitionTimes[0] || sec >= transitionTimes[i]); |
478 | U_ASSERT(local || i == transitionCount-1 || sec < transitionTimes[i+1]); | |
479 | ||
480 | U_DEBUG_TZ_MSG(("getHistoricalOffset(%.1f, %s, %d, %d, raw, dst) - trans %d\n", | |
481 | date, local?"T":"F", NonExistingTimeOpt, DuplicatedTimeOpt, i)); | |
482 | ||
483 | // Since ICU tzdata 2007c, the first transition data is actually not a | |
484 | // transition, but used for representing the initial offset. So the code | |
485 | // below works even if i == 0. | |
486 | int16_t index = typeData[i]; | |
487 | rawoff = rawOffset(index) * U_MILLIS_PER_SECOND; | |
488 | dstoff = dstOffset(index) * U_MILLIS_PER_SECOND; | |
489 | } else { | |
490 | // No transitions, single pair of offsets only | |
491 | rawoff = rawOffset(0) * U_MILLIS_PER_SECOND; | |
492 | dstoff = dstOffset(0) * U_MILLIS_PER_SECOND; | |
374ca955 | 493 | } |
46f4442e A |
494 | U_DEBUG_TZ_MSG(("getHistoricalOffset(%.1f, %s, %d, %d, raw, dst) - raw=%d, dst=%d\n", |
495 | date, local?"T":"F", NonExistingTimeOpt, DuplicatedTimeOpt, rawoff, dstoff)); | |
374ca955 A |
496 | } |
497 | ||
498 | /** | |
499 | * TimeZone API. | |
500 | */ | |
501 | UBool OlsonTimeZone::useDaylightTime() const { | |
502 | // If DST was observed in 1942 (for example) but has never been | |
503 | // observed from 1943 to the present, most clients will expect | |
504 | // this method to return FALSE. This method determines whether | |
505 | // DST is in use in the current year (at any point in the year) | |
506 | // and returns TRUE if so. | |
507 | ||
508 | int32_t days = (int32_t)Math::floorDivide(uprv_getUTCtime(), (double)U_MILLIS_PER_DAY); // epoch days | |
509 | ||
510 | int32_t year, month, dom, dow; | |
511 | ||
512 | Grego::dayToFields(days, year, month, dom, dow); | |
513 | ||
514 | if (year > finalYear) { // [sic] >, not >=; see above | |
515 | U_ASSERT(finalZone != 0 && finalZone->useDaylightTime()); | |
516 | return TRUE; | |
517 | } | |
518 | ||
519 | // Find start of this year, and start of next year | |
520 | int32_t start = (int32_t) Grego::fieldsToDay(year, 0, 1) * SECONDS_PER_DAY; | |
521 | int32_t limit = (int32_t) Grego::fieldsToDay(year+1, 0, 1) * SECONDS_PER_DAY; | |
522 | ||
523 | // Return TRUE if DST is observed at any time during the current | |
524 | // year. | |
525 | for (int16_t i=0; i<transitionCount; ++i) { | |
526 | if (transitionTimes[i] >= limit) { | |
527 | break; | |
528 | } | |
46f4442e A |
529 | if ((transitionTimes[i] >= start && dstOffset(typeData[i]) != 0) |
530 | || (transitionTimes[i] > start && i > 0 && dstOffset(typeData[i - 1]) != 0)) { | |
374ca955 A |
531 | return TRUE; |
532 | } | |
533 | } | |
534 | return FALSE; | |
535 | } | |
73c04bcf A |
536 | int32_t |
537 | OlsonTimeZone::getDSTSavings() const{ | |
538 | if(finalZone!=NULL){ | |
539 | return finalZone->getDSTSavings(); | |
540 | } | |
541 | return TimeZone::getDSTSavings(); | |
542 | } | |
374ca955 A |
543 | /** |
544 | * TimeZone API. | |
545 | */ | |
546 | UBool OlsonTimeZone::inDaylightTime(UDate date, UErrorCode& ec) const { | |
547 | int32_t raw, dst; | |
548 | getOffset(date, FALSE, raw, dst, ec); | |
549 | return dst != 0; | |
550 | } | |
551 | ||
46f4442e A |
552 | UBool |
553 | OlsonTimeZone::hasSameRules(const TimeZone &other) const { | |
554 | if (this == &other) { | |
555 | return TRUE; | |
556 | } | |
557 | if (other.getDynamicClassID() != OlsonTimeZone::getStaticClassID()) { | |
558 | return FALSE; | |
559 | } | |
560 | const OlsonTimeZone* z = (const OlsonTimeZone*) &other; | |
561 | ||
562 | // [sic] pointer comparison: typeData points into | |
563 | // memory-mapped or DLL space, so if two zones have the same | |
564 | // pointer, they are equal. | |
565 | if (typeData == z->typeData) { | |
566 | return TRUE; | |
567 | } | |
568 | ||
569 | // If the pointers are not equal, the zones may still | |
570 | // be equal if their rules and transitions are equal | |
571 | return | |
572 | (finalYear == z->finalYear && | |
573 | // Don't compare finalMillis; if finalYear is ==, so is finalMillis | |
574 | ((finalZone == 0 && z->finalZone == 0) || | |
575 | (finalZone != 0 && z->finalZone != 0 && *finalZone == *z->finalZone)) && | |
576 | ||
577 | transitionCount == z->transitionCount && | |
578 | typeCount == z->typeCount && | |
579 | uprv_memcmp(transitionTimes, z->transitionTimes, | |
580 | sizeof(transitionTimes[0]) * transitionCount) == 0 && | |
581 | uprv_memcmp(typeOffsets, z->typeOffsets, | |
582 | (sizeof(typeOffsets[0]) * typeCount) << 1) == 0 && | |
583 | uprv_memcmp(typeData, z->typeData, | |
584 | (sizeof(typeData[0]) * typeCount)) == 0); | |
585 | } | |
586 | ||
587 | void | |
588 | OlsonTimeZone::clearTransitionRules(void) { | |
589 | initialRule = NULL; | |
590 | firstTZTransition = NULL; | |
591 | firstFinalTZTransition = NULL; | |
592 | historicRules = NULL; | |
593 | historicRuleCount = 0; | |
594 | finalZoneWithStartYear = NULL; | |
595 | firstTZTransitionIdx = 0; | |
596 | transitionRulesInitialized = FALSE; | |
597 | } | |
598 | ||
599 | void | |
600 | OlsonTimeZone::deleteTransitionRules(void) { | |
601 | if (initialRule != NULL) { | |
602 | delete initialRule; | |
603 | } | |
604 | if (firstTZTransition != NULL) { | |
605 | delete firstTZTransition; | |
606 | } | |
607 | if (firstFinalTZTransition != NULL) { | |
608 | delete firstFinalTZTransition; | |
609 | } | |
610 | if (finalZoneWithStartYear != NULL) { | |
611 | delete finalZoneWithStartYear; | |
612 | } | |
613 | if (historicRules != NULL) { | |
614 | for (int i = 0; i < historicRuleCount; i++) { | |
615 | if (historicRules[i] != NULL) { | |
616 | delete historicRules[i]; | |
617 | } | |
618 | } | |
619 | uprv_free(historicRules); | |
620 | } | |
621 | clearTransitionRules(); | |
622 | } | |
623 | ||
624 | void | |
625 | OlsonTimeZone::initTransitionRules(UErrorCode& status) { | |
626 | if(U_FAILURE(status)) { | |
627 | return; | |
628 | } | |
629 | if (transitionRulesInitialized) { | |
630 | return; | |
631 | } | |
632 | deleteTransitionRules(); | |
633 | UnicodeString tzid; | |
634 | getID(tzid); | |
635 | ||
636 | UnicodeString stdName = tzid + UNICODE_STRING_SIMPLE("(STD)"); | |
637 | UnicodeString dstName = tzid + UNICODE_STRING_SIMPLE("(DST)"); | |
638 | ||
639 | int32_t raw, dst; | |
640 | if (transitionCount > 0) { | |
641 | int16_t transitionIdx, typeIdx; | |
642 | ||
643 | // Note: Since 2007c, the very first transition data is a dummy entry | |
644 | // added for resolving a offset calculation problem. | |
645 | ||
646 | // Create initial rule | |
647 | typeIdx = (int16_t)typeData[0]; // initial type | |
648 | raw = rawOffset(typeIdx) * U_MILLIS_PER_SECOND; | |
649 | dst = dstOffset(typeIdx) * U_MILLIS_PER_SECOND; | |
650 | initialRule = new InitialTimeZoneRule((dst == 0 ? stdName : dstName), raw, dst); | |
651 | // Check to make sure initialRule was created | |
652 | if (initialRule == NULL) { | |
653 | status = U_MEMORY_ALLOCATION_ERROR; | |
654 | deleteTransitionRules(); | |
655 | return; | |
656 | } | |
657 | ||
658 | firstTZTransitionIdx = 0; | |
659 | for (transitionIdx = 1; transitionIdx < transitionCount; transitionIdx++) { | |
660 | firstTZTransitionIdx++; | |
661 | if (typeIdx != (int16_t)typeData[transitionIdx]) { | |
662 | break; | |
663 | } | |
664 | } | |
665 | if (transitionIdx == transitionCount) { | |
666 | // Actually no transitions... | |
667 | } else { | |
668 | // Build historic rule array | |
669 | UDate* times = (UDate*)uprv_malloc(sizeof(UDate)*transitionCount); /* large enough to store all transition times */ | |
670 | if (times == NULL) { | |
671 | status = U_MEMORY_ALLOCATION_ERROR; | |
672 | deleteTransitionRules(); | |
673 | return; | |
674 | } | |
675 | for (typeIdx = 0; typeIdx < typeCount; typeIdx++) { | |
676 | // Gather all start times for each pair of offsets | |
677 | int32_t nTimes = 0; | |
678 | for (transitionIdx = firstTZTransitionIdx; transitionIdx < transitionCount; transitionIdx++) { | |
679 | if (typeIdx == (int16_t)typeData[transitionIdx]) { | |
680 | UDate tt = ((UDate)transitionTimes[transitionIdx]) * U_MILLIS_PER_SECOND; | |
681 | if (tt < finalMillis) { | |
682 | // Exclude transitions after finalMillis | |
683 | times[nTimes++] = tt; | |
684 | } | |
685 | } | |
686 | } | |
687 | if (nTimes > 0) { | |
688 | // Create a TimeArrayTimeZoneRule | |
689 | raw = rawOffset(typeIdx) * U_MILLIS_PER_SECOND; | |
690 | dst = dstOffset(typeIdx) * U_MILLIS_PER_SECOND; | |
691 | if (historicRules == NULL) { | |
692 | historicRuleCount = typeCount; | |
693 | historicRules = (TimeArrayTimeZoneRule**)uprv_malloc(sizeof(TimeArrayTimeZoneRule*)*historicRuleCount); | |
694 | if (historicRules == NULL) { | |
695 | status = U_MEMORY_ALLOCATION_ERROR; | |
696 | deleteTransitionRules(); | |
697 | uprv_free(times); | |
698 | return; | |
699 | } | |
700 | for (int i = 0; i < historicRuleCount; i++) { | |
701 | // Initialize TimeArrayTimeZoneRule pointers as NULL | |
702 | historicRules[i] = NULL; | |
703 | } | |
704 | } | |
705 | historicRules[typeIdx] = new TimeArrayTimeZoneRule((dst == 0 ? stdName : dstName), | |
706 | raw, dst, times, nTimes, DateTimeRule::UTC_TIME); | |
707 | // Check for memory allocation error | |
708 | if (historicRules[typeIdx] == NULL) { | |
709 | status = U_MEMORY_ALLOCATION_ERROR; | |
710 | deleteTransitionRules(); | |
711 | return; | |
712 | } | |
713 | } | |
714 | } | |
715 | uprv_free(times); | |
716 | ||
717 | // Create initial transition | |
718 | typeIdx = (int16_t)typeData[firstTZTransitionIdx]; | |
719 | firstTZTransition = new TimeZoneTransition(((UDate)transitionTimes[firstTZTransitionIdx]) * U_MILLIS_PER_SECOND, | |
720 | *initialRule, *historicRules[typeIdx]); | |
721 | // Check to make sure firstTZTransition was created. | |
722 | if (firstTZTransition == NULL) { | |
723 | status = U_MEMORY_ALLOCATION_ERROR; | |
724 | deleteTransitionRules(); | |
725 | return; | |
726 | } | |
727 | } | |
728 | } | |
729 | if (initialRule == NULL) { | |
730 | // No historic transitions | |
731 | raw = rawOffset(0) * U_MILLIS_PER_SECOND; | |
732 | dst = dstOffset(0) * U_MILLIS_PER_SECOND; | |
733 | initialRule = new InitialTimeZoneRule((dst == 0 ? stdName : dstName), raw, dst); | |
734 | // Check to make sure initialRule was created. | |
735 | if (initialRule == NULL) { | |
736 | status = U_MEMORY_ALLOCATION_ERROR; | |
737 | deleteTransitionRules(); | |
738 | return; | |
739 | } | |
740 | } | |
741 | if (finalZone != NULL) { | |
742 | // Get the first occurence of final rule starts | |
743 | UDate startTime = (UDate)finalMillis; | |
744 | TimeZoneRule *firstFinalRule = NULL; | |
745 | if (finalZone->useDaylightTime()) { | |
746 | /* | |
747 | * Note: When an OlsonTimeZone is constructed, we should set the final year | |
748 | * as the start year of finalZone. However, the bounday condition used for | |
749 | * getting offset from finalZone has some problems. So setting the start year | |
750 | * in the finalZone will cause a problem. For now, we do not set the valid | |
751 | * start year when the construction time and create a clone and set the | |
752 | * start year when extracting rules. | |
753 | */ | |
754 | finalZoneWithStartYear = (SimpleTimeZone*)finalZone->clone(); | |
755 | // Check to make sure finalZone was actually cloned. | |
756 | if (finalZoneWithStartYear == NULL) { | |
757 | status = U_MEMORY_ALLOCATION_ERROR; | |
758 | deleteTransitionRules(); | |
759 | return; | |
760 | } | |
761 | // finalYear is 1 year before the actual final year. | |
762 | // See the comment in the construction method. | |
763 | finalZoneWithStartYear->setStartYear(finalYear + 1); | |
764 | ||
765 | TimeZoneTransition tzt; | |
766 | finalZoneWithStartYear->getNextTransition(startTime, false, tzt); | |
767 | firstFinalRule = tzt.getTo()->clone(); | |
768 | // Check to make sure firstFinalRule received proper clone. | |
769 | if (firstFinalRule == NULL) { | |
770 | status = U_MEMORY_ALLOCATION_ERROR; | |
771 | deleteTransitionRules(); | |
772 | return; | |
773 | } | |
774 | startTime = tzt.getTime(); | |
775 | } else { | |
776 | finalZoneWithStartYear = (SimpleTimeZone*)finalZone->clone(); | |
777 | // Check to make sure finalZoneWithStartYear received proper clone before dereference. | |
778 | if (finalZoneWithStartYear == NULL) { | |
779 | status = U_MEMORY_ALLOCATION_ERROR; | |
780 | deleteTransitionRules(); | |
781 | return; | |
782 | } | |
783 | finalZone->getID(tzid); | |
784 | firstFinalRule = new TimeArrayTimeZoneRule(tzid, | |
785 | finalZone->getRawOffset(), 0, &startTime, 1, DateTimeRule::UTC_TIME); | |
786 | // Check firstFinalRule was properly created. | |
787 | if (firstFinalRule == NULL) { | |
788 | status = U_MEMORY_ALLOCATION_ERROR; | |
789 | deleteTransitionRules(); | |
790 | return; | |
791 | } | |
792 | } | |
793 | TimeZoneRule *prevRule = NULL; | |
794 | if (transitionCount > 0) { | |
795 | prevRule = historicRules[typeData[transitionCount - 1]]; | |
796 | } | |
797 | if (prevRule == NULL) { | |
798 | // No historic transitions, but only finalZone available | |
799 | prevRule = initialRule; | |
800 | } | |
801 | firstFinalTZTransition = new TimeZoneTransition(); | |
802 | // Check to make sure firstFinalTZTransition was created before dereferencing | |
803 | if (firstFinalTZTransition == NULL) { | |
804 | status = U_MEMORY_ALLOCATION_ERROR; | |
805 | deleteTransitionRules(); | |
806 | return; | |
807 | } | |
808 | firstFinalTZTransition->setTime(startTime); | |
809 | firstFinalTZTransition->adoptFrom(prevRule->clone()); | |
810 | firstFinalTZTransition->adoptTo(firstFinalRule); | |
811 | } | |
812 | transitionRulesInitialized = TRUE; | |
813 | } | |
814 | ||
815 | UBool | |
816 | OlsonTimeZone::getNextTransition(UDate base, UBool inclusive, TimeZoneTransition& result) /*const*/ { | |
817 | UErrorCode status = U_ZERO_ERROR; | |
818 | initTransitionRules(status); | |
819 | if (U_FAILURE(status)) { | |
820 | return FALSE; | |
821 | } | |
822 | ||
823 | if (finalZone != NULL) { | |
824 | if (inclusive && base == firstFinalTZTransition->getTime()) { | |
825 | result = *firstFinalTZTransition; | |
826 | return TRUE; | |
827 | } else if (base >= firstFinalTZTransition->getTime()) { | |
828 | if (finalZone->useDaylightTime()) { | |
829 | //return finalZone->getNextTransition(base, inclusive, result); | |
830 | return finalZoneWithStartYear->getNextTransition(base, inclusive, result); | |
831 | } else { | |
832 | // No more transitions | |
833 | return FALSE; | |
834 | } | |
835 | } | |
836 | } | |
837 | if (historicRules != NULL) { | |
838 | // Find a historical transition | |
839 | int16_t ttidx = transitionCount - 1; | |
840 | for (; ttidx >= firstTZTransitionIdx; ttidx--) { | |
841 | UDate t = ((UDate)transitionTimes[ttidx]) * U_MILLIS_PER_SECOND; | |
842 | if (base > t || (!inclusive && base == t)) { | |
843 | break; | |
844 | } | |
845 | } | |
846 | if (ttidx == transitionCount - 1) { | |
847 | if (firstFinalTZTransition != NULL) { | |
848 | result = *firstFinalTZTransition; | |
849 | return TRUE; | |
850 | } else { | |
851 | return FALSE; | |
852 | } | |
853 | } else if (ttidx < firstTZTransitionIdx) { | |
854 | result = *firstTZTransition; | |
855 | return TRUE; | |
856 | } else { | |
857 | // Create a TimeZoneTransition | |
858 | TimeZoneRule *to = historicRules[typeData[ttidx + 1]]; | |
859 | TimeZoneRule *from = historicRules[typeData[ttidx]]; | |
860 | UDate startTime = ((UDate)transitionTimes[ttidx+1]) * U_MILLIS_PER_SECOND; | |
861 | ||
862 | // The transitions loaded from zoneinfo.res may contain non-transition data | |
863 | UnicodeString fromName, toName; | |
864 | from->getName(fromName); | |
865 | to->getName(toName); | |
866 | if (fromName == toName && from->getRawOffset() == to->getRawOffset() | |
867 | && from->getDSTSavings() == to->getDSTSavings()) { | |
868 | return getNextTransition(startTime, false, result); | |
869 | } | |
870 | result.setTime(startTime); | |
871 | result.adoptFrom(from->clone()); | |
872 | result.adoptTo(to->clone()); | |
873 | return TRUE; | |
874 | } | |
875 | } | |
876 | return FALSE; | |
877 | } | |
878 | ||
879 | UBool | |
880 | OlsonTimeZone::getPreviousTransition(UDate base, UBool inclusive, TimeZoneTransition& result) /*const*/ { | |
881 | UErrorCode status = U_ZERO_ERROR; | |
882 | initTransitionRules(status); | |
883 | if (U_FAILURE(status)) { | |
884 | return FALSE; | |
885 | } | |
886 | ||
887 | if (finalZone != NULL) { | |
888 | if (inclusive && base == firstFinalTZTransition->getTime()) { | |
889 | result = *firstFinalTZTransition; | |
890 | return TRUE; | |
891 | } else if (base > firstFinalTZTransition->getTime()) { | |
892 | if (finalZone->useDaylightTime()) { | |
893 | //return finalZone->getPreviousTransition(base, inclusive, result); | |
894 | return finalZoneWithStartYear->getPreviousTransition(base, inclusive, result); | |
895 | } else { | |
896 | result = *firstFinalTZTransition; | |
897 | return TRUE; | |
898 | } | |
899 | } | |
900 | } | |
901 | ||
902 | if (historicRules != NULL) { | |
903 | // Find a historical transition | |
904 | int16_t ttidx = transitionCount - 1; | |
905 | for (; ttidx >= firstTZTransitionIdx; ttidx--) { | |
906 | UDate t = ((UDate)transitionTimes[ttidx]) * U_MILLIS_PER_SECOND; | |
907 | if (base > t || (inclusive && base == t)) { | |
908 | break; | |
909 | } | |
910 | } | |
911 | if (ttidx < firstTZTransitionIdx) { | |
912 | // No more transitions | |
913 | return FALSE; | |
914 | } else if (ttidx == firstTZTransitionIdx) { | |
915 | result = *firstTZTransition; | |
916 | return TRUE; | |
917 | } else { | |
918 | // Create a TimeZoneTransition | |
919 | TimeZoneRule *to = historicRules[typeData[ttidx]]; | |
920 | TimeZoneRule *from = historicRules[typeData[ttidx-1]]; | |
921 | UDate startTime = ((UDate)transitionTimes[ttidx]) * U_MILLIS_PER_SECOND; | |
922 | ||
923 | // The transitions loaded from zoneinfo.res may contain non-transition data | |
924 | UnicodeString fromName, toName; | |
925 | from->getName(fromName); | |
926 | to->getName(toName); | |
927 | if (fromName == toName && from->getRawOffset() == to->getRawOffset() | |
928 | && from->getDSTSavings() == to->getDSTSavings()) { | |
929 | return getPreviousTransition(startTime, false, result); | |
930 | } | |
931 | result.setTime(startTime); | |
932 | result.adoptFrom(from->clone()); | |
933 | result.adoptTo(to->clone()); | |
934 | return TRUE; | |
935 | } | |
936 | } | |
937 | return FALSE; | |
938 | } | |
939 | ||
940 | int32_t | |
941 | OlsonTimeZone::countTransitionRules(UErrorCode& status) /*const*/ { | |
942 | if (U_FAILURE(status)) { | |
943 | return 0; | |
944 | } | |
945 | initTransitionRules(status); | |
946 | if (U_FAILURE(status)) { | |
947 | return 0; | |
948 | } | |
949 | ||
950 | int32_t count = 0; | |
951 | if (historicRules != NULL) { | |
952 | // historicRules may contain null entries when original zoneinfo data | |
953 | // includes non transition data. | |
954 | for (int32_t i = 0; i < historicRuleCount; i++) { | |
955 | if (historicRules[i] != NULL) { | |
956 | count++; | |
957 | } | |
958 | } | |
959 | } | |
960 | if (finalZone != NULL) { | |
961 | if (finalZone->useDaylightTime()) { | |
962 | count += 2; | |
963 | } else { | |
964 | count++; | |
965 | } | |
966 | } | |
967 | return count; | |
968 | } | |
969 | ||
970 | void | |
971 | OlsonTimeZone::getTimeZoneRules(const InitialTimeZoneRule*& initial, | |
972 | const TimeZoneRule* trsrules[], | |
973 | int32_t& trscount, | |
974 | UErrorCode& status) /*const*/ { | |
975 | if (U_FAILURE(status)) { | |
976 | return; | |
977 | } | |
978 | initTransitionRules(status); | |
979 | if (U_FAILURE(status)) { | |
980 | return; | |
981 | } | |
982 | ||
983 | // Initial rule | |
984 | initial = initialRule; | |
985 | ||
986 | // Transition rules | |
987 | int32_t cnt = 0; | |
988 | if (historicRules != NULL && trscount > cnt) { | |
989 | // historicRules may contain null entries when original zoneinfo data | |
990 | // includes non transition data. | |
991 | for (int32_t i = 0; i < historicRuleCount; i++) { | |
992 | if (historicRules[i] != NULL) { | |
993 | trsrules[cnt++] = historicRules[i]; | |
994 | if (cnt >= trscount) { | |
995 | break; | |
996 | } | |
997 | } | |
998 | } | |
999 | } | |
1000 | if (finalZoneWithStartYear != NULL && trscount > cnt) { | |
1001 | const InitialTimeZoneRule *tmpini; | |
1002 | int32_t tmpcnt = trscount - cnt; | |
1003 | finalZoneWithStartYear->getTimeZoneRules(tmpini, &trsrules[cnt], tmpcnt, status); | |
1004 | if (U_FAILURE(status)) { | |
1005 | return; | |
1006 | } | |
1007 | cnt += tmpcnt; | |
1008 | } | |
1009 | // Set the result length | |
1010 | trscount = cnt; | |
1011 | } | |
1012 | ||
374ca955 A |
1013 | U_NAMESPACE_END |
1014 | ||
1015 | #endif // !UCONFIG_NO_FORMATTING | |
1016 | ||
1017 | //eof |