]>
Commit | Line | Data |
---|---|---|
374ca955 A |
1 | /* |
2 | ********************************************************************** | |
3 | * Copyright (c) 2003-2004, International Business Machines | |
4 | * Corporation and others. All Rights Reserved. | |
5 | ********************************************************************** | |
6 | * Author: Alan Liu | |
7 | * Created: July 21 2003 | |
8 | * Since: ICU 2.8 | |
9 | ********************************************************************** | |
10 | */ | |
11 | ||
12 | #include "olsontz.h" | |
13 | ||
14 | #if !UCONFIG_NO_FORMATTING | |
15 | ||
16 | #include "unicode/ures.h" | |
17 | #include "unicode/simpletz.h" | |
18 | #include "unicode/gregocal.h" | |
19 | #include "gregoimp.h" | |
20 | #include "cmemory.h" | |
21 | #include "uassert.h" | |
22 | #include <float.h> // DBL_MAX | |
23 | ||
24 | #ifdef U_DEBUG_TZ | |
25 | # include <stdio.h> | |
26 | # include "uresimp.h" // for debugging | |
27 | ||
28 | static void debug_tz_loc(const char *f, int32_t l) | |
29 | { | |
30 | fprintf(stderr, "%s:%d: ", f, l); | |
31 | } | |
32 | ||
33 | static void debug_tz_msg(const char *pat, ...) | |
34 | { | |
35 | va_list ap; | |
36 | va_start(ap, pat); | |
37 | vfprintf(stderr, pat, ap); | |
38 | fflush(stderr); | |
39 | } | |
40 | // must use double parens, i.e.: U_DEBUG_TZ_MSG(("four is: %d",4)); | |
41 | #define U_DEBUG_TZ_MSG(x) {debug_tz_loc(__FILE__,__LINE__);debug_tz_msg x;} | |
42 | #else | |
43 | #define U_DEBUG_TZ_MSG(x) | |
44 | #endif | |
45 | ||
46 | U_NAMESPACE_BEGIN | |
47 | ||
48 | #define SECONDS_PER_DAY (24*60*60) | |
49 | ||
50 | static const int32_t ZEROS[] = {0,0}; | |
51 | ||
52 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(OlsonTimeZone) | |
53 | ||
54 | /** | |
55 | * Default constructor. Creates a time zone with an empty ID and | |
56 | * a fixed GMT offset of zero. | |
57 | */ | |
58 | OlsonTimeZone::OlsonTimeZone() : finalYear(INT32_MAX), finalMillis(DBL_MAX), finalZone(0) { | |
59 | constructEmpty(); | |
60 | } | |
61 | ||
62 | /** | |
63 | * Construct a GMT+0 zone with no transitions. This is done when a | |
64 | * constructor fails so the resultant object is well-behaved. | |
65 | */ | |
66 | void OlsonTimeZone::constructEmpty() { | |
67 | transitionCount = 0; | |
68 | typeCount = 1; | |
69 | transitionTimes = typeOffsets = ZEROS; | |
70 | typeData = (const uint8_t*) ZEROS; | |
71 | } | |
72 | ||
73 | /** | |
74 | * Construct from a resource bundle | |
75 | * @param top the top-level zoneinfo resource bundle. This is used | |
76 | * to lookup the rule that `res' may refer to, if there is one. | |
77 | * @param res the resource bundle of the zone to be constructed | |
78 | * @param ec input-output error code | |
79 | */ | |
80 | OlsonTimeZone::OlsonTimeZone(const UResourceBundle* top, | |
81 | const UResourceBundle* res, | |
82 | UErrorCode& ec) : | |
83 | finalYear(INT32_MAX), finalMillis(DBL_MAX), finalZone(0) | |
84 | { | |
85 | U_DEBUG_TZ_MSG(("OlsonTimeZone(%s)\n", ures_getKey((UResourceBundle*)res))); | |
86 | if ((top == NULL || res == NULL) && U_SUCCESS(ec)) { | |
87 | ec = U_ILLEGAL_ARGUMENT_ERROR; | |
88 | } | |
89 | if (U_SUCCESS(ec)) { | |
90 | // TODO -- clean up -- Doesn't work if res points to an alias | |
91 | // // TODO remove nonconst casts below when ures_* API is fixed | |
92 | // setID(ures_getKey((UResourceBundle*) res)); // cast away const | |
93 | ||
94 | // Size 1 is an alias TO another zone (int) | |
95 | // HOWEVER, the caller should dereference this and never pass it in to us | |
96 | // Size 3 is a purely historical zone (no final rules) | |
97 | // Size 4 is like size 3, but with an alias list at the end | |
98 | // Size 5 is a hybrid zone, with historical and final elements | |
99 | // Size 6 is like size 5, but with an alias list at the end | |
100 | int32_t size = ures_getSize((UResourceBundle*) res); // cast away const | |
101 | if (size < 3 || size > 6) { | |
102 | ec = U_INVALID_FORMAT_ERROR; | |
103 | } | |
104 | ||
105 | // Transitions list may be empty | |
106 | int32_t i; | |
107 | UResourceBundle* r = ures_getByIndex(res, 0, NULL, &ec); | |
108 | transitionTimes = ures_getIntVector(r, &i, &ec); | |
109 | ures_close(r); | |
110 | if ((i<0 || i>0x7FFF) && U_SUCCESS(ec)) { | |
111 | ec = U_INVALID_FORMAT_ERROR; | |
112 | } | |
113 | transitionCount = (int16_t) i; | |
114 | ||
115 | // Type offsets list must be of even size, with size >= 2 | |
116 | r = ures_getByIndex(res, 1, NULL, &ec); | |
117 | typeOffsets = ures_getIntVector(r, &i, &ec); | |
118 | ures_close(r); | |
119 | if ((i<2 || i>0x7FFE || ((i&1)!=0)) && U_SUCCESS(ec)) { | |
120 | ec = U_INVALID_FORMAT_ERROR; | |
121 | } | |
122 | typeCount = (int16_t) i >> 1; | |
123 | ||
124 | // Type data must be of the same size as the transitions list | |
125 | r = ures_getByIndex(res, 2, NULL, &ec); | |
126 | int32_t len; | |
127 | typeData = ures_getBinary(r, &len, &ec); | |
128 | ures_close(r); | |
129 | if (len != transitionCount && U_SUCCESS(ec)) { | |
130 | ec = U_INVALID_FORMAT_ERROR; | |
131 | } | |
132 | ||
133 | #if defined (U_DEBUG_TZ) | |
134 | U_DEBUG_TZ_MSG(("OlsonTimeZone(%s) - size = %d, typecount %d transitioncount %d - err %s\n", ures_getKey((UResourceBundle*)res), size, typeCount, transitionCount, u_errorName(ec))); | |
135 | if(U_SUCCESS(ec)) { | |
136 | int32_t jj; | |
137 | for(jj=0;jj<transitionCount;jj++) { | |
138 | U_DEBUG_TZ_MSG((" Transition %d: time %d, typedata%d\n", jj, transitionTimes[jj], typeData[jj])); | |
139 | } | |
140 | for(jj=0;jj<transitionCount;jj++) { | |
141 | U_DEBUG_TZ_MSG((" Type %d: offset%d\n", jj, typeOffsets[jj])); | |
142 | } | |
143 | } | |
144 | #endif | |
145 | ||
146 | // Process final rule and data, if any | |
147 | if (size >= 5) { | |
148 | int32_t ruleidLen = 0; | |
149 | const UChar* idUStr = ures_getStringByIndex(res, 3, &ruleidLen, &ec); | |
150 | UnicodeString ruleid(TRUE, idUStr, ruleidLen); | |
151 | r = ures_getByIndex(res, 4, NULL, &ec); | |
152 | const int32_t* data = ures_getIntVector(r, &len, &ec); | |
153 | #if defined U_DEBUG_TZ | |
154 | const char *rKey = ures_getKey(r); | |
155 | const char *zKey = ures_getKey((UResourceBundle*)res); | |
156 | #endif | |
157 | ures_close(r); | |
158 | if (U_SUCCESS(ec)) { | |
159 | if (data != 0 && len == 2) { | |
160 | int32_t rawOffset = data[0] * U_MILLIS_PER_SECOND; | |
161 | // Subtract one from the actual final year; we | |
162 | // actually store final year - 1, and compare | |
163 | // using > rather than >=. This allows us to use | |
164 | // INT32_MAX as an exclusive upper limit for all | |
165 | // years, including INT32_MAX. | |
166 | U_ASSERT(data[1] > INT32_MIN); | |
167 | finalYear = data[1] - 1; | |
168 | // Also compute the millis for Jan 1, 0:00 GMT of the | |
169 | // finalYear. This reduces runtime computations. | |
170 | finalMillis = Grego::fieldsToDay(data[1], 0, 1) * U_MILLIS_PER_DAY; | |
171 | U_DEBUG_TZ_MSG(("zone%s|%s: {%d,%d}, finalYear%d, finalMillis%.1lf\n", | |
172 | zKey,rKey, data[0], data[1], finalYear, finalMillis)); | |
173 | r = TimeZone::loadRule(top, ruleid, NULL, ec); | |
174 | if (U_SUCCESS(ec)) { | |
175 | // 3, 1, -1, 7200, 0, 9, -31, -1, 7200, 0, 3600 | |
176 | data = ures_getIntVector(r, &len, &ec); | |
177 | if (U_SUCCESS(ec) && len == 11) { | |
178 | UnicodeString emptyStr; | |
179 | U_DEBUG_TZ_MSG(("zone%s, rule%s: {%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d}", zKey, ures_getKey(r), | |
180 | data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7], data[8], data[9], data[10])); | |
181 | finalZone = new SimpleTimeZone(rawOffset, emptyStr, | |
182 | (int8_t)data[0], (int8_t)data[1], (int8_t)data[2], | |
183 | data[3] * U_MILLIS_PER_SECOND, | |
184 | (SimpleTimeZone::TimeMode) data[4], | |
185 | (int8_t)data[5], (int8_t)data[6], (int8_t)data[7], | |
186 | data[8] * U_MILLIS_PER_SECOND, | |
187 | (SimpleTimeZone::TimeMode) data[9], | |
188 | data[10] * U_MILLIS_PER_SECOND, ec); | |
189 | } else { | |
190 | ec = U_INVALID_FORMAT_ERROR; | |
191 | } | |
192 | } | |
193 | ures_close(r); | |
194 | } else { | |
195 | ec = U_INVALID_FORMAT_ERROR; | |
196 | } | |
197 | } | |
198 | } | |
199 | } | |
200 | ||
201 | if (U_FAILURE(ec)) { | |
202 | constructEmpty(); | |
203 | } | |
204 | } | |
205 | ||
206 | /** | |
207 | * Copy constructor | |
208 | */ | |
209 | OlsonTimeZone::OlsonTimeZone(const OlsonTimeZone& other) : | |
210 | TimeZone(other), finalZone(0) { | |
211 | *this = other; | |
212 | } | |
213 | ||
214 | /** | |
215 | * Assignment operator | |
216 | */ | |
217 | OlsonTimeZone& OlsonTimeZone::operator=(const OlsonTimeZone& other) { | |
218 | transitionCount = other.transitionCount; | |
219 | typeCount = other.typeCount; | |
220 | transitionTimes = other.transitionTimes; | |
221 | typeOffsets = other.typeOffsets; | |
222 | typeData = other.typeData; | |
223 | finalYear = other.finalYear; | |
224 | finalMillis = other.finalMillis; | |
225 | delete finalZone; | |
226 | finalZone = (other.finalZone != 0) ? | |
227 | (SimpleTimeZone*) other.finalZone->clone() : 0; | |
228 | return *this; | |
229 | } | |
230 | ||
231 | /** | |
232 | * Destructor | |
233 | */ | |
234 | OlsonTimeZone::~OlsonTimeZone() { | |
235 | delete finalZone; | |
236 | } | |
237 | ||
238 | /** | |
239 | * Returns true if the two TimeZone objects are equal. | |
240 | */ | |
241 | UBool OlsonTimeZone::operator==(const TimeZone& other) const { | |
242 | const OlsonTimeZone* z = (const OlsonTimeZone*) &other; | |
243 | ||
244 | return TimeZone::operator==(other) && | |
245 | // [sic] pointer comparison: typeData points into | |
246 | // memory-mapped or DLL space, so if two zones have the same | |
247 | // pointer, they are equal. | |
248 | (typeData == z->typeData || | |
249 | // If the pointers are not equal, the zones may still | |
250 | // be equal if their rules and transitions are equal | |
251 | (finalYear == z->finalYear && | |
252 | // Don't compare finalMillis; if finalYear is ==, so is finalMillis | |
253 | ((finalZone == 0 && z->finalZone == 0) || | |
254 | (finalZone != 0 && z->finalZone != 0 && | |
255 | *finalZone == *z->finalZone)) && | |
256 | transitionCount == z->transitionCount && | |
257 | typeCount == z->typeCount && | |
258 | uprv_memcmp(transitionTimes, z->transitionTimes, | |
259 | sizeof(transitionTimes[0]) * transitionCount) == 0 && | |
260 | uprv_memcmp(typeOffsets, z->typeOffsets, | |
261 | (sizeof(typeOffsets[0]) * typeCount) << 1) == 0 && | |
262 | uprv_memcmp(typeData, z->typeData, | |
263 | (sizeof(typeData[0]) * typeCount)) == 0 | |
264 | )); | |
265 | } | |
266 | ||
267 | /** | |
268 | * TimeZone API. | |
269 | */ | |
270 | TimeZone* OlsonTimeZone::clone() const { | |
271 | return new OlsonTimeZone(*this); | |
272 | } | |
273 | ||
274 | /** | |
275 | * TimeZone API. | |
276 | */ | |
277 | int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month, | |
278 | int32_t dom, uint8_t dow, | |
279 | int32_t millis, UErrorCode& ec) const { | |
280 | if (month < UCAL_JANUARY || month > UCAL_DECEMBER) { | |
281 | if (U_SUCCESS(ec)) { | |
282 | ec = U_ILLEGAL_ARGUMENT_ERROR; | |
283 | } | |
284 | return 0; | |
285 | } else { | |
286 | return getOffset(era, year, month, dom, dow, millis, | |
287 | Grego::monthLength(year, month), | |
288 | ec); | |
289 | } | |
290 | } | |
291 | ||
292 | /** | |
293 | * TimeZone API. | |
294 | */ | |
295 | int32_t OlsonTimeZone::getOffset(uint8_t era, int32_t year, int32_t month, | |
296 | int32_t dom, uint8_t dow, | |
297 | int32_t millis, int32_t monthLength, | |
298 | UErrorCode& ec) const { | |
299 | if (U_FAILURE(ec)) { | |
300 | return 0; | |
301 | } | |
302 | ||
303 | if ((era != GregorianCalendar::AD && era != GregorianCalendar::BC) | |
304 | || month < UCAL_JANUARY | |
305 | || month > UCAL_DECEMBER | |
306 | || dom < 1 | |
307 | || dom > monthLength | |
308 | || dow < UCAL_SUNDAY | |
309 | || dow > UCAL_SATURDAY | |
310 | || millis < 0 | |
311 | || millis >= U_MILLIS_PER_DAY | |
312 | || monthLength < 28 | |
313 | || monthLength > 31) { | |
314 | ec = U_ILLEGAL_ARGUMENT_ERROR; | |
315 | return 0; | |
316 | } | |
317 | ||
318 | if (era == GregorianCalendar::BC) { | |
319 | year = -year; | |
320 | } | |
321 | ||
322 | if (year > finalYear) { // [sic] >, not >=; see above | |
323 | U_ASSERT(finalZone != 0); | |
324 | return finalZone->getOffset(era, year, month, dom, dow, | |
325 | millis, monthLength, ec); | |
326 | } | |
327 | ||
328 | // Compute local epoch seconds from input fields | |
329 | double time = Grego::fieldsToDay(year, month, dom) * SECONDS_PER_DAY + | |
330 | uprv_floor(millis / (double) U_MILLIS_PER_SECOND); | |
331 | ||
332 | return zoneOffset(findTransition(time, TRUE)) * U_MILLIS_PER_SECOND; | |
333 | } | |
334 | ||
335 | /** | |
336 | * TimeZone API. | |
337 | */ | |
338 | void OlsonTimeZone::getOffset(UDate date, UBool local, int32_t& rawoff, | |
339 | int32_t& dstoff, UErrorCode& ec) const { | |
340 | if (U_FAILURE(ec)) { | |
341 | return; | |
342 | } | |
343 | ||
344 | // The check against finalMillis will suffice most of the time, except | |
345 | // for the case in which finalMillis == DBL_MAX, date == DBL_MAX, | |
346 | // and finalZone == 0. For this case we add "&& finalZone != 0". | |
347 | if (date >= finalMillis && finalZone != 0) { | |
348 | int32_t year, month, dom, dow; | |
349 | double millis; | |
350 | double days = Math::floorDivide(date, (double)U_MILLIS_PER_DAY, millis); | |
351 | ||
352 | Grego::dayToFields(days, year, month, dom, dow); | |
353 | ||
354 | rawoff = finalZone->getRawOffset(); | |
355 | ||
356 | if (!local) { | |
357 | // Adjust from GMT to local | |
358 | date += rawoff; | |
359 | double days2 = Math::floorDivide(date, (double)U_MILLIS_PER_DAY, millis); | |
360 | if (days2 != days) { | |
361 | Grego::dayToFields(days2, year, month, dom, dow); | |
362 | } | |
363 | } | |
364 | ||
365 | dstoff = finalZone->getOffset( | |
366 | GregorianCalendar::AD, year, month, | |
367 | dom, (uint8_t) dow, (int32_t) millis, ec) - rawoff; | |
368 | return; | |
369 | } | |
370 | ||
371 | double secs = uprv_floor(date / U_MILLIS_PER_SECOND); | |
372 | int16_t i = findTransition(secs, local); | |
373 | rawoff = rawOffset(i) * U_MILLIS_PER_SECOND; | |
374 | dstoff = dstOffset(i) * U_MILLIS_PER_SECOND; | |
375 | } | |
376 | ||
377 | /** | |
378 | * TimeZone API. | |
379 | */ | |
380 | void OlsonTimeZone::setRawOffset(int32_t /*offsetMillis*/) { | |
381 | // We don't support this operation, since OlsonTimeZones are | |
382 | // immutable (except for the ID, which is in the base class). | |
383 | ||
384 | // Nothing to do! | |
385 | } | |
386 | ||
387 | /** | |
388 | * TimeZone API. | |
389 | */ | |
390 | int32_t OlsonTimeZone::getRawOffset() const { | |
391 | UErrorCode ec = U_ZERO_ERROR; | |
392 | int32_t raw, dst; | |
393 | getOffset((double) uprv_getUTCtime() * U_MILLIS_PER_SECOND, | |
394 | FALSE, raw, dst, ec); | |
395 | return raw; | |
396 | } | |
397 | ||
398 | /** | |
399 | * Find the smallest i (in 0..transitionCount-1) such that time >= | |
400 | * transition(i), where transition(i) is either the GMT or the local | |
401 | * transition time, as specified by `local'. | |
402 | * @param time epoch seconds, either GMT or local wall | |
403 | * @param local if TRUE, `time' is in local wall units, otherwise it | |
404 | * is GMT | |
405 | * @return an index i, where 0 <= i < transitionCount, and | |
406 | * transition(i) <= time < transition(i+1), or i == 0 if | |
407 | * transitionCount == 0 or time < transition(0). | |
408 | */ | |
409 | int16_t OlsonTimeZone::findTransition(double time, UBool local) const { | |
410 | int16_t i = 0; | |
411 | ||
412 | if (transitionCount != 0) { | |
413 | // Linear search from the end is the fastest approach, since | |
414 | // most lookups will happen at/near the end. | |
415 | for (i = transitionCount - 1; i > 0; --i) { | |
416 | int32_t transition = transitionTimes[i]; | |
417 | if (local) { | |
418 | transition += zoneOffset(typeData[i]); | |
419 | } | |
420 | if (time >= transition) { | |
421 | break; | |
422 | } | |
423 | } | |
424 | ||
425 | U_ASSERT(i>=0 && i<transitionCount); | |
426 | ||
427 | // Check invariants for GMT times; if these pass for GMT times | |
428 | // the local logic should be working too. | |
429 | U_ASSERT(local || time < transitionTimes[0] || time >= transitionTimes[i]); | |
430 | U_ASSERT(local || i == transitionCount-1 || time < transitionTimes[i+1]); | |
431 | ||
432 | i = typeData[i]; | |
433 | } | |
434 | ||
435 | U_ASSERT(i>=0 && i<typeCount); | |
436 | ||
437 | return i; | |
438 | } | |
439 | ||
440 | /** | |
441 | * TimeZone API. | |
442 | */ | |
443 | UBool OlsonTimeZone::useDaylightTime() const { | |
444 | // If DST was observed in 1942 (for example) but has never been | |
445 | // observed from 1943 to the present, most clients will expect | |
446 | // this method to return FALSE. This method determines whether | |
447 | // DST is in use in the current year (at any point in the year) | |
448 | // and returns TRUE if so. | |
449 | ||
450 | int32_t days = (int32_t)Math::floorDivide(uprv_getUTCtime(), (double)U_MILLIS_PER_DAY); // epoch days | |
451 | ||
452 | int32_t year, month, dom, dow; | |
453 | ||
454 | Grego::dayToFields(days, year, month, dom, dow); | |
455 | ||
456 | if (year > finalYear) { // [sic] >, not >=; see above | |
457 | U_ASSERT(finalZone != 0 && finalZone->useDaylightTime()); | |
458 | return TRUE; | |
459 | } | |
460 | ||
461 | // Find start of this year, and start of next year | |
462 | int32_t start = (int32_t) Grego::fieldsToDay(year, 0, 1) * SECONDS_PER_DAY; | |
463 | int32_t limit = (int32_t) Grego::fieldsToDay(year+1, 0, 1) * SECONDS_PER_DAY; | |
464 | ||
465 | // Return TRUE if DST is observed at any time during the current | |
466 | // year. | |
467 | for (int16_t i=0; i<transitionCount; ++i) { | |
468 | if (transitionTimes[i] >= limit) { | |
469 | break; | |
470 | } | |
471 | if (transitionTimes[i] >= start && | |
472 | dstOffset(typeData[i]) != 0) { | |
473 | return TRUE; | |
474 | } | |
475 | } | |
476 | return FALSE; | |
477 | } | |
478 | ||
479 | /** | |
480 | * TimeZone API. | |
481 | */ | |
482 | UBool OlsonTimeZone::inDaylightTime(UDate date, UErrorCode& ec) const { | |
483 | int32_t raw, dst; | |
484 | getOffset(date, FALSE, raw, dst, ec); | |
485 | return dst != 0; | |
486 | } | |
487 | ||
488 | U_NAMESPACE_END | |
489 | ||
490 | #endif // !UCONFIG_NO_FORMATTING | |
491 | ||
492 | //eof |