]>
Commit | Line | Data |
---|---|---|
4388f060 A |
1 | /* |
2 | ******************************************************************************* | |
3 | * Copyright (C) 2010, International Business Machines | |
4 | * Corporation and others. All Rights Reserved. | |
5 | ******************************************************************************* | |
6 | * file name: denseranges.cpp | |
7 | * encoding: US-ASCII | |
8 | * tab size: 8 (not used) | |
9 | * indentation:4 | |
10 | * | |
11 | * created on: 2010sep25 | |
12 | * created by: Markus W. Scherer | |
13 | * | |
14 | * Helper code for finding a small number of dense ranges. | |
15 | */ | |
16 | ||
17 | #include "unicode/utypes.h" | |
18 | #include "denseranges.h" | |
19 | ||
20 | // Definitions in the anonymous namespace are invisible outside this file. | |
21 | namespace { | |
22 | ||
23 | /** | |
24 | * Collect up to 15 range gaps and sort them by ascending gap size. | |
25 | */ | |
26 | class LargestGaps { | |
27 | public: | |
28 | LargestGaps(int32_t max) : maxLength(max<=kCapacity ? max : kCapacity), length(0) {} | |
29 | ||
30 | void add(int32_t gapStart, int64_t gapLength) { | |
31 | int32_t i=length; | |
32 | while(i>0 && gapLength>gapLengths[i-1]) { | |
33 | --i; | |
34 | } | |
35 | if(i<maxLength) { | |
36 | // The new gap is now one of the maxLength largest. | |
37 | // Insert the new gap, moving up smaller ones of the previous | |
38 | // length largest. | |
39 | int32_t j= length<maxLength ? length++ : maxLength-1; | |
40 | while(j>i) { | |
41 | gapStarts[j]=gapStarts[j-1]; | |
42 | gapLengths[j]=gapLengths[j-1]; | |
43 | --j; | |
44 | } | |
45 | gapStarts[i]=gapStart; | |
46 | gapLengths[i]=gapLength; | |
47 | } | |
48 | } | |
49 | ||
50 | void truncate(int32_t newLength) { | |
51 | if(newLength<length) { | |
52 | length=newLength; | |
53 | } | |
54 | } | |
55 | ||
56 | int32_t count() const { return length; } | |
57 | int32_t gapStart(int32_t i) const { return gapStarts[i]; } | |
58 | int64_t gapLength(int32_t i) const { return gapLengths[i]; } | |
59 | ||
60 | int32_t firstAfter(int32_t value) const { | |
61 | if(length==0) { | |
62 | return -1; | |
63 | } | |
64 | int32_t minValue=0; | |
65 | int32_t minIndex=-1; | |
66 | for(int32_t i=0; i<length; ++i) { | |
67 | if(value<gapStarts[i] && (minIndex<0 || gapStarts[i]<minValue)) { | |
68 | minValue=gapStarts[i]; | |
69 | minIndex=i; | |
70 | } | |
71 | } | |
72 | return minIndex; | |
73 | } | |
74 | ||
75 | private: | |
76 | static const int32_t kCapacity=15; | |
77 | ||
78 | int32_t maxLength; | |
79 | int32_t length; | |
80 | int32_t gapStarts[kCapacity]; | |
81 | int64_t gapLengths[kCapacity]; | |
82 | }; | |
83 | ||
84 | } // namespace | |
85 | ||
86 | /** | |
87 | * Does it make sense to write 1..capacity ranges? | |
88 | * Returns 0 if not, otherwise the number of ranges. | |
89 | * @param values Sorted array of signed-integer values. | |
90 | * @param length Number of values. | |
91 | * @param density Minimum average range density, in 256th. (0x100=100%=perfectly dense.) | |
92 | * Should be 0x80..0x100, must be 1..0x100. | |
93 | * @param ranges Output ranges array. | |
94 | * @param capacity Maximum number of ranges. | |
95 | * @return Minimum number of ranges (at most capacity) that have the desired density, | |
96 | * or 0 if that density cannot be achieved. | |
97 | */ | |
98 | U_CAPI int32_t U_EXPORT2 | |
99 | uprv_makeDenseRanges(const int32_t values[], int32_t length, | |
100 | int32_t density, | |
101 | int32_t ranges[][2], int32_t capacity) { | |
102 | if(length<=2) { | |
103 | return 0; | |
104 | } | |
105 | int32_t minValue=values[0]; | |
106 | int32_t maxValue=values[length-1]; // Assume minValue<=maxValue. | |
107 | // Use int64_t variables for intermediate-value precision and to avoid | |
108 | // signed-int32_t overflow of maxValue-minValue. | |
109 | int64_t maxLength=(int64_t)maxValue-(int64_t)minValue+1; | |
110 | if(length>=(density*maxLength)/0x100) { | |
111 | // Use one range. | |
112 | ranges[0][0]=minValue; | |
113 | ranges[0][1]=maxValue; | |
114 | return 1; | |
115 | } | |
116 | if(length<=4) { | |
117 | return 0; | |
118 | } | |
119 | // See if we can split [minValue, maxValue] into 2..capacity ranges, | |
120 | // divided by the 1..(capacity-1) largest gaps. | |
121 | LargestGaps gaps(capacity-1); | |
122 | int32_t i; | |
123 | int32_t expectedValue=minValue; | |
124 | for(i=1; i<length; ++i) { | |
125 | ++expectedValue; | |
126 | int32_t actualValue=values[i]; | |
127 | if(expectedValue!=actualValue) { | |
128 | gaps.add(expectedValue, (int64_t)actualValue-(int64_t)expectedValue); | |
129 | expectedValue=actualValue; | |
130 | } | |
131 | } | |
132 | // We know gaps.count()>=1 because we have fewer values (length) than | |
133 | // the length of the [minValue..maxValue] range (maxLength). | |
134 | // (Otherwise we would have returned with the one range above.) | |
135 | int32_t num; | |
136 | for(i=0, num=2;; ++i, ++num) { | |
137 | if(i>=gaps.count()) { | |
138 | // The values are too sparse for capacity or fewer ranges | |
139 | // of the requested density. | |
140 | return 0; | |
141 | } | |
142 | maxLength-=gaps.gapLength(i); | |
143 | if(length>num*2 && length>=(density*maxLength)/0x100) { | |
144 | break; | |
145 | } | |
146 | } | |
147 | // Use the num ranges with the num-1 largest gaps. | |
148 | gaps.truncate(num-1); | |
149 | ranges[0][0]=minValue; | |
150 | for(i=0; i<=num-2; ++i) { | |
151 | int32_t gapIndex=gaps.firstAfter(minValue); | |
152 | int32_t gapStart=gaps.gapStart(gapIndex); | |
153 | ranges[i][1]=gapStart-1; | |
154 | ranges[i+1][0]=minValue=(int32_t)(gapStart+gaps.gapLength(gapIndex)); | |
155 | } | |
156 | ranges[num-1][1]=maxValue; | |
157 | return num; | |
158 | } |