]> git.saurik.com Git - apple/icu.git/blame - icuSources/i18n/double-conversion.h
ICU-62107.0.1.tar.gz
[apple/icu.git] / icuSources / i18n / double-conversion.h
CommitLineData
0f5d89e8
A
1// © 2018 and later: Unicode, Inc. and others.
2// License & terms of use: http://www.unicode.org/copyright.html
3//
4// From the double-conversion library. Original license:
5//
6// Copyright 2012 the V8 project authors. All rights reserved.
7// Redistribution and use in source and binary forms, with or without
8// modification, are permitted provided that the following conditions are
9// met:
10//
11// * Redistributions of source code must retain the above copyright
12// notice, this list of conditions and the following disclaimer.
13// * Redistributions in binary form must reproduce the above
14// copyright notice, this list of conditions and the following
15// disclaimer in the documentation and/or other materials provided
16// with the distribution.
17// * Neither the name of Google Inc. nor the names of its
18// contributors may be used to endorse or promote products derived
19// from this software without specific prior written permission.
20//
21// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
25// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
26// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
27// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
31// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
33// ICU PATCH: ifdef around UCONFIG_NO_FORMATTING
34#include "unicode/utypes.h"
35#if !UCONFIG_NO_FORMATTING
36
37#ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
38#define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
39
40// ICU PATCH: Customize header file paths for ICU.
41
42#include "double-conversion-utils.h"
43
44// ICU PATCH: Wrap in ICU namespace
45U_NAMESPACE_BEGIN
46
47namespace double_conversion {
48
49class DoubleToStringConverter {
50 public:
51#if 0 // not needed for ICU
52 // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint
53 // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the
54 // function returns false.
55 static const int kMaxFixedDigitsBeforePoint = 60;
56 static const int kMaxFixedDigitsAfterPoint = 60;
57
58 // When calling ToExponential with a requested_digits
59 // parameter > kMaxExponentialDigits then the function returns false.
60 static const int kMaxExponentialDigits = 120;
61
62 // When calling ToPrecision with a requested_digits
63 // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits
64 // then the function returns false.
65 static const int kMinPrecisionDigits = 1;
66 static const int kMaxPrecisionDigits = 120;
67
68 enum Flags {
69 NO_FLAGS = 0,
70 EMIT_POSITIVE_EXPONENT_SIGN = 1,
71 EMIT_TRAILING_DECIMAL_POINT = 2,
72 EMIT_TRAILING_ZERO_AFTER_POINT = 4,
73 UNIQUE_ZERO = 8
74 };
75
76 // Flags should be a bit-or combination of the possible Flags-enum.
77 // - NO_FLAGS: no special flags.
78 // - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent
79 // form, emits a '+' for positive exponents. Example: 1.2e+2.
80 // - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is
81 // converted into decimal format then a trailing decimal point is appended.
82 // Example: 2345.0 is converted to "2345.".
83 // - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point
84 // emits a trailing '0'-character. This flag requires the
85 // EXMIT_TRAILING_DECIMAL_POINT flag.
86 // Example: 2345.0 is converted to "2345.0".
87 // - UNIQUE_ZERO: "-0.0" is converted to "0.0".
88 //
89 // Infinity symbol and nan_symbol provide the string representation for these
90 // special values. If the string is NULL and the special value is encountered
91 // then the conversion functions return false.
92 //
93 // The exponent_character is used in exponential representations. It is
94 // usually 'e' or 'E'.
95 //
96 // When converting to the shortest representation the converter will
97 // represent input numbers in decimal format if they are in the interval
98 // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[
99 // (lower boundary included, greater boundary excluded).
100 // Example: with decimal_in_shortest_low = -6 and
101 // decimal_in_shortest_high = 21:
102 // ToShortest(0.000001) -> "0.000001"
103 // ToShortest(0.0000001) -> "1e-7"
104 // ToShortest(111111111111111111111.0) -> "111111111111111110000"
105 // ToShortest(100000000000000000000.0) -> "100000000000000000000"
106 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
107 //
108 // When converting to precision mode the converter may add
109 // max_leading_padding_zeroes before returning the number in exponential
110 // format.
111 // Example with max_leading_padding_zeroes_in_precision_mode = 6.
112 // ToPrecision(0.0000012345, 2) -> "0.0000012"
113 // ToPrecision(0.00000012345, 2) -> "1.2e-7"
114 // Similarily the converter may add up to
115 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
116 // returning an exponential representation. A zero added by the
117 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
118 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
119 // ToPrecision(230.0, 2) -> "230"
120 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT.
121 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
122 DoubleToStringConverter(int flags,
123 const char* infinity_symbol,
124 const char* nan_symbol,
125 char exponent_character,
126 int decimal_in_shortest_low,
127 int decimal_in_shortest_high,
128 int max_leading_padding_zeroes_in_precision_mode,
129 int max_trailing_padding_zeroes_in_precision_mode)
130 : flags_(flags),
131 infinity_symbol_(infinity_symbol),
132 nan_symbol_(nan_symbol),
133 exponent_character_(exponent_character),
134 decimal_in_shortest_low_(decimal_in_shortest_low),
135 decimal_in_shortest_high_(decimal_in_shortest_high),
136 max_leading_padding_zeroes_in_precision_mode_(
137 max_leading_padding_zeroes_in_precision_mode),
138 max_trailing_padding_zeroes_in_precision_mode_(
139 max_trailing_padding_zeroes_in_precision_mode) {
140 // When 'trailing zero after the point' is set, then 'trailing point'
141 // must be set too.
142 ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) ||
143 !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0));
144 }
145
146 // Returns a converter following the EcmaScript specification.
147 static const DoubleToStringConverter& EcmaScriptConverter();
148
149 // Computes the shortest string of digits that correctly represent the input
150 // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high
151 // (see constructor) it then either returns a decimal representation, or an
152 // exponential representation.
153 // Example with decimal_in_shortest_low = -6,
154 // decimal_in_shortest_high = 21,
155 // EMIT_POSITIVE_EXPONENT_SIGN activated, and
156 // EMIT_TRAILING_DECIMAL_POINT deactived:
157 // ToShortest(0.000001) -> "0.000001"
158 // ToShortest(0.0000001) -> "1e-7"
159 // ToShortest(111111111111111111111.0) -> "111111111111111110000"
160 // ToShortest(100000000000000000000.0) -> "100000000000000000000"
161 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
162 //
163 // Note: the conversion may round the output if the returned string
164 // is accurate enough to uniquely identify the input-number.
165 // For example the most precise representation of the double 9e59 equals
166 // "899999999999999918767229449717619953810131273674690656206848", but
167 // the converter will return the shorter (but still correct) "9e59".
168 //
169 // Returns true if the conversion succeeds. The conversion always succeeds
170 // except when the input value is special and no infinity_symbol or
171 // nan_symbol has been given to the constructor.
172 bool ToShortest(double value, StringBuilder* result_builder) const {
173 return ToShortestIeeeNumber(value, result_builder, SHORTEST);
174 }
175
176 // Same as ToShortest, but for single-precision floats.
177 bool ToShortestSingle(float value, StringBuilder* result_builder) const {
178 return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE);
179 }
180
181
182 // Computes a decimal representation with a fixed number of digits after the
183 // decimal point. The last emitted digit is rounded.
184 //
185 // Examples:
186 // ToFixed(3.12, 1) -> "3.1"
187 // ToFixed(3.1415, 3) -> "3.142"
188 // ToFixed(1234.56789, 4) -> "1234.5679"
189 // ToFixed(1.23, 5) -> "1.23000"
190 // ToFixed(0.1, 4) -> "0.1000"
191 // ToFixed(1e30, 2) -> "1000000000000000019884624838656.00"
192 // ToFixed(0.1, 30) -> "0.100000000000000005551115123126"
193 // ToFixed(0.1, 17) -> "0.10000000000000001"
194 //
195 // If requested_digits equals 0, then the tail of the result depends on
196 // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT.
197 // Examples, for requested_digits == 0,
198 // let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be
199 // - false and false: then 123.45 -> 123
200 // 0.678 -> 1
201 // - true and false: then 123.45 -> 123.
202 // 0.678 -> 1.
203 // - true and true: then 123.45 -> 123.0
204 // 0.678 -> 1.0
205 //
206 // Returns true if the conversion succeeds. The conversion always succeeds
207 // except for the following cases:
208 // - the input value is special and no infinity_symbol or nan_symbol has
209 // been provided to the constructor,
210 // - 'value' > 10^kMaxFixedDigitsBeforePoint, or
211 // - 'requested_digits' > kMaxFixedDigitsAfterPoint.
212 // The last two conditions imply that the result will never contain more than
213 // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
214 // (one additional character for the sign, and one for the decimal point).
215 bool ToFixed(double value,
216 int requested_digits,
217 StringBuilder* result_builder) const;
218
219 // Computes a representation in exponential format with requested_digits
220 // after the decimal point. The last emitted digit is rounded.
221 // If requested_digits equals -1, then the shortest exponential representation
222 // is computed.
223 //
224 // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and
225 // exponent_character set to 'e'.
226 // ToExponential(3.12, 1) -> "3.1e0"
227 // ToExponential(5.0, 3) -> "5.000e0"
228 // ToExponential(0.001, 2) -> "1.00e-3"
229 // ToExponential(3.1415, -1) -> "3.1415e0"
230 // ToExponential(3.1415, 4) -> "3.1415e0"
231 // ToExponential(3.1415, 3) -> "3.142e0"
232 // ToExponential(123456789000000, 3) -> "1.235e14"
233 // ToExponential(1000000000000000019884624838656.0, -1) -> "1e30"
234 // ToExponential(1000000000000000019884624838656.0, 32) ->
235 // "1.00000000000000001988462483865600e30"
236 // ToExponential(1234, 0) -> "1e3"
237 //
238 // Returns true if the conversion succeeds. The conversion always succeeds
239 // except for the following cases:
240 // - the input value is special and no infinity_symbol or nan_symbol has
241 // been provided to the constructor,
242 // - 'requested_digits' > kMaxExponentialDigits.
243 // The last condition implies that the result will never contain more than
244 // kMaxExponentialDigits + 8 characters (the sign, the digit before the
245 // decimal point, the decimal point, the exponent character, the
246 // exponent's sign, and at most 3 exponent digits).
247 bool ToExponential(double value,
248 int requested_digits,
249 StringBuilder* result_builder) const;
250
251 // Computes 'precision' leading digits of the given 'value' and returns them
252 // either in exponential or decimal format, depending on
253 // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the
254 // constructor).
255 // The last computed digit is rounded.
256 //
257 // Example with max_leading_padding_zeroes_in_precision_mode = 6.
258 // ToPrecision(0.0000012345, 2) -> "0.0000012"
259 // ToPrecision(0.00000012345, 2) -> "1.2e-7"
260 // Similarily the converter may add up to
261 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
262 // returning an exponential representation. A zero added by the
263 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
264 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
265 // ToPrecision(230.0, 2) -> "230"
266 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT.
267 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
268 // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no
269 // EMIT_TRAILING_ZERO_AFTER_POINT:
270 // ToPrecision(123450.0, 6) -> "123450"
271 // ToPrecision(123450.0, 5) -> "123450"
272 // ToPrecision(123450.0, 4) -> "123500"
273 // ToPrecision(123450.0, 3) -> "123000"
274 // ToPrecision(123450.0, 2) -> "1.2e5"
275 //
276 // Returns true if the conversion succeeds. The conversion always succeeds
277 // except for the following cases:
278 // - the input value is special and no infinity_symbol or nan_symbol has
279 // been provided to the constructor,
280 // - precision < kMinPericisionDigits
281 // - precision > kMaxPrecisionDigits
282 // The last condition implies that the result will never contain more than
283 // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the
284 // exponent character, the exponent's sign, and at most 3 exponent digits).
285 bool ToPrecision(double value,
286 int precision,
287 StringBuilder* result_builder) const;
288#endif // not needed for ICU
289
290 enum DtoaMode {
291 // Produce the shortest correct representation.
292 // For example the output of 0.299999999999999988897 is (the less accurate
293 // but correct) 0.3.
294 SHORTEST,
295 // Same as SHORTEST, but for single-precision floats.
296 SHORTEST_SINGLE,
297 // Produce a fixed number of digits after the decimal point.
298 // For instance fixed(0.1, 4) becomes 0.1000
299 // If the input number is big, the output will be big.
300 FIXED,
301 // Fixed number of digits (independent of the decimal point).
302 PRECISION
303 };
304
305 // The maximal number of digits that are needed to emit a double in base 10.
306 // A higher precision can be achieved by using more digits, but the shortest
307 // accurate representation of any double will never use more digits than
308 // kBase10MaximalLength.
309 // Note that DoubleToAscii null-terminates its input. So the given buffer
310 // should be at least kBase10MaximalLength + 1 characters long.
311 static const int kBase10MaximalLength = 17;
312
313 // Converts the given double 'v' to ascii. 'v' must not be NaN, +Infinity, or
314 // -Infinity. In SHORTEST_SINGLE-mode this restriction also applies to 'v'
315 // after it has been casted to a single-precision float. That is, in this
316 // mode static_cast<float>(v) must not be NaN, +Infinity or -Infinity.
317 //
318 // The result should be interpreted as buffer * 10^(point-length).
319 //
320 // The output depends on the given mode:
321 // - SHORTEST: produce the least amount of digits for which the internal
322 // identity requirement is still satisfied. If the digits are printed
323 // (together with the correct exponent) then reading this number will give
324 // 'v' again. The buffer will choose the representation that is closest to
325 // 'v'. If there are two at the same distance, than the one farther away
326 // from 0 is chosen (halfway cases - ending with 5 - are rounded up).
327 // In this mode the 'requested_digits' parameter is ignored.
328 // - SHORTEST_SINGLE: same as SHORTEST but with single-precision.
329 // - FIXED: produces digits necessary to print a given number with
330 // 'requested_digits' digits after the decimal point. The produced digits
331 // might be too short in which case the caller has to fill the remainder
332 // with '0's.
333 // Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
334 // Halfway cases are rounded towards +/-Infinity (away from 0). The call
335 // toFixed(0.15, 2) thus returns buffer="2", point=0.
336 // The returned buffer may contain digits that would be truncated from the
337 // shortest representation of the input.
338 // - PRECISION: produces 'requested_digits' where the first digit is not '0'.
339 // Even though the length of produced digits usually equals
340 // 'requested_digits', the function is allowed to return fewer digits, in
341 // which case the caller has to fill the missing digits with '0's.
342 // Halfway cases are again rounded away from 0.
343 // DoubleToAscii expects the given buffer to be big enough to hold all
344 // digits and a terminating null-character. In SHORTEST-mode it expects a
345 // buffer of at least kBase10MaximalLength + 1. In all other modes the
346 // requested_digits parameter and the padding-zeroes limit the size of the
347 // output. Don't forget the decimal point, the exponent character and the
348 // terminating null-character when computing the maximal output size.
349 // The given length is only used in debug mode to ensure the buffer is big
350 // enough.
351 // ICU PATCH: Export this as U_I18N_API for unit tests.
352 static void U_I18N_API DoubleToAscii(double v,
353 DtoaMode mode,
354 int requested_digits,
355 char* buffer,
356 int buffer_length,
357 bool* sign,
358 int* length,
359 int* point);
360
361#if 0 // not needed for ICU
362 private:
363 // Implementation for ToShortest and ToShortestSingle.
364 bool ToShortestIeeeNumber(double value,
365 StringBuilder* result_builder,
366 DtoaMode mode) const;
367
368 // If the value is a special value (NaN or Infinity) constructs the
369 // corresponding string using the configured infinity/nan-symbol.
370 // If either of them is NULL or the value is not special then the
371 // function returns false.
372 bool HandleSpecialValues(double value, StringBuilder* result_builder) const;
373 // Constructs an exponential representation (i.e. 1.234e56).
374 // The given exponent assumes a decimal point after the first decimal digit.
375 void CreateExponentialRepresentation(const char* decimal_digits,
376 int length,
377 int exponent,
378 StringBuilder* result_builder) const;
379 // Creates a decimal representation (i.e 1234.5678).
380 void CreateDecimalRepresentation(const char* decimal_digits,
381 int length,
382 int decimal_point,
383 int digits_after_point,
384 StringBuilder* result_builder) const;
385
386 const int flags_;
387 const char* const infinity_symbol_;
388 const char* const nan_symbol_;
389 const char exponent_character_;
390 const int decimal_in_shortest_low_;
391 const int decimal_in_shortest_high_;
392 const int max_leading_padding_zeroes_in_precision_mode_;
393 const int max_trailing_padding_zeroes_in_precision_mode_;
394#endif // not needed for ICU
395
396 DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
397};
398
399
400class StringToDoubleConverter {
401 public:
402 // Enumeration for allowing octals and ignoring junk when converting
403 // strings to numbers.
404 enum Flags {
405 NO_FLAGS = 0,
406 ALLOW_HEX = 1,
407 ALLOW_OCTALS = 2,
408 ALLOW_TRAILING_JUNK = 4,
409 ALLOW_LEADING_SPACES = 8,
410 ALLOW_TRAILING_SPACES = 16,
411 ALLOW_SPACES_AFTER_SIGN = 32
412 };
413
414 // Flags should be a bit-or combination of the possible Flags-enum.
415 // - NO_FLAGS: no special flags.
416 // - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers.
417 // Ex: StringToDouble("0x1234") -> 4660.0
418 // In StringToDouble("0x1234.56") the characters ".56" are trailing
419 // junk. The result of the call is hence dependent on
420 // the ALLOW_TRAILING_JUNK flag and/or the junk value.
421 // With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK,
422 // the string will not be parsed as "0" followed by junk.
423 //
424 // - ALLOW_OCTALS: recognizes the prefix "0" for octals:
425 // If a sequence of octal digits starts with '0', then the number is
426 // read as octal integer. Octal numbers may only be integers.
427 // Ex: StringToDouble("01234") -> 668.0
428 // StringToDouble("012349") -> 12349.0 // Not a sequence of octal
429 // // digits.
430 // In StringToDouble("01234.56") the characters ".56" are trailing
431 // junk. The result of the call is hence dependent on
432 // the ALLOW_TRAILING_JUNK flag and/or the junk value.
433 // In StringToDouble("01234e56") the characters "e56" are trailing
434 // junk, too.
435 // - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of
436 // a double literal.
437 // - ALLOW_LEADING_SPACES: skip over leading whitespace, including spaces,
438 // new-lines, and tabs.
439 // - ALLOW_TRAILING_SPACES: ignore trailing whitespace.
440 // - ALLOW_SPACES_AFTER_SIGN: ignore whitespace after the sign.
441 // Ex: StringToDouble("- 123.2") -> -123.2.
442 // StringToDouble("+ 123.2") -> 123.2
443 //
444 // empty_string_value is returned when an empty string is given as input.
445 // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string
446 // containing only spaces is converted to the 'empty_string_value', too.
447 //
448 // junk_string_value is returned when
449 // a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not
450 // part of a double-literal) is found.
451 // b) ALLOW_TRAILING_JUNK is set, but the string does not start with a
452 // double literal.
453 //
454 // infinity_symbol and nan_symbol are strings that are used to detect
455 // inputs that represent infinity and NaN. They can be null, in which case
456 // they are ignored.
457 // The conversion routine first reads any possible signs. Then it compares the
458 // following character of the input-string with the first character of
459 // the infinity, and nan-symbol. If either matches, the function assumes, that
460 // a match has been found, and expects the following input characters to match
461 // the remaining characters of the special-value symbol.
462 // This means that the following restrictions apply to special-value symbols:
463 // - they must not start with signs ('+', or '-'),
464 // - they must not have the same first character.
465 // - they must not start with digits.
466 //
467 // Examples:
468 // flags = ALLOW_HEX | ALLOW_TRAILING_JUNK,
469 // empty_string_value = 0.0,
470 // junk_string_value = NaN,
471 // infinity_symbol = "infinity",
472 // nan_symbol = "nan":
473 // StringToDouble("0x1234") -> 4660.0.
474 // StringToDouble("0x1234K") -> 4660.0.
475 // StringToDouble("") -> 0.0 // empty_string_value.
476 // StringToDouble(" ") -> NaN // junk_string_value.
477 // StringToDouble(" 1") -> NaN // junk_string_value.
478 // StringToDouble("0x") -> NaN // junk_string_value.
479 // StringToDouble("-123.45") -> -123.45.
480 // StringToDouble("--123.45") -> NaN // junk_string_value.
481 // StringToDouble("123e45") -> 123e45.
482 // StringToDouble("123E45") -> 123e45.
483 // StringToDouble("123e+45") -> 123e45.
484 // StringToDouble("123E-45") -> 123e-45.
485 // StringToDouble("123e") -> 123.0 // trailing junk ignored.
486 // StringToDouble("123e-") -> 123.0 // trailing junk ignored.
487 // StringToDouble("+NaN") -> NaN // NaN string literal.
488 // StringToDouble("-infinity") -> -inf. // infinity literal.
489 // StringToDouble("Infinity") -> NaN // junk_string_value.
490 //
491 // flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES,
492 // empty_string_value = 0.0,
493 // junk_string_value = NaN,
494 // infinity_symbol = NULL,
495 // nan_symbol = NULL:
496 // StringToDouble("0x1234") -> NaN // junk_string_value.
497 // StringToDouble("01234") -> 668.0.
498 // StringToDouble("") -> 0.0 // empty_string_value.
499 // StringToDouble(" ") -> 0.0 // empty_string_value.
500 // StringToDouble(" 1") -> 1.0
501 // StringToDouble("0x") -> NaN // junk_string_value.
502 // StringToDouble("0123e45") -> NaN // junk_string_value.
503 // StringToDouble("01239E45") -> 1239e45.
504 // StringToDouble("-infinity") -> NaN // junk_string_value.
505 // StringToDouble("NaN") -> NaN // junk_string_value.
506 StringToDoubleConverter(int flags,
507 double empty_string_value,
508 double junk_string_value,
509 const char* infinity_symbol,
510 const char* nan_symbol)
511 : flags_(flags),
512 empty_string_value_(empty_string_value),
513 junk_string_value_(junk_string_value),
514 infinity_symbol_(infinity_symbol),
515 nan_symbol_(nan_symbol) {
516 }
517
518 // Performs the conversion.
519 // The output parameter 'processed_characters_count' is set to the number
520 // of characters that have been processed to read the number.
521 // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included
522 // in the 'processed_characters_count'. Trailing junk is never included.
523 double StringToDouble(const char* buffer,
524 int length,
525 int* processed_characters_count) const;
526
527 // Same as StringToDouble above but for 16 bit characters.
528 double StringToDouble(const uc16* buffer,
529 int length,
530 int* processed_characters_count) const;
531
532 // Same as StringToDouble but reads a float.
533 // Note that this is not equivalent to static_cast<float>(StringToDouble(...))
534 // due to potential double-rounding.
535 float StringToFloat(const char* buffer,
536 int length,
537 int* processed_characters_count) const;
538
539 // Same as StringToFloat above but for 16 bit characters.
540 float StringToFloat(const uc16* buffer,
541 int length,
542 int* processed_characters_count) const;
543
544 private:
545 const int flags_;
546 const double empty_string_value_;
547 const double junk_string_value_;
548 const char* const infinity_symbol_;
549 const char* const nan_symbol_;
550
551 template <class Iterator>
552 double StringToIeee(Iterator start_pointer,
553 int length,
554 bool read_as_double,
555 int* processed_characters_count) const;
556
557 DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
558};
559
560} // namespace double_conversion
561
562// ICU PATCH: Close ICU namespace
563U_NAMESPACE_END
564
565#endif // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
566#endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING