]>
Commit | Line | Data |
---|---|---|
0f5d89e8 A |
1 | // © 2016 and later: Unicode, Inc. and others. |
2 | // License & terms of use: http://www.unicode.org/copyright.html | |
3 | /* | |
4 | *************************************************************************** | |
5 | * Copyright (C) 1999-2016 International Business Machines Corporation | |
6 | * and others. All rights reserved. | |
7 | *************************************************************************** | |
8 | ||
9 | ********************************************************************** | |
10 | * Legacy version of RuleBasedBreakIterator from ICU 57, | |
11 | * only for use by Apple RuleBasedTokenizer | |
12 | ********************************************************************** | |
13 | */ | |
14 | ||
15 | #include "utypeinfo.h" // for 'typeid' to work | |
16 | ||
17 | #include "unicode/utypes.h" | |
18 | ||
19 | #if !UCONFIG_NO_BREAK_ITERATION | |
20 | ||
21 | #include "unicode/schriter.h" | |
22 | #include "unicode/uchriter.h" | |
23 | #include "unicode/udata.h" | |
24 | #include "unicode/uclean.h" | |
25 | #include "unicode/utext.h" | |
26 | #include "rbbidata57.h" | |
27 | #include "rbbirb57.h" | |
28 | #include "rbbi57.h" | |
29 | #include "cmemory.h" | |
30 | #include "cstring.h" | |
31 | #include "umutex.h" | |
32 | #include "ucln_cmn.h" | |
33 | #include "brkeng.h" | |
34 | #include "utrie.h" | |
35 | ||
36 | #include "uassert.h" | |
37 | #include "uvectr32.h" | |
38 | ||
39 | // if U_LOCAL_SERVICE_HOOK is defined, then localsvc.cpp is expected to be included. | |
40 | #if U_LOCAL_SERVICE_HOOK | |
41 | #include "localsvc.h" | |
42 | #endif | |
43 | ||
44 | #ifdef RBBI_DEBUG | |
45 | static UBool fTrace = FALSE; | |
46 | #endif | |
47 | ||
48 | U_NAMESPACE_BEGIN | |
49 | ||
50 | // The state number of the starting state | |
51 | #define START_STATE 1 | |
52 | ||
53 | // The state-transition value indicating "stop" | |
54 | #define STOP_STATE 0 | |
55 | ||
56 | ||
57 | UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RuleBasedBreakIterator57) | |
58 | ||
59 | ||
60 | //======================================================================= | |
61 | // constructors | |
62 | //======================================================================= | |
63 | ||
64 | /** | |
65 | * Constructs a RuleBasedBreakIterator57 that uses the already-created | |
66 | * tables object that is passed in as a parameter. | |
67 | */ | |
68 | RuleBasedBreakIterator57::RuleBasedBreakIterator57(RBBIDataHeader57* data, UErrorCode &status) | |
69 | { | |
70 | init(); | |
71 | fData = new RBBIDataWrapper57(data, status); // status checked in constructor | |
72 | if (U_FAILURE(status)) {return;} | |
73 | if(fData == 0) { | |
74 | status = U_MEMORY_ALLOCATION_ERROR; | |
75 | return; | |
76 | } | |
77 | } | |
78 | ||
79 | /** | |
80 | * Same as above but does not adopt memory | |
81 | */ | |
82 | RuleBasedBreakIterator57::RuleBasedBreakIterator57(const RBBIDataHeader57* data, enum EDontAdopt, UErrorCode &status) | |
83 | { | |
84 | init(); | |
85 | fData = new RBBIDataWrapper57(data, RBBIDataWrapper57::kDontAdopt, status); // status checked in constructor | |
86 | if (U_FAILURE(status)) {return;} | |
87 | if(fData == 0) { | |
88 | status = U_MEMORY_ALLOCATION_ERROR; | |
89 | return; | |
90 | } | |
91 | } | |
92 | ||
93 | ||
94 | #if 0 | |
95 | // not used by rbtok.cpp | |
96 | ||
97 | // | |
98 | // Construct from precompiled binary rules (tables). This constructor is public API, | |
99 | // taking the rules as a (const uint8_t *) to match the type produced by getBinaryRules(). | |
100 | // | |
101 | RuleBasedBreakIterator57::RuleBasedBreakIterator57(const uint8_t *compiledRules, | |
102 | uint32_t ruleLength, | |
103 | UErrorCode &status) { | |
104 | init(); | |
105 | if (U_FAILURE(status)) { | |
106 | return; | |
107 | } | |
108 | if (compiledRules == NULL || ruleLength < sizeof(RBBIDataHeader57)) { | |
109 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
110 | return; | |
111 | } | |
112 | const RBBIDataHeader57 *data = (const RBBIDataHeader57 *)compiledRules; | |
113 | if (data->fLength > ruleLength) { | |
114 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
115 | return; | |
116 | } | |
117 | fData = new RBBIDataWrapper57(data, RBBIDataWrapper57::kDontAdopt, status); | |
118 | if (U_FAILURE(status)) {return;} | |
119 | if(fData == 0) { | |
120 | status = U_MEMORY_ALLOCATION_ERROR; | |
121 | return; | |
122 | } | |
123 | } | |
124 | ||
125 | ||
126 | //------------------------------------------------------------------------------- | |
127 | // | |
128 | // Constructor from a UDataMemory handle to precompiled break rules | |
129 | // stored in an ICU data file. | |
130 | // | |
131 | //------------------------------------------------------------------------------- | |
132 | RuleBasedBreakIterator57::RuleBasedBreakIterator57(UDataMemory* udm, UErrorCode &status) | |
133 | { | |
134 | init(); | |
135 | fData = new RBBIDataWrapper57(udm, status); // status checked in constructor | |
136 | if (U_FAILURE(status)) {return;} | |
137 | if(fData == 0) { | |
138 | status = U_MEMORY_ALLOCATION_ERROR; | |
139 | return; | |
140 | } | |
141 | } | |
142 | #endif | |
143 | ||
144 | ||
145 | ||
146 | //------------------------------------------------------------------------------- | |
147 | // | |
148 | // Constructor from a set of rules supplied as a string. | |
149 | // | |
150 | //------------------------------------------------------------------------------- | |
151 | RuleBasedBreakIterator57::RuleBasedBreakIterator57( const UnicodeString &rules, | |
152 | UParseError &parseError, | |
153 | UErrorCode &status) | |
154 | { | |
155 | init(); | |
156 | if (U_FAILURE(status)) {return;} | |
157 | RuleBasedBreakIterator57 *bi = (RuleBasedBreakIterator57 *) | |
158 | RBBIRuleBuilder57::createRuleBasedBreakIterator(rules, &parseError, status); | |
159 | // Note: This is a bit awkward. The RBBI ruleBuilder has a factory method that | |
160 | // creates and returns a complete RBBI. From here, in a constructor, we | |
161 | // can't just return the object created by the builder factory, hence | |
162 | // the assignment of the factory created object to "this". | |
163 | if (U_SUCCESS(status)) { | |
164 | *this = *bi; | |
165 | delete bi; | |
166 | } | |
167 | } | |
168 | ||
169 | ||
170 | //------------------------------------------------------------------------------- | |
171 | // | |
172 | // Default Constructor. Create an empty shell that can be set up later. | |
173 | // Used when creating a RuleBasedBreakIterator57 from a set | |
174 | // of rules. | |
175 | //------------------------------------------------------------------------------- | |
176 | RuleBasedBreakIterator57::RuleBasedBreakIterator57() { | |
177 | init(); | |
178 | } | |
179 | ||
180 | ||
181 | //------------------------------------------------------------------------------- | |
182 | // | |
183 | // Copy constructor. Will produce a break iterator with the same behavior, | |
184 | // and which iterates over the same text, as the one passed in. | |
185 | // | |
186 | //------------------------------------------------------------------------------- | |
187 | RuleBasedBreakIterator57::RuleBasedBreakIterator57(const RuleBasedBreakIterator57& other) | |
188 | : BreakIterator(other) | |
189 | { | |
190 | this->init(); | |
191 | *this = other; | |
192 | } | |
193 | ||
194 | ||
195 | /** | |
196 | * Destructor | |
197 | */ | |
198 | RuleBasedBreakIterator57::~RuleBasedBreakIterator57() { | |
199 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { | |
200 | // fCharIter was adopted from the outside. | |
201 | delete fCharIter; | |
202 | } | |
203 | fCharIter = NULL; | |
204 | delete fSCharIter; | |
205 | fCharIter = NULL; | |
206 | delete fDCharIter; | |
207 | fDCharIter = NULL; | |
208 | ||
209 | utext_close(fText); | |
210 | ||
211 | if (fData != NULL) { | |
212 | fData->removeReference(); | |
213 | fData = NULL; | |
214 | } | |
215 | if (fCachedBreakPositions) { | |
216 | uprv_free(fCachedBreakPositions); | |
217 | fCachedBreakPositions = NULL; | |
218 | } | |
219 | if (fLanguageBreakEngines) { | |
220 | delete fLanguageBreakEngines; | |
221 | fLanguageBreakEngines = NULL; | |
222 | } | |
223 | if (fUnhandledBreakEngine) { | |
224 | delete fUnhandledBreakEngine; | |
225 | fUnhandledBreakEngine = NULL; | |
226 | } | |
227 | } | |
228 | ||
229 | /** | |
230 | * Assignment operator. Sets this iterator to have the same behavior, | |
231 | * and iterate over the same text, as the one passed in. | |
232 | */ | |
233 | RuleBasedBreakIterator57& | |
234 | RuleBasedBreakIterator57::operator=(const RuleBasedBreakIterator57& that) { | |
235 | if (this == &that) { | |
236 | return *this; | |
237 | } | |
238 | fLineWordOpts = that.fLineWordOpts; | |
239 | reset(); // Delete break cache information | |
240 | fBreakType = that.fBreakType; | |
241 | if (fLanguageBreakEngines != NULL) { | |
242 | delete fLanguageBreakEngines; | |
243 | fLanguageBreakEngines = NULL; // Just rebuild for now | |
244 | } | |
245 | // TODO: clone fLanguageBreakEngines from "that" | |
246 | UErrorCode status = U_ZERO_ERROR; | |
247 | fText = utext_clone(fText, that.fText, FALSE, TRUE, &status); | |
248 | ||
249 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { | |
250 | delete fCharIter; | |
251 | } | |
252 | fCharIter = NULL; | |
253 | ||
254 | if (that.fCharIter != NULL ) { | |
255 | // This is a little bit tricky - it will intially appear that | |
256 | // this->fCharIter is adopted, even if that->fCharIter was | |
257 | // not adopted. That's ok. | |
258 | fCharIter = that.fCharIter->clone(); | |
259 | } | |
260 | ||
261 | if (fData != NULL) { | |
262 | fData->removeReference(); | |
263 | fData = NULL; | |
264 | } | |
265 | if (that.fData != NULL) { | |
266 | fData = that.fData->addReference(); | |
267 | } | |
268 | ||
269 | return *this; | |
270 | } | |
271 | ||
272 | ||
273 | ||
274 | //----------------------------------------------------------------------------- | |
275 | // | |
276 | // init() Shared initialization routine. Used by all the constructors. | |
277 | // Initializes all fields, leaving the object in a consistent state. | |
278 | // | |
279 | //----------------------------------------------------------------------------- | |
280 | void RuleBasedBreakIterator57::init() { | |
281 | UErrorCode status = U_ZERO_ERROR; | |
282 | fText = utext_openUChars(NULL, NULL, 0, &status); | |
283 | fCharIter = NULL; | |
284 | fSCharIter = NULL; | |
285 | fDCharIter = NULL; | |
286 | fData = NULL; | |
287 | fLastRuleStatusIndex = 0; | |
288 | fLastStatusIndexValid = TRUE; | |
289 | fDictionaryCharCount = 0; | |
290 | fBreakType = UBRK_WORD; // Defaulting BreakType to word gives reasonable | |
291 | // dictionary behavior for Break Iterators that are | |
292 | // built from rules. Even better would be the ability to | |
293 | // declare the type in the rules. | |
294 | ||
295 | fCachedBreakPositions = NULL; | |
296 | fLanguageBreakEngines = NULL; | |
297 | fUnhandledBreakEngine = NULL; | |
298 | fNumCachedBreakPositions = 0; | |
299 | fPositionInCache = 0; | |
300 | ||
301 | #ifdef RBBI_DEBUG | |
302 | static UBool debugInitDone = FALSE; | |
303 | if (debugInitDone == FALSE) { | |
304 | char *debugEnv = getenv("U_RBBIDEBUG"); | |
305 | if (debugEnv && uprv_strstr(debugEnv, "trace")) { | |
306 | fTrace = TRUE; | |
307 | } | |
308 | debugInitDone = TRUE; | |
309 | } | |
310 | #endif | |
311 | } | |
312 | ||
313 | ||
314 | ||
315 | //----------------------------------------------------------------------------- | |
316 | // | |
317 | // clone - Returns a newly-constructed RuleBasedBreakIterator57 with the same | |
318 | // behavior, and iterating over the same text, as this one. | |
319 | // Virtual function: does the right thing with subclasses. | |
320 | // | |
321 | //----------------------------------------------------------------------------- | |
322 | BreakIterator* | |
323 | RuleBasedBreakIterator57::clone(void) const { | |
324 | return new RuleBasedBreakIterator57(*this); | |
325 | } | |
326 | ||
327 | /** | |
328 | * Equality operator. Returns TRUE if both BreakIterators are of the | |
329 | * same class, have the same behavior, and iterate over the same text. | |
330 | */ | |
331 | UBool | |
332 | RuleBasedBreakIterator57::operator==(const BreakIterator& that) const { | |
333 | if (typeid(*this) != typeid(that)) { | |
334 | return FALSE; | |
335 | } | |
336 | ||
337 | const RuleBasedBreakIterator57& that2 = (const RuleBasedBreakIterator57&) that; | |
338 | if (that2.fLineWordOpts != fLineWordOpts) { | |
339 | return FALSE; | |
340 | } | |
341 | ||
342 | if (!utext_equals(fText, that2.fText)) { | |
343 | // The two break iterators are operating on different text, | |
344 | // or have a different interation position. | |
345 | return FALSE; | |
346 | }; | |
347 | ||
348 | // TODO: need a check for when in a dictionary region at different offsets. | |
349 | ||
350 | if (that2.fData == fData || | |
351 | (fData != NULL && that2.fData != NULL && *that2.fData == *fData)) { | |
352 | // The two break iterators are using the same rules. | |
353 | return TRUE; | |
354 | } | |
355 | return FALSE; | |
356 | } | |
357 | ||
358 | /** | |
359 | * Compute a hash code for this BreakIterator | |
360 | * @return A hash code | |
361 | */ | |
362 | int32_t | |
363 | RuleBasedBreakIterator57::hashCode(void) const { | |
364 | int32_t hash = 0; | |
365 | if (fData != NULL) { | |
366 | hash = fData->hashCode(); | |
367 | } | |
368 | return hash; | |
369 | } | |
370 | ||
371 | ||
372 | void RuleBasedBreakIterator57::setText(UText *ut, UErrorCode &status) { | |
373 | if (U_FAILURE(status)) { | |
374 | return; | |
375 | } | |
376 | reset(); | |
377 | fText = utext_clone(fText, ut, FALSE, TRUE, &status); | |
378 | ||
379 | // Set up a dummy CharacterIterator to be returned if anyone | |
380 | // calls getText(). With input from UText, there is no reasonable | |
381 | // way to return a characterIterator over the actual input text. | |
382 | // Return one over an empty string instead - this is the closest | |
383 | // we can come to signaling a failure. | |
384 | // (GetText() is obsolete, this failure is sort of OK) | |
385 | if (fDCharIter == NULL) { | |
386 | static const UChar c = 0; | |
387 | fDCharIter = new UCharCharacterIterator(&c, 0); | |
388 | if (fDCharIter == NULL) { | |
389 | status = U_MEMORY_ALLOCATION_ERROR; | |
390 | return; | |
391 | } | |
392 | } | |
393 | ||
394 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { | |
395 | // existing fCharIter was adopted from the outside. Delete it now. | |
396 | delete fCharIter; | |
397 | } | |
398 | fCharIter = fDCharIter; | |
399 | ||
400 | this->first(); | |
401 | } | |
402 | ||
403 | ||
404 | UText *RuleBasedBreakIterator57::getUText(UText *fillIn, UErrorCode &status) const { | |
405 | UText *result = utext_clone(fillIn, fText, FALSE, TRUE, &status); | |
406 | return result; | |
407 | } | |
408 | ||
409 | ||
410 | ||
411 | #if 0 | |
412 | // not used by rbtok.cpp | |
413 | /** | |
414 | * Returns the description used to create this iterator | |
415 | */ | |
416 | const UnicodeString& | |
417 | RuleBasedBreakIterator57::getRules() const { | |
418 | if (fData != NULL) { | |
419 | return fData->getRuleSourceString(); | |
420 | } else { | |
421 | static const UnicodeString *s; | |
422 | if (s == NULL) { | |
423 | // TODO: something more elegant here. | |
424 | // perhaps API should return the string by value. | |
425 | // Note: thread unsafe init & leak are semi-ok, better than | |
426 | // what was before. Sould be cleaned up, though. | |
427 | s = new UnicodeString; | |
428 | } | |
429 | return *s; | |
430 | } | |
431 | } | |
432 | #endif | |
433 | ||
434 | //======================================================================= | |
435 | // BreakIterator overrides | |
436 | //======================================================================= | |
437 | ||
438 | /** | |
439 | * Return a CharacterIterator over the text being analyzed. | |
440 | */ | |
441 | CharacterIterator& | |
442 | RuleBasedBreakIterator57::getText() const { | |
443 | return *fCharIter; | |
444 | } | |
445 | ||
446 | /** | |
447 | * Set the iterator to analyze a new piece of text. This function resets | |
448 | * the current iteration position to the beginning of the text. | |
449 | * @param newText An iterator over the text to analyze. | |
450 | */ | |
451 | void | |
452 | RuleBasedBreakIterator57::adoptText(CharacterIterator* newText) { | |
453 | // If we are holding a CharacterIterator adopted from a | |
454 | // previous call to this function, delete it now. | |
455 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { | |
456 | delete fCharIter; | |
457 | } | |
458 | ||
459 | fCharIter = newText; | |
460 | UErrorCode status = U_ZERO_ERROR; | |
461 | reset(); | |
462 | if (newText==NULL || newText->startIndex() != 0) { | |
463 | // startIndex !=0 wants to be an error, but there's no way to report it. | |
464 | // Make the iterator text be an empty string. | |
465 | fText = utext_openUChars(fText, NULL, 0, &status); | |
466 | } else { | |
467 | fText = utext_openCharacterIterator(fText, newText, &status); | |
468 | } | |
469 | this->first(); | |
470 | } | |
471 | ||
472 | /** | |
473 | * Set the iterator to analyze a new piece of text. This function resets | |
474 | * the current iteration position to the beginning of the text. | |
475 | * @param newText An iterator over the text to analyze. | |
476 | */ | |
477 | void | |
478 | RuleBasedBreakIterator57::setText(const UnicodeString& newText) { | |
479 | UErrorCode status = U_ZERO_ERROR; | |
480 | reset(); | |
481 | fText = utext_openConstUnicodeString(fText, &newText, &status); | |
482 | ||
483 | // Set up a character iterator on the string. | |
484 | // Needed in case someone calls getText(). | |
485 | // Can not, unfortunately, do this lazily on the (probably never) | |
486 | // call to getText(), because getText is const. | |
487 | if (fSCharIter == NULL) { | |
488 | fSCharIter = new StringCharacterIterator(newText); | |
489 | } else { | |
490 | fSCharIter->setText(newText); | |
491 | } | |
492 | ||
493 | if (fCharIter!=fSCharIter && fCharIter!=fDCharIter) { | |
494 | // old fCharIter was adopted from the outside. Delete it. | |
495 | delete fCharIter; | |
496 | } | |
497 | fCharIter = fSCharIter; | |
498 | ||
499 | this->first(); | |
500 | } | |
501 | ||
502 | ||
503 | /** | |
504 | * Provide a new UText for the input text. Must reference text with contents identical | |
505 | * to the original. | |
506 | * Intended for use with text data originating in Java (garbage collected) environments | |
507 | * where the data may be moved in memory at arbitrary times. | |
508 | */ | |
509 | RuleBasedBreakIterator57 &RuleBasedBreakIterator57::refreshInputText(UText *input, UErrorCode &status) { | |
510 | if (U_FAILURE(status)) { | |
511 | return *this; | |
512 | } | |
513 | if (input == NULL) { | |
514 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
515 | return *this; | |
516 | } | |
517 | int64_t pos = utext_getNativeIndex(fText); | |
518 | // Shallow read-only clone of the new UText into the existing input UText | |
519 | fText = utext_clone(fText, input, FALSE, TRUE, &status); | |
520 | if (U_FAILURE(status)) { | |
521 | return *this; | |
522 | } | |
523 | utext_setNativeIndex(fText, pos); | |
524 | if (utext_getNativeIndex(fText) != pos) { | |
525 | // Sanity check. The new input utext is supposed to have the exact same | |
526 | // contents as the old. If we can't set to the same position, it doesn't. | |
527 | // The contents underlying the old utext might be invalid at this point, | |
528 | // so it's not safe to check directly. | |
529 | status = U_ILLEGAL_ARGUMENT_ERROR; | |
530 | } | |
531 | return *this; | |
532 | } | |
533 | ||
534 | ||
535 | /** | |
536 | * Sets the current iteration position to the beginning of the text, position zero. | |
537 | * @return The new iterator position, which is zero. | |
538 | */ | |
539 | int32_t RuleBasedBreakIterator57::first(void) { | |
540 | reset(); | |
541 | fLastRuleStatusIndex = 0; | |
542 | fLastStatusIndexValid = TRUE; | |
543 | //if (fText == NULL) | |
544 | // return BreakIterator::DONE; | |
545 | ||
546 | utext_setNativeIndex(fText, 0); | |
547 | return 0; | |
548 | } | |
549 | ||
550 | /** | |
551 | * Sets the current iteration position to the end of the text. | |
552 | * @return The text's past-the-end offset. | |
553 | */ | |
554 | int32_t RuleBasedBreakIterator57::last(void) { | |
555 | reset(); | |
556 | if (fText == NULL) { | |
557 | fLastRuleStatusIndex = 0; | |
558 | fLastStatusIndexValid = TRUE; | |
559 | return BreakIterator::DONE; | |
560 | } | |
561 | ||
562 | fLastStatusIndexValid = FALSE; | |
563 | int32_t pos = (int32_t)utext_nativeLength(fText); | |
564 | utext_setNativeIndex(fText, pos); | |
565 | return pos; | |
566 | } | |
567 | ||
568 | /** | |
569 | * Advances the iterator either forward or backward the specified number of steps. | |
570 | * Negative values move backward, and positive values move forward. This is | |
571 | * equivalent to repeatedly calling next() or previous(). | |
572 | * @param n The number of steps to move. The sign indicates the direction | |
573 | * (negative is backwards, and positive is forwards). | |
574 | * @return The character offset of the boundary position n boundaries away from | |
575 | * the current one. | |
576 | */ | |
577 | int32_t RuleBasedBreakIterator57::next(int32_t n) { | |
578 | int32_t result = current(); | |
579 | while (n > 0) { | |
580 | result = next(); | |
581 | --n; | |
582 | } | |
583 | while (n < 0) { | |
584 | result = previous(); | |
585 | ++n; | |
586 | } | |
587 | return result; | |
588 | } | |
589 | ||
590 | /** | |
591 | * Advances the iterator to the next boundary position. | |
592 | * @return The position of the first boundary after this one. | |
593 | */ | |
594 | int32_t RuleBasedBreakIterator57::next(void) { | |
595 | // if we have cached break positions and we're still in the range | |
596 | // covered by them, just move one step forward in the cache | |
597 | if (fCachedBreakPositions != NULL) { | |
598 | if (fPositionInCache < fNumCachedBreakPositions - 1) { | |
599 | ++fPositionInCache; | |
600 | int32_t pos = fCachedBreakPositions[fPositionInCache]; | |
601 | utext_setNativeIndex(fText, pos); | |
602 | return pos; | |
603 | } | |
604 | else { | |
605 | reset(); | |
606 | } | |
607 | } | |
608 | ||
609 | int32_t startPos = current(); | |
610 | fDictionaryCharCount = 0; | |
611 | int32_t result = handleNext(fData->fForwardTable); | |
612 | while (fLineWordOpts != UBRK_LINEWORD_NORMAL) { | |
613 | UChar32 prevChr = utext_char32At(fText, result-1); | |
614 | UChar32 currChr = utext_char32At(fText, result); | |
615 | if (currChr == U_SENTINEL || prevChr == U_SENTINEL || !u_isalpha(currChr) || !u_isalpha(prevChr)) { | |
616 | break; | |
617 | } | |
618 | int32_t nextResult = handleNext(fData->fForwardTable); | |
619 | if (nextResult <= result) { | |
620 | break; | |
621 | } | |
622 | result = nextResult; | |
623 | } | |
624 | if (fDictionaryCharCount > 0) { | |
625 | result = checkDictionary(startPos, result, FALSE); | |
626 | } | |
627 | return result; | |
628 | } | |
629 | ||
630 | /** | |
631 | * Advances the iterator backwards, to the last boundary preceding this one. | |
632 | * @return The position of the last boundary position preceding this one. | |
633 | */ | |
634 | int32_t RuleBasedBreakIterator57::previous(void) { | |
635 | int32_t result; | |
636 | int32_t startPos; | |
637 | ||
638 | // if we have cached break positions and we're still in the range | |
639 | // covered by them, just move one step backward in the cache | |
640 | if (fCachedBreakPositions != NULL) { | |
641 | if (fPositionInCache > 0) { | |
642 | --fPositionInCache; | |
643 | // If we're at the beginning of the cache, need to reevaluate the | |
644 | // rule status | |
645 | if (fPositionInCache <= 0) { | |
646 | fLastStatusIndexValid = FALSE; | |
647 | } | |
648 | int32_t pos = fCachedBreakPositions[fPositionInCache]; | |
649 | utext_setNativeIndex(fText, pos); | |
650 | return pos; | |
651 | } | |
652 | else { | |
653 | reset(); | |
654 | } | |
655 | } | |
656 | ||
657 | // if we're already sitting at the beginning of the text, return DONE | |
658 | if (fText == NULL || (startPos = current()) == 0) { | |
659 | fLastRuleStatusIndex = 0; | |
660 | fLastStatusIndexValid = TRUE; | |
661 | return BreakIterator::DONE; | |
662 | } | |
663 | ||
664 | if (fData->fSafeRevTable != NULL || fData->fSafeFwdTable != NULL) { | |
665 | result = handlePrevious(fData->fReverseTable); | |
666 | while (fLineWordOpts != UBRK_LINEWORD_NORMAL) { | |
667 | UChar32 prevChr = utext_char32At(fText, result-1); | |
668 | UChar32 currChr = utext_char32At(fText, result); | |
669 | if (currChr == U_SENTINEL || prevChr == U_SENTINEL || !u_isalpha(currChr) || !u_isalpha(prevChr)) { | |
670 | break; | |
671 | } | |
672 | int32_t prevResult = handlePrevious(fData->fReverseTable); | |
673 | if (prevResult >= result) { | |
674 | break; | |
675 | } | |
676 | result = prevResult; | |
677 | } | |
678 | if (fDictionaryCharCount > 0) { | |
679 | result = checkDictionary(result, startPos, TRUE); | |
680 | } | |
681 | return result; | |
682 | } | |
683 | ||
684 | // old rule syntax | |
685 | // set things up. handlePrevious() will back us up to some valid | |
686 | // break position before the current position (we back our internal | |
687 | // iterator up one step to prevent handlePrevious() from returning | |
688 | // the current position), but not necessarily the last one before | |
689 | // where we started | |
690 | ||
691 | int32_t start = current(); | |
692 | ||
693 | (void)UTEXT_PREVIOUS32(fText); | |
694 | int32_t lastResult = handlePrevious(fData->fReverseTable); | |
695 | if (lastResult == UBRK_DONE) { | |
696 | lastResult = 0; | |
697 | utext_setNativeIndex(fText, 0); | |
698 | } | |
699 | result = lastResult; | |
700 | int32_t lastTag = 0; | |
701 | UBool breakTagValid = FALSE; | |
702 | ||
703 | // iterate forward from the known break position until we pass our | |
704 | // starting point. The last break position before the starting | |
705 | // point is our return value | |
706 | ||
707 | for (;;) { | |
708 | result = next(); | |
709 | if (result == BreakIterator::DONE || result >= start) { | |
710 | break; | |
711 | } | |
712 | lastResult = result; | |
713 | lastTag = fLastRuleStatusIndex; | |
714 | breakTagValid = TRUE; | |
715 | } | |
716 | ||
717 | // fLastBreakTag wants to have the value for section of text preceding | |
718 | // the result position that we are to return (in lastResult.) If | |
719 | // the backwards rules overshot and the above loop had to do two or more | |
720 | // next()s to move up to the desired return position, we will have a valid | |
721 | // tag value. But, if handlePrevious() took us to exactly the correct result position, | |
722 | // we wont have a tag value for that position, which is only set by handleNext(). | |
723 | ||
724 | // Set the current iteration position to be the last break position | |
725 | // before where we started, and then return that value. | |
726 | utext_setNativeIndex(fText, lastResult); | |
727 | fLastRuleStatusIndex = lastTag; // for use by getRuleStatus() | |
728 | fLastStatusIndexValid = breakTagValid; | |
729 | ||
730 | // No need to check the dictionary; it will have been handled by | |
731 | // next() | |
732 | ||
733 | return lastResult; | |
734 | } | |
735 | ||
736 | /** | |
737 | * Sets the iterator to refer to the first boundary position following | |
738 | * the specified position. | |
739 | * @offset The position from which to begin searching for a break position. | |
740 | * @return The position of the first break after the current position. | |
741 | */ | |
742 | int32_t RuleBasedBreakIterator57::following(int32_t offset) { | |
743 | // if the offset passed in is already past the end of the text, | |
744 | // just return DONE; if it's before the beginning, return the | |
745 | // text's starting offset | |
746 | if (fText == NULL || offset >= utext_nativeLength(fText)) { | |
747 | last(); | |
748 | return next(); | |
749 | } | |
750 | else if (offset < 0) { | |
751 | return first(); | |
752 | } | |
753 | ||
754 | // Move requested offset to a code point start. It might be on a trail surrogate, | |
755 | // or on a trail byte if the input is UTF-8. | |
756 | utext_setNativeIndex(fText, offset); | |
757 | offset = (int32_t)utext_getNativeIndex(fText); | |
758 | ||
759 | // if we have cached break positions and offset is in the range | |
760 | // covered by them, use them | |
761 | // TODO: could use binary search | |
762 | // TODO: what if offset is outside range, but break is not? | |
763 | if (fCachedBreakPositions != NULL) { | |
764 | if (offset >= fCachedBreakPositions[0] | |
765 | && offset < fCachedBreakPositions[fNumCachedBreakPositions - 1]) { | |
766 | fPositionInCache = 0; | |
767 | // We are guaranteed not to leave the array due to range test above | |
768 | while (offset >= fCachedBreakPositions[fPositionInCache]) { | |
769 | ++fPositionInCache; | |
770 | } | |
771 | int32_t pos = fCachedBreakPositions[fPositionInCache]; | |
772 | utext_setNativeIndex(fText, pos); | |
773 | return pos; | |
774 | } | |
775 | else { | |
776 | reset(); | |
777 | } | |
778 | } | |
779 | ||
780 | // Set our internal iteration position (temporarily) | |
781 | // to the position passed in. If this is the _beginning_ position, | |
782 | // then we can just use next() to get our return value | |
783 | ||
784 | int32_t result = 0; | |
785 | ||
786 | if (fData->fSafeRevTable != NULL) { | |
787 | // new rule syntax | |
788 | utext_setNativeIndex(fText, offset); | |
789 | // move forward one codepoint to prepare for moving back to a | |
790 | // safe point. | |
791 | // this handles offset being between a supplementary character | |
792 | // TODO: is this still needed, with move to code point boundary handled above? | |
793 | (void)UTEXT_NEXT32(fText); | |
794 | // handlePrevious will move most of the time to < 1 boundary away | |
795 | handlePrevious(fData->fSafeRevTable); | |
796 | int32_t result = next(); | |
797 | while (result <= offset) { | |
798 | result = next(); | |
799 | } | |
800 | return result; | |
801 | } | |
802 | if (fData->fSafeFwdTable != NULL) { | |
803 | // backup plan if forward safe table is not available | |
804 | utext_setNativeIndex(fText, offset); | |
805 | (void)UTEXT_PREVIOUS32(fText); | |
806 | // handle next will give result >= offset | |
807 | handleNext(fData->fSafeFwdTable); | |
808 | // previous will give result 0 or 1 boundary away from offset, | |
809 | // most of the time | |
810 | // we have to | |
811 | int32_t oldresult = previous(); | |
812 | while (oldresult > offset) { | |
813 | int32_t result = previous(); | |
814 | if (result <= offset) { | |
815 | return oldresult; | |
816 | } | |
817 | oldresult = result; | |
818 | } | |
819 | int32_t result = next(); | |
820 | if (result <= offset) { | |
821 | return next(); | |
822 | } | |
823 | return result; | |
824 | } | |
825 | // otherwise, we have to sync up first. Use handlePrevious() to back | |
826 | // up to a known break position before the specified position (if | |
827 | // we can determine that the specified position is a break position, | |
828 | // we don't back up at all). This may or may not be the last break | |
829 | // position at or before our starting position. Advance forward | |
830 | // from here until we've passed the starting position. The position | |
831 | // we stop on will be the first break position after the specified one. | |
832 | // old rule syntax | |
833 | ||
834 | utext_setNativeIndex(fText, offset); | |
835 | if (offset==0 || | |
836 | (offset==1 && utext_getNativeIndex(fText)==0)) { | |
837 | return next(); | |
838 | } | |
839 | result = previous(); | |
840 | ||
841 | while (result != BreakIterator::DONE && result <= offset) { | |
842 | result = next(); | |
843 | } | |
844 | ||
845 | return result; | |
846 | } | |
847 | ||
848 | /** | |
849 | * Sets the iterator to refer to the last boundary position before the | |
850 | * specified position. | |
851 | * @offset The position to begin searching for a break from. | |
852 | * @return The position of the last boundary before the starting position. | |
853 | */ | |
854 | int32_t RuleBasedBreakIterator57::preceding(int32_t offset) { | |
855 | // if the offset passed in is already past the end of the text, | |
856 | // just return DONE; if it's before the beginning, return the | |
857 | // text's starting offset | |
858 | if (fText == NULL || offset > utext_nativeLength(fText)) { | |
859 | return last(); | |
860 | } | |
861 | else if (offset < 0) { | |
862 | return first(); | |
863 | } | |
864 | ||
865 | // Move requested offset to a code point start. It might be on a trail surrogate, | |
866 | // or on a trail byte if the input is UTF-8. | |
867 | utext_setNativeIndex(fText, offset); | |
868 | offset = (int32_t)utext_getNativeIndex(fText); | |
869 | ||
870 | // if we have cached break positions and offset is in the range | |
871 | // covered by them, use them | |
872 | if (fCachedBreakPositions != NULL) { | |
873 | // TODO: binary search? | |
874 | // TODO: What if offset is outside range, but break is not? | |
875 | if (offset > fCachedBreakPositions[0] | |
876 | && offset <= fCachedBreakPositions[fNumCachedBreakPositions - 1]) { | |
877 | fPositionInCache = 0; | |
878 | while (fPositionInCache < fNumCachedBreakPositions | |
879 | && offset > fCachedBreakPositions[fPositionInCache]) | |
880 | ++fPositionInCache; | |
881 | --fPositionInCache; | |
882 | // If we're at the beginning of the cache, need to reevaluate the | |
883 | // rule status | |
884 | if (fPositionInCache <= 0) { | |
885 | fLastStatusIndexValid = FALSE; | |
886 | } | |
887 | utext_setNativeIndex(fText, fCachedBreakPositions[fPositionInCache]); | |
888 | return fCachedBreakPositions[fPositionInCache]; | |
889 | } | |
890 | else { | |
891 | reset(); | |
892 | } | |
893 | } | |
894 | ||
895 | // if we start by updating the current iteration position to the | |
896 | // position specified by the caller, we can just use previous() | |
897 | // to carry out this operation | |
898 | ||
899 | if (fData->fSafeFwdTable != NULL) { | |
900 | // new rule syntax | |
901 | utext_setNativeIndex(fText, offset); | |
902 | int32_t newOffset = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
903 | if (newOffset != offset) { | |
904 | // Will come here if specified offset was not a code point boundary AND | |
905 | // the underlying implmentation is using UText, which snaps any non-code-point-boundary | |
906 | // indices to the containing code point. | |
907 | // For breakitereator::preceding only, these non-code-point indices need to be moved | |
908 | // up to refer to the following codepoint. | |
909 | (void)UTEXT_NEXT32(fText); | |
910 | offset = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
911 | } | |
912 | ||
913 | // TODO: (synwee) would it be better to just check for being in the middle of a surrogate pair, | |
914 | // rather than adjusting the position unconditionally? | |
915 | // (Change would interact with safe rules.) | |
916 | // TODO: change RBBI behavior for off-boundary indices to match that of UText? | |
917 | // affects only preceding(), seems cleaner, but is slightly different. | |
918 | (void)UTEXT_PREVIOUS32(fText); | |
919 | handleNext(fData->fSafeFwdTable); | |
920 | int32_t result = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
921 | while (result >= offset) { | |
922 | result = previous(); | |
923 | } | |
924 | return result; | |
925 | } | |
926 | if (fData->fSafeRevTable != NULL) { | |
927 | // backup plan if forward safe table is not available | |
928 | // TODO: check whether this path can be discarded | |
929 | // It's probably OK to say that rules must supply both safe tables | |
930 | // if they use safe tables at all. We have certainly never described | |
931 | // to anyone how to work with just one safe table. | |
932 | utext_setNativeIndex(fText, offset); | |
933 | (void)UTEXT_NEXT32(fText); | |
934 | ||
935 | // handle previous will give result <= offset | |
936 | handlePrevious(fData->fSafeRevTable); | |
937 | ||
938 | // next will give result 0 or 1 boundary away from offset, | |
939 | // most of the time | |
940 | // we have to | |
941 | int32_t oldresult = next(); | |
942 | while (oldresult < offset) { | |
943 | int32_t result = next(); | |
944 | if (result >= offset) { | |
945 | return oldresult; | |
946 | } | |
947 | oldresult = result; | |
948 | } | |
949 | int32_t result = previous(); | |
950 | if (result >= offset) { | |
951 | return previous(); | |
952 | } | |
953 | return result; | |
954 | } | |
955 | ||
956 | // old rule syntax | |
957 | utext_setNativeIndex(fText, offset); | |
958 | return previous(); | |
959 | } | |
960 | ||
961 | /** | |
962 | * Returns true if the specfied position is a boundary position. As a side | |
963 | * effect, leaves the iterator pointing to the first boundary position at | |
964 | * or after "offset". | |
965 | * @param offset the offset to check. | |
966 | * @return True if "offset" is a boundary position. | |
967 | */ | |
968 | UBool RuleBasedBreakIterator57::isBoundary(int32_t offset) { | |
969 | // the beginning index of the iterator is always a boundary position by definition | |
970 | if (offset == 0) { | |
971 | first(); // For side effects on current position, tag values. | |
972 | return TRUE; | |
973 | } | |
974 | ||
975 | if (offset == (int32_t)utext_nativeLength(fText)) { | |
976 | last(); // For side effects on current position, tag values. | |
977 | return TRUE; | |
978 | } | |
979 | ||
980 | // out-of-range indexes are never boundary positions | |
981 | if (offset < 0) { | |
982 | first(); // For side effects on current position, tag values. | |
983 | return FALSE; | |
984 | } | |
985 | ||
986 | if (offset > utext_nativeLength(fText)) { | |
987 | last(); // For side effects on current position, tag values. | |
988 | return FALSE; | |
989 | } | |
990 | ||
991 | // otherwise, we can use following() on the position before the specified | |
992 | // one and return true if the position we get back is the one the user | |
993 | // specified | |
994 | utext_previous32From(fText, offset); | |
995 | int32_t backOne = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
996 | UBool result = following(backOne) == offset; | |
997 | return result; | |
998 | } | |
999 | ||
1000 | /** | |
1001 | * Returns the current iteration position. | |
1002 | * @return The current iteration position. | |
1003 | */ | |
1004 | int32_t RuleBasedBreakIterator57::current(void) const { | |
1005 | int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1006 | return pos; | |
1007 | } | |
1008 | ||
1009 | //======================================================================= | |
1010 | // implementation | |
1011 | //======================================================================= | |
1012 | ||
1013 | // | |
1014 | // RBBIRunMode - the state machine runs an extra iteration at the beginning and end | |
1015 | // of user text. A variable with this enum type keeps track of where we | |
1016 | // are. The state machine only fetches user input while in the RUN mode. | |
1017 | // | |
1018 | enum RBBIRunMode { | |
1019 | RBBI_START, // state machine processing is before first char of input | |
1020 | RBBI_RUN, // state machine processing is in the user text | |
1021 | RBBI_END // state machine processing is after end of user text. | |
1022 | }; | |
1023 | ||
1024 | ||
1025 | // Map from look-ahead break states (corresponds to rules) to boundary positions. | |
1026 | // Allows multiple lookahead break rules to be in flight at the same time. | |
1027 | // | |
1028 | // This is a temporary approach for ICU 57. A better fix is to make the look-ahead numbers | |
1029 | // in the state table be sequential, then we can just index an array. And the | |
1030 | // table could also tell us in advance how big that array needs to be. | |
1031 | // | |
1032 | // Before ICU 57 there was just a single simple variable for a look-ahead match that | |
1033 | // was in progress. Two rules at once did not work. | |
1034 | ||
1035 | static const int32_t kMaxLookaheads = 8; | |
1036 | struct LookAheadResults { | |
1037 | int32_t fUsedSlotLimit; | |
1038 | int32_t fPositions[8]; | |
1039 | int16_t fKeys[8]; | |
1040 | ||
1041 | LookAheadResults() : fUsedSlotLimit(0), fPositions(), fKeys() {}; | |
1042 | ||
1043 | int32_t getPosition(int16_t key) { | |
1044 | for (int32_t i=0; i<fUsedSlotLimit; ++i) { | |
1045 | if (fKeys[i] == key) { | |
1046 | return fPositions[i]; | |
1047 | } | |
1048 | } | |
1049 | U_ASSERT(FALSE); | |
1050 | return -1; | |
1051 | } | |
1052 | ||
1053 | void setPosition(int16_t key, int32_t position) { | |
1054 | int32_t i; | |
1055 | for (i=0; i<fUsedSlotLimit; ++i) { | |
1056 | if (fKeys[i] == key) { | |
1057 | fPositions[i] = position; | |
1058 | return; | |
1059 | } | |
1060 | } | |
1061 | if (i >= kMaxLookaheads) { | |
1062 | U_ASSERT(FALSE); | |
1063 | i = kMaxLookaheads - 1; | |
1064 | } | |
1065 | fKeys[i] = key; | |
1066 | fPositions[i] = position; | |
1067 | U_ASSERT(fUsedSlotLimit == i); | |
1068 | fUsedSlotLimit = i + 1; | |
1069 | } | |
1070 | }; | |
1071 | ||
1072 | ||
1073 | //----------------------------------------------------------------------------------- | |
1074 | // | |
1075 | // handleNext(stateTable) | |
1076 | // This method is the actual implementation of the rbbi next() method. | |
1077 | // This method initializes the state machine to state 1 | |
1078 | // and advances through the text character by character until we reach the end | |
1079 | // of the text or the state machine transitions to state 0. We update our return | |
1080 | // value every time the state machine passes through an accepting state. | |
1081 | // | |
1082 | //----------------------------------------------------------------------------------- | |
1083 | int32_t RuleBasedBreakIterator57::handleNext(const RBBIStateTable *statetable) { | |
1084 | int32_t state; | |
1085 | uint16_t category = 0; | |
1086 | RBBIRunMode mode; | |
1087 | ||
1088 | RBBIStateTableRow *row; | |
1089 | UChar32 c; | |
1090 | LookAheadResults lookAheadMatches; | |
1091 | int32_t result = 0; | |
1092 | int32_t initialPosition = 0; | |
1093 | const char *tableData = statetable->fTableData; | |
1094 | uint32_t tableRowLen = statetable->fRowLen; | |
1095 | ||
1096 | #ifdef RBBI_DEBUG | |
1097 | if (fTrace) { | |
1098 | RBBIDebugPuts("Handle Next pos char state category"); | |
1099 | } | |
1100 | #endif | |
1101 | ||
1102 | // No matter what, handleNext alway correctly sets the break tag value. | |
1103 | fLastStatusIndexValid = TRUE; | |
1104 | fLastRuleStatusIndex = 0; | |
1105 | ||
1106 | // if we're already at the end of the text, return DONE. | |
1107 | initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1108 | result = initialPosition; | |
1109 | c = UTEXT_NEXT32(fText); | |
1110 | if (fData == NULL || c==U_SENTINEL) { | |
1111 | return BreakIterator::DONE; | |
1112 | } | |
1113 | ||
1114 | // Set the initial state for the state machine | |
1115 | state = START_STATE; | |
1116 | row = (RBBIStateTableRow *) | |
1117 | //(statetable->fTableData + (statetable->fRowLen * state)); | |
1118 | (tableData + tableRowLen * state); | |
1119 | ||
1120 | ||
1121 | mode = RBBI_RUN; | |
1122 | if (statetable->fFlags & RBBI_BOF_REQUIRED) { | |
1123 | category = 2; | |
1124 | mode = RBBI_START; | |
1125 | } | |
1126 | ||
1127 | ||
1128 | // loop until we reach the end of the text or transition to state 0 | |
1129 | // | |
1130 | for (;;) { | |
1131 | if (c == U_SENTINEL) { | |
1132 | // Reached end of input string. | |
1133 | if (mode == RBBI_END) { | |
1134 | // We have already run the loop one last time with the | |
1135 | // character set to the psueudo {eof} value. Now it is time | |
1136 | // to unconditionally bail out. | |
1137 | break; | |
1138 | } | |
1139 | // Run the loop one last time with the fake end-of-input character category. | |
1140 | mode = RBBI_END; | |
1141 | category = 1; | |
1142 | } | |
1143 | ||
1144 | // | |
1145 | // Get the char category. An incoming category of 1 or 2 means that | |
1146 | // we are preset for doing the beginning or end of input, and | |
1147 | // that we shouldn't get a category from an actual text input character. | |
1148 | // | |
1149 | if (mode == RBBI_RUN) { | |
1150 | // look up the current character's character category, which tells us | |
1151 | // which column in the state table to look at. | |
1152 | // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned, | |
1153 | // not the size of the character going in, which is a UChar32. | |
1154 | // | |
1155 | UTRIE_GET16(&fData->fTrie, c, category); | |
1156 | ||
1157 | // Check the dictionary bit in the character's category. | |
1158 | // Counter is only used by dictionary based iterators (subclasses). | |
1159 | // Chars that need to be handled by a dictionary have a flag bit set | |
1160 | // in their category values. | |
1161 | // | |
1162 | if ((category & 0x4000) != 0) { | |
1163 | fDictionaryCharCount++; | |
1164 | // And off the dictionary flag bit. | |
1165 | category &= ~0x4000; | |
1166 | } | |
1167 | } | |
1168 | ||
1169 | #ifdef RBBI_DEBUG | |
1170 | if (fTrace) { | |
1171 | RBBIDebugPrintf(" %4lld ", utext_getNativeIndex(fText)); | |
1172 | if (0x20<=c && c<0x7f) { | |
1173 | RBBIDebugPrintf("\"%c\" ", c); | |
1174 | } else { | |
1175 | RBBIDebugPrintf("%5x ", c); | |
1176 | } | |
1177 | RBBIDebugPrintf("%3d %3d\n", state, category); | |
1178 | } | |
1179 | #endif | |
1180 | ||
1181 | // State Transition - move machine to its next state | |
1182 | // | |
1183 | ||
1184 | // Note: fNextState is defined as uint16_t[2], but we are casting | |
1185 | // a generated RBBI table to RBBIStateTableRow and some tables | |
1186 | // actually have more than 2 categories. | |
1187 | U_ASSERT(category<fData->fHeader->fCatCount); | |
1188 | state = row->fNextState[category]; /*Not accessing beyond memory*/ | |
1189 | row = (RBBIStateTableRow *) | |
1190 | // (statetable->fTableData + (statetable->fRowLen * state)); | |
1191 | (tableData + tableRowLen * state); | |
1192 | ||
1193 | ||
1194 | if (row->fAccepting == -1) { | |
1195 | // Match found, common case. | |
1196 | if (mode != RBBI_START) { | |
1197 | result = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1198 | } | |
1199 | fLastRuleStatusIndex = row->fTagIdx; // Remember the break status (tag) values. | |
1200 | } | |
1201 | ||
1202 | int16_t completedRule = row->fAccepting; | |
1203 | if (completedRule > 0) { | |
1204 | // Lookahead match is completed. | |
1205 | int32_t lookaheadResult = lookAheadMatches.getPosition(completedRule); | |
1206 | if (lookaheadResult >= 0) { | |
1207 | fLastRuleStatusIndex = row->fTagIdx; | |
1208 | UTEXT_SETNATIVEINDEX(fText, lookaheadResult); | |
1209 | return lookaheadResult; | |
1210 | } | |
1211 | } | |
1212 | int16_t rule = row->fLookAhead; | |
1213 | if (rule != 0) { | |
1214 | // At the position of a '/' in a look-ahead match. Record it. | |
1215 | int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1216 | lookAheadMatches.setPosition(rule, pos); | |
1217 | } | |
1218 | ||
1219 | if (state == STOP_STATE) { | |
1220 | // This is the normal exit from the lookup state machine. | |
1221 | // We have advanced through the string until it is certain that no | |
1222 | // longer match is possible, no matter what characters follow. | |
1223 | break; | |
1224 | } | |
1225 | ||
1226 | // Advance to the next character. | |
1227 | // If this is a beginning-of-input loop iteration, don't advance | |
1228 | // the input position. The next iteration will be processing the | |
1229 | // first real input character. | |
1230 | if (mode == RBBI_RUN) { | |
1231 | c = UTEXT_NEXT32(fText); | |
1232 | } else { | |
1233 | if (mode == RBBI_START) { | |
1234 | mode = RBBI_RUN; | |
1235 | } | |
1236 | } | |
1237 | ||
1238 | ||
1239 | } | |
1240 | ||
1241 | // The state machine is done. Check whether it found a match... | |
1242 | ||
1243 | // If the iterator failed to advance in the match engine, force it ahead by one. | |
1244 | // (This really indicates a defect in the break rules. They should always match | |
1245 | // at least one character.) | |
1246 | if (result == initialPosition) { | |
1247 | UTEXT_SETNATIVEINDEX(fText, initialPosition); | |
1248 | UTEXT_NEXT32(fText); | |
1249 | result = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1250 | } | |
1251 | ||
1252 | // Leave the iterator at our result position. | |
1253 | UTEXT_SETNATIVEINDEX(fText, result); | |
1254 | #ifdef RBBI_DEBUG | |
1255 | if (fTrace) { | |
1256 | RBBIDebugPrintf("result = %d\n\n", result); | |
1257 | } | |
1258 | #endif | |
1259 | return result; | |
1260 | } | |
1261 | ||
1262 | ||
1263 | ||
1264 | //----------------------------------------------------------------------------------- | |
1265 | // | |
1266 | // handlePrevious() | |
1267 | // | |
1268 | // Iterate backwards, according to the logic of the reverse rules. | |
1269 | // This version handles the exact style backwards rules. | |
1270 | // | |
1271 | // The logic of this function is very similar to handleNext(), above. | |
1272 | // | |
1273 | //----------------------------------------------------------------------------------- | |
1274 | int32_t RuleBasedBreakIterator57::handlePrevious(const RBBIStateTable *statetable) { | |
1275 | int32_t state; | |
1276 | uint16_t category = 0; | |
1277 | RBBIRunMode mode; | |
1278 | RBBIStateTableRow *row; | |
1279 | UChar32 c; | |
1280 | LookAheadResults lookAheadMatches; | |
1281 | int32_t result = 0; | |
1282 | int32_t initialPosition = 0; | |
1283 | ||
1284 | #ifdef RBBI_DEBUG | |
1285 | if (fTrace) { | |
1286 | RBBIDebugPuts("Handle Previous pos char state category"); | |
1287 | } | |
1288 | #endif | |
1289 | ||
1290 | // handlePrevious() never gets the rule status. | |
1291 | // Flag the status as invalid; if the user ever asks for status, we will need | |
1292 | // to back up, then re-find the break position using handleNext(), which does | |
1293 | // get the status value. | |
1294 | fLastStatusIndexValid = FALSE; | |
1295 | fLastRuleStatusIndex = 0; | |
1296 | ||
1297 | // if we're already at the start of the text, return DONE. | |
1298 | if (fText == NULL || fData == NULL || UTEXT_GETNATIVEINDEX(fText)==0) { | |
1299 | return BreakIterator::DONE; | |
1300 | } | |
1301 | ||
1302 | // Set up the starting char. | |
1303 | initialPosition = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1304 | result = initialPosition; | |
1305 | c = UTEXT_PREVIOUS32(fText); | |
1306 | ||
1307 | // Set the initial state for the state machine | |
1308 | state = START_STATE; | |
1309 | row = (RBBIStateTableRow *) | |
1310 | (statetable->fTableData + (statetable->fRowLen * state)); | |
1311 | category = 3; | |
1312 | mode = RBBI_RUN; | |
1313 | if (statetable->fFlags & RBBI_BOF_REQUIRED) { | |
1314 | category = 2; | |
1315 | mode = RBBI_START; | |
1316 | } | |
1317 | ||
1318 | ||
1319 | // loop until we reach the start of the text or transition to state 0 | |
1320 | // | |
1321 | for (;;) { | |
1322 | if (c == U_SENTINEL) { | |
1323 | // Reached end of input string. | |
1324 | if (mode == RBBI_END) { | |
1325 | // We have already run the loop one last time with the | |
1326 | // character set to the psueudo {eof} value. Now it is time | |
1327 | // to unconditionally bail out. | |
1328 | if (result == initialPosition) { | |
1329 | // Ran off start, no match found. | |
1330 | // move one index one (towards the start, since we are doing a previous()) | |
1331 | UTEXT_SETNATIVEINDEX(fText, initialPosition); | |
1332 | (void)UTEXT_PREVIOUS32(fText); // TODO: shouldn't be necessary. We're already at beginning. Check. | |
1333 | } | |
1334 | break; | |
1335 | } | |
1336 | // Run the loop one last time with the fake end-of-input character category. | |
1337 | mode = RBBI_END; | |
1338 | category = 1; | |
1339 | } | |
1340 | ||
1341 | // | |
1342 | // Get the char category. An incoming category of 1 or 2 means that | |
1343 | // we are preset for doing the beginning or end of input, and | |
1344 | // that we shouldn't get a category from an actual text input character. | |
1345 | // | |
1346 | if (mode == RBBI_RUN) { | |
1347 | // look up the current character's character category, which tells us | |
1348 | // which column in the state table to look at. | |
1349 | // Note: the 16 in UTRIE_GET16 refers to the size of the data being returned, | |
1350 | // not the size of the character going in, which is a UChar32. | |
1351 | // | |
1352 | UTRIE_GET16(&fData->fTrie, c, category); | |
1353 | ||
1354 | // Check the dictionary bit in the character's category. | |
1355 | // Counter is only used by dictionary based iterators (subclasses). | |
1356 | // Chars that need to be handled by a dictionary have a flag bit set | |
1357 | // in their category values. | |
1358 | // | |
1359 | if ((category & 0x4000) != 0) { | |
1360 | fDictionaryCharCount++; | |
1361 | // And off the dictionary flag bit. | |
1362 | category &= ~0x4000; | |
1363 | } | |
1364 | } | |
1365 | ||
1366 | #ifdef RBBI_DEBUG | |
1367 | if (fTrace) { | |
1368 | RBBIDebugPrintf(" %4d ", (int32_t)utext_getNativeIndex(fText)); | |
1369 | if (0x20<=c && c<0x7f) { | |
1370 | RBBIDebugPrintf("\"%c\" ", c); | |
1371 | } else { | |
1372 | RBBIDebugPrintf("%5x ", c); | |
1373 | } | |
1374 | RBBIDebugPrintf("%3d %3d\n", state, category); | |
1375 | } | |
1376 | #endif | |
1377 | ||
1378 | // State Transition - move machine to its next state | |
1379 | // | |
1380 | ||
1381 | // Note: fNextState is defined as uint16_t[2], but we are casting | |
1382 | // a generated RBBI table to RBBIStateTableRow and some tables | |
1383 | // actually have more than 2 categories. | |
1384 | U_ASSERT(category<fData->fHeader->fCatCount); | |
1385 | state = row->fNextState[category]; /*Not accessing beyond memory*/ | |
1386 | row = (RBBIStateTableRow *) | |
1387 | (statetable->fTableData + (statetable->fRowLen * state)); | |
1388 | ||
1389 | if (row->fAccepting == -1) { | |
1390 | // Match found, common case. | |
1391 | result = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1392 | } | |
1393 | ||
1394 | int16_t completedRule = row->fAccepting; | |
1395 | if (completedRule > 0) { | |
1396 | // Lookahead match is completed. | |
1397 | int32_t lookaheadResult = lookAheadMatches.getPosition(completedRule); | |
1398 | if (lookaheadResult >= 0) { | |
1399 | UTEXT_SETNATIVEINDEX(fText, lookaheadResult); | |
1400 | return lookaheadResult; | |
1401 | } | |
1402 | } | |
1403 | int16_t rule = row->fLookAhead; | |
1404 | if (rule != 0) { | |
1405 | // At the position of a '/' in a look-ahead match. Record it. | |
1406 | int32_t pos = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1407 | lookAheadMatches.setPosition(rule, pos); | |
1408 | } | |
1409 | ||
1410 | if (state == STOP_STATE) { | |
1411 | // This is the normal exit from the lookup state machine. | |
1412 | // We have advanced through the string until it is certain that no | |
1413 | // longer match is possible, no matter what characters follow. | |
1414 | break; | |
1415 | } | |
1416 | ||
1417 | // Move (backwards) to the next character to process. | |
1418 | // If this is a beginning-of-input loop iteration, don't advance | |
1419 | // the input position. The next iteration will be processing the | |
1420 | // first real input character. | |
1421 | if (mode == RBBI_RUN) { | |
1422 | c = UTEXT_PREVIOUS32(fText); | |
1423 | } else { | |
1424 | if (mode == RBBI_START) { | |
1425 | mode = RBBI_RUN; | |
1426 | } | |
1427 | } | |
1428 | } | |
1429 | ||
1430 | // The state machine is done. Check whether it found a match... | |
1431 | ||
1432 | // If the iterator failed to advance in the match engine, force it ahead by one. | |
1433 | // (This really indicates a defect in the break rules. They should always match | |
1434 | // at least one character.) | |
1435 | if (result == initialPosition) { | |
1436 | UTEXT_SETNATIVEINDEX(fText, initialPosition); | |
1437 | UTEXT_PREVIOUS32(fText); | |
1438 | result = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1439 | } | |
1440 | ||
1441 | // Leave the iterator at our result position. | |
1442 | UTEXT_SETNATIVEINDEX(fText, result); | |
1443 | #ifdef RBBI_DEBUG | |
1444 | if (fTrace) { | |
1445 | RBBIDebugPrintf("result = %d\n\n", result); | |
1446 | } | |
1447 | #endif | |
1448 | return result; | |
1449 | } | |
1450 | ||
1451 | ||
1452 | void | |
1453 | RuleBasedBreakIterator57::reset() | |
1454 | { | |
1455 | if (fCachedBreakPositions) { | |
1456 | uprv_free(fCachedBreakPositions); | |
1457 | } | |
1458 | fCachedBreakPositions = NULL; | |
1459 | fNumCachedBreakPositions = 0; | |
1460 | fDictionaryCharCount = 0; | |
1461 | fPositionInCache = 0; | |
1462 | } | |
1463 | ||
1464 | ||
1465 | ||
1466 | //------------------------------------------------------------------------------- | |
1467 | // | |
1468 | // getRuleStatus() Return the break rule tag associated with the current | |
1469 | // iterator position. If the iterator arrived at its current | |
1470 | // position by iterating forwards, the value will have been | |
1471 | // cached by the handleNext() function. | |
1472 | // | |
1473 | // If no cached status value is available, the status is | |
1474 | // found by doing a previous() followed by a next(), which | |
1475 | // leaves the iterator where it started, and computes the | |
1476 | // status while doing the next(). | |
1477 | // | |
1478 | //------------------------------------------------------------------------------- | |
1479 | void RuleBasedBreakIterator57::makeRuleStatusValid() { | |
1480 | if (fLastStatusIndexValid == FALSE) { | |
1481 | // No cached status is available. | |
1482 | if (fText == NULL || current() == 0) { | |
1483 | // At start of text, or there is no text. Status is always zero. | |
1484 | fLastRuleStatusIndex = 0; | |
1485 | fLastStatusIndexValid = TRUE; | |
1486 | } else { | |
1487 | // Not at start of text. Find status the tedious way. | |
1488 | int32_t pa = current(); | |
1489 | previous(); | |
1490 | if (fNumCachedBreakPositions > 0) { | |
1491 | reset(); // Blow off the dictionary cache | |
1492 | } | |
1493 | int32_t pb = next(); | |
1494 | if (pa != pb) { | |
1495 | // note: the if (pa != pb) test is here only to eliminate warnings for | |
1496 | // unused local variables on gcc. Logically, it isn't needed. | |
1497 | U_ASSERT(pa == pb); | |
1498 | } | |
1499 | } | |
1500 | } | |
1501 | U_ASSERT(fLastRuleStatusIndex >= 0 && fLastRuleStatusIndex < fData->fStatusMaxIdx); | |
1502 | } | |
1503 | ||
1504 | ||
1505 | int32_t RuleBasedBreakIterator57::getRuleStatus() const { | |
1506 | RuleBasedBreakIterator57 *nonConstThis = (RuleBasedBreakIterator57 *)this; | |
1507 | nonConstThis->makeRuleStatusValid(); | |
1508 | ||
1509 | // fLastRuleStatusIndex indexes to the start of the appropriate status record | |
1510 | // (the number of status values.) | |
1511 | // This function returns the last (largest) of the array of status values. | |
1512 | int32_t idx = fLastRuleStatusIndex + fData->fRuleStatusTable[fLastRuleStatusIndex]; | |
1513 | int32_t tagVal = fData->fRuleStatusTable[idx]; | |
1514 | ||
1515 | return tagVal; | |
1516 | } | |
1517 | ||
1518 | ||
1519 | ||
1520 | ||
1521 | int32_t RuleBasedBreakIterator57::getRuleStatusVec( | |
1522 | int32_t *fillInVec, int32_t capacity, UErrorCode &status) | |
1523 | { | |
1524 | if (U_FAILURE(status)) { | |
1525 | return 0; | |
1526 | } | |
1527 | ||
1528 | RuleBasedBreakIterator57 *nonConstThis = (RuleBasedBreakIterator57 *)this; | |
1529 | nonConstThis->makeRuleStatusValid(); | |
1530 | int32_t numVals = fData->fRuleStatusTable[fLastRuleStatusIndex]; | |
1531 | int32_t numValsToCopy = numVals; | |
1532 | if (numVals > capacity) { | |
1533 | status = U_BUFFER_OVERFLOW_ERROR; | |
1534 | numValsToCopy = capacity; | |
1535 | } | |
1536 | int i; | |
1537 | for (i=0; i<numValsToCopy; i++) { | |
1538 | fillInVec[i] = fData->fRuleStatusTable[fLastRuleStatusIndex + i + 1]; | |
1539 | } | |
1540 | return numVals; | |
1541 | } | |
1542 | ||
1543 | ||
1544 | ||
1545 | //------------------------------------------------------------------------------- | |
1546 | // | |
1547 | // getBinaryRules Access to the compiled form of the rules, | |
1548 | // for use by build system tools that save the data | |
1549 | // for standard iterator types. | |
1550 | // | |
1551 | //------------------------------------------------------------------------------- | |
1552 | const uint8_t *RuleBasedBreakIterator57::getBinaryRules(uint32_t &length) { | |
1553 | const uint8_t *retPtr = NULL; | |
1554 | length = 0; | |
1555 | ||
1556 | if (fData != NULL) { | |
1557 | retPtr = (const uint8_t *)fData->fHeader; | |
1558 | length = fData->fHeader->fLength; | |
1559 | } | |
1560 | return retPtr; | |
1561 | } | |
1562 | ||
1563 | ||
1564 | BreakIterator * RuleBasedBreakIterator57::createBufferClone(void * /*stackBuffer*/, | |
1565 | int32_t &bufferSize, | |
1566 | UErrorCode &status) | |
1567 | { | |
1568 | if (U_FAILURE(status)){ | |
1569 | return NULL; | |
1570 | } | |
1571 | ||
1572 | if (bufferSize == 0) { | |
1573 | bufferSize = 1; // preflighting for deprecated functionality | |
1574 | return NULL; | |
1575 | } | |
1576 | ||
1577 | BreakIterator *clonedBI = clone(); | |
1578 | if (clonedBI == NULL) { | |
1579 | status = U_MEMORY_ALLOCATION_ERROR; | |
1580 | } else { | |
1581 | status = U_SAFECLONE_ALLOCATED_WARNING; | |
1582 | } | |
1583 | return (RuleBasedBreakIterator57 *)clonedBI; | |
1584 | } | |
1585 | ||
1586 | //------------------------------------------------------------------------------- | |
1587 | // | |
1588 | // checkDictionary This function handles all processing of characters in | |
1589 | // the "dictionary" set. It will determine the appropriate | |
1590 | // course of action, and possibly set up a cache in the | |
1591 | // process. | |
1592 | // | |
1593 | //------------------------------------------------------------------------------- | |
1594 | int32_t RuleBasedBreakIterator57::checkDictionary(int32_t startPos, | |
1595 | int32_t endPos, | |
1596 | UBool reverse) { | |
1597 | // Reset the old break cache first. | |
1598 | reset(); | |
1599 | ||
1600 | // note: code segment below assumes that dictionary chars are in the | |
1601 | // startPos-endPos range | |
1602 | // value returned should be next character in sequence | |
1603 | if ((endPos - startPos) <= 1) { | |
1604 | return (reverse ? startPos : endPos); | |
1605 | } | |
1606 | ||
1607 | // Starting from the starting point, scan towards the proposed result, | |
1608 | // looking for the first dictionary character (which may be the one | |
1609 | // we're on, if we're starting in the middle of a range). | |
1610 | utext_setNativeIndex(fText, reverse ? endPos : startPos); | |
1611 | if (reverse) { | |
1612 | UTEXT_PREVIOUS32(fText); | |
1613 | } | |
1614 | ||
1615 | int32_t rangeStart = startPos; | |
1616 | int32_t rangeEnd = endPos; | |
1617 | ||
1618 | uint16_t category; | |
1619 | int32_t current; | |
1620 | UErrorCode status = U_ZERO_ERROR; | |
1621 | UVector32 breaks(status); // changed from UStack in ICU 57 | |
1622 | int32_t foundBreakCount = 0; | |
1623 | UChar32 c = utext_current32(fText); | |
1624 | ||
1625 | UTRIE_GET16(&fData->fTrie, c, category); | |
1626 | ||
1627 | // Is the character we're starting on a dictionary character? If so, we | |
1628 | // need to back up to include the entire run; otherwise the results of | |
1629 | // the break algorithm will differ depending on where we start. Since | |
1630 | // the result is cached and there is typically a non-dictionary break | |
1631 | // within a small number of words, there should be little performance impact. | |
1632 | if (category & 0x4000) { | |
1633 | if (reverse) { | |
1634 | do { | |
1635 | utext_next32(fText); // TODO: recast to work directly with postincrement. | |
1636 | c = utext_current32(fText); | |
1637 | UTRIE_GET16(&fData->fTrie, c, category); | |
1638 | } while (c != U_SENTINEL && (category & 0x4000)); | |
1639 | // Back up to the last dictionary character | |
1640 | rangeEnd = (int32_t)UTEXT_GETNATIVEINDEX(fText); | |
1641 | if (c == U_SENTINEL) { | |
1642 | // c = fText->last32(); | |
1643 | // TODO: why was this if needed? | |
1644 | c = UTEXT_PREVIOUS32(fText); | |
1645 | } | |
1646 | else { | |
1647 | c = UTEXT_PREVIOUS32(fText); | |
1648 | } | |
1649 | } | |
1650 | else { | |
1651 | do { | |
1652 | c = UTEXT_PREVIOUS32(fText); | |
1653 | UTRIE_GET16(&fData->fTrie, c, category); | |
1654 | } | |
1655 | while (c != U_SENTINEL && (category & 0x4000)); | |
1656 | // Back up to the last dictionary character | |
1657 | if (c == U_SENTINEL) { | |
1658 | // c = fText->first32(); | |
1659 | c = utext_current32(fText); | |
1660 | } | |
1661 | else { | |
1662 | utext_next32(fText); | |
1663 | c = utext_current32(fText); | |
1664 | } | |
1665 | rangeStart = (int32_t)UTEXT_GETNATIVEINDEX(fText);; | |
1666 | } | |
1667 | UTRIE_GET16(&fData->fTrie, c, category); | |
1668 | } | |
1669 | ||
1670 | // Loop through the text, looking for ranges of dictionary characters. | |
1671 | // For each span, find the appropriate break engine, and ask it to find | |
1672 | // any breaks within the span. | |
1673 | // Note: we always do this in the forward direction, so that the break | |
1674 | // cache is built in the right order. | |
1675 | if (reverse) { | |
1676 | utext_setNativeIndex(fText, rangeStart); | |
1677 | c = utext_current32(fText); | |
1678 | UTRIE_GET16(&fData->fTrie, c, category); | |
1679 | } | |
1680 | while(U_SUCCESS(status)) { | |
1681 | while((current = (int32_t)UTEXT_GETNATIVEINDEX(fText)) < rangeEnd && (category & 0x4000) == 0) { | |
1682 | utext_next32(fText); // TODO: tweak for post-increment operation | |
1683 | c = utext_current32(fText); | |
1684 | UTRIE_GET16(&fData->fTrie, c, category); | |
1685 | } | |
1686 | if (current >= rangeEnd) { | |
1687 | break; | |
1688 | } | |
1689 | ||
1690 | // We now have a dictionary character. Get the appropriate language object | |
1691 | // to deal with it. | |
1692 | const LanguageBreakEngine *lbe = getLanguageBreakEngine(c); | |
1693 | ||
1694 | // Ask the language object if there are any breaks. It will leave the text | |
1695 | // pointer on the other side of its range, ready to search for the next one. | |
1696 | if (lbe != NULL) { | |
1697 | foundBreakCount += lbe->findBreaks(fText, rangeStart, rangeEnd, breaks); | |
1698 | } | |
1699 | ||
1700 | // Reload the loop variables for the next go-round | |
1701 | c = utext_current32(fText); | |
1702 | UTRIE_GET16(&fData->fTrie, c, category); | |
1703 | } | |
1704 | ||
1705 | // If we found breaks, build a new break cache. The first and last entries must | |
1706 | // be the original starting and ending position. | |
1707 | if (foundBreakCount > 0) { | |
1708 | U_ASSERT(foundBreakCount == breaks.size()); | |
1709 | int32_t totalBreaks = foundBreakCount; | |
1710 | if (startPos < breaks.elementAti(0)) { | |
1711 | totalBreaks += 1; | |
1712 | } | |
1713 | if (endPos > breaks.peeki()) { | |
1714 | totalBreaks += 1; | |
1715 | } | |
1716 | fCachedBreakPositions = (int32_t *)uprv_malloc(totalBreaks * sizeof(int32_t)); | |
1717 | if (fCachedBreakPositions != NULL) { | |
1718 | int32_t out = 0; | |
1719 | fNumCachedBreakPositions = totalBreaks; | |
1720 | if (startPos < breaks.elementAti(0)) { | |
1721 | fCachedBreakPositions[out++] = startPos; | |
1722 | } | |
1723 | for (int32_t i = 0; i < foundBreakCount; ++i) { | |
1724 | fCachedBreakPositions[out++] = breaks.elementAti(i); | |
1725 | } | |
1726 | if (endPos > fCachedBreakPositions[out-1]) { | |
1727 | fCachedBreakPositions[out] = endPos; | |
1728 | } | |
1729 | // If there are breaks, then by definition, we are replacing the original | |
1730 | // proposed break by one of the breaks we found. Use following() and | |
1731 | // preceding() to do the work. They should never recurse in this case. | |
1732 | if (reverse) { | |
1733 | return preceding(endPos); | |
1734 | } | |
1735 | else { | |
1736 | return following(startPos); | |
1737 | } | |
1738 | } | |
1739 | // If the allocation failed, just fall through to the "no breaks found" case. | |
1740 | } | |
1741 | ||
1742 | // If we get here, there were no language-based breaks. Set the text pointer | |
1743 | // to the original proposed break. | |
1744 | utext_setNativeIndex(fText, reverse ? startPos : endPos); | |
1745 | return (reverse ? startPos : endPos); | |
1746 | } | |
1747 | ||
1748 | U_NAMESPACE_END | |
1749 | ||
1750 | ||
1751 | static icu::UStack *gLanguageBreakFactories = NULL; | |
1752 | static icu::UInitOnce gLanguageBreakFactoriesInitOnce = U_INITONCE_INITIALIZER; | |
1753 | ||
1754 | /** | |
1755 | * Release all static memory held by breakiterator. | |
1756 | */ | |
1757 | U_CDECL_BEGIN | |
1758 | static UBool U_CALLCONV breakiterator_cleanup_dict(void) { | |
1759 | if (gLanguageBreakFactories) { | |
1760 | delete gLanguageBreakFactories; | |
1761 | gLanguageBreakFactories = NULL; | |
1762 | } | |
1763 | gLanguageBreakFactoriesInitOnce.reset(); | |
1764 | return TRUE; | |
1765 | } | |
1766 | U_CDECL_END | |
1767 | ||
1768 | U_CDECL_BEGIN | |
1769 | static void U_CALLCONV _deleteFactory(void *obj) { | |
1770 | delete (icu::LanguageBreakFactory *) obj; | |
1771 | } | |
1772 | U_CDECL_END | |
1773 | U_NAMESPACE_BEGIN | |
1774 | ||
1775 | static void U_CALLCONV initLanguageFactories() { | |
1776 | UErrorCode status = U_ZERO_ERROR; | |
1777 | U_ASSERT(gLanguageBreakFactories == NULL); | |
1778 | gLanguageBreakFactories = new UStack(_deleteFactory, NULL, status); | |
1779 | if (gLanguageBreakFactories != NULL && U_SUCCESS(status)) { | |
1780 | ICULanguageBreakFactory *builtIn = new ICULanguageBreakFactory(status); | |
1781 | gLanguageBreakFactories->push(builtIn, status); | |
1782 | #ifdef U_LOCAL_SERVICE_HOOK | |
1783 | LanguageBreakFactory *extra = (LanguageBreakFactory *)uprv_svc_hook("languageBreakFactory", &status); | |
1784 | if (extra != NULL) { | |
1785 | gLanguageBreakFactories->push(extra, status); | |
1786 | } | |
1787 | #endif | |
1788 | } | |
1789 | ucln_common_registerCleanup(UCLN_COMMON_RBBI57, breakiterator_cleanup_dict); | |
1790 | } | |
1791 | ||
1792 | ||
1793 | static const LanguageBreakEngine* | |
1794 | getLanguageBreakEngineFromFactory(UChar32 c, int32_t breakType) | |
1795 | { | |
1796 | umtx_initOnce(gLanguageBreakFactoriesInitOnce, &initLanguageFactories); | |
1797 | if (gLanguageBreakFactories == NULL) { | |
1798 | return NULL; | |
1799 | } | |
1800 | ||
1801 | int32_t i = gLanguageBreakFactories->size(); | |
1802 | const LanguageBreakEngine *lbe = NULL; | |
1803 | while (--i >= 0) { | |
1804 | LanguageBreakFactory *factory = (LanguageBreakFactory *)(gLanguageBreakFactories->elementAt(i)); | |
1805 | lbe = factory->getEngineFor(c); | |
1806 | if (lbe != NULL) { | |
1807 | break; | |
1808 | } | |
1809 | } | |
1810 | return lbe; | |
1811 | } | |
1812 | ||
1813 | ||
1814 | //------------------------------------------------------------------------------- | |
1815 | // | |
1816 | // getLanguageBreakEngine Find an appropriate LanguageBreakEngine for the | |
1817 | // the character c. | |
1818 | // | |
1819 | //------------------------------------------------------------------------------- | |
1820 | const LanguageBreakEngine * | |
1821 | RuleBasedBreakIterator57::getLanguageBreakEngine(UChar32 c) { | |
1822 | const LanguageBreakEngine *lbe = NULL; | |
1823 | UErrorCode status = U_ZERO_ERROR; | |
1824 | ||
1825 | if (fLanguageBreakEngines == NULL) { | |
1826 | fLanguageBreakEngines = new UStack(status); | |
1827 | if (fLanguageBreakEngines == NULL || U_FAILURE(status)) { | |
1828 | delete fLanguageBreakEngines; | |
1829 | fLanguageBreakEngines = 0; | |
1830 | return NULL; | |
1831 | } | |
1832 | } | |
1833 | ||
1834 | int32_t i = fLanguageBreakEngines->size(); | |
1835 | while (--i >= 0) { | |
1836 | lbe = (const LanguageBreakEngine *)(fLanguageBreakEngines->elementAt(i)); | |
1837 | if (lbe->handles(c)) { | |
1838 | return lbe; | |
1839 | } | |
1840 | } | |
1841 | ||
1842 | // No existing dictionary took the character. See if a factory wants to | |
1843 | // give us a new LanguageBreakEngine for this character. | |
1844 | lbe = getLanguageBreakEngineFromFactory(c, fBreakType); | |
1845 | ||
1846 | // If we got one, use it and push it on our stack. | |
1847 | if (lbe != NULL) { | |
1848 | fLanguageBreakEngines->push((void *)lbe, status); | |
1849 | // Even if we can't remember it, we can keep looking it up, so | |
1850 | // return it even if the push fails. | |
1851 | return lbe; | |
1852 | } | |
1853 | ||
1854 | // No engine is forthcoming for this character. Add it to the | |
1855 | // reject set. Create the reject break engine if needed. | |
1856 | if (fUnhandledBreakEngine == NULL) { | |
1857 | fUnhandledBreakEngine = new UnhandledEngine(status); | |
1858 | if (U_SUCCESS(status) && fUnhandledBreakEngine == NULL) { | |
1859 | status = U_MEMORY_ALLOCATION_ERROR; | |
1860 | } | |
1861 | // Put it last so that scripts for which we have an engine get tried | |
1862 | // first. | |
1863 | fLanguageBreakEngines->insertElementAt(fUnhandledBreakEngine, 0, status); | |
1864 | // If we can't insert it, or creation failed, get rid of it | |
1865 | if (U_FAILURE(status)) { | |
1866 | delete fUnhandledBreakEngine; | |
1867 | fUnhandledBreakEngine = 0; | |
1868 | return NULL; | |
1869 | } | |
1870 | } | |
1871 | ||
1872 | // Tell the reject engine about the character; at its discretion, it may | |
1873 | // add more than just the one character. | |
1874 | fUnhandledBreakEngine->handleCharacter(c); | |
1875 | ||
1876 | return fUnhandledBreakEngine; | |
1877 | } | |
1878 | ||
1879 | void RuleBasedBreakIterator57::setBreakType(int32_t type) { | |
1880 | fBreakType = type; | |
1881 | reset(); | |
1882 | } | |
1883 | ||
1884 | U_NAMESPACE_END | |
1885 | ||
1886 | #endif /* #if !UCONFIG_NO_BREAK_ITERATION */ |