]> git.saurik.com Git - apple/hfs.git/blob - core/hfs_vnops.c
hfs-407.1.3.tar.gz
[apple/hfs.git] / core / hfs_vnops.c
1 /*
2 * Copyright (c) 2000-2017 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <libkern/OSAtomic.h>
30 #include <stdbool.h>
31 #include <sys/systm.h>
32 #include <sys/param.h>
33 #include <sys/kernel.h>
34 #include <sys/dirent.h>
35 #include <sys/stat.h>
36 #include <sys/buf.h>
37 #include <sys/mount.h>
38 #include <sys/vnode_if.h>
39 #include <sys/malloc.h>
40 #include <sys/ubc.h>
41 #include <sys/paths.h>
42 #include <sys/quota.h>
43 #include <sys/time.h>
44 #include <sys/disk.h>
45 #include <sys/kauth.h>
46 #include <sys/fsctl.h>
47 #include <sys/xattr.h>
48 #include <sys/decmpfs.h>
49 #include <sys/mman.h>
50 #include <sys/doc_tombstone.h>
51 #include <sys/namei.h>
52 #include <string.h>
53 #include <sys/fsevents.h>
54
55 #include <miscfs/specfs/specdev.h>
56 #include <miscfs/fifofs/fifo.h>
57 #include <vfs/vfs_support.h>
58
59 #include <sys/kdebug.h>
60 #include <sys/sysctl.h>
61 #include <stdbool.h>
62
63 #include "hfs.h"
64 #include "hfs_catalog.h"
65 #include "hfs_cnode.h"
66 #include "hfs_dbg.h"
67 #include "hfs_mount.h"
68 #include "hfs_quota.h"
69 #include "hfs_endian.h"
70 #include "hfs_kdebug.h"
71 #include "hfs_cprotect.h"
72
73 #if HFS_CONFIG_KEY_ROLL
74 #include "hfs_key_roll.h"
75 #endif
76
77 #include "BTreesInternal.h"
78 #include "FileMgrInternal.h"
79
80 /* Global vfs data structures for hfs */
81
82 /*
83 * Always F_FULLFSYNC? 1=yes,0=no (default due to "various" reasons is
84 * 'no'). At some point this might need to move into VFS and we might
85 * need to provide an API to get at it, but for now, this is only used
86 * by HFS+.
87 */
88 int always_do_fullfsync = 0;
89 SYSCTL_DECL(_vfs_generic);
90 HFS_SYSCTL(INT, _vfs_generic, OID_AUTO, always_do_fullfsync, CTLFLAG_RW | CTLFLAG_LOCKED, &always_do_fullfsync, 0, "always F_FULLFSYNC when fsync is called")
91
92 int hfs_makenode(struct vnode *dvp, struct vnode **vpp,
93 struct componentname *cnp, struct vnode_attr *vap,
94 vfs_context_t ctx);
95 int hfs_metasync(struct hfsmount *hfsmp, daddr64_t node, __unused struct proc *p);
96 int hfs_metasync_all(struct hfsmount *hfsmp);
97
98 int hfs_removedir(struct vnode *, struct vnode *, struct componentname *,
99 int, int);
100 int hfs_removefile(struct vnode *, struct vnode *, struct componentname *,
101 int, int, int, struct vnode *, int);
102
103 /* Used here and in cnode teardown -- for symlinks */
104 int hfs_removefile_callback(struct buf *bp, void *hfsmp);
105
106 enum {
107 HFS_MOVE_DATA_INCLUDE_RSRC = 1,
108 };
109 typedef uint32_t hfs_move_data_options_t;
110
111 static int hfs_move_data(cnode_t *from_cp, cnode_t *to_cp,
112 hfs_move_data_options_t options);
113 static int hfs_move_fork(filefork_t *srcfork, cnode_t *src,
114 filefork_t *dstfork, cnode_t *dst);
115
116
117 static int hfs_exchangedata_getxattr (struct vnode *vp, uint32_t name_selector, void **buffer, size_t *xattr_size);
118 static int hfs_exchangedata_setxattr (struct hfsmount *hfsmp, uint32_t fileid,
119 uint32_t name_selector, void *buffer, size_t xattr_size);
120
121 enum XATTR_NAME_ENTRIES {
122 quarantine = 0,
123 MAX_NUM_XATTR_NAMES //must be last
124 };
125
126
127 /* These are special EAs that follow the content in exchangedata(2). */
128 const char *XATTR_NAMES [MAX_NUM_XATTR_NAMES] = { "com.apple.quarantine" };
129
130 #define MAX_EXCHANGE_EA_SIZE 4096
131
132 #if HFS_COMPRESSION
133 static int hfs_move_compressed(cnode_t *from_vp, cnode_t *to_vp);
134 #endif
135
136 decmpfs_cnode* hfs_lazy_init_decmpfs_cnode (struct cnode *cp);
137
138 #if FIFO
139 static int hfsfifo_read(struct vnop_read_args *);
140 static int hfsfifo_write(struct vnop_write_args *);
141 static int hfsfifo_close(struct vnop_close_args *);
142
143 extern int (**fifo_vnodeop_p)(void *);
144 #endif /* FIFO */
145
146 int hfs_vnop_close(struct vnop_close_args*);
147 int hfs_vnop_exchange(struct vnop_exchange_args*);
148 int hfs_vnop_fsync(struct vnop_fsync_args*);
149 int hfs_vnop_mkdir(struct vnop_mkdir_args*);
150 int hfs_vnop_mknod(struct vnop_mknod_args*);
151 int hfs_vnop_getattr(struct vnop_getattr_args*);
152 int hfs_vnop_open(struct vnop_open_args*);
153 int hfs_vnop_readdir(struct vnop_readdir_args*);
154 int hfs_vnop_rename(struct vnop_rename_args*);
155 int hfs_vnop_renamex(struct vnop_renamex_args*);
156 int hfs_vnop_rmdir(struct vnop_rmdir_args*);
157 int hfs_vnop_symlink(struct vnop_symlink_args*);
158 int hfs_vnop_setattr(struct vnop_setattr_args*);
159 int hfs_vnop_readlink(struct vnop_readlink_args *);
160 int hfs_vnop_pathconf(struct vnop_pathconf_args *);
161 int hfs_vnop_mmap(struct vnop_mmap_args *ap);
162 int hfsspec_read(struct vnop_read_args *);
163 int hfsspec_write(struct vnop_write_args *);
164 int hfsspec_close(struct vnop_close_args *);
165
166 /* Options for hfs_removedir and hfs_removefile */
167 #define HFSRM_SKIP_RESERVE 0x01
168
169
170
171 /*****************************************************************************
172 *
173 * Common Operations on vnodes
174 *
175 *****************************************************************************/
176
177 /*
178 * Is the given cnode either the .journal or .journal_info_block file on
179 * a volume with an active journal? Many VNOPs use this to deny access
180 * to those files.
181 *
182 * Note: the .journal file on a volume with an external journal still
183 * returns true here, even though it does not actually hold the contents
184 * of the volume's journal.
185 */
186 static _Bool
187 hfs_is_journal_file(struct hfsmount *hfsmp, struct cnode *cp)
188 {
189 if (hfsmp->jnl != NULL &&
190 (cp->c_fileid == hfsmp->hfs_jnlinfoblkid ||
191 cp->c_fileid == hfsmp->hfs_jnlfileid)) {
192 return true;
193 } else {
194 return false;
195 }
196 }
197
198 /*
199 * Create a regular file.
200 */
201 int
202 hfs_vnop_create(struct vnop_create_args *ap)
203 {
204 /*
205 * We leave handling of certain race conditions here to the caller
206 * which will have a better understanding of the semantics it
207 * requires. For example, if it turns out that the file exists,
208 * it would be wrong of us to return a reference to the existing
209 * file because the caller might not want that and it would be
210 * misleading to suggest the file had been created when it hadn't
211 * been. Note that our NFS server code does not set the
212 * VA_EXCLUSIVE flag so you cannot assume that callers don't want
213 * EEXIST errors if it's not set. The common case, where users
214 * are calling open with the O_CREAT mode, is handled in VFS; when
215 * we return EEXIST, it will loop and do the look-up again.
216 */
217 return hfs_makenode(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap, ap->a_context);
218 }
219
220 /*
221 * Make device special file.
222 */
223 int
224 hfs_vnop_mknod(struct vnop_mknod_args *ap)
225 {
226 struct vnode_attr *vap = ap->a_vap;
227 struct vnode *dvp = ap->a_dvp;
228 struct vnode **vpp = ap->a_vpp;
229 struct cnode *cp;
230 int error;
231
232 if (VTOVCB(dvp)->vcbSigWord != kHFSPlusSigWord) {
233 return (ENOTSUP);
234 }
235
236 /* Create the vnode */
237 error = hfs_makenode(dvp, vpp, ap->a_cnp, vap, ap->a_context);
238 if (error)
239 return (error);
240
241 cp = VTOC(*vpp);
242 cp->c_touch_acctime = TRUE;
243 cp->c_touch_chgtime = TRUE;
244 cp->c_touch_modtime = TRUE;
245
246 if ((vap->va_rdev != VNOVAL) &&
247 (vap->va_type == VBLK || vap->va_type == VCHR))
248 cp->c_rdev = vap->va_rdev;
249
250 return (0);
251 }
252
253 #if HFS_COMPRESSION
254 /*
255 * hfs_ref_data_vp(): returns the data fork vnode for a given cnode.
256 * In the (hopefully rare) case where the data fork vnode is not
257 * present, it will use hfs_vget() to create a new vnode for the
258 * data fork.
259 *
260 * NOTE: If successful and a vnode is returned, the caller is responsible
261 * for releasing the returned vnode with vnode_rele().
262 */
263 static int
264 hfs_ref_data_vp(struct cnode *cp, struct vnode **data_vp, int skiplock)
265 {
266 int vref = 0;
267
268 if (!data_vp || !cp) /* sanity check incoming parameters */
269 return EINVAL;
270
271 /* maybe we should take the hfs cnode lock here, and if so, use the skiplock parameter to tell us not to */
272
273 if (!skiplock) hfs_lock(cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT);
274 struct vnode *c_vp = cp->c_vp;
275 if (c_vp) {
276 /* we already have a data vnode */
277 *data_vp = c_vp;
278 vref = vnode_ref(*data_vp);
279 if (!skiplock) hfs_unlock(cp);
280 if (vref == 0) {
281 return 0;
282 }
283 return EINVAL;
284 }
285 /* no data fork vnode in the cnode, so ask hfs for one. */
286
287 if (!cp->c_rsrc_vp) {
288 /* if we don't have either a c_vp or c_rsrc_vp, we can't really do anything useful */
289 *data_vp = NULL;
290 if (!skiplock) hfs_unlock(cp);
291 return EINVAL;
292 }
293
294 if (0 == hfs_vget(VTOHFS(cp->c_rsrc_vp), cp->c_cnid, data_vp, 1, 0) &&
295 0 != data_vp) {
296 vref = vnode_ref(*data_vp);
297 vnode_put(*data_vp);
298 if (!skiplock) hfs_unlock(cp);
299 if (vref == 0) {
300 return 0;
301 }
302 return EINVAL;
303 }
304 /* there was an error getting the vnode */
305 *data_vp = NULL;
306 if (!skiplock) hfs_unlock(cp);
307 return EINVAL;
308 }
309
310 /*
311 * hfs_lazy_init_decmpfs_cnode(): returns the decmpfs_cnode for a cnode,
312 * allocating it if necessary; returns NULL if there was an allocation error.
313 * function is non-static so that it can be used from the FCNTL handler.
314 */
315 decmpfs_cnode *
316 hfs_lazy_init_decmpfs_cnode(struct cnode *cp)
317 {
318 if (!cp->c_decmp) {
319 decmpfs_cnode *dp = decmpfs_cnode_alloc();
320 decmpfs_cnode_init(dp);
321 if (!OSCompareAndSwapPtr(NULL, dp, (void * volatile *)&cp->c_decmp)) {
322 /* another thread got here first, so free the decmpfs_cnode we allocated */
323 decmpfs_cnode_destroy(dp);
324 decmpfs_cnode_free(dp);
325 }
326 }
327
328 return cp->c_decmp;
329 }
330
331 /*
332 * hfs_file_is_compressed(): returns 1 if the file is compressed, and 0 (zero) if not.
333 * if the file's compressed flag is set, makes sure that the decmpfs_cnode field
334 * is allocated by calling hfs_lazy_init_decmpfs_cnode(), then makes sure it is populated,
335 * or else fills it in via the decmpfs_file_is_compressed() function.
336 */
337 int
338 hfs_file_is_compressed(struct cnode *cp, int skiplock)
339 {
340 int ret = 0;
341
342 /* fast check to see if file is compressed. If flag is clear, just answer no */
343 if (!(cp->c_bsdflags & UF_COMPRESSED)) {
344 return 0;
345 }
346
347 decmpfs_cnode *dp = hfs_lazy_init_decmpfs_cnode(cp);
348 if (!dp) {
349 /* error allocating a decmpfs cnode, treat the file as uncompressed */
350 return 0;
351 }
352
353 /* flag was set, see if the decmpfs_cnode state is valid (zero == invalid) */
354 uint32_t decmpfs_state = decmpfs_cnode_get_vnode_state(dp);
355 switch(decmpfs_state) {
356 case FILE_IS_COMPRESSED:
357 case FILE_IS_CONVERTING: /* treat decompressing files as if they are compressed */
358 return 1;
359 case FILE_IS_NOT_COMPRESSED:
360 return 0;
361 /* otherwise the state is not cached yet */
362 }
363
364 /* decmpfs hasn't seen this file yet, so call decmpfs_file_is_compressed() to init the decmpfs_cnode struct */
365 struct vnode *data_vp = NULL;
366 if (0 == hfs_ref_data_vp(cp, &data_vp, skiplock)) {
367 if (data_vp) {
368 ret = decmpfs_file_is_compressed(data_vp, VTOCMP(data_vp)); // fill in decmpfs_cnode
369 vnode_rele(data_vp);
370 }
371 }
372 return ret;
373 }
374
375 /* hfs_uncompressed_size_of_compressed_file() - get the uncompressed size of the file.
376 * if the caller has passed a valid vnode (has a ref count > 0), then hfsmp and fid are not required.
377 * if the caller doesn't have a vnode, pass NULL in vp, and pass valid hfsmp and fid.
378 * files size is returned in size (required)
379 * if the indicated file is a directory (or something that doesn't have a data fork), then this call
380 * will return an error and the caller should fall back to treating the item as an uncompressed file
381 */
382 int
383 hfs_uncompressed_size_of_compressed_file(struct hfsmount *hfsmp, struct vnode *vp, cnid_t fid, off_t *size, int skiplock)
384 {
385 int ret = 0;
386 int putaway = 0; /* flag to remember if we used hfs_vget() */
387
388 if (!size) {
389 return EINVAL; /* no place to put the file size */
390 }
391
392 if (NULL == vp) {
393 if (!hfsmp || !fid) { /* make sure we have the required parameters */
394 return EINVAL;
395 }
396 if (0 != hfs_vget(hfsmp, fid, &vp, skiplock, 0)) { /* vnode is null, use hfs_vget() to get it */
397 vp = NULL;
398 } else {
399 putaway = 1; /* note that hfs_vget() was used to aquire the vnode */
400 }
401 }
402 /* this double check for compression (hfs_file_is_compressed)
403 * ensures the cached size is present in case decmpfs hasn't
404 * encountered this node yet.
405 */
406 if (vp) {
407 if (hfs_file_is_compressed(VTOC(vp), skiplock) ) {
408 *size = decmpfs_cnode_get_vnode_cached_size(VTOCMP(vp)); /* file info will be cached now, so get size */
409 } else if (VTOCMP(vp)) {
410 uint32_t cmp_type = decmpfs_cnode_cmp_type(VTOCMP(vp));
411
412 if (cmp_type == DATALESS_CMPFS_TYPE) {
413 *size = decmpfs_cnode_get_vnode_cached_size(VTOCMP(vp)); /* file info will be cached now, so get size */
414 ret = 0;
415 } else if (cmp_type >= CMP_MAX && VTOC(vp)->c_datafork) {
416 // if we don't recognize this type, just use the real data fork size
417 *size = VTOC(vp)->c_datafork->ff_size;
418 ret = 0;
419 } else
420 ret = EINVAL;
421 } else
422 ret = EINVAL;
423 }
424
425 if (putaway) { /* did we use hfs_vget() to get this vnode? */
426 vnode_put(vp); /* if so, release it and set it to null */
427 vp = NULL;
428 }
429 return ret;
430 }
431
432 int
433 hfs_hides_rsrc(vfs_context_t ctx, struct cnode *cp, int skiplock)
434 {
435 if (ctx == decmpfs_ctx)
436 return 0;
437 if (!hfs_file_is_compressed(cp, skiplock))
438 return 0;
439 return decmpfs_hides_rsrc(ctx, cp->c_decmp);
440 }
441
442 int
443 hfs_hides_xattr(vfs_context_t ctx, struct cnode *cp, const char *name, int skiplock)
444 {
445 if (ctx == decmpfs_ctx)
446 return 0;
447 if (!hfs_file_is_compressed(cp, skiplock))
448 return 0;
449 return decmpfs_hides_xattr(ctx, cp->c_decmp, name);
450 }
451 #endif /* HFS_COMPRESSION */
452
453 /*
454 * Open a file/directory.
455 */
456 int
457 hfs_vnop_open(struct vnop_open_args *ap)
458 {
459 struct vnode *vp = ap->a_vp;
460 struct filefork *fp;
461 struct timeval tv;
462 int error;
463 static int past_bootup = 0;
464 struct cnode *cp = VTOC(vp);
465 struct hfsmount *hfsmp = VTOHFS(vp);
466
467 #if CONFIG_PROTECT
468 error = cp_handle_open(vp, ap->a_mode);
469 if (error)
470 return error;
471 #endif
472
473 #if HFS_COMPRESSION
474 if (ap->a_mode & FWRITE) {
475 /* open for write */
476 if ( hfs_file_is_compressed(cp, 1) ) { /* 1 == don't take the cnode lock */
477 /* opening a compressed file for write, so convert it to decompressed */
478 struct vnode *data_vp = NULL;
479 error = hfs_ref_data_vp(cp, &data_vp, 1); /* 1 == don't take the cnode lock */
480 if (0 == error) {
481 if (data_vp) {
482 error = decmpfs_decompress_file(data_vp, VTOCMP(data_vp), -1, 1, 0);
483 vnode_rele(data_vp);
484 } else {
485 error = EINVAL;
486 }
487 }
488 if (error != 0)
489 return error;
490 }
491 } else {
492 /* open for read */
493 if (hfs_file_is_compressed(cp, 1) ) { /* 1 == don't take the cnode lock */
494 if (VNODE_IS_RSRC(vp)) {
495 /* opening the resource fork of a compressed file, so nothing to do */
496 } else {
497 /* opening a compressed file for read, make sure it validates */
498 error = decmpfs_validate_compressed_file(vp, VTOCMP(vp));
499 if (error != 0)
500 return error;
501 }
502 }
503 }
504 #endif
505
506 /*
507 * Files marked append-only must be opened for appending.
508 */
509 if ((cp->c_bsdflags & APPEND) && !vnode_isdir(vp) &&
510 (ap->a_mode & (FWRITE | O_APPEND)) == FWRITE)
511 return (EPERM);
512
513 if (vnode_issystem(vp))
514 return (EBUSY); /* file is in use by the kernel */
515
516 /* Don't allow journal to be opened externally. */
517 if (hfs_is_journal_file(hfsmp, cp))
518 return (EPERM);
519
520 bool have_lock = false;
521
522 #if CONFIG_PROTECT
523 if (ISSET(ap->a_mode, FENCRYPTED) && cp->c_cpentry && vnode_isreg(vp)) {
524 bool have_trunc_lock = false;
525
526 #if HFS_CONFIG_KEY_ROLL
527 again:
528 #endif
529
530 if ((error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) {
531 if (have_trunc_lock)
532 hfs_unlock_truncate(cp, 0);
533 return error;
534 }
535
536 have_lock = true;
537
538 if (cp->c_cpentry->cp_raw_open_count + 1
539 < cp->c_cpentry->cp_raw_open_count) {
540 // Overflow; too many raw opens on this file
541 hfs_unlock(cp);
542 if (have_trunc_lock)
543 hfs_unlock_truncate(cp, 0);
544 return ENFILE;
545 }
546
547 #if HFS_CONFIG_KEY_ROLL
548 if (cp_should_auto_roll(hfsmp, cp->c_cpentry)) {
549 if (!have_trunc_lock) {
550 hfs_unlock(cp);
551 hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, 0);
552 have_trunc_lock = true;
553 goto again;
554 }
555
556 error = hfs_key_roll_start(cp);
557 if (error) {
558 hfs_unlock(cp);
559 hfs_unlock_truncate(cp, 0);
560 return error;
561 }
562 }
563 #endif
564
565 if (have_trunc_lock)
566 hfs_unlock_truncate(cp, 0);
567
568 ++cp->c_cpentry->cp_raw_open_count;
569 }
570 #endif
571
572 if (ISSET(hfsmp->hfs_flags, HFS_READ_ONLY)
573 || !vnode_isreg(vp)
574 #if NAMEDSTREAMS
575 || vnode_isnamedstream(vp)
576 #endif
577 || !hfsmp->jnl || vnode_isinuse(vp, 0)) {
578
579 #if CONFIG_PROTECT
580 if (have_lock)
581 hfs_unlock(cp);
582 #endif
583
584 return (0);
585 }
586
587 if (!have_lock && (error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT)))
588 return (error);
589
590 #if QUOTA
591 /* If we're going to write to the file, initialize quotas. */
592 if ((ap->a_mode & FWRITE) && (hfsmp->hfs_flags & HFS_QUOTAS))
593 (void)hfs_getinoquota(cp);
594 #endif /* QUOTA */
595
596 /*
597 * On the first (non-busy) open of a fragmented
598 * file attempt to de-frag it, if it's less than hfs_defrag_max bytes.
599 * That field is initially set to 20MB.
600 */
601 fp = VTOF(vp);
602 if (fp->ff_blocks &&
603 fp->ff_extents[7].blockCount != 0 &&
604 fp->ff_size <= hfsmp->hfs_defrag_max) {
605
606 int no_mods = 0;
607 struct timeval now;
608 /*
609 * Wait until system bootup is done (3 min).
610 * And don't relocate a file that's been modified
611 * within the past minute -- this can lead to
612 * system thrashing.
613 */
614
615 if (hfsmp->hfs_defrag_nowait) {
616 /* If this is toggled, then issue the defrag if appropriate */
617 past_bootup = 1;
618 no_mods = 1;
619 }
620
621 if (!past_bootup) {
622 microuptime(&tv);
623 if (tv.tv_sec > (60*3)) {
624 past_bootup = 1;
625 }
626 }
627
628 microtime(&now);
629 if ((now.tv_sec - cp->c_mtime) > 60) {
630 no_mods = 1;
631 }
632
633 if (past_bootup && no_mods) {
634 (void) hfs_relocate(vp, hfsmp->nextAllocation + 4096,
635 vfs_context_ucred(ap->a_context),
636 vfs_context_proc(ap->a_context));
637 }
638 }
639
640 hfs_unlock(cp);
641
642 return (0);
643 }
644
645
646 /*
647 * Close a file/directory.
648 */
649 int
650 hfs_vnop_close(struct vnop_close_args *ap)
651 {
652 register struct vnode *vp = ap->a_vp;
653 register struct cnode *cp;
654 struct proc *p = vfs_context_proc(ap->a_context);
655 struct hfsmount *hfsmp;
656 int busy;
657 int tooktrunclock = 0;
658 int knownrefs = 0;
659
660 if ( hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT) != 0)
661 return (0);
662 cp = VTOC(vp);
663 hfsmp = VTOHFS(vp);
664
665 #if CONFIG_PROTECT
666 if (cp->c_cpentry && ISSET(ap->a_fflag, FENCRYPTED) && vnode_isreg(vp)) {
667 hfs_assert(cp->c_cpentry->cp_raw_open_count > 0);
668 --cp->c_cpentry->cp_raw_open_count;
669 }
670 #endif
671
672 /*
673 * If the rsrc fork is a named stream, it can cause the data fork to
674 * stay around, preventing de-allocation of these blocks.
675 * Do checks for truncation on close. Purge extra extents if they exist.
676 * Make sure the vp is not a directory, and that it has a resource fork,
677 * and that resource fork is also a named stream.
678 */
679
680 if ((vnode_vtype(vp) == VREG) && (cp->c_rsrc_vp)
681 && (vnode_isnamedstream(cp->c_rsrc_vp))) {
682 uint32_t blks;
683
684 blks = howmany(VTOF(vp)->ff_size, VTOVCB(vp)->blockSize);
685 /*
686 * If there are extra blocks and there are only 2 refs on
687 * this vp (ourselves + rsrc fork holding ref on us), go ahead
688 * and try to truncate.
689 */
690 if ((blks < VTOF(vp)->ff_blocks) && (!vnode_isinuse(vp, 2))) {
691 // release cnode lock; must acquire truncate lock BEFORE cnode lock
692 hfs_unlock(cp);
693
694 hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
695 tooktrunclock = 1;
696
697 if (hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT) != 0) {
698 hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
699 // bail out if we can't re-acquire cnode lock
700 return 0;
701 }
702 // now re-test to make sure it's still valid
703 if (cp->c_rsrc_vp) {
704 knownrefs = 1 + vnode_isnamedstream(cp->c_rsrc_vp);
705 if (!vnode_isinuse(vp, knownrefs)){
706 // now we can truncate the file, if necessary
707 blks = howmany(VTOF(vp)->ff_size, VTOVCB(vp)->blockSize);
708 if (blks < VTOF(vp)->ff_blocks){
709 (void) hfs_truncate(vp, VTOF(vp)->ff_size, IO_NDELAY,
710 0, ap->a_context);
711 }
712 }
713 }
714 }
715 }
716
717
718 // if we froze the fs and we're exiting, then "thaw" the fs
719 if (hfsmp->hfs_freeze_state == HFS_FROZEN
720 && hfsmp->hfs_freezing_proc == p && proc_exiting(p)) {
721 hfs_thaw(hfsmp, p);
722 }
723
724 busy = vnode_isinuse(vp, 1);
725
726 if (busy) {
727 hfs_touchtimes(VTOHFS(vp), cp);
728 }
729 if (vnode_isdir(vp)) {
730 hfs_reldirhints(cp, busy);
731 } else if (vnode_issystem(vp) && !busy) {
732 vnode_recycle(vp);
733 }
734
735 if (tooktrunclock){
736 hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
737 }
738 hfs_unlock(cp);
739
740 if (ap->a_fflag & FWASWRITTEN) {
741 hfs_sync_ejectable(hfsmp);
742 }
743
744 return (0);
745 }
746
747 static bool hfs_should_generate_document_id(hfsmount_t *hfsmp, cnode_t *cp)
748 {
749 return (!ISSET(hfsmp->hfs_flags, HFS_READ_ONLY)
750 && ISSET(cp->c_bsdflags, UF_TRACKED)
751 && cp->c_desc.cd_cnid != kHFSRootFolderID
752 && (S_ISDIR(cp->c_mode) || S_ISREG(cp->c_mode) || S_ISLNK(cp->c_mode)));
753 }
754
755 /*
756 * Get basic attributes.
757 */
758 int
759 hfs_vnop_getattr(struct vnop_getattr_args *ap)
760 {
761 #define VNODE_ATTR_TIMES \
762 (VNODE_ATTR_va_access_time|VNODE_ATTR_va_change_time|VNODE_ATTR_va_modify_time)
763 #define VNODE_ATTR_AUTH \
764 (VNODE_ATTR_va_mode | VNODE_ATTR_va_uid | VNODE_ATTR_va_gid | \
765 VNODE_ATTR_va_flags | VNODE_ATTR_va_acl)
766
767 struct vnode *vp = ap->a_vp;
768 struct vnode_attr *vap = ap->a_vap;
769 struct vnode *rvp = NULLVP;
770 struct hfsmount *hfsmp;
771 struct cnode *cp;
772 uint64_t data_size;
773 enum vtype v_type;
774 int error = 0;
775 cp = VTOC(vp);
776
777 #if HFS_COMPRESSION
778 /* we need to inspect the decmpfs state of the file before we take the hfs cnode lock */
779 int compressed = 0;
780 int hide_size = 0;
781 off_t uncompressed_size = -1;
782 if (VATTR_IS_ACTIVE(vap, va_data_size) || VATTR_IS_ACTIVE(vap, va_total_alloc) || VATTR_IS_ACTIVE(vap, va_data_alloc) || VATTR_IS_ACTIVE(vap, va_total_size)) {
783 /* we only care about whether the file is compressed if asked for the uncompressed size */
784 if (VNODE_IS_RSRC(vp)) {
785 /* if it's a resource fork, decmpfs may want us to hide the size */
786 hide_size = hfs_hides_rsrc(ap->a_context, cp, 0);
787 } else {
788 /* if it's a data fork, we need to know if it was compressed so we can report the uncompressed size */
789 compressed = hfs_file_is_compressed(cp, 0);
790 }
791 if ((VATTR_IS_ACTIVE(vap, va_data_size) || VATTR_IS_ACTIVE(vap, va_total_size))) {
792 // if it's compressed
793 if (compressed || (!VNODE_IS_RSRC(vp) && cp->c_decmp && decmpfs_cnode_cmp_type(cp->c_decmp) >= CMP_MAX)) {
794 if (0 != hfs_uncompressed_size_of_compressed_file(NULL, vp, 0, &uncompressed_size, 0)) {
795 /* failed to get the uncompressed size, we'll check for this later */
796 uncompressed_size = -1;
797 } else {
798 // fake that it's compressed
799 compressed = 1;
800 }
801 }
802 }
803 }
804 #endif
805
806 /*
807 * Shortcut for vnode_authorize path. Each of the attributes
808 * in this set is updated atomically so we don't need to take
809 * the cnode lock to access them.
810 */
811 if ((vap->va_active & ~VNODE_ATTR_AUTH) == 0) {
812 /* Make sure file still exists. */
813 if (cp->c_flag & C_NOEXISTS)
814 return (ENOENT);
815
816 vap->va_uid = cp->c_uid;
817 vap->va_gid = cp->c_gid;
818 vap->va_mode = cp->c_mode;
819 vap->va_flags = cp->c_bsdflags;
820 vap->va_supported |= VNODE_ATTR_AUTH & ~VNODE_ATTR_va_acl;
821
822 if ((cp->c_attr.ca_recflags & kHFSHasSecurityMask) == 0) {
823 vap->va_acl = (kauth_acl_t) KAUTH_FILESEC_NONE;
824 VATTR_SET_SUPPORTED(vap, va_acl);
825 }
826
827 return (0);
828 }
829
830 hfsmp = VTOHFS(vp);
831 v_type = vnode_vtype(vp);
832
833 if (VATTR_IS_ACTIVE(vap, va_document_id)) {
834 uint32_t document_id;
835
836 if (cp->c_desc.cd_cnid == kHFSRootFolderID)
837 document_id = kHFSRootFolderID;
838 else {
839 /*
840 * This is safe without a lock because we're just reading
841 * a 32 bit aligned integer which should be atomic on all
842 * platforms we support.
843 */
844 document_id = hfs_get_document_id(cp);
845
846 if (!document_id && hfs_should_generate_document_id(hfsmp, cp)) {
847 uint32_t new_document_id;
848
849 error = hfs_generate_document_id(hfsmp, &new_document_id);
850 if (error)
851 return error;
852
853 error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
854 if (error)
855 return error;
856
857 bool want_docid_fsevent = false;
858
859 // Need to check again now that we have the lock
860 document_id = hfs_get_document_id(cp);
861 if (!document_id && hfs_should_generate_document_id(hfsmp, cp)) {
862 cp->c_attr.ca_finderextendeddirinfo.document_id = document_id = new_document_id;
863 want_docid_fsevent = true;
864 SET(cp->c_flag, C_MODIFIED);
865 }
866
867 hfs_unlock(cp);
868
869 if (want_docid_fsevent) {
870 add_fsevent(FSE_DOCID_CHANGED, ap->a_context,
871 FSE_ARG_DEV, hfsmp->hfs_raw_dev,
872 FSE_ARG_INO, (ino64_t)0, // src inode #
873 FSE_ARG_INO, (ino64_t)cp->c_fileid, // dst inode #
874 FSE_ARG_INT32, document_id,
875 FSE_ARG_DONE);
876
877 if (need_fsevent(FSE_STAT_CHANGED, vp)) {
878 add_fsevent(FSE_STAT_CHANGED, ap->a_context,
879 FSE_ARG_VNODE, vp, FSE_ARG_DONE);
880 }
881 }
882 }
883 }
884
885 vap->va_document_id = document_id;
886 VATTR_SET_SUPPORTED(vap, va_document_id);
887 }
888
889 /*
890 * If time attributes are requested and we have cnode times
891 * that require updating, then acquire an exclusive lock on
892 * the cnode before updating the times. Otherwise we can
893 * just acquire a shared lock.
894 */
895 if ((vap->va_active & VNODE_ATTR_TIMES) &&
896 (cp->c_touch_acctime || cp->c_touch_chgtime || cp->c_touch_modtime)) {
897 if ((error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT)))
898 return (error);
899 hfs_touchtimes(hfsmp, cp);
900
901 // downgrade to a shared lock since that's all we need from here on out
902 cp->c_lockowner = HFS_SHARED_OWNER;
903 lck_rw_lock_exclusive_to_shared(&cp->c_rwlock);
904
905 } else if ((error = hfs_lock(cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT))) {
906 return (error);
907 }
908
909 if (v_type == VDIR) {
910 data_size = (cp->c_entries + 2) * AVERAGE_HFSDIRENTRY_SIZE;
911
912 if (VATTR_IS_ACTIVE(vap, va_nlink)) {
913 int nlink;
914
915 /*
916 * For directories, the va_nlink is esentially a count
917 * of the ".." references to a directory plus the "."
918 * reference and the directory itself. So for HFS+ this
919 * becomes the sub-directory count plus two.
920 *
921 * In the absence of a sub-directory count we use the
922 * directory's item count. This will be too high in
923 * most cases since it also includes files.
924 */
925 if ((hfsmp->hfs_flags & HFS_FOLDERCOUNT) &&
926 (cp->c_attr.ca_recflags & kHFSHasFolderCountMask))
927 nlink = cp->c_attr.ca_dircount; /* implied ".." entries */
928 else
929 nlink = cp->c_entries;
930
931 /* Account for ourself and our "." entry */
932 nlink += 2;
933 /* Hide our private directories. */
934 if (cp->c_cnid == kHFSRootFolderID) {
935 if (hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid != 0) {
936 --nlink;
937 }
938 if (hfsmp->hfs_private_desc[DIR_HARDLINKS].cd_cnid != 0) {
939 --nlink;
940 }
941 }
942 VATTR_RETURN(vap, va_nlink, (u_int64_t)nlink);
943 }
944 if (VATTR_IS_ACTIVE(vap, va_nchildren)) {
945 int entries;
946
947 entries = cp->c_entries;
948 /* Hide our private files and directories. */
949 if (cp->c_cnid == kHFSRootFolderID) {
950 if (hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid != 0)
951 --entries;
952 if (hfsmp->hfs_private_desc[DIR_HARDLINKS].cd_cnid != 0)
953 --entries;
954 if (hfsmp->jnl || ((hfsmp->vcbAtrb & kHFSVolumeJournaledMask) && (hfsmp->hfs_flags & HFS_READ_ONLY)))
955 entries -= 2; /* hide the journal files */
956 }
957 VATTR_RETURN(vap, va_nchildren, entries);
958 }
959 /*
960 * The va_dirlinkcount is the count of real directory hard links.
961 * (i.e. its not the sum of the implied "." and ".." references)
962 */
963 if (VATTR_IS_ACTIVE(vap, va_dirlinkcount)) {
964 VATTR_RETURN(vap, va_dirlinkcount, (uint32_t)cp->c_linkcount);
965 }
966 } else /* !VDIR */ {
967 data_size = VCTOF(vp, cp)->ff_size;
968
969 VATTR_RETURN(vap, va_nlink, (u_int64_t)cp->c_linkcount);
970 if (VATTR_IS_ACTIVE(vap, va_data_alloc)) {
971 u_int64_t blocks;
972
973 #if HFS_COMPRESSION
974 if (hide_size) {
975 VATTR_RETURN(vap, va_data_alloc, 0);
976 } else if (compressed) {
977 /* for compressed files, we report all allocated blocks as belonging to the data fork */
978 blocks = cp->c_blocks;
979 VATTR_RETURN(vap, va_data_alloc, blocks * (u_int64_t)hfsmp->blockSize);
980 }
981 else
982 #endif
983 {
984 blocks = VCTOF(vp, cp)->ff_blocks;
985 VATTR_RETURN(vap, va_data_alloc, blocks * (u_int64_t)hfsmp->blockSize);
986 }
987 }
988 }
989
990 /* conditional because 64-bit arithmetic can be expensive */
991 if (VATTR_IS_ACTIVE(vap, va_total_size)) {
992 if (v_type == VDIR) {
993 VATTR_RETURN(vap, va_total_size, (cp->c_entries + 2) * AVERAGE_HFSDIRENTRY_SIZE);
994 } else {
995 u_int64_t total_size = ~0ULL;
996 struct cnode *rcp;
997 #if HFS_COMPRESSION
998 if (hide_size) {
999 /* we're hiding the size of this file, so just return 0 */
1000 total_size = 0;
1001 } else if (compressed) {
1002 if (uncompressed_size == -1) {
1003 /*
1004 * We failed to get the uncompressed size above,
1005 * so we'll fall back to the standard path below
1006 * since total_size is still -1
1007 */
1008 } else {
1009 /* use the uncompressed size we fetched above */
1010 total_size = uncompressed_size;
1011 }
1012 }
1013 #endif
1014 if (total_size == ~0ULL) {
1015 if (cp->c_datafork) {
1016 total_size = cp->c_datafork->ff_size;
1017 }
1018
1019 if (cp->c_blocks - VTOF(vp)->ff_blocks) {
1020 /* We deal with rsrc fork vnode iocount at the end of the function */
1021 error = hfs_vgetrsrc(hfsmp, vp, &rvp);
1022 if (error) {
1023 /*
1024 * Note that we call hfs_vgetrsrc with error_on_unlinked
1025 * set to FALSE. This is because we may be invoked via
1026 * fstat() on an open-unlinked file descriptor and we must
1027 * continue to support access to the rsrc fork until it disappears.
1028 * The code at the end of this function will be
1029 * responsible for releasing the iocount generated by
1030 * hfs_vgetrsrc. This is because we can't drop the iocount
1031 * without unlocking the cnode first.
1032 */
1033 goto out;
1034 }
1035
1036 rcp = VTOC(rvp);
1037 if (rcp && rcp->c_rsrcfork) {
1038 total_size += rcp->c_rsrcfork->ff_size;
1039 }
1040 }
1041 }
1042
1043 VATTR_RETURN(vap, va_total_size, total_size);
1044 }
1045 }
1046 if (VATTR_IS_ACTIVE(vap, va_total_alloc)) {
1047 if (v_type == VDIR) {
1048 VATTR_RETURN(vap, va_total_alloc, 0);
1049 } else {
1050 VATTR_RETURN(vap, va_total_alloc, (u_int64_t)cp->c_blocks * (u_int64_t)hfsmp->blockSize);
1051 }
1052 }
1053
1054 /*
1055 * If the VFS wants extended security data, and we know that we
1056 * don't have any (because it never told us it was setting any)
1057 * then we can return the supported bit and no data. If we do
1058 * have extended security, we can just leave the bit alone and
1059 * the VFS will use the fallback path to fetch it.
1060 */
1061 if (VATTR_IS_ACTIVE(vap, va_acl)) {
1062 if ((cp->c_attr.ca_recflags & kHFSHasSecurityMask) == 0) {
1063 vap->va_acl = (kauth_acl_t) KAUTH_FILESEC_NONE;
1064 VATTR_SET_SUPPORTED(vap, va_acl);
1065 }
1066 }
1067
1068 vap->va_access_time.tv_sec = cp->c_atime;
1069 vap->va_access_time.tv_nsec = 0;
1070 vap->va_create_time.tv_sec = cp->c_itime;
1071 vap->va_create_time.tv_nsec = 0;
1072 vap->va_modify_time.tv_sec = cp->c_mtime;
1073 vap->va_modify_time.tv_nsec = 0;
1074 vap->va_change_time.tv_sec = cp->c_ctime;
1075 vap->va_change_time.tv_nsec = 0;
1076 vap->va_backup_time.tv_sec = cp->c_btime;
1077 vap->va_backup_time.tv_nsec = 0;
1078
1079 /* See if we need to emit the date added field to the user */
1080 if (VATTR_IS_ACTIVE(vap, va_addedtime)) {
1081 u_int32_t dateadded = hfs_get_dateadded (cp);
1082 if (dateadded) {
1083 vap->va_addedtime.tv_sec = dateadded;
1084 vap->va_addedtime.tv_nsec = 0;
1085 VATTR_SET_SUPPORTED (vap, va_addedtime);
1086 }
1087 }
1088
1089 /* XXX is this really a good 'optimal I/O size'? */
1090 vap->va_iosize = hfsmp->hfs_logBlockSize;
1091 vap->va_uid = cp->c_uid;
1092 vap->va_gid = cp->c_gid;
1093 vap->va_mode = cp->c_mode;
1094 vap->va_flags = cp->c_bsdflags;
1095
1096 /*
1097 * Exporting file IDs from HFS Plus:
1098 *
1099 * For "normal" files the c_fileid is the same value as the
1100 * c_cnid. But for hard link files, they are different - the
1101 * c_cnid belongs to the active directory entry (ie the link)
1102 * and the c_fileid is for the actual inode (ie the data file).
1103 *
1104 * The stat call (getattr) uses va_fileid and the Carbon APIs,
1105 * which are hardlink-ignorant, will ask for va_linkid.
1106 */
1107 vap->va_fileid = (u_int64_t)cp->c_fileid;
1108 /*
1109 * We need to use the origin cache for both hardlinked files
1110 * and directories. Hardlinked directories have multiple cnids
1111 * and parents (one per link). Hardlinked files also have their
1112 * own parents and link IDs separate from the indirect inode number.
1113 * If we don't use the cache, we could end up vending the wrong ID
1114 * because the cnode will only reflect the link that was looked up most recently.
1115 */
1116 if (cp->c_flag & C_HARDLINK) {
1117 vap->va_linkid = (u_int64_t)hfs_currentcnid(cp);
1118 vap->va_parentid = (u_int64_t)hfs_currentparent(cp, /* have_lock: */ true);
1119 } else {
1120 vap->va_linkid = (u_int64_t)cp->c_cnid;
1121 vap->va_parentid = (u_int64_t)cp->c_parentcnid;
1122 }
1123
1124 vap->va_fsid = hfsmp->hfs_raw_dev;
1125 if (VATTR_IS_ACTIVE(vap, va_devid)) {
1126 VATTR_RETURN(vap, va_devid, hfsmp->hfs_raw_dev);
1127 }
1128 vap->va_filerev = 0;
1129 vap->va_encoding = cp->c_encoding;
1130 vap->va_rdev = (v_type == VBLK || v_type == VCHR) ? cp->c_rdev : 0;
1131 #if HFS_COMPRESSION
1132 if (VATTR_IS_ACTIVE(vap, va_data_size)) {
1133 if (hide_size)
1134 vap->va_data_size = 0;
1135 else if (compressed) {
1136 if (uncompressed_size == -1) {
1137 /* failed to get the uncompressed size above, so just return data_size */
1138 vap->va_data_size = data_size;
1139 } else {
1140 /* use the uncompressed size we fetched above */
1141 vap->va_data_size = uncompressed_size;
1142 }
1143 } else
1144 vap->va_data_size = data_size;
1145 VATTR_SET_SUPPORTED(vap, va_data_size);
1146 }
1147 #else
1148 vap->va_data_size = data_size;
1149 vap->va_supported |= VNODE_ATTR_va_data_size;
1150 #endif
1151
1152 #if CONFIG_PROTECT
1153 if (VATTR_IS_ACTIVE(vap, va_dataprotect_class)) {
1154 vap->va_dataprotect_class = cp->c_cpentry ? CP_CLASS(cp->c_cpentry->cp_pclass) : 0;
1155 VATTR_SET_SUPPORTED(vap, va_dataprotect_class);
1156 }
1157 #endif
1158 if (VATTR_IS_ACTIVE(vap, va_write_gencount)) {
1159 if (ubc_is_mapped_writable(vp)) {
1160 /*
1161 * Return 0 to the caller to indicate the file may be
1162 * changing. There is no need for us to increment the
1163 * generation counter here because it gets done as part of
1164 * page-out and also when the file is unmapped (to account
1165 * for changes we might not have seen).
1166 */
1167 vap->va_write_gencount = 0;
1168 } else {
1169 vap->va_write_gencount = hfs_get_gencount(cp);
1170 }
1171
1172 VATTR_SET_SUPPORTED(vap, va_write_gencount);
1173 }
1174
1175 /* Mark them all at once instead of individual VATTR_SET_SUPPORTED calls. */
1176 vap->va_supported |= VNODE_ATTR_va_access_time |
1177 VNODE_ATTR_va_create_time | VNODE_ATTR_va_modify_time |
1178 VNODE_ATTR_va_change_time| VNODE_ATTR_va_backup_time |
1179 VNODE_ATTR_va_iosize | VNODE_ATTR_va_uid |
1180 VNODE_ATTR_va_gid | VNODE_ATTR_va_mode |
1181 VNODE_ATTR_va_flags |VNODE_ATTR_va_fileid |
1182 VNODE_ATTR_va_linkid | VNODE_ATTR_va_parentid |
1183 VNODE_ATTR_va_fsid | VNODE_ATTR_va_filerev |
1184 VNODE_ATTR_va_encoding | VNODE_ATTR_va_rdev;
1185
1186 /* If this is the root, let VFS to find out the mount name, which
1187 * may be different from the real name. Otherwise, we need to take care
1188 * for hardlinked files, which need to be looked up, if necessary
1189 */
1190 if (VATTR_IS_ACTIVE(vap, va_name) && (cp->c_cnid != kHFSRootFolderID)) {
1191 struct cat_desc linkdesc;
1192 int lockflags;
1193 int uselinkdesc = 0;
1194 cnid_t nextlinkid = 0;
1195 cnid_t prevlinkid = 0;
1196
1197 /* Get the name for ATTR_CMN_NAME. We need to take special care for hardlinks
1198 * here because the info. for the link ID requested by getattrlist may be
1199 * different than what's currently in the cnode. This is because the cnode
1200 * will be filled in with the information for the most recent link ID that went
1201 * through namei/lookup(). If there are competing lookups for hardlinks that point
1202 * to the same inode, one (or more) getattrlists could be vended incorrect name information.
1203 * Also, we need to beware of open-unlinked files which could have a namelen of 0.
1204 */
1205
1206 if ((cp->c_flag & C_HARDLINK) &&
1207 ((cp->c_desc.cd_namelen == 0) || (vap->va_linkid != cp->c_cnid))) {
1208 /*
1209 * If we have no name and our link ID is the raw inode number, then we may
1210 * have an open-unlinked file. Go to the next link in this case.
1211 */
1212 if ((cp->c_desc.cd_namelen == 0) && (vap->va_linkid == cp->c_fileid)) {
1213 if ((error = hfs_lookup_siblinglinks(hfsmp, vap->va_linkid, &prevlinkid, &nextlinkid))){
1214 goto out;
1215 }
1216 }
1217 else {
1218 /* just use link obtained from vap above */
1219 nextlinkid = vap->va_linkid;
1220 }
1221
1222 /* We need to probe the catalog for the descriptor corresponding to the link ID
1223 * stored in nextlinkid. Note that we don't know if we have the exclusive lock
1224 * for the cnode here, so we can't just update the descriptor. Instead,
1225 * we should just store the descriptor's value locally and then use it to pass
1226 * out the name value as needed below.
1227 */
1228 if (nextlinkid){
1229 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
1230 error = cat_findname(hfsmp, nextlinkid, &linkdesc);
1231 hfs_systemfile_unlock(hfsmp, lockflags);
1232 if (error == 0) {
1233 uselinkdesc = 1;
1234 }
1235 }
1236 }
1237
1238 /* By this point, we've either patched up the name above and the c_desc
1239 * points to the correct data, or it already did, in which case we just proceed
1240 * by copying the name into the vap. Note that we will never set va_name to
1241 * supported if nextlinkid is never initialized. This could happen in the degenerate
1242 * case above involving the raw inode number, where it has no nextlinkid. In this case
1243 * we will simply not mark the name bit as supported.
1244 */
1245 if (uselinkdesc) {
1246 strlcpy(vap->va_name, (const char*) linkdesc.cd_nameptr, MAXPATHLEN);
1247 VATTR_SET_SUPPORTED(vap, va_name);
1248 cat_releasedesc(&linkdesc);
1249 }
1250 else if (cp->c_desc.cd_namelen) {
1251 strlcpy(vap->va_name, (const char*) cp->c_desc.cd_nameptr, MAXPATHLEN);
1252 VATTR_SET_SUPPORTED(vap, va_name);
1253 }
1254 }
1255
1256 out:
1257 hfs_unlock(cp);
1258 /*
1259 * We need to vnode_put the rsrc fork vnode only *after* we've released
1260 * the cnode lock, since vnode_put can trigger an inactive call, which
1261 * will go back into HFS and try to acquire a cnode lock.
1262 */
1263 if (rvp) {
1264 vnode_put (rvp);
1265 }
1266
1267 return (error);
1268 }
1269
1270 int
1271 hfs_vnop_setattr(struct vnop_setattr_args *ap)
1272 {
1273 struct vnode_attr *vap = ap->a_vap;
1274 struct vnode *vp = ap->a_vp;
1275 struct cnode *cp = NULL;
1276 struct hfsmount *hfsmp;
1277 kauth_cred_t cred = vfs_context_ucred(ap->a_context);
1278 struct proc *p = vfs_context_proc(ap->a_context);
1279 int error = 0;
1280 uid_t nuid;
1281 gid_t ngid;
1282 time_t orig_ctime;
1283
1284 orig_ctime = VTOC(vp)->c_ctime;
1285
1286 #if HFS_COMPRESSION
1287 int decmpfs_reset_state = 0;
1288 /*
1289 we call decmpfs_update_attributes even if the file is not compressed
1290 because we want to update the incoming flags if the xattrs are invalid
1291 */
1292 error = decmpfs_update_attributes(vp, vap);
1293 if (error)
1294 return error;
1295 #endif
1296 //
1297 // if this is not a size-changing setattr and it is not just
1298 // an atime update, then check for a snapshot.
1299 //
1300 if (!VATTR_IS_ACTIVE(vap, va_data_size) && !(vap->va_active == VNODE_ATTR_va_access_time)) {
1301 nspace_snapshot_event(vp, orig_ctime, NAMESPACE_HANDLER_METADATA_MOD, NSPACE_REARM_NO_ARG);
1302 }
1303
1304 #if CONFIG_PROTECT
1305 /*
1306 * All metadata changes should be allowed except a size-changing setattr, which
1307 * has effects on file content and requires calling into cp_handle_vnop
1308 * to have content protection check.
1309 */
1310 if (VATTR_IS_ACTIVE(vap, va_data_size)) {
1311 if ((error = cp_handle_vnop(vp, CP_WRITE_ACCESS, 0)) != 0) {
1312 return (error);
1313 }
1314 }
1315 #endif /* CONFIG_PROTECT */
1316
1317 hfsmp = VTOHFS(vp);
1318
1319 /* Don't allow modification of the journal. */
1320 if (hfs_is_journal_file(hfsmp, VTOC(vp))) {
1321 return (EPERM);
1322 }
1323
1324 //
1325 // Check if we'll need a document_id and if so, get it before we lock the
1326 // the cnode to avoid any possible deadlock with the root vnode which has
1327 // to get locked to get the document id
1328 //
1329 u_int32_t document_id=0;
1330 if (VATTR_IS_ACTIVE(vap, va_flags) && (vap->va_flags & UF_TRACKED) && !(VTOC(vp)->c_bsdflags & UF_TRACKED)) {
1331 struct FndrExtendedDirInfo *fip = (struct FndrExtendedDirInfo *)((char *)&(VTOC(vp)->c_attr.ca_finderinfo) + 16);
1332 //
1333 // If the document_id is not set, get a new one. It will be set
1334 // on the file down below once we hold the cnode lock.
1335 //
1336 if (fip->document_id == 0) {
1337 if (hfs_generate_document_id(hfsmp, &document_id) != 0) {
1338 document_id = 0;
1339 }
1340 }
1341 }
1342
1343
1344 /*
1345 * File size change request.
1346 * We are guaranteed that this is not a directory, and that
1347 * the filesystem object is writeable.
1348 *
1349 * NOTE: HFS COMPRESSION depends on the data_size being set *before* the bsd flags are updated
1350 */
1351 VATTR_SET_SUPPORTED(vap, va_data_size);
1352 if (VATTR_IS_ACTIVE(vap, va_data_size)) {
1353 if (!vnode_isreg(vp)) {
1354 if (vnode_isdir(vp)) {
1355 return EISDIR;
1356 }
1357 //otherwise return EINVAL
1358 return EINVAL;
1359 }
1360
1361 #if HFS_COMPRESSION
1362 /* keep the compressed state locked until we're done truncating the file */
1363 decmpfs_cnode *dp = VTOCMP(vp);
1364 if (!dp) {
1365 /*
1366 * call hfs_lazy_init_decmpfs_cnode() to make sure that the decmpfs_cnode
1367 * is filled in; we need a decmpfs_cnode to lock out decmpfs state changes
1368 * on this file while it's truncating
1369 */
1370 dp = hfs_lazy_init_decmpfs_cnode(VTOC(vp));
1371 if (!dp) {
1372 /* failed to allocate a decmpfs_cnode */
1373 return ENOMEM; /* what should this be? */
1374 }
1375 }
1376
1377 nspace_snapshot_event(vp, orig_ctime, vap->va_data_size == 0 ? NAMESPACE_HANDLER_TRUNCATE_OP|NAMESPACE_HANDLER_DELETE_OP : NAMESPACE_HANDLER_TRUNCATE_OP, NULL);
1378
1379 decmpfs_lock_compressed_data(dp, 1);
1380 if (hfs_file_is_compressed(VTOC(vp), 1)) {
1381 error = decmpfs_decompress_file(vp, dp, -1/*vap->va_data_size*/, 0, 1);
1382 if (error != 0) {
1383 decmpfs_unlock_compressed_data(dp, 1);
1384 return error;
1385 }
1386 }
1387 #endif
1388
1389 // Take truncate lock
1390 hfs_lock_truncate(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
1391
1392 // hfs_truncate will deal with the cnode lock
1393 error = hfs_truncate(vp, vap->va_data_size, vap->va_vaflags & 0xffff,
1394 0, ap->a_context);
1395
1396 hfs_unlock_truncate(VTOC(vp), HFS_LOCK_DEFAULT);
1397 #if HFS_COMPRESSION
1398 decmpfs_unlock_compressed_data(dp, 1);
1399 #endif
1400 if (error)
1401 return error;
1402 }
1403 if (cp == NULL) {
1404 if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT)))
1405 return (error);
1406 cp = VTOC(vp);
1407 }
1408
1409 /*
1410 * If it is just an access time update request by itself
1411 * we know the request is from kernel level code, and we
1412 * can delay it without being as worried about consistency.
1413 * This change speeds up mmaps, in the rare case that they
1414 * get caught behind a sync.
1415 */
1416
1417 if (vap->va_active == VNODE_ATTR_va_access_time) {
1418 cp->c_touch_acctime=TRUE;
1419 goto out;
1420 }
1421
1422
1423
1424 /*
1425 * Owner/group change request.
1426 * We are guaranteed that the new owner/group is valid and legal.
1427 */
1428 VATTR_SET_SUPPORTED(vap, va_uid);
1429 VATTR_SET_SUPPORTED(vap, va_gid);
1430 nuid = VATTR_IS_ACTIVE(vap, va_uid) ? vap->va_uid : (uid_t)VNOVAL;
1431 ngid = VATTR_IS_ACTIVE(vap, va_gid) ? vap->va_gid : (gid_t)VNOVAL;
1432 if (((nuid != (uid_t)VNOVAL) || (ngid != (gid_t)VNOVAL)) &&
1433 ((error = hfs_chown(vp, nuid, ngid, cred, p)) != 0))
1434 goto out;
1435
1436 /*
1437 * Mode change request.
1438 * We are guaranteed that the mode value is valid and that in
1439 * conjunction with the owner and group, this change is legal.
1440 */
1441 VATTR_SET_SUPPORTED(vap, va_mode);
1442 if (VATTR_IS_ACTIVE(vap, va_mode) &&
1443 ((error = hfs_chmod(vp, (int)vap->va_mode, cred, p)) != 0))
1444 goto out;
1445
1446 /*
1447 * File flags change.
1448 * We are guaranteed that only flags allowed to change given the
1449 * current securelevel are being changed.
1450 */
1451 VATTR_SET_SUPPORTED(vap, va_flags);
1452 if (VATTR_IS_ACTIVE(vap, va_flags)) {
1453 u_int16_t *fdFlags;
1454
1455 #if HFS_COMPRESSION
1456 if ((cp->c_bsdflags ^ vap->va_flags) & UF_COMPRESSED) {
1457 /*
1458 * the UF_COMPRESSED was toggled, so reset our cached compressed state
1459 * but we don't want to actually do the update until we've released the cnode lock down below
1460 * NOTE: turning the flag off doesn't actually decompress the file, so that we can
1461 * turn off the flag and look at the "raw" file for debugging purposes
1462 */
1463 decmpfs_reset_state = 1;
1464 }
1465 #endif
1466 if ((vap->va_flags & UF_TRACKED) && !(cp->c_bsdflags & UF_TRACKED)) {
1467 struct FndrExtendedDirInfo *fip = (struct FndrExtendedDirInfo *)((char *)&cp->c_attr.ca_finderinfo + 16);
1468
1469 //
1470 // we're marking this item UF_TRACKED. if the document_id is
1471 // not set, get a new one and put it on the file.
1472 //
1473 if (fip->document_id == 0) {
1474 if (document_id != 0) {
1475 // printf("SETATTR: assigning doc-id %d to %s (ino %d)\n", document_id, vp->v_name, cp->c_desc.cd_cnid);
1476 fip->document_id = (uint32_t)document_id;
1477 add_fsevent(FSE_DOCID_CHANGED, ap->a_context,
1478 FSE_ARG_DEV, hfsmp->hfs_raw_dev,
1479 FSE_ARG_INO, (ino64_t)0, // src inode #
1480 FSE_ARG_INO, (ino64_t)cp->c_fileid, // dst inode #
1481 FSE_ARG_INT32, document_id,
1482 FSE_ARG_DONE);
1483 } else {
1484 // printf("hfs: could not acquire a new document_id for %s (ino %d)\n", vp->v_name, cp->c_desc.cd_cnid);
1485 }
1486 }
1487
1488 } else if (!(vap->va_flags & UF_TRACKED) && (cp->c_bsdflags & UF_TRACKED)) {
1489 //
1490 // UF_TRACKED is being cleared so clear the document_id
1491 //
1492 struct FndrExtendedDirInfo *fip = (struct FndrExtendedDirInfo *)((char *)&cp->c_attr.ca_finderinfo + 16);
1493 if (fip->document_id) {
1494 // printf("SETATTR: clearing doc-id %d from %s (ino %d)\n", fip->document_id, vp->v_name, cp->c_desc.cd_cnid);
1495 add_fsevent(FSE_DOCID_CHANGED, ap->a_context,
1496 FSE_ARG_DEV, hfsmp->hfs_raw_dev,
1497 FSE_ARG_INO, (ino64_t)cp->c_fileid, // src inode #
1498 FSE_ARG_INO, (ino64_t)0, // dst inode #
1499 FSE_ARG_INT32, fip->document_id, // document id
1500 FSE_ARG_DONE);
1501 fip->document_id = 0;
1502 cp->c_bsdflags &= ~UF_TRACKED;
1503 }
1504 }
1505
1506 cp->c_bsdflags = vap->va_flags;
1507 cp->c_flag |= C_MODIFIED;
1508 cp->c_touch_chgtime = TRUE;
1509
1510
1511 /*
1512 * Mirror the UF_HIDDEN flag to the invisible bit of the Finder Info.
1513 *
1514 * The fdFlags for files and frFlags for folders are both 8 bytes
1515 * into the userInfo (the first 16 bytes of the Finder Info). They
1516 * are both 16-bit fields.
1517 */
1518 fdFlags = (u_int16_t *) &cp->c_finderinfo[8];
1519 if (vap->va_flags & UF_HIDDEN)
1520 *fdFlags |= OSSwapHostToBigConstInt16(kFinderInvisibleMask);
1521 else
1522 *fdFlags &= ~OSSwapHostToBigConstInt16(kFinderInvisibleMask);
1523 }
1524
1525 /*
1526 * Timestamp updates.
1527 */
1528 VATTR_SET_SUPPORTED(vap, va_create_time);
1529 VATTR_SET_SUPPORTED(vap, va_access_time);
1530 VATTR_SET_SUPPORTED(vap, va_modify_time);
1531 VATTR_SET_SUPPORTED(vap, va_backup_time);
1532 VATTR_SET_SUPPORTED(vap, va_change_time);
1533 if (VATTR_IS_ACTIVE(vap, va_create_time) ||
1534 VATTR_IS_ACTIVE(vap, va_access_time) ||
1535 VATTR_IS_ACTIVE(vap, va_modify_time) ||
1536 VATTR_IS_ACTIVE(vap, va_backup_time)) {
1537 if (VATTR_IS_ACTIVE(vap, va_create_time))
1538 cp->c_itime = vap->va_create_time.tv_sec;
1539 if (VATTR_IS_ACTIVE(vap, va_access_time)) {
1540 cp->c_atime = vap->va_access_time.tv_sec;
1541 cp->c_touch_acctime = FALSE;
1542 }
1543 if (VATTR_IS_ACTIVE(vap, va_modify_time)) {
1544 cp->c_mtime = vap->va_modify_time.tv_sec;
1545 cp->c_touch_modtime = FALSE;
1546 cp->c_touch_chgtime = TRUE;
1547
1548 hfs_clear_might_be_dirty_flag(cp);
1549
1550 /*
1551 * The utimes system call can reset the modification
1552 * time but it doesn't know about HFS create times.
1553 * So we need to ensure that the creation time is
1554 * always at least as old as the modification time.
1555 */
1556 if ((VTOVCB(vp)->vcbSigWord == kHFSPlusSigWord) &&
1557 (cp->c_cnid != kHFSRootFolderID) &&
1558 !VATTR_IS_ACTIVE(vap, va_create_time) &&
1559 (cp->c_mtime < cp->c_itime)) {
1560 cp->c_itime = cp->c_mtime;
1561 }
1562 }
1563 if (VATTR_IS_ACTIVE(vap, va_backup_time))
1564 cp->c_btime = vap->va_backup_time.tv_sec;
1565 cp->c_flag |= C_MINOR_MOD;
1566 }
1567
1568 // Set the date added time
1569 VATTR_SET_SUPPORTED(vap, va_addedtime);
1570 if (VATTR_IS_ACTIVE(vap, va_addedtime)) {
1571 hfs_write_dateadded(&cp->c_attr, vap->va_addedtime.tv_sec);
1572 cp->c_flag &= ~C_NEEDS_DATEADDED;
1573 cp->c_touch_chgtime = true;
1574 }
1575
1576 /*
1577 * Set name encoding.
1578 */
1579 VATTR_SET_SUPPORTED(vap, va_encoding);
1580 if (VATTR_IS_ACTIVE(vap, va_encoding)) {
1581 cp->c_encoding = vap->va_encoding;
1582 cp->c_flag |= C_MODIFIED;
1583 hfs_setencodingbits(hfsmp, cp->c_encoding);
1584 }
1585
1586 if ((error = hfs_update(vp, 0)) != 0)
1587 goto out;
1588
1589 out:
1590 if (cp) {
1591 /* Purge origin cache for cnode, since caller now has correct link ID for it
1592 * We purge it here since it was acquired for us during lookup, and we no longer need it.
1593 */
1594 if ((cp->c_flag & C_HARDLINK) && (vnode_vtype(vp) != VDIR)){
1595 hfs_relorigin(cp, 0);
1596 }
1597
1598 hfs_unlock(cp);
1599 #if HFS_COMPRESSION
1600 if (decmpfs_reset_state) {
1601 /*
1602 * we've changed the UF_COMPRESSED flag, so reset the decmpfs state for this cnode
1603 * but don't do it while holding the hfs cnode lock
1604 */
1605 decmpfs_cnode *dp = VTOCMP(vp);
1606 if (!dp) {
1607 /*
1608 * call hfs_lazy_init_decmpfs_cnode() to make sure that the decmpfs_cnode
1609 * is filled in; we need a decmpfs_cnode to prevent decmpfs state changes
1610 * on this file if it's locked
1611 */
1612 dp = hfs_lazy_init_decmpfs_cnode(VTOC(vp));
1613 if (!dp) {
1614 /* failed to allocate a decmpfs_cnode */
1615 return ENOMEM; /* what should this be? */
1616 }
1617 }
1618 decmpfs_cnode_set_vnode_state(dp, FILE_TYPE_UNKNOWN, 0);
1619 }
1620 #endif
1621 }
1622
1623 #if CONFIG_PROTECT
1624 VATTR_SET_SUPPORTED(vap, va_dataprotect_class);
1625 if (!error && VATTR_IS_ACTIVE(vap, va_dataprotect_class))
1626 error = cp_vnode_setclass(vp, vap->va_dataprotect_class);
1627 #endif
1628
1629 return (error);
1630 }
1631
1632
1633 /*
1634 * Change the mode on a file.
1635 * cnode must be locked before calling.
1636 */
1637 int
1638 hfs_chmod(struct vnode *vp, int mode, __unused kauth_cred_t cred, __unused struct proc *p)
1639 {
1640 register struct cnode *cp = VTOC(vp);
1641
1642 if (VTOVCB(vp)->vcbSigWord != kHFSPlusSigWord)
1643 return (0);
1644
1645 // Don't allow modification of the journal or journal_info_block
1646 if (hfs_is_journal_file(VTOHFS(vp), cp)) {
1647 return EPERM;
1648 }
1649
1650 #if OVERRIDE_UNKNOWN_PERMISSIONS
1651 if (((unsigned int)vfs_flags(VTOVFS(vp))) & MNT_UNKNOWNPERMISSIONS) {
1652 return (0);
1653 };
1654 #endif
1655
1656 mode_t new_mode = (cp->c_mode & ~ALLPERMS) | (mode & ALLPERMS);
1657 if (new_mode != cp->c_mode) {
1658 cp->c_mode = new_mode;
1659 cp->c_flag |= C_MINOR_MOD;
1660 }
1661 cp->c_touch_chgtime = TRUE;
1662 return (0);
1663 }
1664
1665
1666 int
1667 hfs_write_access(struct vnode *vp, kauth_cred_t cred, struct proc *p, Boolean considerFlags)
1668 {
1669 struct cnode *cp = VTOC(vp);
1670 int retval = 0;
1671 int is_member;
1672
1673 /*
1674 * Disallow write attempts on read-only file systems;
1675 * unless the file is a socket, fifo, or a block or
1676 * character device resident on the file system.
1677 */
1678 switch (vnode_vtype(vp)) {
1679 case VDIR:
1680 case VLNK:
1681 case VREG:
1682 if (VTOHFS(vp)->hfs_flags & HFS_READ_ONLY)
1683 return (EROFS);
1684 break;
1685 default:
1686 break;
1687 }
1688
1689 /* If immutable bit set, nobody gets to write it. */
1690 if (considerFlags && (cp->c_bsdflags & IMMUTABLE))
1691 return (EPERM);
1692
1693 /* Otherwise, user id 0 always gets access. */
1694 if (!suser(cred, NULL))
1695 return (0);
1696
1697 /* Otherwise, check the owner. */
1698 if ((retval = hfs_owner_rights(VTOHFS(vp), cp->c_uid, cred, p, false)) == 0)
1699 return ((cp->c_mode & S_IWUSR) == S_IWUSR ? 0 : EACCES);
1700
1701 /* Otherwise, check the groups. */
1702 if (kauth_cred_ismember_gid(cred, cp->c_gid, &is_member) == 0 && is_member) {
1703 return ((cp->c_mode & S_IWGRP) == S_IWGRP ? 0 : EACCES);
1704 }
1705
1706 /* Otherwise, check everyone else. */
1707 return ((cp->c_mode & S_IWOTH) == S_IWOTH ? 0 : EACCES);
1708 }
1709
1710
1711 /*
1712 * Perform chown operation on cnode cp;
1713 * code must be locked prior to call.
1714 */
1715 int
1716 #if !QUOTA
1717 hfs_chown(struct vnode *vp, uid_t uid, gid_t gid, __unused kauth_cred_t cred,
1718 __unused struct proc *p)
1719 #else
1720 hfs_chown(struct vnode *vp, uid_t uid, gid_t gid, kauth_cred_t cred,
1721 __unused struct proc *p)
1722 #endif
1723 {
1724 register struct cnode *cp = VTOC(vp);
1725 uid_t ouid;
1726 gid_t ogid;
1727 #if QUOTA
1728 int error = 0;
1729 register int i;
1730 int64_t change;
1731 #endif /* QUOTA */
1732
1733 if (VTOVCB(vp)->vcbSigWord != kHFSPlusSigWord)
1734 return (ENOTSUP);
1735
1736 if (((unsigned int)vfs_flags(VTOVFS(vp))) & MNT_UNKNOWNPERMISSIONS)
1737 return (0);
1738
1739 if (uid == (uid_t)VNOVAL)
1740 uid = cp->c_uid;
1741 if (gid == (gid_t)VNOVAL)
1742 gid = cp->c_gid;
1743
1744 #if 0 /* we are guaranteed that this is already the case */
1745 /*
1746 * If we don't own the file, are trying to change the owner
1747 * of the file, or are not a member of the target group,
1748 * the caller must be superuser or the call fails.
1749 */
1750 if ((kauth_cred_getuid(cred) != cp->c_uid || uid != cp->c_uid ||
1751 (gid != cp->c_gid &&
1752 (kauth_cred_ismember_gid(cred, gid, &is_member) || !is_member))) &&
1753 (error = suser(cred, 0)))
1754 return (error);
1755 #endif
1756
1757 ogid = cp->c_gid;
1758 ouid = cp->c_uid;
1759
1760 if (ouid == uid && ogid == gid) {
1761 // No change, just set change time
1762 cp->c_touch_chgtime = TRUE;
1763 return 0;
1764 }
1765
1766 #if QUOTA
1767 if ((error = hfs_getinoquota(cp)))
1768 return (error);
1769 if (ouid == uid) {
1770 dqrele(cp->c_dquot[USRQUOTA]);
1771 cp->c_dquot[USRQUOTA] = NODQUOT;
1772 }
1773 if (ogid == gid) {
1774 dqrele(cp->c_dquot[GRPQUOTA]);
1775 cp->c_dquot[GRPQUOTA] = NODQUOT;
1776 }
1777
1778 /*
1779 * Eventually need to account for (fake) a block per directory
1780 * if (vnode_isdir(vp))
1781 * change = VTOHFS(vp)->blockSize;
1782 * else
1783 */
1784
1785 change = (int64_t)(cp->c_blocks) * (int64_t)VTOVCB(vp)->blockSize;
1786 (void) hfs_chkdq(cp, -change, cred, CHOWN);
1787 (void) hfs_chkiq(cp, -1, cred, CHOWN);
1788 for (i = 0; i < MAXQUOTAS; i++) {
1789 dqrele(cp->c_dquot[i]);
1790 cp->c_dquot[i] = NODQUOT;
1791 }
1792 #endif /* QUOTA */
1793 cp->c_gid = gid;
1794 cp->c_uid = uid;
1795 #if QUOTA
1796 if ((error = hfs_getinoquota(cp)) == 0) {
1797 if (ouid == uid) {
1798 dqrele(cp->c_dquot[USRQUOTA]);
1799 cp->c_dquot[USRQUOTA] = NODQUOT;
1800 }
1801 if (ogid == gid) {
1802 dqrele(cp->c_dquot[GRPQUOTA]);
1803 cp->c_dquot[GRPQUOTA] = NODQUOT;
1804 }
1805 if ((error = hfs_chkdq(cp, change, cred, CHOWN)) == 0) {
1806 if ((error = hfs_chkiq(cp, 1, cred, CHOWN)) == 0)
1807 goto good;
1808 else
1809 (void) hfs_chkdq(cp, -change, cred, CHOWN|FORCE);
1810 }
1811 for (i = 0; i < MAXQUOTAS; i++) {
1812 dqrele(cp->c_dquot[i]);
1813 cp->c_dquot[i] = NODQUOT;
1814 }
1815 }
1816 cp->c_gid = ogid;
1817 cp->c_uid = ouid;
1818 if (hfs_getinoquota(cp) == 0) {
1819 if (ouid == uid) {
1820 dqrele(cp->c_dquot[USRQUOTA]);
1821 cp->c_dquot[USRQUOTA] = NODQUOT;
1822 }
1823 if (ogid == gid) {
1824 dqrele(cp->c_dquot[GRPQUOTA]);
1825 cp->c_dquot[GRPQUOTA] = NODQUOT;
1826 }
1827 (void) hfs_chkdq(cp, change, cred, FORCE|CHOWN);
1828 (void) hfs_chkiq(cp, 1, cred, FORCE|CHOWN);
1829 (void) hfs_getinoquota(cp);
1830 }
1831 return (error);
1832 good:
1833 if (hfs_getinoquota(cp))
1834 panic("hfs_chown: lost quota");
1835 #endif /* QUOTA */
1836
1837 /*
1838 * Without quotas, we could probably make this a minor
1839 * modification.
1840 */
1841 cp->c_flag |= C_MODIFIED;
1842
1843 /*
1844 According to the SUSv3 Standard, chown() shall mark
1845 for update the st_ctime field of the file.
1846 (No exceptions mentioned)
1847 */
1848 cp->c_touch_chgtime = TRUE;
1849 return (0);
1850 }
1851
1852 #if HFS_COMPRESSION
1853 /*
1854 * Flush the resource fork if it exists. vp is the data fork and has
1855 * an iocount.
1856 */
1857 static int hfs_flush_rsrc(vnode_t vp, vfs_context_t ctx)
1858 {
1859 cnode_t *cp = VTOC(vp);
1860
1861 hfs_lock(cp, HFS_SHARED_LOCK, 0);
1862
1863 vnode_t rvp = cp->c_rsrc_vp;
1864
1865 if (!rvp) {
1866 hfs_unlock(cp);
1867 return 0;
1868 }
1869
1870 int vid = vnode_vid(rvp);
1871
1872 hfs_unlock(cp);
1873
1874 int error = vnode_getwithvid(rvp, vid);
1875
1876 if (error)
1877 return error == ENOENT ? 0 : error;
1878
1879 hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, 0);
1880 hfs_lock_always(cp, HFS_EXCLUSIVE_LOCK);
1881 hfs_filedone(rvp, ctx, HFS_FILE_DONE_NO_SYNC);
1882 hfs_unlock(cp);
1883 hfs_unlock_truncate(cp, 0);
1884
1885 error = ubc_msync(rvp, 0, ubc_getsize(rvp), NULL,
1886 UBC_PUSHALL | UBC_SYNC);
1887
1888 vnode_put(rvp);
1889
1890 return error;
1891 }
1892 #endif // HFS_COMPRESSION
1893
1894
1895 /* Helper Functions for exchangedata(2) */
1896
1897 /*
1898 * hfs_exchangedata_getxattr
1899 * arguments:
1900 * vp: vnode to extract the EA for
1901 * name_selector: the index into the array of EA name entries.
1902 * buffer: address for output buffer to store the output EA
1903 * NOTE: This function will allocate the buffer, it is the caller's responsibility to free it.
1904 * xattr_size: output argument; will return the size of the EA, to correspond with the buffer.
1905 *
1906 * Return: 0 on success.
1907 * errno on error. If we return any error, the buffer is guaranteed to be NULL.
1908 *
1909 * Assumes CNODE lock held on cnode for 'vp'
1910 */
1911 static
1912 int hfs_exchangedata_getxattr (struct vnode *vp, uint32_t name_selector, void **buffer, size_t *xattr_size) {
1913 void *xattr_rawdata = NULL;
1914 void *extracted_xattr = NULL;
1915 uio_t uio;
1916 size_t memsize = MAX_EXCHANGE_EA_SIZE;
1917 size_t attrsize;
1918 int error = 0;
1919 struct hfsmount *hfsmp = NULL;
1920
1921 /* Sanity check inputs */
1922 if (name_selector > MAX_NUM_XATTR_NAMES) {
1923 return EINVAL;
1924 }
1925
1926 if (buffer == NULL || xattr_size == NULL) {
1927 return EINVAL;
1928 }
1929
1930 hfsmp = VTOHFS(vp);
1931
1932 //allocate 4k memory to hold the EA. We don't use this for "large" EAs, and the default
1933 //EA B-tree size should produce inline attributes of size < 4K
1934 xattr_rawdata = hfs_malloc (MAX_EXCHANGE_EA_SIZE);
1935 if (!xattr_rawdata) {
1936 return ENOMEM;
1937 }
1938
1939 //now create the UIO
1940 uio = uio_create (1, 0, UIO_SYSSPACE, UIO_READ);
1941 if (!uio) {
1942 hfs_free (xattr_rawdata, memsize);
1943 return ENOMEM;
1944 }
1945 uio_addiov(uio, CAST_USER_ADDR_T(xattr_rawdata), memsize);
1946 attrsize = memsize;
1947
1948 struct vnop_getxattr_args vga = {
1949 .a_uio = uio,
1950 .a_name = XATTR_NAMES[name_selector],
1951 .a_size = &attrsize
1952 };
1953
1954 // this takes care of grabbing the systemfile locks for us.
1955 error = hfs_getxattr_internal (VTOC(vp), &vga, hfsmp, 0);
1956
1957 if (error) {
1958 /*
1959 * We could have gotten a variety of errors back from the XATTR tree:
1960 * is it too big? (bigger than 4k?) == ERANGE
1961 * was the EA not found? == ENOATTR
1962 */
1963 uio_free(uio);
1964 hfs_free (xattr_rawdata, memsize);
1965 return error;
1966 }
1967
1968 //free the UIO
1969 uio_free(uio);
1970
1971 //upon success, a_size/attrsize now contains the actua/exported EA size
1972 extracted_xattr = hfs_malloc (attrsize);
1973 memcpy (extracted_xattr, xattr_rawdata, attrsize);
1974 hfs_free (xattr_rawdata, memsize);
1975
1976 *xattr_size = attrsize;
1977 *buffer = extracted_xattr;
1978
1979 return error;
1980 }
1981
1982
1983 /*
1984 * hfs_exchangedata_setxattr
1985 *
1986 * Note: This function takes fileIDs in as inputs, because exchangedata does
1987 * swizzly things with the two cnodes (See big block comment in hfs_vnop_exchange)
1988 * so we operate with FileIDs more or less directly on the XATTR b-tree.
1989 *
1990 * arguments:
1991 * hfsmp: the mount we're working on
1992 * fileid: the fileID of the EA to store into the tree.
1993 * name_selector: selector into the EA name array.
1994 * buffer: pointer to the memory of the EA to write.
1995 * xattr_size: size of the EA to write.
1996 *
1997 * Returns 0 on success
1998 * errno on failure
1999 *
2000 * Assumes that a transaction has already begun when this is called
2001 */
2002
2003 static
2004 int hfs_exchangedata_setxattr (struct hfsmount *hfsmp, uint32_t fileid,
2005 uint32_t name_selector, void *buffer, size_t xattr_size) {
2006
2007 int error = 0;
2008
2009
2010 /* Sanity check arguments */
2011 if (name_selector > MAX_NUM_XATTR_NAMES) {
2012 return EINVAL;
2013 }
2014
2015 if (buffer == NULL || xattr_size == 0 || fileid < kHFSFirstUserCatalogNodeID ) {
2016 return EINVAL;
2017 }
2018
2019 // is the size too big?
2020 if (xattr_size > hfsmp->hfs_max_inline_attrsize) {
2021 return EINVAL;
2022 }
2023
2024 /* setup the arguments to setxattr*/
2025 struct vnop_setxattr_args vsa = {
2026 .a_desc = NULL,
2027 .a_vp = NULL,
2028 .a_name = XATTR_NAMES[name_selector],
2029 .a_uio = NULL, // we use the data_ptr argument to setxattr_internal instead
2030 .a_options = 0,
2031 .a_context = NULL // no context needed, only done from within exchangedata
2032 };
2033
2034 /*
2035 * Since we must be in a transaction to guard the exchangedata operation, this will start
2036 * a nested transaction within the exchangedata one.
2037 */
2038 error = hfs_setxattr_internal (NULL, (caddr_t) buffer, xattr_size, &vsa, hfsmp, fileid);
2039
2040 return error;
2041
2042 }
2043
2044 /*
2045 * hfs_vnop_exchange:
2046 *
2047 * Inputs:
2048 * 'from' vnode/cnode
2049 * 'to' vnode/cnode
2050 * options flag bits
2051 * vfs_context
2052 *
2053 * Discussion:
2054 * hfs_vnop_exchange is used to service the exchangedata(2) system call.
2055 * Per the requirements of that system call, this function "swaps" some
2056 * of the information that lives in one catalog record for some that
2057 * lives in another. Note that not everything is swapped; in particular,
2058 * the extent information stored in each cnode is kept local to that
2059 * cnode. This allows existing file descriptor references to continue
2060 * to operate on the same content, regardless of the location in the
2061 * namespace that the file may have moved to. See inline comments
2062 * in the function for more information.
2063 */
2064 int
2065 hfs_vnop_exchange(struct vnop_exchange_args *ap)
2066 {
2067 struct vnode *from_vp = ap->a_fvp;
2068 struct vnode *to_vp = ap->a_tvp;
2069 struct cnode *from_cp;
2070 struct cnode *to_cp;
2071 struct hfsmount *hfsmp;
2072 struct cat_desc tempdesc;
2073 struct cat_attr tempattr;
2074 const unsigned char *from_nameptr;
2075 const unsigned char *to_nameptr;
2076 char from_iname[32];
2077 char to_iname[32];
2078 uint32_t to_flag_special;
2079 uint32_t from_flag_special;
2080
2081 uint16_t to_recflags_special;
2082 uint16_t from_recflags_special;
2083
2084 cnid_t from_parid;
2085 cnid_t to_parid;
2086 int lockflags;
2087 int error = 0, started_tr = 0, got_cookie = 0;
2088 cat_cookie_t cookie;
2089 time_t orig_from_ctime, orig_to_ctime;
2090 bool have_cnode_locks = false, have_from_trunc_lock = false, have_to_trunc_lock = false;
2091
2092 /* For the quarantine EA */
2093 void *from_xattr = NULL;
2094 void *to_xattr = NULL;
2095 size_t from_attrsize = 0;
2096 size_t to_attrsize = 0;
2097
2098
2099 /*
2100 * VFS does the following checks:
2101 * 1. Validate that both are files.
2102 * 2. Validate that both are on the same mount.
2103 * 3. Validate that they're not the same vnode.
2104 */
2105
2106 from_cp = VTOC(from_vp);
2107 to_cp = VTOC(to_vp);
2108 hfsmp = VTOHFS(from_vp);
2109
2110 orig_from_ctime = from_cp->c_ctime;
2111 orig_to_ctime = to_cp->c_ctime;
2112
2113 #if CONFIG_PROTECT
2114 /*
2115 * Do not allow exchangedata/F_MOVEDATAEXTENTS on data-protected filesystems
2116 * because the EAs will not be swapped. As a result, the persistent keys would not
2117 * match and the files will be garbage.
2118 */
2119 if (cp_fs_protected (vnode_mount(from_vp))) {
2120 return EINVAL;
2121 }
2122 #endif
2123
2124 #if HFS_COMPRESSION
2125 if (!ISSET(ap->a_options, FSOPT_EXCHANGE_DATA_ONLY)) {
2126 if ( hfs_file_is_compressed(from_cp, 0) ) {
2127 if ( 0 != ( error = decmpfs_decompress_file(from_vp, VTOCMP(from_vp), -1, 0, 1) ) ) {
2128 return error;
2129 }
2130 }
2131
2132 if ( hfs_file_is_compressed(to_cp, 0) ) {
2133 if ( 0 != ( error = decmpfs_decompress_file(to_vp, VTOCMP(to_vp), -1, 0, 1) ) ) {
2134 return error;
2135 }
2136 }
2137 }
2138 #endif // HFS_COMPRESSION
2139
2140 // Resource forks cannot be exchanged.
2141 if (VNODE_IS_RSRC(from_vp) || VNODE_IS_RSRC(to_vp))
2142 return EINVAL;
2143
2144 /*
2145 * Normally, we want to notify the user handlers about the event,
2146 * except if it's a handler driving the event.
2147 */
2148 if ((ap->a_options & FSOPT_EXCHANGE_DATA_ONLY) == 0) {
2149 nspace_snapshot_event(from_vp, orig_from_ctime, NAMESPACE_HANDLER_WRITE_OP, NULL);
2150 nspace_snapshot_event(to_vp, orig_to_ctime, NAMESPACE_HANDLER_WRITE_OP, NULL);
2151 } else {
2152 /*
2153 * This is currently used by mtmd so we should tidy up the
2154 * file now because the data won't be used again in the
2155 * destination file.
2156 */
2157 hfs_lock_truncate(from_cp, HFS_EXCLUSIVE_LOCK, 0);
2158 hfs_lock_always(from_cp, HFS_EXCLUSIVE_LOCK);
2159 hfs_filedone(from_vp, ap->a_context, HFS_FILE_DONE_NO_SYNC);
2160 hfs_unlock(from_cp);
2161 hfs_unlock_truncate(from_cp, 0);
2162
2163 // Flush all the data from the source file
2164 error = ubc_msync(from_vp, 0, ubc_getsize(from_vp), NULL,
2165 UBC_PUSHALL | UBC_SYNC);
2166 if (error)
2167 goto exit;
2168
2169 #if HFS_COMPRESSION
2170 /*
2171 * If this is a compressed file, we need to do the same for
2172 * the resource fork.
2173 */
2174 if (ISSET(from_cp->c_bsdflags, UF_COMPRESSED)) {
2175 error = hfs_flush_rsrc(from_vp, ap->a_context);
2176 if (error)
2177 goto exit;
2178 }
2179 #endif
2180
2181 /*
2182 * We're doing a data-swap so we need to take the truncate
2183 * lock exclusively. We need an exclusive lock because we
2184 * will be completely truncating the source file and we must
2185 * make sure nobody else sneaks in and trys to issue I/O
2186 * whilst we don't have the cnode lock.
2187 *
2188 * After taking the truncate lock we do a quick check to
2189 * verify there are no other references (including mmap
2190 * references), but we must remember that this does not stop
2191 * anybody coming in later and taking a reference. We will
2192 * have the truncate lock exclusively so that will prevent
2193 * them from issuing any I/O.
2194 */
2195
2196 if (to_cp < from_cp) {
2197 hfs_lock_truncate(to_cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
2198 have_to_trunc_lock = true;
2199 }
2200
2201 hfs_lock_truncate(from_cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
2202 have_from_trunc_lock = true;
2203
2204 /*
2205 * Do an early check to verify the source is not in use by
2206 * anyone. We should be called from an FD opened as F_EVTONLY
2207 * so that doesn't count as a reference.
2208 */
2209 if (vnode_isinuse(from_vp, 0)) {
2210 error = EBUSY;
2211 goto exit;
2212 }
2213
2214 if (to_cp >= from_cp) {
2215 hfs_lock_truncate(to_cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
2216 have_to_trunc_lock = true;
2217 }
2218 }
2219
2220 if ((error = hfs_lockpair(from_cp, to_cp, HFS_EXCLUSIVE_LOCK)))
2221 goto exit;
2222 have_cnode_locks = true;
2223
2224 // Don't allow modification of the journal or journal_info_block
2225 if (hfs_is_journal_file(hfsmp, from_cp) ||
2226 hfs_is_journal_file(hfsmp, to_cp)) {
2227 error = EPERM;
2228 goto exit;
2229 }
2230
2231 /*
2232 * If doing a data move, then call the underlying function.
2233 */
2234 if (ISSET(ap->a_options, FSOPT_EXCHANGE_DATA_ONLY)) {
2235 #if HFS_COMPRESSION
2236 if (ISSET(from_cp->c_bsdflags, UF_COMPRESSED)) {
2237 error = hfs_move_compressed(from_cp, to_cp);
2238 goto exit;
2239 }
2240 #endif
2241
2242 error = hfs_move_data(from_cp, to_cp, 0);
2243 goto exit;
2244 }
2245
2246 /*
2247 * If we're doing a normal exchangedata, then get the source/dst quarantine
2248 * EAs as needed. We do it here before we start the transaction.
2249 */
2250
2251 //get the EA for the 'from' vnode if it exists.
2252 error = hfs_exchangedata_getxattr (from_vp, quarantine, &from_xattr, &from_attrsize);
2253 if (error) {
2254 if (error == ENOATTR) {
2255 //it's OK for the quarantine EA to not exist
2256 error = 0;
2257 }
2258 else {
2259 goto exit;
2260 }
2261 }
2262
2263
2264 //get the EA from the 'to' vnode if it exists
2265 error = hfs_exchangedata_getxattr (to_vp, quarantine, &to_xattr, &to_attrsize);
2266 if (error) {
2267 if (error == ENOATTR) {
2268 //it's OK for the quarantine EA to not exist
2269 error = 0;
2270 }
2271 else {
2272 goto exit;
2273 }
2274 }
2275
2276
2277 /* Start a transaction; we have to do all of this atomically */
2278 if ((error = hfs_start_transaction(hfsmp)) != 0) {
2279 goto exit;
2280 }
2281 started_tr = 1;
2282
2283 /*
2284 * Reserve some space in the Catalog file.
2285 */
2286 if ((error = cat_preflight(hfsmp, CAT_EXCHANGE, &cookie, vfs_context_proc(ap->a_context)))) {
2287 goto exit;
2288 }
2289 got_cookie = 1;
2290
2291 /* The backend code always tries to delete the virtual
2292 * extent id for exchanging files so we need to lock
2293 * the extents b-tree.
2294 */
2295 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_EXTENTS | SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
2296
2297 /* Account for the location of the catalog objects. */
2298 if (from_cp->c_flag & C_HARDLINK) {
2299 MAKE_INODE_NAME(from_iname, sizeof(from_iname),
2300 from_cp->c_attr.ca_linkref);
2301 from_nameptr = (unsigned char *)from_iname;
2302 from_parid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
2303 from_cp->c_hint = 0;
2304 } else {
2305 from_nameptr = from_cp->c_desc.cd_nameptr;
2306 from_parid = from_cp->c_parentcnid;
2307 }
2308 if (to_cp->c_flag & C_HARDLINK) {
2309 MAKE_INODE_NAME(to_iname, sizeof(to_iname),
2310 to_cp->c_attr.ca_linkref);
2311 to_nameptr = (unsigned char *)to_iname;
2312 to_parid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
2313 to_cp->c_hint = 0;
2314 } else {
2315 to_nameptr = to_cp->c_desc.cd_nameptr;
2316 to_parid = to_cp->c_parentcnid;
2317 }
2318
2319 /*
2320 * ExchangeFileIDs swaps the on-disk, or in-BTree extent information
2321 * attached to two different file IDs. It also swaps the extent
2322 * information that may live in the extents-overflow B-Tree.
2323 *
2324 * We do this in a transaction as this may require a lot of B-Tree nodes
2325 * to do completely, particularly if one of the files in question
2326 * has a lot of extents.
2327 *
2328 * For example, assume "file1" has fileID 50, and "file2" has fileID 52.
2329 * For the on-disk records, which are assumed to be synced, we will
2330 * first swap the resident inline-8 extents as part of the catalog records.
2331 * Then we will swap any extents overflow records for each file.
2332 *
2333 * When ExchangeFileIDs returns successfully, "file1" will have fileID 52,
2334 * and "file2" will have fileID 50. However, note that this is only
2335 * approximately half of the work that exchangedata(2) will need to
2336 * accomplish. In other words, we swap "too much" of the information
2337 * because if we only called ExchangeFileIDs, both the fileID and extent
2338 * information would be the invariants of this operation. We don't
2339 * actually want that; we want to conclude with "file1" having
2340 * file ID 50, and "file2" having fileID 52.
2341 *
2342 * The remainder of hfs_vnop_exchange will swap the file ID and other cnode
2343 * data back to the proper ownership, while still allowing the cnode to remain
2344 * pointing at the same set of extents that it did originally.
2345 */
2346 error = ExchangeFileIDs(hfsmp, from_nameptr, to_nameptr, from_parid,
2347 to_parid, from_cp->c_hint, to_cp->c_hint);
2348 hfs_systemfile_unlock(hfsmp, lockflags);
2349
2350 if (error != E_NONE) {
2351 error = MacToVFSError(error);
2352 goto exit;
2353 }
2354
2355 /*
2356 * Now, we have to swap the quarantine EA.
2357 *
2358 * Ordinarily, we would not have to swap/exchange any extended attributes,
2359 * since they are keyed by the file ID, and this function is supposed
2360 * to manipulate the main data stream/fork only.
2361 *
2362 * However, we want the quarantine EA to follow the file content.
2363 */
2364
2365 int from_xattr_status = 0;
2366 if (from_xattr) {
2367 /*
2368 * Caution!
2369 * We've crossed a point of no return here, because if we
2370 * have successfully swapped the file content above, we need to continue here
2371 * to swap the rest of the cnode content, which is not subject to failure.
2372 * Failing the whole function because the xattr swap will result in perceived
2373 * data loss to the caller, so we swallow the error case here.
2374 */
2375 from_xattr_status = hfs_removexattr_by_id (hfsmp, from_cp->c_fileid, XATTR_NAMES[quarantine]);
2376 if (from_xattr_status == 0) {
2377 int xattr_lockflags;
2378 int remaining_eas;
2379 /*
2380 * Check to see if we need to remove the xattr bit from the catalog record flags while
2381 * 'from_cp' still tracks with its original file ID. Once the cnodes' contents are swapped
2382 * and they are ready to be re-hashed, we will OR in the bit if we know that we moved the
2383 * EA to the counterpart.
2384 */
2385 xattr_lockflags = hfs_systemfile_lock (hfsmp, SFL_ATTRIBUTE, HFS_SHARED_LOCK);
2386 remaining_eas = file_attribute_exist (hfsmp, from_cp->c_fileid);
2387 if (remaining_eas == 0) {
2388 from_cp->c_attr.ca_recflags &= ~kHFSHasAttributesMask;
2389 //the cnode will be pushed out to disk LATER on.
2390 }
2391 hfs_systemfile_unlock (hfsmp, xattr_lockflags);
2392
2393 }
2394 }
2395
2396 //and the same for to_xattr
2397 if (to_xattr) {
2398 int xattr_status = hfs_removexattr_by_id (hfsmp, to_cp->c_fileid, XATTR_NAMES[quarantine]);
2399
2400 if (xattr_status == 0) {
2401 int xattr_lockflags;
2402 int remaining_eas;
2403 /*
2404 * Check to see if we need to remove the xattr bit from the catalog record flags while
2405 * 'to_cp' still tracks with its original file ID. Once the cnodes' contents are swapped
2406 * and they are ready to be re-hashed, we will OR in the bit if we know that we moved the
2407 * EA to the counterpart.
2408 */
2409 xattr_lockflags = hfs_systemfile_lock (hfsmp, SFL_ATTRIBUTE, HFS_SHARED_LOCK);
2410 remaining_eas = file_attribute_exist (hfsmp, from_cp->c_fileid);
2411 if (remaining_eas == 0) {
2412 to_cp->c_attr.ca_recflags &= ~kHFSHasAttributesMask;
2413 //the cnode will be pushed out to disk LATER on.
2414 }
2415 hfs_systemfile_unlock (hfsmp, xattr_lockflags);
2416
2417 /* Now move the EA to the counterparty fileID. We piggyback on the larger transaction here */
2418 hfs_exchangedata_setxattr (hfsmp, from_cp->c_fileid, quarantine, to_xattr, to_attrsize);
2419 }
2420 }
2421
2422 if (from_xattr && from_xattr_status == 0) {
2423 /*
2424 * if the from EA got removed properly, then attach it to the 'to' file. We do it at this point
2425 * to ensure that it got removed properly above before re-setting it again.
2426 */
2427 hfs_exchangedata_setxattr (hfsmp, to_cp->c_fileid, quarantine, from_xattr, from_attrsize);
2428 }
2429
2430
2431 /* Purge the vnodes from the name cache */
2432 if (from_vp)
2433 cache_purge(from_vp);
2434 if (to_vp)
2435 cache_purge(to_vp);
2436
2437 /* Bump both source and destination write counts before any swaps. */
2438 {
2439 hfs_incr_gencount (from_cp);
2440 hfs_incr_gencount (to_cp);
2441 }
2442
2443 /* Save a copy of "from" attributes before swapping. */
2444 bcopy(&from_cp->c_desc, &tempdesc, sizeof(struct cat_desc));
2445 bcopy(&from_cp->c_attr, &tempattr, sizeof(struct cat_attr));
2446
2447 /* Save whether or not each cnode is a hardlink or has EAs */
2448 from_flag_special = from_cp->c_flag & (C_HARDLINK | C_HASXATTRS);
2449 from_recflags_special = (from_cp->c_attr.ca_recflags & kHFSHasAttributesMask);
2450
2451 to_flag_special = to_cp->c_flag & (C_HARDLINK | C_HASXATTRS);
2452 to_recflags_special = (to_cp->c_attr.ca_recflags & kHFSHasAttributesMask);
2453
2454 /* Drop the special bits from each cnode */
2455 from_cp->c_flag &= ~(C_HARDLINK | C_HASXATTRS);
2456 to_cp->c_flag &= ~(C_HARDLINK | C_HASXATTRS);
2457 from_cp->c_attr.ca_recflags &= ~(kHFSHasAttributesMask);
2458 to_cp->c_attr.ca_recflags &= ~(kHFSHasAttributesMask);
2459
2460 /*
2461 * Now complete the in-memory portion of the copy.
2462 *
2463 * ExchangeFileIDs swaps the on-disk records involved. We complete the
2464 * operation by swapping the in-memory contents of the two files here.
2465 * We swap the cnode descriptors, which contain name, BSD attributes,
2466 * timestamps, etc, about the file.
2467 *
2468 * NOTE: We do *NOT* swap the fileforks of the two cnodes. We have
2469 * already swapped the on-disk extent information. As long as we swap the
2470 * IDs, the in-line resident 8 extents that live in the filefork data
2471 * structure will point to the right data for the new file ID if we leave
2472 * them alone.
2473 *
2474 * As a result, any file descriptor that points to a particular
2475 * vnode (even though it should change names), will continue
2476 * to point to the same content.
2477 */
2478
2479 /* Copy the "to" -> "from" cnode */
2480 bcopy(&to_cp->c_desc, &from_cp->c_desc, sizeof(struct cat_desc));
2481
2482 from_cp->c_hint = 0;
2483 /*
2484 * If 'to' was a hardlink, then we copied over its link ID/CNID/(namespace ID)
2485 * when we bcopy'd the descriptor above. However, the cnode attributes
2486 * are not bcopied. As a result, make sure to swap the file IDs of each item.
2487 *
2488 * Further, other hardlink attributes must be moved along in this swap:
2489 * the linkcount, the linkref, and the firstlink all need to move
2490 * along with the file IDs. See note below regarding the flags and
2491 * what moves vs. what does not.
2492 *
2493 * For Reference:
2494 * linkcount == total # of hardlinks.
2495 * linkref == the indirect inode pointer.
2496 * firstlink == the first hardlink in the chain (written to the raw inode).
2497 * These three are tied to the fileID and must move along with the rest of the data.
2498 */
2499 from_cp->c_fileid = to_cp->c_attr.ca_fileid;
2500
2501 from_cp->c_itime = to_cp->c_itime;
2502 from_cp->c_btime = to_cp->c_btime;
2503 from_cp->c_atime = to_cp->c_atime;
2504 from_cp->c_ctime = to_cp->c_ctime;
2505 from_cp->c_gid = to_cp->c_gid;
2506 from_cp->c_uid = to_cp->c_uid;
2507 from_cp->c_bsdflags = to_cp->c_bsdflags;
2508 from_cp->c_mode = to_cp->c_mode;
2509 from_cp->c_linkcount = to_cp->c_linkcount;
2510 from_cp->c_attr.ca_linkref = to_cp->c_attr.ca_linkref;
2511 from_cp->c_attr.ca_firstlink = to_cp->c_attr.ca_firstlink;
2512
2513 /*
2514 * The cnode flags need to stay with the cnode and not get transferred
2515 * over along with everything else because they describe the content; they are
2516 * not attributes that reflect changes specific to the file ID. In general,
2517 * fields that are tied to the file ID are the ones that will move.
2518 *
2519 * This reflects the fact that the file may have borrowed blocks, dirty metadata,
2520 * or other extents, which may not yet have been written to the catalog. If
2521 * they were, they would have been transferred above in the ExchangeFileIDs call above...
2522 *
2523 * The flags that are special are:
2524 * C_HARDLINK, C_HASXATTRS
2525 *
2526 * and the c_attr recflag:
2527 * kHFSHasAttributesMask
2528 *
2529 * These flags move with the item and file ID in the namespace since their
2530 * state is tied to that of the file ID.
2531 *
2532 * So to transfer the flags, we have to take the following steps
2533 * 1) Store in a localvar whether or not the special bits are set.
2534 * 2) Drop the special bits from the current flags
2535 * 3) swap the special flag bits to their destination
2536 */
2537 from_cp->c_flag |= to_flag_special | C_MODIFIED;
2538 from_cp->c_attr.ca_recflags = to_cp->c_attr.ca_recflags;
2539 from_cp->c_attr.ca_recflags |= to_recflags_special;
2540 if (from_xattr) {
2541 /*
2542 * NOTE:
2543 * This is counter-intuitive and part of the complexity of exchangedata.
2544 * if 'from_cp' originally had a quarantine EA, then ensure that the cnode
2545 * pointed to by 'from_cp' CONTINUES to keep the "has EAs" bit. This is because
2546 * the cnode is about to be re-hashed with a new ID, but the file CONTENT
2547 * (i.e. the file fork) stayed put. And we want the quarantine EA to follow
2548 * the content. The check above is correct.
2549 */
2550 from_cp->c_attr.ca_recflags |= kHFSHasAttributesMask;
2551 }
2552
2553 bcopy(to_cp->c_finderinfo, from_cp->c_finderinfo, 32);
2554
2555
2556 /* Copy the "from" -> "to" cnode */
2557 bcopy(&tempdesc, &to_cp->c_desc, sizeof(struct cat_desc));
2558 to_cp->c_hint = 0;
2559 /*
2560 * Pull the file ID from the tempattr we copied above. We can't assume
2561 * it is the same as the CNID.
2562 */
2563 to_cp->c_fileid = tempattr.ca_fileid;
2564 to_cp->c_itime = tempattr.ca_itime;
2565 to_cp->c_btime = tempattr.ca_btime;
2566 to_cp->c_atime = tempattr.ca_atime;
2567 to_cp->c_ctime = tempattr.ca_ctime;
2568 to_cp->c_gid = tempattr.ca_gid;
2569 to_cp->c_uid = tempattr.ca_uid;
2570 to_cp->c_bsdflags = tempattr.ca_flags;
2571 to_cp->c_mode = tempattr.ca_mode;
2572 to_cp->c_linkcount = tempattr.ca_linkcount;
2573 to_cp->c_attr.ca_linkref = tempattr.ca_linkref;
2574 to_cp->c_attr.ca_firstlink = tempattr.ca_firstlink;
2575
2576 /*
2577 * Only OR in the "from" flags into our cnode flags below.
2578 * Leave the rest of the flags alone.
2579 */
2580 to_cp->c_flag |= from_flag_special | C_MODIFIED;
2581 to_cp->c_attr.ca_recflags = tempattr.ca_recflags;
2582 to_cp->c_attr.ca_recflags |= from_recflags_special;
2583
2584 if (to_xattr) {
2585 /*
2586 * NOTE:
2587 * This is counter-intuitive and part of the complexity of exchangedata.
2588 * if 'to_cp' originally had a quarantine EA, then ensure that the cnode
2589 * pointed to by 'to_cp' CONTINUES to keep the "has EAs" bit. This is because
2590 * the cnode is about to be re-hashed with a new ID, but the file CONTENT
2591 * (i.e. the file fork) stayed put. And we want the quarantine EA to follow
2592 * the content. The check above is correct.
2593 */
2594 to_cp->c_attr.ca_recflags |= kHFSHasAttributesMask;
2595 }
2596
2597 bcopy(tempattr.ca_finderinfo, to_cp->c_finderinfo, 32);
2598
2599
2600 /* Rehash the cnodes using their new file IDs */
2601 hfs_chash_rehash(hfsmp, from_cp, to_cp);
2602
2603 /*
2604 * When a file moves out of "Cleanup At Startup"
2605 * we can drop its NODUMP status.
2606 */
2607 if ((from_cp->c_bsdflags & UF_NODUMP) &&
2608 (from_cp->c_parentcnid != to_cp->c_parentcnid)) {
2609 from_cp->c_bsdflags &= ~UF_NODUMP;
2610 from_cp->c_touch_chgtime = TRUE;
2611 }
2612 if ((to_cp->c_bsdflags & UF_NODUMP) &&
2613 (to_cp->c_parentcnid != from_cp->c_parentcnid)) {
2614 to_cp->c_bsdflags &= ~UF_NODUMP;
2615 to_cp->c_touch_chgtime = TRUE;
2616 }
2617
2618 exit:
2619 if (got_cookie) {
2620 cat_postflight(hfsmp, &cookie, vfs_context_proc(ap->a_context));
2621 }
2622 if (started_tr) {
2623 hfs_end_transaction(hfsmp);
2624 }
2625
2626 if (have_cnode_locks)
2627 hfs_unlockpair(from_cp, to_cp);
2628
2629 if (have_from_trunc_lock)
2630 hfs_unlock_truncate(from_cp, 0);
2631
2632 if (have_to_trunc_lock)
2633 hfs_unlock_truncate(to_cp, 0);
2634
2635 /* Free the memory used by the EAs */
2636 if (from_xattr) {
2637 hfs_free (from_xattr, from_attrsize);
2638 from_xattr = NULL;
2639 }
2640
2641 if (to_xattr) {
2642 hfs_free (to_xattr, to_attrsize);
2643 to_xattr = NULL;
2644 }
2645
2646 return (error);
2647 }
2648
2649 #if HFS_COMPRESSION
2650 /*
2651 * This function is used specifically for the case when a namespace
2652 * handler is trying to steal data before it's deleted. Note that we
2653 * don't bother deleting the xattr from the source because it will get
2654 * deleted a short time later anyway.
2655 *
2656 * cnodes must be locked
2657 */
2658 static int hfs_move_compressed(cnode_t *from_cp, cnode_t *to_cp)
2659 {
2660 int ret;
2661 void *data = NULL;
2662
2663 CLR(from_cp->c_bsdflags, UF_COMPRESSED);
2664 SET(from_cp->c_flag, C_MODIFIED);
2665
2666 ret = hfs_move_data(from_cp, to_cp, HFS_MOVE_DATA_INCLUDE_RSRC);
2667 if (ret)
2668 goto exit;
2669
2670 /*
2671 * Transfer the xattr that decmpfs uses. Ideally, this code
2672 * should be with the other decmpfs code but it's file system
2673 * agnostic and this path is currently, and likely to remain, HFS+
2674 * specific. It's easier and more performant if we implement it
2675 * here.
2676 */
2677
2678 size_t size;
2679 data = hfs_malloc(size = MAX_DECMPFS_XATTR_SIZE);
2680
2681 ret = hfs_xattr_read(from_cp->c_vp, DECMPFS_XATTR_NAME, data, &size);
2682 if (ret)
2683 goto exit;
2684
2685 ret = hfs_xattr_write(to_cp->c_vp, DECMPFS_XATTR_NAME, data, size);
2686 if (ret)
2687 goto exit;
2688
2689 SET(to_cp->c_bsdflags, UF_COMPRESSED);
2690 SET(to_cp->c_flag, C_MODIFIED);
2691
2692 exit:
2693 hfs_free(data, MAX_DECMPFS_XATTR_SIZE);
2694
2695 return ret;
2696 }
2697 #endif // HFS_COMPRESSION
2698
2699 int
2700 hfs_vnop_mmap(struct vnop_mmap_args *ap)
2701 {
2702 struct vnode *vp = ap->a_vp;
2703 cnode_t *cp = VTOC(vp);
2704 int error;
2705
2706 if (VNODE_IS_RSRC(vp)) {
2707 /* allow pageins of the resource fork */
2708 } else {
2709 int compressed = hfs_file_is_compressed(cp, 1); /* 1 == don't take the cnode lock */
2710 time_t orig_ctime = cp->c_ctime;
2711
2712 if (!compressed && (cp->c_bsdflags & UF_COMPRESSED)) {
2713 error = check_for_dataless_file(vp, NAMESPACE_HANDLER_READ_OP);
2714 if (error != 0) {
2715 return error;
2716 }
2717 }
2718
2719 if (ap->a_fflags & PROT_WRITE) {
2720 nspace_snapshot_event(vp, orig_ctime, NAMESPACE_HANDLER_WRITE_OP, NULL);
2721 }
2722 }
2723
2724 #if CONFIG_PROTECT
2725 error = cp_handle_vnop(vp, (ap->a_fflags & PROT_WRITE
2726 ? CP_WRITE_ACCESS : 0) | CP_READ_ACCESS, 0);
2727 if (error)
2728 return error;
2729 #endif
2730
2731 //
2732 // NOTE: we return ENOTSUP because we want the cluster layer
2733 // to actually do all the real work.
2734 //
2735 return (ENOTSUP);
2736 }
2737
2738 static errno_t hfs_vnop_mnomap(struct vnop_mnomap_args *ap)
2739 {
2740 vnode_t vp = ap->a_vp;
2741
2742 /*
2743 * Whilst the file was mapped, there may not have been any
2744 * page-outs so we need to increment the generation counter now.
2745 * Unfortunately this may lead to a change in the generation
2746 * counter when no actual change has been made, but there is
2747 * little we can do about that with our current architecture.
2748 */
2749 if (ubc_is_mapped_writable(vp)) {
2750 cnode_t *cp = VTOC(vp);
2751 hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
2752 hfs_incr_gencount(cp);
2753
2754 /*
2755 * We don't want to set the modification time here since a
2756 * change to that is not acceptable if no changes were made.
2757 * Instead we set a flag so that if we get any page-outs we
2758 * know to update the modification time. It's possible that
2759 * they weren't actually because of changes made whilst the
2760 * file was mapped but that's not easy to fix now.
2761 */
2762 SET(cp->c_flag, C_MIGHT_BE_DIRTY_FROM_MAPPING);
2763
2764 hfs_unlock(cp);
2765 }
2766
2767 return 0;
2768 }
2769
2770 /*
2771 * Mark the resource fork as needing a ubc_setsize when we drop the
2772 * cnode lock later.
2773 */
2774 static void hfs_rsrc_setsize(cnode_t *cp)
2775 {
2776 /*
2777 * We need to take an iocount if we don't have one. vnode_get
2778 * will return ENOENT if the vnode is terminating which is what we
2779 * want as it's not safe to call ubc_setsize in that case.
2780 */
2781 if (cp->c_rsrc_vp && !vnode_get(cp->c_rsrc_vp)) {
2782 // Shouldn't happen, but better safe...
2783 if (ISSET(cp->c_flag, C_NEED_RVNODE_PUT))
2784 vnode_put(cp->c_rsrc_vp);
2785 SET(cp->c_flag, C_NEED_RVNODE_PUT | C_NEED_RSRC_SETSIZE);
2786 }
2787 }
2788
2789 /*
2790 * hfs_move_data
2791 *
2792 * This is a non-symmetric variant of exchangedata. In this function,
2793 * the contents of the data fork (and optionally the resource fork)
2794 * are moved from from_cp to to_cp.
2795 *
2796 * The cnodes must be locked.
2797 *
2798 * The cnode pointed to by 'to_cp' *must* be empty prior to invoking
2799 * this function. We impose this restriction because we may not be
2800 * able to fully delete the entire file's contents in a single
2801 * transaction, particularly if it has a lot of extents. In the
2802 * normal file deletion codepath, the file is screened for two
2803 * conditions: 1) bigger than 400MB, and 2) more than 8 extents. If
2804 * so, the file is relocated to the hidden directory and the deletion
2805 * is broken up into multiple truncates. We can't do that here
2806 * because both files need to exist in the namespace. The main reason
2807 * this is imposed is that we may have to touch a whole lot of bitmap
2808 * blocks if there are many extents.
2809 *
2810 * Any data written to 'from_cp' after this call completes is not
2811 * guaranteed to be moved.
2812 *
2813 * Arguments:
2814 * cnode_t *from_cp : source file
2815 * cnode_t *to_cp : destination file; must be empty
2816 *
2817 * Returns:
2818 *
2819 * EBUSY - File has been deleted or is in use
2820 * EFBIG - Destination file was not empty
2821 * EIO - An I/O error
2822 * 0 - success
2823 * other - Other errors that can be returned from called functions
2824 */
2825 int hfs_move_data(cnode_t *from_cp, cnode_t *to_cp,
2826 hfs_move_data_options_t options)
2827 {
2828 hfsmount_t *hfsmp = VTOHFS(from_cp->c_vp);
2829 int error = 0;
2830 int lockflags = 0;
2831 bool return_EIO_on_error = false;
2832 const bool include_rsrc = ISSET(options, HFS_MOVE_DATA_INCLUDE_RSRC);
2833
2834 /* Verify that neither source/dest file is open-unlinked */
2835 if (ISSET(from_cp->c_flag, C_DELETED | C_NOEXISTS)
2836 || ISSET(to_cp->c_flag, C_DELETED | C_NOEXISTS)) {
2837 return EBUSY;
2838 }
2839
2840 /*
2841 * Verify the source file is not in use by anyone besides us.
2842 *
2843 * This function is typically invoked by a namespace handler
2844 * process responding to a temporarily stalled system call.
2845 * The FD that it is working off of is opened O_EVTONLY, so
2846 * it really has no active usecounts (the kusecount from O_EVTONLY
2847 * is subtracted from the total usecounts).
2848 *
2849 * As a result, we shouldn't have any active usecounts against
2850 * this vnode when we go to check it below.
2851 */
2852 if (vnode_isinuse(from_cp->c_vp, 0))
2853 return EBUSY;
2854
2855 if (include_rsrc && from_cp->c_rsrc_vp) {
2856 if (vnode_isinuse(from_cp->c_rsrc_vp, 0))
2857 return EBUSY;
2858
2859 /*
2860 * In the code below, if the destination file doesn't have a
2861 * c_rsrcfork then we don't create it which means we we cannot
2862 * transfer the ff_invalidranges and cf_vblocks fields. These
2863 * shouldn't be set because we flush the resource fork before
2864 * calling this function but there is a tiny window when we
2865 * did not have any locks...
2866 */
2867 if (!to_cp->c_rsrcfork
2868 && (!TAILQ_EMPTY(&from_cp->c_rsrcfork->ff_invalidranges)
2869 || from_cp->c_rsrcfork->ff_unallocblocks)) {
2870 /*
2871 * The file isn't really busy now but something did slip
2872 * in and tinker with the file while we didn't have any
2873 * locks, so this is the most meaningful return code for
2874 * the caller.
2875 */
2876 return EBUSY;
2877 }
2878 }
2879
2880 // Check the destination file is empty
2881 if (to_cp->c_datafork->ff_blocks
2882 || to_cp->c_datafork->ff_size
2883 || (include_rsrc
2884 && (to_cp->c_blocks
2885 || (to_cp->c_rsrcfork && to_cp->c_rsrcfork->ff_size)))) {
2886 return EFBIG;
2887 }
2888
2889 if ((error = hfs_start_transaction (hfsmp)))
2890 return error;
2891
2892 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_EXTENTS | SFL_ATTRIBUTE,
2893 HFS_EXCLUSIVE_LOCK);
2894
2895 // filefork_t is 128 bytes which should be OK
2896 filefork_t rfork_buf, *from_rfork = NULL;
2897
2898 if (include_rsrc) {
2899 from_rfork = from_cp->c_rsrcfork;
2900
2901 /*
2902 * Creating resource fork vnodes is expensive, so just get get
2903 * the fork data if we need it.
2904 */
2905 if (!from_rfork && hfs_has_rsrc(from_cp)) {
2906 from_rfork = &rfork_buf;
2907
2908 from_rfork->ff_cp = from_cp;
2909 TAILQ_INIT(&from_rfork->ff_invalidranges);
2910
2911 error = cat_idlookup(hfsmp, from_cp->c_fileid, 0, 1, NULL, NULL,
2912 &from_rfork->ff_data);
2913
2914 if (error)
2915 goto exit;
2916 }
2917 }
2918
2919 /*
2920 * From here on, any failures mean that we might be leaving things
2921 * in a weird or inconsistent state. Ideally, we should back out
2922 * all the changes, but to do that properly we need to fix
2923 * MoveData. We'll save fixing that for another time. For now,
2924 * just return EIO in all cases to the caller so that they know.
2925 */
2926 return_EIO_on_error = true;
2927
2928 bool data_overflow_extents = overflow_extents(from_cp->c_datafork);
2929
2930 // Move the data fork
2931 if ((error = hfs_move_fork (from_cp->c_datafork, from_cp,
2932 to_cp->c_datafork, to_cp))) {
2933 goto exit;
2934 }
2935
2936 SET(from_cp->c_flag, C_NEED_DATA_SETSIZE);
2937 SET(to_cp->c_flag, C_NEED_DATA_SETSIZE);
2938
2939 // We move the resource fork later
2940
2941 /*
2942 * Note that because all we're doing is moving the extents around,
2943 * we can probably do this in a single transaction: Each extent
2944 * record (group of 8) is 64 bytes. A extent overflow B-Tree node
2945 * is typically 4k. This means each node can hold roughly ~60
2946 * extent records == (480 extents).
2947 *
2948 * If a file was massively fragmented and had 20k extents, this
2949 * means we'd roughly touch 20k/480 == 41 to 42 nodes, plus the
2950 * index nodes, for half of the operation. (inserting or
2951 * deleting). So if we're manipulating 80-100 nodes, this is
2952 * basically 320k of data to write to the journal in a bad case.
2953 */
2954 if (data_overflow_extents) {
2955 if ((error = MoveData(hfsmp, from_cp->c_cnid, to_cp->c_cnid, 0)))
2956 goto exit;
2957 }
2958
2959 if (from_rfork && overflow_extents(from_rfork)) {
2960 if ((error = MoveData(hfsmp, from_cp->c_cnid, to_cp->c_cnid, 1)))
2961 goto exit;
2962 }
2963
2964 // Touch times
2965 from_cp->c_touch_acctime = TRUE;
2966 from_cp->c_touch_chgtime = TRUE;
2967 from_cp->c_touch_modtime = TRUE;
2968 hfs_touchtimes(hfsmp, from_cp);
2969
2970 to_cp->c_touch_acctime = TRUE;
2971 to_cp->c_touch_chgtime = TRUE;
2972 to_cp->c_touch_modtime = TRUE;
2973 hfs_touchtimes(hfsmp, to_cp);
2974
2975 struct cat_fork dfork_buf;
2976 const struct cat_fork *dfork, *rfork;
2977
2978 dfork = hfs_prepare_fork_for_update(to_cp->c_datafork, NULL,
2979 &dfork_buf, hfsmp->blockSize);
2980 rfork = hfs_prepare_fork_for_update(from_rfork, NULL,
2981 &rfork_buf.ff_data, hfsmp->blockSize);
2982
2983 // Update the catalog nodes, to_cp first
2984 if ((error = cat_update(hfsmp, &to_cp->c_desc, &to_cp->c_attr,
2985 dfork, rfork))) {
2986 goto exit;
2987 }
2988
2989 CLR(to_cp->c_flag, C_MODIFIED | C_MINOR_MOD);
2990
2991 // Update in-memory resource fork data here
2992 if (from_rfork) {
2993 // Update c_blocks
2994 uint32_t moving = from_rfork->ff_blocks + from_rfork->ff_unallocblocks;
2995
2996 from_cp->c_blocks -= moving;
2997 to_cp->c_blocks += moving;
2998
2999 // Update to_cp's resource data if it has it
3000 filefork_t *to_rfork = to_cp->c_rsrcfork;
3001 if (to_rfork) {
3002 TAILQ_SWAP(&to_rfork->ff_invalidranges,
3003 &from_rfork->ff_invalidranges, rl_entry, rl_link);
3004 to_rfork->ff_data = from_rfork->ff_data;
3005
3006 // Deal with ubc_setsize
3007 hfs_rsrc_setsize(to_cp);
3008 }
3009
3010 // Wipe out the resource fork in from_cp
3011 rl_init(&from_rfork->ff_invalidranges);
3012 bzero(&from_rfork->ff_data, sizeof(from_rfork->ff_data));
3013
3014 // Deal with ubc_setsize
3015 hfs_rsrc_setsize(from_cp);
3016 }
3017
3018 // Currently unnecessary, but might be useful in future...
3019 dfork = hfs_prepare_fork_for_update(from_cp->c_datafork, NULL, &dfork_buf,
3020 hfsmp->blockSize);
3021 rfork = hfs_prepare_fork_for_update(from_rfork, NULL, &rfork_buf.ff_data,
3022 hfsmp->blockSize);
3023
3024 // Update from_cp
3025 if ((error = cat_update(hfsmp, &from_cp->c_desc, &from_cp->c_attr,
3026 dfork, rfork))) {
3027 goto exit;
3028 }
3029
3030 CLR(from_cp->c_flag, C_MODIFIED | C_MINOR_MOD);
3031
3032 exit:
3033 if (lockflags) {
3034 hfs_systemfile_unlock(hfsmp, lockflags);
3035 hfs_end_transaction(hfsmp);
3036 }
3037
3038 if (error && error != EIO && return_EIO_on_error) {
3039 printf("hfs_move_data: encountered error %d\n", error);
3040 error = EIO;
3041 }
3042
3043 return error;
3044 }
3045
3046 /*
3047 * Move all of the catalog and runtime data in srcfork to dstfork.
3048 *
3049 * This allows us to maintain the invalid ranges across the move data
3050 * operation so we don't need to force all of the pending IO right
3051 * now. In addition, we move all non overflow-extent extents into the
3052 * destination here.
3053 *
3054 * The destination fork must be empty and should have been checked
3055 * prior to calling this.
3056 */
3057 static int hfs_move_fork(filefork_t *srcfork, cnode_t *src_cp,
3058 filefork_t *dstfork, cnode_t *dst_cp)
3059 {
3060 // Move the invalid ranges
3061 TAILQ_SWAP(&dstfork->ff_invalidranges, &srcfork->ff_invalidranges,
3062 rl_entry, rl_link);
3063 rl_remove_all(&srcfork->ff_invalidranges);
3064
3065 // Move the fork data (copy whole structure)
3066 dstfork->ff_data = srcfork->ff_data;
3067 bzero(&srcfork->ff_data, sizeof(srcfork->ff_data));
3068
3069 // Update c_blocks
3070 src_cp->c_blocks -= dstfork->ff_blocks + dstfork->ff_unallocblocks;
3071 dst_cp->c_blocks += dstfork->ff_blocks + dstfork->ff_unallocblocks;
3072
3073 return 0;
3074 }
3075
3076 /*
3077 * cnode must be locked
3078 */
3079 int
3080 hfs_fsync(struct vnode *vp, int waitfor, hfs_fsync_mode_t fsyncmode, struct proc *p)
3081 {
3082 struct cnode *cp = VTOC(vp);
3083 struct filefork *fp = NULL;
3084 int retval = 0;
3085 struct hfsmount *hfsmp = VTOHFS(vp);
3086 struct timeval tv;
3087 int waitdata; /* attributes necessary for data retrieval */
3088 int wait; /* all other attributes (e.g. atime, etc.) */
3089 int took_trunc_lock = 0;
3090 int fsync_default = 1;
3091
3092 /*
3093 * Applications which only care about data integrity rather than full
3094 * file integrity may opt out of (delay) expensive metadata update
3095 * operations as a performance optimization.
3096 */
3097 wait = (waitfor == MNT_WAIT);
3098 waitdata = (waitfor == MNT_DWAIT) | wait;
3099
3100 if (always_do_fullfsync)
3101 fsyncmode = HFS_FSYNC_FULL;
3102 if (fsyncmode != HFS_FSYNC)
3103 fsync_default = 0;
3104
3105 /* HFS directories don't have any data blocks. */
3106 if (vnode_isdir(vp))
3107 goto metasync;
3108 fp = VTOF(vp);
3109
3110 /*
3111 * For system files flush the B-tree header and
3112 * for regular files write out any clusters
3113 */
3114 if (vnode_issystem(vp)) {
3115 if (VTOF(vp)->fcbBTCBPtr != NULL) {
3116 // XXXdbg
3117 if (hfsmp->jnl == NULL) {
3118 BTFlushPath(VTOF(vp));
3119 }
3120 }
3121 } else {
3122 hfs_unlock(cp);
3123 hfs_lock_truncate(cp, HFS_SHARED_LOCK, HFS_LOCK_DEFAULT);
3124 took_trunc_lock = 1;
3125
3126 if (fp->ff_unallocblocks != 0) {
3127 hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
3128
3129 hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
3130 }
3131
3132 /* Don't hold cnode lock when calling into cluster layer. */
3133 (void) cluster_push(vp, waitdata ? IO_SYNC : 0);
3134
3135 hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
3136 }
3137 /*
3138 * When MNT_WAIT is requested and the zero fill timeout
3139 * has expired then we must explicitly zero out any areas
3140 * that are currently marked invalid (holes).
3141 *
3142 * Files with NODUMP can bypass zero filling here.
3143 */
3144 if (fp && (((cp->c_flag & C_ALWAYS_ZEROFILL) && !TAILQ_EMPTY(&fp->ff_invalidranges)) ||
3145 ((wait || (cp->c_flag & C_ZFWANTSYNC)) &&
3146 ((cp->c_bsdflags & UF_NODUMP) == 0) &&
3147 (vnode_issystem(vp) ==0) &&
3148 cp->c_zftimeout != 0))) {
3149
3150 microuptime(&tv);
3151 if ((cp->c_flag & C_ALWAYS_ZEROFILL) == 0 && fsync_default && tv.tv_sec < (long)cp->c_zftimeout) {
3152 /* Remember that a force sync was requested. */
3153 cp->c_flag |= C_ZFWANTSYNC;
3154 goto datasync;
3155 }
3156 if (!TAILQ_EMPTY(&fp->ff_invalidranges)) {
3157 if (!took_trunc_lock || (cp->c_truncatelockowner == HFS_SHARED_OWNER)) {
3158 hfs_unlock(cp);
3159 if (took_trunc_lock) {
3160 hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
3161 }
3162 hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
3163 hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
3164 took_trunc_lock = 1;
3165 }
3166 hfs_flush_invalid_ranges(vp);
3167 hfs_unlock(cp);
3168 (void) cluster_push(vp, waitdata ? IO_SYNC : 0);
3169 hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
3170 }
3171 }
3172 datasync:
3173 if (took_trunc_lock) {
3174 hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
3175 took_trunc_lock = 0;
3176 }
3177
3178 if (!hfsmp->jnl)
3179 buf_flushdirtyblks(vp, waitdata, 0, "hfs_fsync");
3180 else if (fsync_default && vnode_islnk(vp)
3181 && vnode_hasdirtyblks(vp) && vnode_isrecycled(vp)) {
3182 /*
3183 * If it's a symlink that's dirty and is about to be recycled,
3184 * we need to flush the journal.
3185 */
3186 fsync_default = 0;
3187 }
3188
3189 metasync:
3190 if (vnode_isreg(vp) && vnode_issystem(vp)) {
3191 if (VTOF(vp)->fcbBTCBPtr != NULL) {
3192 microuptime(&tv);
3193 BTSetLastSync(VTOF(vp), tv.tv_sec);
3194 }
3195 cp->c_touch_acctime = FALSE;
3196 cp->c_touch_chgtime = FALSE;
3197 cp->c_touch_modtime = FALSE;
3198 } else if (!vnode_isswap(vp)) {
3199 retval = hfs_update(vp, HFS_UPDATE_FORCE);
3200
3201 /*
3202 * When MNT_WAIT is requested push out the catalog record for
3203 * this file. If they asked for a full fsync, we can skip this
3204 * because the journal_flush or hfs_metasync_all will push out
3205 * all of the metadata changes.
3206 */
3207 if ((retval == 0) && wait && fsync_default && cp->c_hint &&
3208 !ISSET(cp->c_flag, C_DELETED | C_NOEXISTS)) {
3209 hfs_metasync(VTOHFS(vp), (daddr64_t)cp->c_hint, p);
3210 }
3211
3212 /*
3213 * If this was a full fsync, make sure all metadata
3214 * changes get to stable storage.
3215 */
3216 if (!fsync_default) {
3217 if (hfsmp->jnl) {
3218 if (fsyncmode == HFS_FSYNC_FULL)
3219 hfs_flush(hfsmp, HFS_FLUSH_FULL);
3220 else
3221 hfs_flush(hfsmp, HFS_FLUSH_JOURNAL_BARRIER);
3222 } else {
3223 retval = hfs_metasync_all(hfsmp);
3224 /* XXX need to pass context! */
3225 hfs_flush(hfsmp, HFS_FLUSH_CACHE);
3226 }
3227 }
3228 }
3229
3230 if (!hfs_is_dirty(cp) && !ISSET(cp->c_flag, C_DELETED))
3231 vnode_cleardirty(vp);
3232
3233 return (retval);
3234 }
3235
3236
3237 /* Sync an hfs catalog b-tree node */
3238 int
3239 hfs_metasync(struct hfsmount *hfsmp, daddr64_t node, __unused struct proc *p)
3240 {
3241 vnode_t vp;
3242 buf_t bp;
3243 int lockflags;
3244
3245 vp = HFSTOVCB(hfsmp)->catalogRefNum;
3246
3247 // XXXdbg - don't need to do this on a journaled volume
3248 if (hfsmp->jnl) {
3249 return 0;
3250 }
3251
3252 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
3253 /*
3254 * Look for a matching node that has been delayed
3255 * but is not part of a set (B_LOCKED).
3256 *
3257 * BLK_ONLYVALID causes buf_getblk to return a
3258 * buf_t for the daddr64_t specified only if it's
3259 * currently resident in the cache... the size
3260 * parameter to buf_getblk is ignored when this flag
3261 * is set
3262 */
3263 bp = buf_getblk(vp, node, 0, 0, 0, BLK_META | BLK_ONLYVALID);
3264
3265 if (bp) {
3266 if ((buf_flags(bp) & (B_LOCKED | B_DELWRI)) == B_DELWRI)
3267 (void) VNOP_BWRITE(bp);
3268 else
3269 buf_brelse(bp);
3270 }
3271
3272 hfs_systemfile_unlock(hfsmp, lockflags);
3273
3274 return (0);
3275 }
3276
3277
3278 /*
3279 * Sync all hfs B-trees. Use this instead of journal_flush for a volume
3280 * without a journal. Note that the volume bitmap does not get written;
3281 * we rely on fsck_hfs to fix that up (which it can do without any loss
3282 * of data).
3283 */
3284 int
3285 hfs_metasync_all(struct hfsmount *hfsmp)
3286 {
3287 int lockflags;
3288
3289 /* Lock all of the B-trees so we get a mutually consistent state */
3290 lockflags = hfs_systemfile_lock(hfsmp,
3291 SFL_CATALOG|SFL_EXTENTS|SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
3292
3293 /* Sync each of the B-trees */
3294 if (hfsmp->hfs_catalog_vp)
3295 hfs_btsync(hfsmp->hfs_catalog_vp, 0);
3296 if (hfsmp->hfs_extents_vp)
3297 hfs_btsync(hfsmp->hfs_extents_vp, 0);
3298 if (hfsmp->hfs_attribute_vp)
3299 hfs_btsync(hfsmp->hfs_attribute_vp, 0);
3300
3301 /* Wait for all of the writes to complete */
3302 if (hfsmp->hfs_catalog_vp)
3303 vnode_waitforwrites(hfsmp->hfs_catalog_vp, 0, 0, 0, "hfs_metasync_all");
3304 if (hfsmp->hfs_extents_vp)
3305 vnode_waitforwrites(hfsmp->hfs_extents_vp, 0, 0, 0, "hfs_metasync_all");
3306 if (hfsmp->hfs_attribute_vp)
3307 vnode_waitforwrites(hfsmp->hfs_attribute_vp, 0, 0, 0, "hfs_metasync_all");
3308
3309 hfs_systemfile_unlock(hfsmp, lockflags);
3310
3311 return 0;
3312 }
3313
3314
3315 /*ARGSUSED 1*/
3316 static int
3317 hfs_btsync_callback(struct buf *bp, __unused void *dummy)
3318 {
3319 buf_clearflags(bp, B_LOCKED);
3320 (void) buf_bawrite(bp);
3321
3322 return(BUF_CLAIMED);
3323 }
3324
3325
3326 int
3327 hfs_btsync(struct vnode *vp, int sync_transaction)
3328 {
3329 struct cnode *cp = VTOC(vp);
3330 struct timeval tv;
3331 int flags = 0;
3332
3333 if (sync_transaction)
3334 flags |= BUF_SKIP_NONLOCKED;
3335 /*
3336 * Flush all dirty buffers associated with b-tree.
3337 */
3338 buf_iterate(vp, hfs_btsync_callback, flags, 0);
3339
3340 microuptime(&tv);
3341 if (vnode_issystem(vp) && (VTOF(vp)->fcbBTCBPtr != NULL))
3342 (void) BTSetLastSync(VTOF(vp), tv.tv_sec);
3343 cp->c_touch_acctime = FALSE;
3344 cp->c_touch_chgtime = FALSE;
3345 cp->c_touch_modtime = FALSE;
3346
3347 return 0;
3348 }
3349
3350 /*
3351 * Remove a directory.
3352 */
3353 int
3354 hfs_vnop_rmdir(struct vnop_rmdir_args *ap)
3355 {
3356 struct vnode *dvp = ap->a_dvp;
3357 struct vnode *vp = ap->a_vp;
3358 struct cnode *dcp = VTOC(dvp);
3359 struct cnode *cp = VTOC(vp);
3360 int error;
3361 time_t orig_ctime;
3362
3363 orig_ctime = VTOC(vp)->c_ctime;
3364
3365 if (!S_ISDIR(cp->c_mode)) {
3366 return (ENOTDIR);
3367 }
3368 if (dvp == vp) {
3369 return (EINVAL);
3370 }
3371
3372 nspace_snapshot_event(vp, orig_ctime, NAMESPACE_HANDLER_DELETE_OP, NULL);
3373 cp = VTOC(vp);
3374
3375 if ((error = hfs_lockpair(dcp, cp, HFS_EXCLUSIVE_LOCK))) {
3376 return (error);
3377 }
3378
3379 /* Check for a race with rmdir on the parent directory */
3380 if (dcp->c_flag & (C_DELETED | C_NOEXISTS)) {
3381 hfs_unlockpair (dcp, cp);
3382 return ENOENT;
3383 }
3384
3385 //
3386 // if the item is tracked but doesn't have a document_id, assign one and generate an fsevent for it
3387 //
3388 if ((cp->c_bsdflags & UF_TRACKED) && ((struct FndrExtendedDirInfo *)((char *)&cp->c_attr.ca_finderinfo + 16))->document_id == 0) {
3389 uint32_t newid;
3390
3391 hfs_unlockpair(dcp, cp);
3392
3393 if (hfs_generate_document_id(VTOHFS(vp), &newid) == 0) {
3394 hfs_lockpair(dcp, cp, HFS_EXCLUSIVE_LOCK);
3395 ((struct FndrExtendedDirInfo *)((char *)&cp->c_attr.ca_finderinfo + 16))->document_id = newid;
3396 add_fsevent(FSE_DOCID_CHANGED, vfs_context_current(),
3397 FSE_ARG_DEV, VTOHFS(vp)->hfs_raw_dev,
3398 FSE_ARG_INO, (ino64_t)0, // src inode #
3399 FSE_ARG_INO, (ino64_t)cp->c_fileid, // dst inode #
3400 FSE_ARG_INT32, newid,
3401 FSE_ARG_DONE);
3402 } else {
3403 // XXXdbg - couldn't get a new docid... what to do? can't really fail the rm...
3404 hfs_lockpair(dcp, cp, HFS_EXCLUSIVE_LOCK);
3405 }
3406 }
3407
3408 error = hfs_removedir(dvp, vp, ap->a_cnp, 0, 0);
3409
3410 hfs_unlockpair(dcp, cp);
3411
3412 return (error);
3413 }
3414
3415 /*
3416 * Remove a directory
3417 *
3418 * Both dvp and vp cnodes are locked
3419 */
3420 int
3421 hfs_removedir(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
3422 int skip_reserve, int only_unlink)
3423 {
3424 struct cnode *cp;
3425 struct cnode *dcp;
3426 struct hfsmount * hfsmp;
3427 struct cat_desc desc;
3428 int lockflags;
3429 int error = 0, started_tr = 0;
3430
3431 cp = VTOC(vp);
3432 dcp = VTOC(dvp);
3433 hfsmp = VTOHFS(vp);
3434
3435 if (dcp == cp) {
3436 return (EINVAL); /* cannot remove "." */
3437 }
3438 if (cp->c_flag & (C_NOEXISTS | C_DELETED)) {
3439 return (0);
3440 }
3441 if (cp->c_entries != 0) {
3442 return (ENOTEMPTY);
3443 }
3444
3445 /*
3446 * If the directory is open or in use (e.g. opendir() or current working
3447 * directory for some process); wait for inactive/reclaim to actually
3448 * remove cnode from the catalog. Both inactive and reclaim codepaths are capable
3449 * of removing open-unlinked directories from the catalog, as well as getting rid
3450 * of EAs still on the element. So change only_unlink to true, so that it will get
3451 * cleaned up below.
3452 *
3453 * Otherwise, we can get into a weird old mess where the directory has C_DELETED,
3454 * but it really means C_NOEXISTS because the item was actually removed from the
3455 * catalog. Then when we try to remove the entry from the catalog later on, it won't
3456 * really be there anymore.
3457 */
3458 if (vnode_isinuse(vp, 0)) {
3459 only_unlink = 1;
3460 }
3461
3462 /* Deal with directory hardlinks */
3463 if (cp->c_flag & C_HARDLINK) {
3464 /*
3465 * Note that if we have a directory which was a hardlink at any point,
3466 * its actual directory data is stored in the directory inode in the hidden
3467 * directory rather than the leaf element(s) present in the namespace.
3468 *
3469 * If there are still other hardlinks to this directory,
3470 * then we'll just eliminate this particular link and the vnode will still exist.
3471 * If this is the last link to an empty directory, then we'll open-unlink the
3472 * directory and it will be only tagged with C_DELETED (as opposed to C_NOEXISTS).
3473 *
3474 * We could also return EBUSY here.
3475 */
3476
3477 return hfs_unlink(hfsmp, dvp, vp, cnp, skip_reserve);
3478 }
3479
3480 /*
3481 * In a few cases, we may want to allow the directory to persist in an
3482 * open-unlinked state. If the directory is being open-unlinked (still has usecount
3483 * references), or if it has EAs, or if it was being deleted as part of a rename,
3484 * then we go ahead and move it to the hidden directory.
3485 *
3486 * If the directory is being open-unlinked, then we want to keep the catalog entry
3487 * alive so that future EA calls and fchmod/fstat etc. do not cause issues later.
3488 *
3489 * If the directory had EAs, then we want to use the open-unlink trick so that the
3490 * EA removal is not done in one giant transaction. Otherwise, it could cause a panic
3491 * due to overflowing the journal.
3492 *
3493 * Finally, if it was deleted as part of a rename, we move it to the hidden directory
3494 * in order to maintain rename atomicity.
3495 *
3496 * Note that the allow_dirs argument to hfs_removefile specifies that it is
3497 * supposed to handle directories for this case.
3498 */
3499
3500 if (((hfsmp->hfs_attribute_vp != NULL) &&
3501 ((cp->c_attr.ca_recflags & kHFSHasAttributesMask) != 0)) ||
3502 (only_unlink != 0)) {
3503
3504 int ret = hfs_removefile(dvp, vp, cnp, 0, 0, 1, NULL, only_unlink);
3505 /*
3506 * Even though hfs_vnop_rename calls vnode_recycle for us on tvp we call
3507 * it here just in case we were invoked by rmdir() on a directory that had
3508 * EAs. To ensure that we start reclaiming the space as soon as possible,
3509 * we call vnode_recycle on the directory.
3510 */
3511 vnode_recycle(vp);
3512
3513 return ret;
3514
3515 }
3516
3517 dcp->c_flag |= C_DIR_MODIFICATION;
3518
3519 #if QUOTA
3520 if (hfsmp->hfs_flags & HFS_QUOTAS)
3521 (void)hfs_getinoquota(cp);
3522 #endif
3523 if ((error = hfs_start_transaction(hfsmp)) != 0) {
3524 goto out;
3525 }
3526 started_tr = 1;
3527
3528 /*
3529 * Verify the directory is empty (and valid).
3530 * (Rmdir ".." won't be valid since
3531 * ".." will contain a reference to
3532 * the current directory and thus be
3533 * non-empty.)
3534 */
3535 if ((dcp->c_bsdflags & APPEND) || (cp->c_bsdflags & (IMMUTABLE | APPEND))) {
3536 error = EPERM;
3537 goto out;
3538 }
3539
3540 /* Remove the entry from the namei cache: */
3541 cache_purge(vp);
3542
3543 /*
3544 * Protect against a race with rename by using the component
3545 * name passed in and parent id from dvp (instead of using
3546 * the cp->c_desc which may have changed).
3547 */
3548 desc.cd_nameptr = (const u_int8_t *)cnp->cn_nameptr;
3549 desc.cd_namelen = cnp->cn_namelen;
3550 desc.cd_parentcnid = dcp->c_fileid;
3551 desc.cd_cnid = cp->c_cnid;
3552 desc.cd_flags = CD_ISDIR;
3553 desc.cd_encoding = cp->c_encoding;
3554 desc.cd_hint = 0;
3555
3556 if (!hfs_valid_cnode(hfsmp, dvp, cnp, cp->c_fileid, NULL, &error)) {
3557 error = 0;
3558 goto out;
3559 }
3560
3561 /* Remove entry from catalog */
3562 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
3563
3564 if (!skip_reserve) {
3565 /*
3566 * Reserve some space in the Catalog file.
3567 */
3568 if ((error = cat_preflight(hfsmp, CAT_DELETE, NULL, 0))) {
3569 hfs_systemfile_unlock(hfsmp, lockflags);
3570 goto out;
3571 }
3572 }
3573
3574 error = cat_delete(hfsmp, &desc, &cp->c_attr);
3575
3576 if (!error) {
3577 //
3578 // if skip_reserve == 1 then we're being called from hfs_vnop_rename() and thus
3579 // we don't need to touch the document_id as it's handled by the rename code.
3580 // otherwise it's a normal remove and we need to save the document id in the
3581 // per thread struct and clear it from the cnode.
3582 //
3583 struct doc_tombstone *ut;
3584 ut = doc_tombstone_get();
3585 if (!skip_reserve && (cp->c_bsdflags & UF_TRACKED)
3586 && doc_tombstone_should_save(ut, vp, cnp)) {
3587
3588 uint32_t doc_id = hfs_get_document_id(cp);
3589
3590 // this event is more of a "pending-delete"
3591 if (ut->t_lastop_document_id) {
3592 add_fsevent(FSE_DOCID_CHANGED, vfs_context_current(),
3593 FSE_ARG_DEV, hfsmp->hfs_raw_dev,
3594 FSE_ARG_INO, (ino64_t)cp->c_fileid, // src inode #
3595 FSE_ARG_INO, (ino64_t)0, // dst inode #
3596 FSE_ARG_INT32, doc_id,
3597 FSE_ARG_DONE);
3598 }
3599
3600 doc_tombstone_save(dvp, vp, cnp, doc_id, cp->c_fileid);
3601
3602 struct FndrExtendedFileInfo *fip = (struct FndrExtendedFileInfo *)((char *)&cp->c_attr.ca_finderinfo + 16);
3603
3604 // clear this so it's never returned again
3605 fip->document_id = 0;
3606 cp->c_bsdflags &= ~UF_TRACKED;
3607 }
3608
3609 /* The parent lost a child */
3610 if (dcp->c_entries > 0)
3611 dcp->c_entries--;
3612 DEC_FOLDERCOUNT(hfsmp, dcp->c_attr);
3613 dcp->c_dirchangecnt++;
3614 hfs_incr_gencount(dcp);
3615
3616 dcp->c_touch_chgtime = TRUE;
3617 dcp->c_touch_modtime = TRUE;
3618 dcp->c_flag |= C_MODIFIED;
3619
3620 hfs_update(dcp->c_vp, 0);
3621 }
3622
3623 hfs_systemfile_unlock(hfsmp, lockflags);
3624
3625 if (error)
3626 goto out;
3627
3628 #if QUOTA
3629 if (hfsmp->hfs_flags & HFS_QUOTAS)
3630 (void)hfs_chkiq(cp, -1, NOCRED, 0);
3631 #endif /* QUOTA */
3632
3633 hfs_volupdate(hfsmp, VOL_RMDIR, (dcp->c_cnid == kHFSRootFolderID));
3634
3635 /* Mark C_NOEXISTS since the catalog entry is now gone */
3636 cp->c_flag |= C_NOEXISTS;
3637
3638 out:
3639 dcp->c_flag &= ~C_DIR_MODIFICATION;
3640 wakeup((caddr_t)&dcp->c_flag);
3641
3642 if (started_tr) {
3643 hfs_end_transaction(hfsmp);
3644 }
3645
3646 return (error);
3647 }
3648
3649
3650 /*
3651 * Remove a file or link.
3652 */
3653 int
3654 hfs_vnop_remove(struct vnop_remove_args *ap)
3655 {
3656 struct vnode *dvp = ap->a_dvp;
3657 struct vnode *vp = ap->a_vp;
3658 struct cnode *dcp = VTOC(dvp);
3659 struct cnode *cp;
3660 struct vnode *rvp = NULL;
3661 int error=0, recycle_rsrc=0;
3662 int recycle_vnode = 0;
3663 uint32_t rsrc_vid = 0;
3664 time_t orig_ctime;
3665
3666 if (dvp == vp) {
3667 return (EINVAL);
3668 }
3669
3670 orig_ctime = VTOC(vp)->c_ctime;
3671 if (!vnode_isnamedstream(vp) && ((ap->a_flags & VNODE_REMOVE_SKIP_NAMESPACE_EVENT) == 0)) {
3672 error = nspace_snapshot_event(vp, orig_ctime, NAMESPACE_HANDLER_DELETE_OP, NULL);
3673 if (error) {
3674 // XXXdbg - decide on a policy for handling namespace handler failures!
3675 // for now we just let them proceed.
3676 }
3677 }
3678 error = 0;
3679
3680 cp = VTOC(vp);
3681
3682 relock:
3683
3684 hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
3685
3686 if ((error = hfs_lockpair(dcp, cp, HFS_EXCLUSIVE_LOCK))) {
3687 hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
3688 if (rvp) {
3689 vnode_put (rvp);
3690 }
3691 return (error);
3692 }
3693 //
3694 // if the item is tracked but doesn't have a document_id, assign one and generate an fsevent for it
3695 //
3696 if ((cp->c_bsdflags & UF_TRACKED) && ((struct FndrExtendedDirInfo *)((char *)&cp->c_attr.ca_finderinfo + 16))->document_id == 0) {
3697 uint32_t newid;
3698
3699 hfs_unlockpair(dcp, cp);
3700
3701 if (hfs_generate_document_id(VTOHFS(vp), &newid) == 0) {
3702 hfs_lockpair(dcp, cp, HFS_EXCLUSIVE_LOCK);
3703 ((struct FndrExtendedDirInfo *)((char *)&cp->c_attr.ca_finderinfo + 16))->document_id = newid;
3704 add_fsevent(FSE_DOCID_CHANGED, vfs_context_current(),
3705 FSE_ARG_DEV, VTOHFS(vp)->hfs_raw_dev,
3706 FSE_ARG_INO, (ino64_t)0, // src inode #
3707 FSE_ARG_INO, (ino64_t)cp->c_fileid, // dst inode #
3708 FSE_ARG_INT32, newid,
3709 FSE_ARG_DONE);
3710 } else {
3711 // XXXdbg - couldn't get a new docid... what to do? can't really fail the rm...
3712 hfs_lockpair(dcp, cp, HFS_EXCLUSIVE_LOCK);
3713 }
3714 }
3715
3716 /*
3717 * Lazily respond to determining if there is a valid resource fork
3718 * vnode attached to 'cp' if it is a regular file or symlink.
3719 * If the vnode does not exist, then we may proceed without having to
3720 * create it.
3721 *
3722 * If, however, it does exist, then we need to acquire an iocount on the
3723 * vnode after acquiring its vid. This ensures that if we have to do I/O
3724 * against it, it can't get recycled from underneath us in the middle
3725 * of this call.
3726 *
3727 * Note: this function may be invoked for directory hardlinks, so just skip these
3728 * steps if 'vp' is a directory.
3729 */
3730
3731 enum vtype vtype = vnode_vtype(vp);
3732 if ((vtype == VLNK) || (vtype == VREG)) {
3733 if ((cp->c_rsrc_vp) && (rvp == NULL)) {
3734 /* We need to acquire the rsrc vnode */
3735 rvp = cp->c_rsrc_vp;
3736 rsrc_vid = vnode_vid (rvp);
3737
3738 /* Unlock everything to acquire iocount on the rsrc vnode */
3739 hfs_unlock_truncate (cp, HFS_LOCK_DEFAULT);
3740 hfs_unlockpair (dcp, cp);
3741 /* Use the vid to maintain identity on rvp */
3742 if (vnode_getwithvid(rvp, rsrc_vid)) {
3743 /*
3744 * If this fails, then it was recycled or
3745 * reclaimed in the interim. Reset fields and
3746 * start over.
3747 */
3748 rvp = NULL;
3749 rsrc_vid = 0;
3750 }
3751 goto relock;
3752 }
3753 }
3754
3755 /*
3756 * Check to see if we raced rmdir for the parent directory
3757 * hfs_removefile already checks for a race on vp/cp
3758 */
3759 if (dcp->c_flag & (C_DELETED | C_NOEXISTS)) {
3760 error = ENOENT;
3761 goto rm_done;
3762 }
3763
3764 error = hfs_removefile(dvp, vp, ap->a_cnp, ap->a_flags, 0, 0, NULL, 0);
3765
3766 /*
3767 * If the remove succeeded in deleting the file, then we may need to mark
3768 * the resource fork for recycle so that it is reclaimed as quickly
3769 * as possible. If it were not recycled quickly, then this resource fork
3770 * vnode could keep a v_parent reference on the data fork, which prevents it
3771 * from going through reclaim (by giving it extra usecounts), except in the force-
3772 * unmount case.
3773 *
3774 * However, a caveat: we need to continue to supply resource fork
3775 * access to open-unlinked files even if the resource fork is not open. This is
3776 * a requirement for the compressed files work. Luckily, hfs_vgetrsrc will handle
3777 * this already if the data fork has been re-parented to the hidden directory.
3778 *
3779 * As a result, all we really need to do here is mark the resource fork vnode
3780 * for recycle. If it goes out of core, it can be brought in again if needed.
3781 * If the cnode was instead marked C_NOEXISTS, then there wouldn't be any
3782 * more work.
3783 */
3784 if (error == 0) {
3785 hfs_hotfile_deleted(vp);
3786
3787 if (rvp) {
3788 recycle_rsrc = 1;
3789 }
3790 /*
3791 * If the target was actually removed from the catalog schedule it for
3792 * full reclamation/inactivation. We hold an iocount on it so it should just
3793 * get marked with MARKTERM
3794 */
3795 if (cp->c_flag & C_NOEXISTS) {
3796 recycle_vnode = 1;
3797 }
3798 }
3799
3800
3801 /*
3802 * Drop the truncate lock before unlocking the cnode
3803 * (which can potentially perform a vnode_put and
3804 * recycle the vnode which in turn might require the
3805 * truncate lock)
3806 */
3807 rm_done:
3808 hfs_unlockpair(dcp, cp);
3809 hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
3810
3811 if (recycle_rsrc) {
3812 /* inactive or reclaim on rvp will clean up the blocks from the rsrc fork */
3813 vnode_recycle(rvp);
3814 }
3815 if (recycle_vnode) {
3816 vnode_recycle (vp);
3817 }
3818
3819 if (rvp) {
3820 /* drop iocount on rsrc fork, was obtained at beginning of fxn */
3821 vnode_put(rvp);
3822 }
3823
3824 return (error);
3825 }
3826
3827
3828 int
3829 hfs_removefile_callback(struct buf *bp, void *hfsmp) {
3830
3831 if ( !(buf_flags(bp) & B_META))
3832 panic("hfs: symlink bp @ %p is not marked meta-data!\n", bp);
3833 /*
3834 * it's part of the current transaction, kill it.
3835 */
3836 journal_kill_block(((struct hfsmount *)hfsmp)->jnl, bp);
3837
3838 return (BUF_CLAIMED);
3839 }
3840
3841 /*
3842 * hfs_removefile
3843 *
3844 * Similar to hfs_vnop_remove except there are additional options.
3845 * This function may be used to remove directories if they have
3846 * lots of EA's -- note the 'allow_dirs' argument.
3847 *
3848 * This function is able to delete blocks & fork data for the resource
3849 * fork even if it does not exist in core (and have a backing vnode).
3850 * It should infer the correct behavior based on the number of blocks
3851 * in the cnode and whether or not the resource fork pointer exists or
3852 * not. As a result, one only need pass in the 'vp' corresponding to the
3853 * data fork of this file (or main vnode in the case of a directory).
3854 * Passing in a resource fork will result in an error.
3855 *
3856 * Because we do not create any vnodes in this function, we are not at
3857 * risk of deadlocking against ourselves by double-locking.
3858 *
3859 * Requires cnode and truncate locks to be held.
3860 */
3861 int
3862 hfs_removefile(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
3863 int flags, int skip_reserve, int allow_dirs,
3864 __unused struct vnode *rvp, int only_unlink)
3865 {
3866 struct cnode *cp;
3867 struct cnode *dcp;
3868 struct vnode *rsrc_vp = NULL;
3869 struct hfsmount *hfsmp;
3870 struct cat_desc desc;
3871 struct timeval tv;
3872 int dataforkbusy = 0;
3873 int rsrcforkbusy = 0;
3874 int lockflags;
3875 int error = 0;
3876 int started_tr = 0;
3877 int isbigfile = 0, defer_remove=0, isdir=0;
3878 int update_vh = 0;
3879
3880 cp = VTOC(vp);
3881 dcp = VTOC(dvp);
3882 hfsmp = VTOHFS(vp);
3883
3884 /* Check if we lost a race post lookup. */
3885 if (cp->c_flag & (C_NOEXISTS | C_DELETED)) {
3886 return (0);
3887 }
3888
3889 if (!hfs_valid_cnode(hfsmp, dvp, cnp, cp->c_fileid, NULL, &error)) {
3890 return 0;
3891 }
3892
3893 /* Make sure a remove is permitted */
3894 if (VNODE_IS_RSRC(vp)) {
3895 return (EPERM);
3896 }
3897 else {
3898 /*
3899 * We know it's a data fork.
3900 * Probe the cnode to see if we have a valid resource fork
3901 * in hand or not.
3902 */
3903 rsrc_vp = cp->c_rsrc_vp;
3904 }
3905
3906 /* Don't allow deleting the journal or journal_info_block. */
3907 if (hfs_is_journal_file(hfsmp, cp)) {
3908 return (EPERM);
3909 }
3910
3911 /*
3912 * Hard links require special handling.
3913 */
3914 if (cp->c_flag & C_HARDLINK) {
3915 if ((flags & VNODE_REMOVE_NODELETEBUSY) && vnode_isinuse(vp, 0)) {
3916 return (EBUSY);
3917 } else {
3918 /* A directory hard link with a link count of one is
3919 * treated as a regular directory. Therefore it should
3920 * only be removed using rmdir().
3921 */
3922 if ((vnode_isdir(vp) == 1) && (cp->c_linkcount == 1) &&
3923 (allow_dirs == 0)) {
3924 return (EPERM);
3925 }
3926 return hfs_unlink(hfsmp, dvp, vp, cnp, skip_reserve);
3927 }
3928 }
3929
3930 /* Directories should call hfs_rmdir! (unless they have a lot of attributes) */
3931 if (vnode_isdir(vp)) {
3932 if (allow_dirs == 0)
3933 return (EPERM); /* POSIX */
3934 isdir = 1;
3935 }
3936 /* Sanity check the parent ids. */
3937 if ((cp->c_parentcnid != hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid) &&
3938 (cp->c_parentcnid != dcp->c_fileid)) {
3939 return (EINVAL);
3940 }
3941
3942 dcp->c_flag |= C_DIR_MODIFICATION;
3943
3944 // this guy is going away so mark him as such
3945 cp->c_flag |= C_DELETED;
3946
3947
3948 /* Remove our entry from the namei cache. */
3949 cache_purge(vp);
3950
3951 /*
3952 * If the caller was operating on a file (as opposed to a
3953 * directory with EAs), then we need to figure out
3954 * whether or not it has a valid resource fork vnode.
3955 *
3956 * If there was a valid resource fork vnode, then we need
3957 * to use hfs_truncate to eliminate its data. If there is
3958 * no vnode, then we hold the cnode lock which would
3959 * prevent it from being created. As a result,
3960 * we can use the data deletion functions which do not
3961 * require that a cnode/vnode pair exist.
3962 */
3963
3964 /* Check if this file is being used. */
3965 if (isdir == 0) {
3966 dataforkbusy = vnode_isinuse(vp, 0);
3967 /*
3968 * At this point, we know that 'vp' points to the
3969 * a data fork because we checked it up front. And if
3970 * there is no rsrc fork, rsrc_vp will be NULL.
3971 */
3972 if (rsrc_vp && (cp->c_blocks - VTOF(vp)->ff_blocks)) {
3973 rsrcforkbusy = vnode_isinuse(rsrc_vp, 0);
3974 }
3975 }
3976
3977 /* Check if we have to break the deletion into multiple pieces. */
3978 if (isdir == 0)
3979 isbigfile = cp->c_datafork->ff_size >= HFS_BIGFILE_SIZE;
3980
3981 /* Check if the file has xattrs. If it does we'll have to delete them in
3982 individual transactions in case there are too many */
3983 if ((hfsmp->hfs_attribute_vp != NULL) &&
3984 (cp->c_attr.ca_recflags & kHFSHasAttributesMask) != 0) {
3985 defer_remove = 1;
3986 }
3987
3988 /* If we are explicitly told to only unlink item and move to hidden dir, then do it */
3989 if (only_unlink) {
3990 defer_remove = 1;
3991 }
3992
3993 /*
3994 * Carbon semantics prohibit deleting busy files.
3995 * (enforced when VNODE_REMOVE_NODELETEBUSY is requested)
3996 */
3997 if (dataforkbusy || rsrcforkbusy) {
3998 if ((flags & VNODE_REMOVE_NODELETEBUSY) ||
3999 (hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid == 0)) {
4000 error = EBUSY;
4001 goto out;
4002 }
4003 }
4004
4005 #if QUOTA
4006 if (hfsmp->hfs_flags & HFS_QUOTAS)
4007 (void)hfs_getinoquota(cp);
4008 #endif /* QUOTA */
4009
4010 /*
4011 * Do a ubc_setsize to indicate we need to wipe contents if:
4012 * 1) item is a regular file.
4013 * 2) Neither fork is busy AND we are not told to unlink this.
4014 *
4015 * We need to check for the defer_remove since it can be set without
4016 * having a busy data or rsrc fork
4017 */
4018 if (isdir == 0 && (!dataforkbusy || !rsrcforkbusy) && (defer_remove == 0)) {
4019 /*
4020 * A ubc_setsize can cause a pagein so defer it
4021 * until after the cnode lock is dropped. The
4022 * cnode lock cannot be dropped/reacquired here
4023 * since we might already hold the journal lock.
4024 */
4025 if (!dataforkbusy && cp->c_datafork->ff_blocks && !isbigfile) {
4026 cp->c_flag |= C_NEED_DATA_SETSIZE;
4027 }
4028 if (!rsrcforkbusy && rsrc_vp) {
4029 cp->c_flag |= C_NEED_RSRC_SETSIZE;
4030 }
4031 }
4032
4033 if ((error = hfs_start_transaction(hfsmp)) != 0) {
4034 goto out;
4035 }
4036 started_tr = 1;
4037
4038 // XXXdbg - if we're journaled, kill any dirty symlink buffers
4039 if (hfsmp->jnl && vnode_islnk(vp) && (defer_remove == 0)) {
4040 buf_iterate(vp, hfs_removefile_callback, BUF_SKIP_NONLOCKED, (void *)hfsmp);
4041 }
4042
4043 /*
4044 * Prepare to truncate any non-busy forks. Busy forks will
4045 * get truncated when their vnode goes inactive.
4046 * Note that we will only enter this region if we
4047 * can avoid creating an open-unlinked file. If
4048 * either region is busy, we will have to create an open
4049 * unlinked file.
4050 *
4051 * Since we are deleting the file, we need to stagger the runtime
4052 * modifications to do things in such a way that a crash won't
4053 * result in us getting overlapped extents or any other
4054 * bad inconsistencies. As such, we call prepare_release_storage
4055 * which updates the UBC, updates quota information, and releases
4056 * any loaned blocks that belong to this file. No actual
4057 * truncation or bitmap manipulation is done until *AFTER*
4058 * the catalog record is removed.
4059 */
4060 if (isdir == 0 && (!dataforkbusy && !rsrcforkbusy) && (only_unlink == 0)) {
4061
4062 if (!dataforkbusy && !isbigfile && cp->c_datafork->ff_blocks != 0) {
4063
4064 error = hfs_prepare_release_storage (hfsmp, vp);
4065 if (error) {
4066 goto out;
4067 }
4068 update_vh = 1;
4069 }
4070
4071 /*
4072 * If the resource fork vnode does not exist, we can skip this step.
4073 */
4074 if (!rsrcforkbusy && rsrc_vp) {
4075 error = hfs_prepare_release_storage (hfsmp, rsrc_vp);
4076 if (error) {
4077 goto out;
4078 }
4079 update_vh = 1;
4080 }
4081 }
4082
4083 /*
4084 * Protect against a race with rename by using the component
4085 * name passed in and parent id from dvp (instead of using
4086 * the cp->c_desc which may have changed). Also, be aware that
4087 * because we allow directories to be passed in, we need to special case
4088 * this temporary descriptor in case we were handed a directory.
4089 */
4090 if (isdir) {
4091 desc.cd_flags = CD_ISDIR;
4092 }
4093 else {
4094 desc.cd_flags = 0;
4095 }
4096 desc.cd_encoding = cp->c_desc.cd_encoding;
4097 desc.cd_nameptr = (const u_int8_t *)cnp->cn_nameptr;
4098 desc.cd_namelen = cnp->cn_namelen;
4099 desc.cd_parentcnid = dcp->c_fileid;
4100 desc.cd_hint = cp->c_desc.cd_hint;
4101 desc.cd_cnid = cp->c_cnid;
4102 microtime(&tv);
4103
4104 /*
4105 * There are two cases to consider:
4106 * 1. File/Dir is busy/big/defer_remove ==> move/rename the file/dir
4107 * 2. File is not in use ==> remove the file
4108 *
4109 * We can get a directory in case 1 because it may have had lots of attributes,
4110 * which need to get removed here.
4111 */
4112 if (dataforkbusy || rsrcforkbusy || isbigfile || defer_remove) {
4113 char delname[32];
4114 struct cat_desc to_desc;
4115 struct cat_desc todir_desc;
4116
4117 /*
4118 * Orphan this file or directory (move to hidden directory).
4119 * Again, we need to take care that we treat directories as directories,
4120 * and files as files. Because directories with attributes can be passed in
4121 * check to make sure that we have a directory or a file before filling in the
4122 * temporary descriptor's flags. We keep orphaned directories AND files in
4123 * the FILE_HARDLINKS private directory since we're generalizing over all
4124 * orphaned filesystem objects.
4125 */
4126 bzero(&todir_desc, sizeof(todir_desc));
4127 todir_desc.cd_parentcnid = 2;
4128
4129 MAKE_DELETED_NAME(delname, sizeof(delname), cp->c_fileid);
4130 bzero(&to_desc, sizeof(to_desc));
4131 to_desc.cd_nameptr = (const u_int8_t *)delname;
4132 to_desc.cd_namelen = strlen(delname);
4133 to_desc.cd_parentcnid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
4134 if (isdir) {
4135 to_desc.cd_flags = CD_ISDIR;
4136 }
4137 else {
4138 to_desc.cd_flags = 0;
4139 }
4140 to_desc.cd_cnid = cp->c_cnid;
4141
4142 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
4143 if (!skip_reserve) {
4144 if ((error = cat_preflight(hfsmp, CAT_RENAME, NULL, 0))) {
4145 hfs_systemfile_unlock(hfsmp, lockflags);
4146 goto out;
4147 }
4148 }
4149
4150 error = cat_rename(hfsmp, &desc, &todir_desc,
4151 &to_desc, (struct cat_desc *)NULL);
4152
4153 if (error == 0) {
4154 hfsmp->hfs_private_attr[FILE_HARDLINKS].ca_entries++;
4155 if (isdir == 1) {
4156 INC_FOLDERCOUNT(hfsmp, hfsmp->hfs_private_attr[FILE_HARDLINKS]);
4157 }
4158 (void) cat_update(hfsmp, &hfsmp->hfs_private_desc[FILE_HARDLINKS],
4159 &hfsmp->hfs_private_attr[FILE_HARDLINKS], NULL, NULL);
4160
4161 /* Update the parent directory */
4162 if (dcp->c_entries > 0)
4163 dcp->c_entries--;
4164 if (isdir == 1) {
4165 DEC_FOLDERCOUNT(hfsmp, dcp->c_attr);
4166 }
4167 dcp->c_dirchangecnt++;
4168 hfs_incr_gencount(dcp);
4169
4170 dcp->c_ctime = tv.tv_sec;
4171 dcp->c_mtime = tv.tv_sec;
4172 (void) cat_update(hfsmp, &dcp->c_desc, &dcp->c_attr, NULL, NULL);
4173
4174 /* Update the file or directory's state */
4175 cp->c_flag |= C_DELETED;
4176 cp->c_ctime = tv.tv_sec;
4177 --cp->c_linkcount;
4178 (void) cat_update(hfsmp, &to_desc, &cp->c_attr, NULL, NULL);
4179 }
4180 hfs_systemfile_unlock(hfsmp, lockflags);
4181 if (error)
4182 goto out;
4183
4184 }
4185 else {
4186 /*
4187 * Nobody is using this item; we can safely remove everything.
4188 */
4189 struct filefork *temp_rsrc_fork = NULL;
4190 #if QUOTA
4191 off_t savedbytes;
4192 int blksize = hfsmp->blockSize;
4193 #endif
4194 u_int32_t fileid = cp->c_fileid;
4195
4196 /*
4197 * Figure out if we need to read the resource fork data into
4198 * core before wiping out the catalog record.
4199 *
4200 * 1) Must not be a directory
4201 * 2) cnode's c_rsrcfork ptr must be NULL.
4202 * 3) rsrc fork must have actual blocks
4203 */
4204 if ((isdir == 0) && (cp->c_rsrcfork == NULL) &&
4205 (cp->c_blocks - VTOF(vp)->ff_blocks)) {
4206 /*
4207 * The resource fork vnode & filefork did not exist.
4208 * Create a temporary one for use in this function only.
4209 */
4210 temp_rsrc_fork = hfs_zalloc(HFS_FILEFORK_ZONE);
4211 bzero(temp_rsrc_fork, sizeof(struct filefork));
4212 temp_rsrc_fork->ff_cp = cp;
4213 rl_init(&temp_rsrc_fork->ff_invalidranges);
4214 }
4215
4216 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
4217
4218 /* Look up the resource fork first, if necessary */
4219 if (temp_rsrc_fork) {
4220 error = cat_lookup (hfsmp, &desc, 1, 0, (struct cat_desc*) NULL,
4221 (struct cat_attr*) NULL, &temp_rsrc_fork->ff_data, NULL);
4222 if (error) {
4223 hfs_zfree(temp_rsrc_fork, HFS_FILEFORK_ZONE);
4224 hfs_systemfile_unlock (hfsmp, lockflags);
4225 goto out;
4226 }
4227 }
4228
4229 if (!skip_reserve) {
4230 if ((error = cat_preflight(hfsmp, CAT_DELETE, NULL, 0))) {
4231 if (temp_rsrc_fork) {
4232 hfs_zfree(temp_rsrc_fork, HFS_FILEFORK_ZONE);
4233 }
4234 hfs_systemfile_unlock(hfsmp, lockflags);
4235 goto out;
4236 }
4237 }
4238
4239 error = cat_delete(hfsmp, &desc, &cp->c_attr);
4240
4241 if (error && error != ENXIO && error != ENOENT) {
4242 printf("hfs_removefile: deleting file %s (id=%d) vol=%s err=%d\n",
4243 cp->c_desc.cd_nameptr, cp->c_attr.ca_fileid, hfsmp->vcbVN, error);
4244 }
4245
4246 if (error == 0) {
4247 /* Update the parent directory */
4248 if (dcp->c_entries > 0)
4249 dcp->c_entries--;
4250 dcp->c_dirchangecnt++;
4251 hfs_incr_gencount(dcp);
4252
4253 dcp->c_ctime = tv.tv_sec;
4254 dcp->c_mtime = tv.tv_sec;
4255 (void) cat_update(hfsmp, &dcp->c_desc, &dcp->c_attr, NULL, NULL);
4256 }
4257 hfs_systemfile_unlock(hfsmp, lockflags);
4258
4259 if (error) {
4260 if (temp_rsrc_fork) {
4261 hfs_zfree(temp_rsrc_fork, HFS_FILEFORK_ZONE);
4262 }
4263 goto out;
4264 }
4265
4266 /*
4267 * Now that we've wiped out the catalog record, the file effectively doesn't
4268 * exist anymore. So update the quota records to reflect the loss of the
4269 * data fork and the resource fork.
4270 */
4271 #if QUOTA
4272 if (cp->c_datafork->ff_blocks > 0) {
4273 savedbytes = ((off_t)cp->c_datafork->ff_blocks * (off_t)blksize);
4274 (void) hfs_chkdq(cp, (int64_t)-(savedbytes), NOCRED, 0);
4275 }
4276
4277 /*
4278 * We may have just deleted the catalog record for a resource fork even
4279 * though it did not exist in core as a vnode. However, just because there
4280 * was a resource fork pointer in the cnode does not mean that it had any blocks.
4281 */
4282 if (temp_rsrc_fork || cp->c_rsrcfork) {
4283 if (cp->c_rsrcfork) {
4284 if (cp->c_rsrcfork->ff_blocks > 0) {
4285 savedbytes = ((off_t)cp->c_rsrcfork->ff_blocks * (off_t)blksize);
4286 (void) hfs_chkdq(cp, (int64_t)-(savedbytes), NOCRED, 0);
4287 }
4288 }
4289 else {
4290 /* we must have used a temporary fork */
4291 savedbytes = ((off_t)temp_rsrc_fork->ff_blocks * (off_t)blksize);
4292 (void) hfs_chkdq(cp, (int64_t)-(savedbytes), NOCRED, 0);
4293 }
4294 }
4295
4296 if (hfsmp->hfs_flags & HFS_QUOTAS) {
4297 (void)hfs_chkiq(cp, -1, NOCRED, 0);
4298 }
4299 #endif
4300
4301 if (vnode_islnk(vp) && cp->c_datafork->ff_symlinkptr) {
4302 hfs_free(cp->c_datafork->ff_symlinkptr, cp->c_datafork->ff_size);
4303 cp->c_datafork->ff_symlinkptr = NULL;
4304 }
4305
4306 /*
4307 * If we didn't get any errors deleting the catalog entry, then go ahead
4308 * and release the backing store now. The filefork pointers are still valid.
4309 */
4310 if (temp_rsrc_fork) {
4311 error = hfs_release_storage (hfsmp, cp->c_datafork, temp_rsrc_fork, fileid);
4312 }
4313 else {
4314 /* if cp->c_rsrcfork == NULL, hfs_release_storage will skip over it. */
4315 error = hfs_release_storage (hfsmp, cp->c_datafork, cp->c_rsrcfork, fileid);
4316 }
4317 if (error) {
4318 /*
4319 * If we encountered an error updating the extents and bitmap,
4320 * mark the volume inconsistent. At this point, the catalog record has
4321 * already been deleted, so we can't recover it at this point. We need
4322 * to proceed and update the volume header and mark the cnode C_NOEXISTS.
4323 * The subsequent fsck should be able to recover the free space for us.
4324 */
4325 hfs_mark_inconsistent(hfsmp, HFS_OP_INCOMPLETE);
4326 }
4327 else {
4328 /* reset update_vh to 0, since hfs_release_storage should have done it for us */
4329 update_vh = 0;
4330 }
4331
4332 /* Get rid of the temporary rsrc fork */
4333 if (temp_rsrc_fork) {
4334 hfs_zfree(temp_rsrc_fork, HFS_FILEFORK_ZONE);
4335 }
4336
4337 cp->c_flag |= C_NOEXISTS;
4338 cp->c_flag &= ~C_DELETED;
4339
4340 cp->c_touch_chgtime = TRUE;
4341 --cp->c_linkcount;
4342
4343 /*
4344 * We must never get a directory if we're in this else block. We could
4345 * accidentally drop the number of files in the volume header if we did.
4346 */
4347 hfs_volupdate(hfsmp, VOL_RMFILE, (dcp->c_cnid == kHFSRootFolderID));
4348
4349 }
4350
4351 //
4352 // if skip_reserve == 1 then we're being called from hfs_vnop_rename() and thus
4353 // we don't need to touch the document_id as it's handled by the rename code.
4354 // otherwise it's a normal remove and we need to save the document id in the
4355 // per thread struct and clear it from the cnode.
4356 //
4357 if (!error && !skip_reserve && (cp->c_bsdflags & UF_TRACKED)
4358 && cp->c_linkcount <= 1) {
4359 struct doc_tombstone *ut;
4360 ut = doc_tombstone_get();
4361 if (doc_tombstone_should_save(ut, vp, cnp)) {
4362 add_fsevent(FSE_DOCID_CHANGED, vfs_context_current(),
4363 FSE_ARG_DEV, hfsmp->hfs_raw_dev,
4364 FSE_ARG_INO, (ino64_t)cp->c_fileid, // src inode #
4365 FSE_ARG_INO, (ino64_t)0, // dst inode #
4366 FSE_ARG_INT32, hfs_get_document_id(cp), // document id
4367 FSE_ARG_DONE);
4368
4369 doc_tombstone_save(dvp, vp, cnp, hfs_get_document_id(cp),
4370 cp->c_fileid);
4371
4372 struct FndrExtendedFileInfo *fip = (struct FndrExtendedFileInfo *)((char *)&cp->c_attr.ca_finderinfo + 16);
4373
4374 fip->document_id = 0;
4375 cp->c_bsdflags &= ~UF_TRACKED;
4376 }
4377 }
4378
4379 /*
4380 * All done with this cnode's descriptor...
4381 *
4382 * Note: all future catalog calls for this cnode must be by
4383 * fileid only. This is OK for HFS (which doesn't have file
4384 * thread records) since HFS doesn't support the removal of
4385 * busy files.
4386 */
4387 cat_releasedesc(&cp->c_desc);
4388
4389 out:
4390 if (error) {
4391 cp->c_flag &= ~C_DELETED;
4392 }
4393
4394 if (update_vh) {
4395 /*
4396 * If we bailed out earlier, we may need to update the volume header
4397 * to deal with the borrowed blocks accounting.
4398 */
4399 hfs_volupdate (hfsmp, VOL_UPDATE, 0);
4400 }
4401
4402 if (started_tr) {
4403 hfs_end_transaction(hfsmp);
4404 }
4405
4406 dcp->c_flag &= ~C_DIR_MODIFICATION;
4407 wakeup((caddr_t)&dcp->c_flag);
4408
4409 return (error);
4410 }
4411
4412
4413 void
4414 replace_desc(struct cnode *cp, struct cat_desc *cdp)
4415 {
4416 // fixes 4348457 and 4463138
4417 if (&cp->c_desc == cdp) {
4418 return;
4419 }
4420
4421 /* First release allocated name buffer */
4422 if (cp->c_desc.cd_flags & CD_HASBUF && cp->c_desc.cd_nameptr != 0) {
4423 const u_int8_t *name = cp->c_desc.cd_nameptr;
4424
4425 cp->c_desc.cd_nameptr = 0;
4426 cp->c_desc.cd_namelen = 0;
4427 cp->c_desc.cd_flags &= ~CD_HASBUF;
4428 vfs_removename((const char *)name);
4429 }
4430 bcopy(cdp, &cp->c_desc, sizeof(cp->c_desc));
4431
4432 /* Cnode now owns the name buffer */
4433 cdp->cd_nameptr = 0;
4434 cdp->cd_namelen = 0;
4435 cdp->cd_flags &= ~CD_HASBUF;
4436 }
4437
4438 /*
4439 * hfs_vnop_rename
4440 *
4441 * Just forwards the arguments from VNOP_RENAME into those of
4442 * VNOP_RENAMEX but zeros out the flags word.
4443 */
4444 int hfs_vnop_rename (struct vnop_rename_args *args) {
4445 struct vnop_renamex_args vrx;
4446
4447 vrx.a_desc = args->a_desc; // we aren't using it to switch into the vnop array, so fine as is.
4448 vrx.a_fdvp = args->a_fdvp;
4449 vrx.a_fvp = args->a_fvp;
4450 vrx.a_fcnp = args->a_fcnp;
4451 vrx.a_tdvp = args->a_tdvp;
4452 vrx.a_tvp = args->a_tvp;
4453 vrx.a_tcnp = args->a_tcnp;
4454 vrx.a_vap = NULL; // not used
4455 vrx.a_flags = 0; //zero out the flags.
4456 vrx.a_context = args->a_context;
4457
4458 return hfs_vnop_renamex (&vrx);
4459 }
4460
4461
4462
4463 /*
4464 * Rename a cnode.
4465 *
4466 * The VFS layer guarantees that:
4467 * - source and destination will either both be directories, or
4468 * both not be directories.
4469 * - all the vnodes are from the same file system
4470 *
4471 * When the target is a directory, HFS must ensure that its empty.
4472 *
4473 * Note that this function requires up to 6 vnodes in order to work properly
4474 * if it is operating on files (and not on directories). This is because only
4475 * files can have resource forks, and we now require iocounts to be held on the
4476 * vnodes corresponding to the resource forks (if applicable) as well as
4477 * the files or directories undergoing rename. The problem with not holding
4478 * iocounts on the resource fork vnodes is that it can lead to a deadlock
4479 * situation: The rsrc fork of the source file may be recycled and reclaimed
4480 * in order to provide a vnode for the destination file's rsrc fork. Since
4481 * data and rsrc forks share the same cnode, we'd eventually try to lock the
4482 * source file's cnode in order to sync its rsrc fork to disk, but it's already
4483 * been locked. By taking the rsrc fork vnodes up front we ensure that they
4484 * cannot be recycled, and that the situation mentioned above cannot happen.
4485 */
4486 int
4487 hfs_vnop_renamex(struct vnop_renamex_args *ap)
4488 {
4489 struct vnode *tvp = ap->a_tvp;
4490 struct vnode *tdvp = ap->a_tdvp;
4491 struct vnode *fvp = ap->a_fvp;
4492 struct vnode *fdvp = ap->a_fdvp;
4493 /*
4494 * Note that we only need locals for the target/destination's
4495 * resource fork vnode (and only if necessary). We don't care if the
4496 * source has a resource fork vnode or not.
4497 */
4498 struct vnode *tvp_rsrc = NULLVP;
4499 uint32_t tvp_rsrc_vid = 0;
4500 struct componentname *tcnp = ap->a_tcnp;
4501 struct componentname *fcnp = ap->a_fcnp;
4502 struct proc *p = vfs_context_proc(ap->a_context);
4503 struct cnode *fcp;
4504 struct cnode *fdcp;
4505 struct cnode *tdcp;
4506 struct cnode *tcp;
4507 struct cnode *error_cnode;
4508 struct cat_desc from_desc;
4509 struct cat_desc to_desc;
4510 struct cat_desc out_desc;
4511 struct hfsmount *hfsmp;
4512 cat_cookie_t cookie;
4513 int tvp_deleted = 0;
4514 int started_tr = 0, got_cookie = 0;
4515 int took_trunc_lock = 0;
4516 int lockflags;
4517 int error;
4518 time_t orig_from_ctime, orig_to_ctime;
4519 int emit_rename = 1;
4520 int emit_delete = 1;
4521 int is_tracked = 0;
4522 int unlocked;
4523 vnode_t old_doc_vp = NULL;
4524 int rename_exclusive = 0;
4525
4526 orig_from_ctime = VTOC(fvp)->c_ctime;
4527 if (tvp && VTOC(tvp)) {
4528 orig_to_ctime = VTOC(tvp)->c_ctime;
4529 } else {
4530 orig_to_ctime = ~0;
4531 }
4532
4533 hfsmp = VTOHFS(tdvp);
4534
4535 /* Check the flags first, so we can avoid grabbing locks if necessary */
4536 if (ap->a_flags) {
4537 /* These are the only flags we support for now */
4538 if ((ap->a_flags & (VFS_RENAME_EXCL)) == 0) {
4539 return ENOTSUP;
4540 }
4541
4542 /* The rename flags are mutually exclusive for HFS+ */
4543 switch (ap->a_flags & VFS_RENAME_FLAGS_MASK) {
4544 case VFS_RENAME_EXCL:
4545 rename_exclusive = true;
4546 break;
4547 default:
4548 return ENOTSUP;
4549 }
4550 }
4551
4552 /*
4553 * Do special case checks here. If fvp == tvp then we need to check the
4554 * cnode with locks held.
4555 */
4556 if (fvp == tvp) {
4557 int is_hardlink = 0;
4558 /*
4559 * In this case, we do *NOT* ever emit a DELETE event.
4560 * We may not necessarily emit a RENAME event
4561 */
4562 emit_delete = 0;
4563 if ((error = hfs_lock(VTOC(fvp), HFS_SHARED_LOCK, HFS_LOCK_DEFAULT))) {
4564 return error;
4565 }
4566 /* Check to see if the item is a hardlink or not */
4567 is_hardlink = (VTOC(fvp)->c_flag & C_HARDLINK);
4568 hfs_unlock (VTOC(fvp));
4569
4570 /*
4571 * If the item is not a hardlink, then case sensitivity must be off, otherwise
4572 * two names should not resolve to the same cnode unless they were case variants.
4573 */
4574 if (is_hardlink) {
4575 emit_rename = 0;
4576 /*
4577 * Hardlinks are a little trickier. We only want to emit a rename event
4578 * if the item is a hardlink, the parent directories are the same, case sensitivity
4579 * is off, and the case folded names are the same. See the fvp == tvp case below for more
4580 * info.
4581 */
4582
4583 if ((fdvp == tdvp) && ((hfsmp->hfs_flags & HFS_CASE_SENSITIVE) == 0)) {
4584 if (hfs_namecmp((const u_int8_t *)fcnp->cn_nameptr, fcnp->cn_namelen,
4585 (const u_int8_t *)tcnp->cn_nameptr, tcnp->cn_namelen) == 0) {
4586 /* Then in this case only it is ok to emit a rename */
4587 emit_rename = 1;
4588 }
4589 }
4590 }
4591 }
4592 if (emit_rename) {
4593 /* c_bsdflags should only be assessed while holding the cnode lock.
4594 * This is not done consistently throughout the code and can result
4595 * in race. This will be fixed via rdar://12181064
4596 */
4597 if (VTOC(fvp)->c_bsdflags & UF_TRACKED) {
4598 is_tracked = 1;
4599 }
4600 nspace_snapshot_event(fvp, orig_from_ctime, NAMESPACE_HANDLER_RENAME_OP, NULL);
4601 }
4602
4603 if (tvp && VTOC(tvp)) {
4604 if (emit_delete) {
4605 nspace_snapshot_event(tvp, orig_to_ctime, NAMESPACE_HANDLER_DELETE_OP, NULL);
4606 }
4607 }
4608
4609 retry:
4610 /* When tvp exists, take the truncate lock for hfs_removefile(). */
4611 if (tvp && (vnode_isreg(tvp) || vnode_islnk(tvp))) {
4612 hfs_lock_truncate(VTOC(tvp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
4613 took_trunc_lock = 1;
4614 }
4615
4616 relock:
4617 error = hfs_lockfour(VTOC(fdvp), VTOC(fvp), VTOC(tdvp), tvp ? VTOC(tvp) : NULL,
4618 HFS_EXCLUSIVE_LOCK, &error_cnode);
4619 if (error) {
4620 if (took_trunc_lock) {
4621 hfs_unlock_truncate(VTOC(tvp), HFS_LOCK_DEFAULT);
4622 took_trunc_lock = 0;
4623 }
4624
4625 /*
4626 * We hit an error path. If we were trying to re-acquire the locks
4627 * after coming through here once, we might have already obtained
4628 * an iocount on tvp's resource fork vnode. Drop that before dealing
4629 * with the failure. Note this is safe -- since we are in an
4630 * error handling path, we can't be holding the cnode locks.
4631 */
4632 if (tvp_rsrc) {
4633 vnode_put (tvp_rsrc);
4634 tvp_rsrc_vid = 0;
4635 tvp_rsrc = NULL;
4636 }
4637
4638 /*
4639 * tvp might no longer exist. If the cause of the lock failure
4640 * was tvp, then we can try again with tvp/tcp set to NULL.
4641 * This is ok because the vfs syscall will vnode_put the vnodes
4642 * after we return from hfs_vnop_rename.
4643 */
4644 if ((error == ENOENT) && (tvp != NULL) && (error_cnode == VTOC(tvp))) {
4645 tcp = NULL;
4646 tvp = NULL;
4647 goto retry;
4648 }
4649
4650 /* If we want to reintroduce notifications for failed renames, this
4651 is the place to do it. */
4652
4653 return (error);
4654 }
4655
4656 fdcp = VTOC(fdvp);
4657 fcp = VTOC(fvp);
4658 tdcp = VTOC(tdvp);
4659 tcp = tvp ? VTOC(tvp) : NULL;
4660
4661
4662 /*
4663 * If caller requested an exclusive rename (VFS_RENAME_EXCL) and 'tcp' exists
4664 * then we must fail the operation.
4665 */
4666 if (tcp && rename_exclusive) {
4667 error = EEXIST;
4668 goto out;
4669 }
4670
4671 //
4672 // if the item is tracked but doesn't have a document_id, assign one and generate an fsevent for it
4673 //
4674 unlocked = 0;
4675 if ((fcp->c_bsdflags & UF_TRACKED) && ((struct FndrExtendedDirInfo *)((char *)&fcp->c_attr.ca_finderinfo + 16))->document_id == 0) {
4676 uint32_t newid;
4677
4678 hfs_unlockfour(VTOC(fdvp), VTOC(fvp), VTOC(tdvp), tvp ? VTOC(tvp) : NULL);
4679 unlocked = 1;
4680
4681 if (hfs_generate_document_id(hfsmp, &newid) == 0) {
4682 hfs_lock(fcp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
4683 ((struct FndrExtendedDirInfo *)((char *)&fcp->c_attr.ca_finderinfo + 16))->document_id = newid;
4684 add_fsevent(FSE_DOCID_CHANGED, vfs_context_current(),
4685 FSE_ARG_DEV, hfsmp->hfs_raw_dev,
4686 FSE_ARG_INO, (ino64_t)0, // src inode #
4687 FSE_ARG_INO, (ino64_t)fcp->c_fileid, // dst inode #
4688 FSE_ARG_INT32, newid,
4689 FSE_ARG_DONE);
4690 hfs_unlock(fcp);
4691 } else {
4692 // XXXdbg - couldn't get a new docid... what to do? can't really fail the rename...
4693 }
4694
4695 //
4696 // check if we're going to need to fix tcp as well. if we aren't, go back relock
4697 // everything. otherwise continue on and fix up tcp as well before relocking.
4698 //
4699 if (tcp == NULL || !(tcp->c_bsdflags & UF_TRACKED) || ((struct FndrExtendedDirInfo *)((char *)&tcp->c_attr.ca_finderinfo + 16))->document_id != 0) {
4700 goto relock;
4701 }
4702 }
4703
4704 //
4705 // same thing for tcp if it's set
4706 //
4707 if (tcp && (tcp->c_bsdflags & UF_TRACKED) && ((struct FndrExtendedDirInfo *)((char *)&tcp->c_attr.ca_finderinfo + 16))->document_id == 0) {
4708 uint32_t newid;
4709
4710 if (!unlocked) {
4711 hfs_unlockfour(VTOC(fdvp), VTOC(fvp), VTOC(tdvp), tvp ? VTOC(tvp) : NULL);
4712 unlocked = 1;
4713 }
4714
4715 if (hfs_generate_document_id(hfsmp, &newid) == 0) {
4716 hfs_lock(tcp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
4717 ((struct FndrExtendedDirInfo *)((char *)&tcp->c_attr.ca_finderinfo + 16))->document_id = newid;
4718 add_fsevent(FSE_DOCID_CHANGED, vfs_context_current(),
4719 FSE_ARG_DEV, hfsmp->hfs_raw_dev,
4720 FSE_ARG_INO, (ino64_t)0, // src inode #
4721 FSE_ARG_INO, (ino64_t)tcp->c_fileid, // dst inode #
4722 FSE_ARG_INT32, newid,
4723 FSE_ARG_DONE);
4724 hfs_unlock(tcp);
4725 } else {
4726 // XXXdbg - couldn't get a new docid... what to do? can't really fail the rename...
4727 }
4728
4729 // go back up and relock everything. next time through the if statement won't be true
4730 // and we'll skip over this block of code.
4731 goto relock;
4732 }
4733
4734
4735
4736 /*
4737 * Acquire iocounts on the destination's resource fork vnode
4738 * if necessary. If dst/src are files and the dst has a resource
4739 * fork vnode, then we need to try and acquire an iocount on the rsrc vnode.
4740 * If it does not exist, then we don't care and can skip it.
4741 */
4742 if ((vnode_isreg(fvp)) || (vnode_islnk(fvp))) {
4743 if ((tvp) && (tcp->c_rsrc_vp) && (tvp_rsrc == NULL)) {
4744 tvp_rsrc = tcp->c_rsrc_vp;
4745 /*
4746 * We can look at the vid here because we're holding the
4747 * cnode lock on the underlying cnode for this rsrc vnode.
4748 */
4749 tvp_rsrc_vid = vnode_vid (tvp_rsrc);
4750
4751 /* Unlock everything to acquire iocount on this rsrc vnode */
4752 if (took_trunc_lock) {
4753 hfs_unlock_truncate (VTOC(tvp), HFS_LOCK_DEFAULT);
4754 took_trunc_lock = 0;
4755 }
4756 hfs_unlockfour(fdcp, fcp, tdcp, tcp);
4757
4758 if (vnode_getwithvid (tvp_rsrc, tvp_rsrc_vid)) {
4759 /* iocount acquisition failed. Reset fields and start over.. */
4760 tvp_rsrc_vid = 0;
4761 tvp_rsrc = NULL;
4762 }
4763 goto retry;
4764 }
4765 }
4766
4767
4768
4769 /* Ensure we didn't race src or dst parent directories with rmdir. */
4770 if (fdcp->c_flag & (C_NOEXISTS | C_DELETED)) {
4771 error = ENOENT;
4772 goto out;
4773 }
4774
4775 if (tdcp->c_flag & (C_NOEXISTS | C_DELETED)) {
4776 error = ENOENT;
4777 goto out;
4778 }
4779
4780
4781 /* Check for a race against unlink. The hfs_valid_cnode checks validate
4782 * the parent/child relationship with fdcp and tdcp, as well as the
4783 * component name of the target cnodes.
4784 */
4785 if ((fcp->c_flag & (C_NOEXISTS | C_DELETED)) || !hfs_valid_cnode(hfsmp, fdvp, fcnp, fcp->c_fileid, NULL, &error)) {
4786 error = ENOENT;
4787 goto out;
4788 }
4789
4790 if (tcp && ((tcp->c_flag & (C_NOEXISTS | C_DELETED)) || !hfs_valid_cnode(hfsmp, tdvp, tcnp, tcp->c_fileid, NULL, &error))) {
4791 //
4792 // hmm, the destination vnode isn't valid any more.
4793 // in this case we can just drop him and pretend he
4794 // never existed in the first place.
4795 //
4796 if (took_trunc_lock) {
4797 hfs_unlock_truncate(VTOC(tvp), HFS_LOCK_DEFAULT);
4798 took_trunc_lock = 0;
4799 }
4800 error = 0;
4801
4802 hfs_unlockfour(fdcp, fcp, tdcp, tcp);
4803
4804 tcp = NULL;
4805 tvp = NULL;
4806
4807 // retry the locking with tvp null'ed out
4808 goto retry;
4809 }
4810
4811 fdcp->c_flag |= C_DIR_MODIFICATION;
4812 if (fdvp != tdvp) {
4813 tdcp->c_flag |= C_DIR_MODIFICATION;
4814 }
4815
4816 /*
4817 * Disallow renaming of a directory hard link if the source and
4818 * destination parent directories are different, or a directory whose
4819 * descendant is a directory hard link and the one of the ancestors
4820 * of the destination directory is a directory hard link.
4821 */
4822 if (vnode_isdir(fvp) && (fdvp != tdvp)) {
4823 if (fcp->c_flag & C_HARDLINK) {
4824 error = EPERM;
4825 goto out;
4826 }
4827 if (fcp->c_attr.ca_recflags & kHFSHasChildLinkMask) {
4828 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
4829 if (cat_check_link_ancestry(hfsmp, tdcp->c_fileid, 0)) {
4830 error = EPERM;
4831 hfs_systemfile_unlock(hfsmp, lockflags);
4832 goto out;
4833 }
4834 hfs_systemfile_unlock(hfsmp, lockflags);
4835 }
4836 }
4837
4838 /*
4839 * The following edge case is caught here:
4840 * (to cannot be a descendent of from)
4841 *
4842 * o fdvp
4843 * /
4844 * /
4845 * o fvp
4846 * \
4847 * \
4848 * o tdvp
4849 * /
4850 * /
4851 * o tvp
4852 */
4853 if (tdcp->c_parentcnid == fcp->c_fileid) {
4854 error = EINVAL;
4855 goto out;
4856 }
4857
4858 /*
4859 * The following two edge cases are caught here:
4860 * (note tvp is not empty)
4861 *
4862 * o tdvp o tdvp
4863 * / /
4864 * / /
4865 * o tvp tvp o fdvp
4866 * \ \
4867 * \ \
4868 * o fdvp o fvp
4869 * /
4870 * /
4871 * o fvp
4872 */
4873 if (tvp && vnode_isdir(tvp) && (tcp->c_entries != 0) && fvp != tvp) {
4874 error = ENOTEMPTY;
4875 goto out;
4876 }
4877
4878 /*
4879 * The following edge case is caught here:
4880 * (the from child and parent are the same)
4881 *
4882 * o tdvp
4883 * /
4884 * /
4885 * fdvp o fvp
4886 */
4887 if (fdvp == fvp) {
4888 error = EINVAL;
4889 goto out;
4890 }
4891
4892 /*
4893 * Make sure "from" vnode and its parent are changeable.
4894 */
4895 if ((fcp->c_bsdflags & (IMMUTABLE | APPEND)) || (fdcp->c_bsdflags & APPEND)) {
4896 error = EPERM;
4897 goto out;
4898 }
4899
4900 /*
4901 * If the destination parent directory is "sticky", then the
4902 * user must own the parent directory, or the destination of
4903 * the rename, otherwise the destination may not be changed
4904 * (except by root). This implements append-only directories.
4905 *
4906 * Note that checks for immutable and write access are done
4907 * by the call to hfs_removefile.
4908 */
4909 if (tvp && (tdcp->c_mode & S_ISTXT) &&
4910 (suser(vfs_context_ucred(ap->a_context), NULL)) &&
4911 (kauth_cred_getuid(vfs_context_ucred(ap->a_context)) != tdcp->c_uid) &&
4912 (hfs_owner_rights(hfsmp, tcp->c_uid, vfs_context_ucred(ap->a_context), p, false)) ) {
4913 error = EPERM;
4914 goto out;
4915 }
4916
4917 /* Don't allow modification of the journal or journal_info_block */
4918 if (hfs_is_journal_file(hfsmp, fcp) ||
4919 (tcp && hfs_is_journal_file(hfsmp, tcp))) {
4920 error = EPERM;
4921 goto out;
4922 }
4923
4924 #if QUOTA
4925 if (tvp)
4926 (void)hfs_getinoquota(tcp);
4927 #endif
4928 /* Preflighting done, take fvp out of the name space. */
4929 cache_purge(fvp);
4930
4931 #if CONFIG_SECLUDED_RENAME
4932 /*
4933 * Check for "secure" rename that imposes additional restrictions on the
4934 * source vnode. We wait until here to check in order to prevent a race
4935 * with other threads that manage to look up fvp, but their open or link
4936 * is blocked by our locks. At this point, with fvp out of the name cache,
4937 * and holding the lock on fdvp, no other thread can find fvp.
4938 *
4939 * TODO: Do we need to limit these checks to regular files only?
4940 */
4941 if (fcnp->cn_flags & CN_SECLUDE_RENAME) {
4942 if (vnode_isdir(fvp)) {
4943 error = EISDIR;
4944 goto out;
4945 }
4946
4947 /*
4948 * Neither fork of source may be open or memory mapped.
4949 * We also don't want it in use by any other system call.
4950 * The file must not have hard links.
4951 *
4952 * We can't simply use vnode_isinuse() because that does not
4953 * count opens with O_EVTONLY. We don't want a malicious
4954 * process using O_EVTONLY to subvert a secluded rename.
4955 */
4956 if (fcp->c_linkcount != 1) {
4957 error = EMLINK;
4958 goto out;
4959 }
4960
4961 if (fcp->c_rsrc_vp && (vnode_usecount(fcp->c_rsrc_vp) > 0 ||
4962 vnode_iocount(fcp->c_rsrc_vp) > 0)) {
4963 /* Resource fork is in use (including O_EVTONLY) */
4964 error = EBUSY;
4965 goto out;
4966 }
4967 if (fcp->c_vp && (vnode_usecount(fcp->c_vp) > (fcp->c_rsrc_vp ? 1 : 0) ||
4968 vnode_iocount(fcp->c_vp) > 1)) {
4969 /*
4970 * Data fork is in use, including O_EVTONLY, but not
4971 * including a reference from the resource fork.
4972 */
4973 error = EBUSY;
4974 goto out;
4975 }
4976 }
4977 #endif
4978
4979 bzero(&from_desc, sizeof(from_desc));
4980 from_desc.cd_nameptr = (const u_int8_t *)fcnp->cn_nameptr;
4981 from_desc.cd_namelen = fcnp->cn_namelen;
4982 from_desc.cd_parentcnid = fdcp->c_fileid;
4983 from_desc.cd_flags = fcp->c_desc.cd_flags & ~(CD_HASBUF | CD_DECOMPOSED);
4984 from_desc.cd_cnid = fcp->c_cnid;
4985
4986 bzero(&to_desc, sizeof(to_desc));
4987 to_desc.cd_nameptr = (const u_int8_t *)tcnp->cn_nameptr;
4988 to_desc.cd_namelen = tcnp->cn_namelen;
4989 to_desc.cd_parentcnid = tdcp->c_fileid;
4990 to_desc.cd_flags = fcp->c_desc.cd_flags & ~(CD_HASBUF | CD_DECOMPOSED);
4991 to_desc.cd_cnid = fcp->c_cnid;
4992
4993 if ((error = hfs_start_transaction(hfsmp)) != 0) {
4994 goto out;
4995 }
4996 started_tr = 1;
4997
4998 /* hfs_vnop_link() and hfs_vnop_rename() set kHFSHasChildLinkMask
4999 * inside a journal transaction and without holding a cnode lock.
5000 * As setting of this bit depends on being in journal transaction for
5001 * concurrency, check this bit again after we start journal transaction for rename
5002 * to ensure that this directory does not have any descendant that
5003 * is a directory hard link.
5004 */
5005 if (vnode_isdir(fvp) && (fdvp != tdvp)) {
5006 if (fcp->c_attr.ca_recflags & kHFSHasChildLinkMask) {
5007 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
5008 if (cat_check_link_ancestry(hfsmp, tdcp->c_fileid, 0)) {
5009 error = EPERM;
5010 hfs_systemfile_unlock(hfsmp, lockflags);
5011 goto out;
5012 }
5013 hfs_systemfile_unlock(hfsmp, lockflags);
5014 }
5015 }
5016
5017 // if it's a hardlink then re-lookup the name so
5018 // that we get the correct cnid in from_desc (see
5019 // the comment in hfs_removefile for more details)
5020 //
5021 if (fcp->c_flag & C_HARDLINK) {
5022 struct cat_desc tmpdesc;
5023 cnid_t real_cnid;
5024
5025 tmpdesc.cd_nameptr = (const u_int8_t *)fcnp->cn_nameptr;
5026 tmpdesc.cd_namelen = fcnp->cn_namelen;
5027 tmpdesc.cd_parentcnid = fdcp->c_fileid;
5028 tmpdesc.cd_hint = fdcp->c_childhint;
5029 tmpdesc.cd_flags = fcp->c_desc.cd_flags & CD_ISDIR;
5030 tmpdesc.cd_encoding = 0;
5031
5032 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
5033
5034 if (cat_lookup(hfsmp, &tmpdesc, 0, 0, NULL, NULL, NULL, &real_cnid) != 0) {
5035 hfs_systemfile_unlock(hfsmp, lockflags);
5036 goto out;
5037 }
5038
5039 // use the real cnid instead of whatever happened to be there
5040 from_desc.cd_cnid = real_cnid;
5041 hfs_systemfile_unlock(hfsmp, lockflags);
5042 }
5043
5044 /*
5045 * Reserve some space in the Catalog file.
5046 */
5047 if ((error = cat_preflight(hfsmp, CAT_RENAME + CAT_DELETE, &cookie, p))) {
5048 goto out;
5049 }
5050 got_cookie = 1;
5051
5052 /*
5053 * If the destination exists then it may need to be removed.
5054 *
5055 * Due to HFS's locking system, we should always move the
5056 * existing 'tvp' element to the hidden directory in hfs_vnop_rename.
5057 * Because the VNOP_LOOKUP call enters and exits the filesystem independently
5058 * of the actual vnop that it was trying to do (stat, link, readlink),
5059 * we must release the cnode lock of that element during the interim to
5060 * do MAC checking, vnode authorization, and other calls. In that time,
5061 * the item can be deleted (or renamed over). However, only in the rename
5062 * case is it inappropriate to return ENOENT from any of those calls. Either
5063 * the call should return information about the old element (stale), or get
5064 * information about the newer element that we are about to write in its place.
5065 *
5066 * HFS lookup has been modified to detect a rename and re-drive its
5067 * lookup internally. For other calls that have already succeeded in
5068 * their lookup call and are waiting to acquire the cnode lock in order
5069 * to proceed, that cnode lock will not fail due to the cnode being marked
5070 * C_NOEXISTS, because it won't have been marked as such. It will only
5071 * have C_DELETED. Thus, they will simply act on the stale open-unlinked
5072 * element. All future callers will get the new element.
5073 *
5074 * To implement this behavior, we pass the "only_unlink" argument to
5075 * hfs_removefile and hfs_removedir. This will result in the vnode acting
5076 * as though it is open-unlinked. Additionally, when we are done moving the
5077 * element to the hidden directory, we vnode_recycle the target so that it is
5078 * reclaimed as soon as possible. Reclaim and inactive are both
5079 * capable of clearing out unused blocks for an open-unlinked file or dir.
5080 */
5081 if (tvp) {
5082 //
5083 // if the destination has a document id, we need to preserve it
5084 //
5085 if (fvp != tvp) {
5086 uint32_t document_id;
5087 struct FndrExtendedDirInfo *ffip = (struct FndrExtendedDirInfo *)((char *)&fcp->c_attr.ca_finderinfo + 16);
5088 struct FndrExtendedDirInfo *tfip = (struct FndrExtendedDirInfo *)((char *)&tcp->c_attr.ca_finderinfo + 16);
5089
5090 if (ffip->document_id && tfip->document_id) {
5091 // both documents are tracked. only save a tombstone from tcp and do nothing else.
5092 doc_tombstone_save(tdvp, tvp, tcnp, hfs_get_document_id(tcp),
5093 tcp->c_fileid);
5094 } else {
5095 struct doc_tombstone *ut;
5096 ut = doc_tombstone_get();
5097
5098 document_id = tfip->document_id;
5099 tfip->document_id = 0;
5100
5101 if (document_id != 0) {
5102 // clear UF_TRACKED as well since tcp is now no longer tracked
5103 tcp->c_bsdflags &= ~UF_TRACKED;
5104 (void) cat_update(hfsmp, &tcp->c_desc, &tcp->c_attr, NULL, NULL);
5105 }
5106
5107 if (ffip->document_id == 0 && document_id != 0) {
5108 // printf("RENAME: preserving doc-id %d onto %s (from ino %d, to ino %d)\n", document_id, tcp->c_desc.cd_nameptr, tcp->c_desc.cd_cnid, fcp->c_desc.cd_cnid);
5109 fcp->c_bsdflags |= UF_TRACKED;
5110 ffip->document_id = document_id;
5111
5112 (void) cat_update(hfsmp, &fcp->c_desc, &fcp->c_attr, NULL, NULL);
5113 add_fsevent(FSE_DOCID_CHANGED, vfs_context_current(),
5114 FSE_ARG_DEV, hfsmp->hfs_raw_dev,
5115 FSE_ARG_INO, (ino64_t)tcp->c_fileid, // src inode #
5116 FSE_ARG_INO, (ino64_t)fcp->c_fileid, // dst inode #
5117 FSE_ARG_INT32, (uint32_t)ffip->document_id,
5118 FSE_ARG_DONE);
5119 }
5120 else if ((fcp->c_bsdflags & UF_TRACKED) && doc_tombstone_should_save(ut, fvp, fcnp)) {
5121
5122 if (ut->t_lastop_document_id) {
5123 doc_tombstone_clear(ut, NULL);
5124 }
5125 doc_tombstone_save(fdvp, fvp, fcnp,
5126 hfs_get_document_id(fcp), fcp->c_fileid);
5127
5128 //printf("RENAME: (dest-exists): saving tombstone doc-id %lld @ %s (ino %d)\n",
5129 // ut->t_lastop_document_id, ut->t_lastop_filename, fcp->c_desc.cd_cnid);
5130 }
5131 }
5132 }
5133
5134 /*
5135 * When fvp matches tvp they could be case variants
5136 * or matching hard links.
5137 */
5138 if (fvp == tvp) {
5139 if (!(fcp->c_flag & C_HARDLINK)) {
5140 /*
5141 * If they're not hardlinks, then fvp == tvp must mean we
5142 * are using case-insensitive HFS because case-sensitive would
5143 * not use the same vnode for both. In this case we just update
5144 * the catalog for: a -> A
5145 */
5146 goto skip_rm; /* simple case variant */
5147
5148 }
5149 /* For all cases below, we must be using hardlinks */
5150 else if ((fdvp != tdvp) ||
5151 (hfsmp->hfs_flags & HFS_CASE_SENSITIVE)) {
5152 /*
5153 * If the parent directories are not the same, AND the two items
5154 * are hardlinks, posix says to do nothing:
5155 * dir1/fred <-> dir2/bob and the op was mv dir1/fred -> dir2/bob
5156 * We just return 0 in this case.
5157 *
5158 * If case sensitivity is on, and we are using hardlinks
5159 * then renaming is supposed to do nothing.
5160 * dir1/fred <-> dir2/FRED, and op == mv dir1/fred -> dir2/FRED
5161 */
5162 goto out; /* matching hardlinks, nothing to do */
5163
5164 } else if (hfs_namecmp((const u_int8_t *)fcnp->cn_nameptr, fcnp->cn_namelen,
5165 (const u_int8_t *)tcnp->cn_nameptr, tcnp->cn_namelen) == 0) {
5166 /*
5167 * If we get here, then the following must be true:
5168 * a) We are running case-insensitive HFS+.
5169 * b) Both paths 'fvp' and 'tvp' are in the same parent directory.
5170 * c) the two names are case-variants of each other.
5171 *
5172 * In this case, we are really only dealing with a single catalog record
5173 * whose name is being updated.
5174 *
5175 * op is dir1/fred -> dir1/FRED
5176 *
5177 * We need to special case the name matching, because if
5178 * dir1/fred <-> dir1/bob were the two links, and the
5179 * op was dir1/fred -> dir1/bob
5180 * That would fail/do nothing.
5181 */
5182 goto skip_rm; /* case-variant hardlink in the same dir */
5183 } else {
5184 goto out; /* matching hardlink, nothing to do */
5185 }
5186 }
5187
5188
5189 if (vnode_isdir(tvp)) {
5190 /*
5191 * hfs_removedir will eventually call hfs_removefile on the directory
5192 * we're working on, because only hfs_removefile does the renaming of the
5193 * item to the hidden directory. The directory will stay around in the
5194 * hidden directory with C_DELETED until it gets an inactive or a reclaim.
5195 * That way, we can destroy all of the EAs as needed and allow new ones to be
5196 * written.
5197 */
5198 error = hfs_removedir(tdvp, tvp, tcnp, HFSRM_SKIP_RESERVE, 1);
5199 }
5200 else {
5201 error = hfs_removefile(tdvp, tvp, tcnp, 0, HFSRM_SKIP_RESERVE, 0, NULL, 1);
5202
5203 /*
5204 * If the destination file had a resource fork vnode, then we need to get rid of
5205 * its blocks when there are no more references to it. Because the call to
5206 * hfs_removefile above always open-unlinks things, we need to force an inactive/reclaim
5207 * on the resource fork vnode, in order to prevent block leaks. Otherwise,
5208 * the resource fork vnode could prevent the data fork vnode from going out of scope
5209 * because it holds a v_parent reference on it. So we mark it for termination
5210 * with a call to vnode_recycle. hfs_vnop_reclaim has been modified so that it
5211 * can clean up the blocks of open-unlinked files and resource forks.
5212 *
5213 * We can safely call vnode_recycle on the resource fork because we took an iocount
5214 * reference on it at the beginning of the function.
5215 */
5216
5217 if ((error == 0) && (tcp->c_flag & C_DELETED) && (tvp_rsrc)) {
5218 vnode_recycle(tvp_rsrc);
5219 }
5220 }
5221
5222 if (error) {
5223 goto out;
5224 }
5225
5226 tvp_deleted = 1;
5227
5228 /* Mark 'tcp' as being deleted due to a rename */
5229 tcp->c_flag |= C_RENAMED;
5230
5231 /*
5232 * Aggressively mark tvp/tcp for termination to ensure that we recover all blocks
5233 * as quickly as possible.
5234 */
5235 vnode_recycle(tvp);
5236 } else {
5237 struct doc_tombstone *ut;
5238 ut = doc_tombstone_get();
5239
5240 //
5241 // There is nothing at the destination. If the file being renamed is
5242 // tracked, save a "tombstone" of the document_id. If the file is
5243 // not a tracked file, then see if it needs to inherit a tombstone.
5244 //
5245 // NOTE: we do not save a tombstone if the file being renamed begins
5246 // with "atmp" which is done to work-around AutoCad's bizarre
5247 // 5-step un-safe save behavior
5248 //
5249 if (fcp->c_bsdflags & UF_TRACKED) {
5250 if (doc_tombstone_should_save(ut, fvp, fcnp)) {
5251 doc_tombstone_save(fdvp, fvp, fcnp, hfs_get_document_id(fcp),
5252 fcp->c_fileid);
5253
5254 //printf("RENAME: (no dest): saving tombstone doc-id %lld @ %s (ino %d)\n",
5255 // ut->t_lastop_document_id, ut->t_lastop_filename, fcp->c_desc.cd_cnid);
5256 } else {
5257 // intentionally do nothing
5258 }
5259 } else if ( ut->t_lastop_document_id != 0
5260 && tdvp == ut->t_lastop_parent
5261 && vnode_vid(tdvp) == ut->t_lastop_parent_vid
5262 && strcmp((char *)ut->t_lastop_filename, (char *)tcnp->cn_nameptr) == 0) {
5263
5264 //printf("RENAME: %s (ino %d) inheriting doc-id %lld\n", tcnp->cn_nameptr, fcp->c_desc.cd_cnid, ut->t_lastop_document_id);
5265 struct FndrExtendedFileInfo *fip = (struct FndrExtendedFileInfo *)((char *)&fcp->c_attr.ca_finderinfo + 16);
5266 fcp->c_bsdflags |= UF_TRACKED;
5267 fip->document_id = ut->t_lastop_document_id;
5268 cat_update(hfsmp, &fcp->c_desc, &fcp->c_attr, NULL, NULL);
5269
5270 doc_tombstone_clear(ut, &old_doc_vp);
5271 } else if (ut->t_lastop_document_id && doc_tombstone_should_save(ut, fvp, fcnp) && doc_tombstone_should_save(ut, tvp, tcnp)) {
5272 // no match, clear the tombstone
5273 //printf("RENAME: clearing the tombstone %lld @ %s\n", ut->t_lastop_document_id, ut->t_lastop_filename);
5274 doc_tombstone_clear(ut, NULL);
5275 }
5276
5277 }
5278 skip_rm:
5279 /*
5280 * All done with tvp and fvp.
5281 *
5282 * We also jump to this point if there was no destination observed during lookup and namei.
5283 * However, because only iocounts are held at the VFS layer, there is nothing preventing a
5284 * competing thread from racing us and creating a file or dir at the destination of this rename
5285 * operation. If this occurs, it may cause us to get a spurious EEXIST out of the cat_rename
5286 * call below. To preserve rename's atomicity, we need to signal VFS to re-drive the
5287 * namei/lookup and restart the rename operation. EEXIST is an allowable errno to be bubbled
5288 * out of the rename syscall, but not for this reason, since it is a synonym errno for ENOTEMPTY.
5289 * To signal VFS, we return ERECYCLE (which is also used for lookup restarts). This errno
5290 * will be swallowed and it will restart the operation.
5291 */
5292
5293 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
5294 error = cat_rename(hfsmp, &from_desc, &tdcp->c_desc, &to_desc, &out_desc);
5295 hfs_systemfile_unlock(hfsmp, lockflags);
5296
5297 if (error) {
5298 if (error == EEXIST) {
5299 error = ERECYCLE;
5300 }
5301 goto out;
5302 }
5303
5304 /* Invalidate negative cache entries in the destination directory */
5305 if (tdcp->c_flag & C_NEG_ENTRIES) {
5306 cache_purge_negatives(tdvp);
5307 tdcp->c_flag &= ~C_NEG_ENTRIES;
5308 }
5309
5310 /* Update cnode's catalog descriptor */
5311 replace_desc(fcp, &out_desc);
5312 fcp->c_parentcnid = tdcp->c_fileid;
5313 fcp->c_hint = 0;
5314
5315 /*
5316 * Now indicate this cnode needs to have date-added written to the
5317 * finderinfo, but only if moving to a different directory, or if
5318 * it doesn't already have it.
5319 */
5320 if (fdvp != tdvp || !ISSET(fcp->c_attr.ca_recflags, kHFSHasDateAddedMask))
5321 fcp->c_flag |= C_NEEDS_DATEADDED;
5322
5323 (void) hfs_update (fvp, 0);
5324
5325 hfs_volupdate(hfsmp, vnode_isdir(fvp) ? VOL_RMDIR : VOL_RMFILE,
5326 (fdcp->c_cnid == kHFSRootFolderID));
5327 hfs_volupdate(hfsmp, vnode_isdir(fvp) ? VOL_MKDIR : VOL_MKFILE,
5328 (tdcp->c_cnid == kHFSRootFolderID));
5329
5330 /* Update both parent directories. */
5331 if (fdvp != tdvp) {
5332 if (vnode_isdir(fvp)) {
5333 /* If the source directory has directory hard link
5334 * descendants, set the kHFSHasChildLinkBit in the
5335 * destination parent hierarchy
5336 */
5337 if ((fcp->c_attr.ca_recflags & kHFSHasChildLinkMask) &&
5338 !(tdcp->c_attr.ca_recflags & kHFSHasChildLinkMask)) {
5339
5340 tdcp->c_attr.ca_recflags |= kHFSHasChildLinkMask;
5341
5342 error = cat_set_childlinkbit(hfsmp, tdcp->c_parentcnid);
5343 if (error) {
5344 printf ("hfs_vnop_rename: error updating parent chain for %u\n", tdcp->c_cnid);
5345 error = 0;
5346 }
5347 }
5348 INC_FOLDERCOUNT(hfsmp, tdcp->c_attr);
5349 DEC_FOLDERCOUNT(hfsmp, fdcp->c_attr);
5350 }
5351 tdcp->c_entries++;
5352 tdcp->c_dirchangecnt++;
5353 tdcp->c_flag |= C_MODIFIED;
5354 hfs_incr_gencount(tdcp);
5355
5356 if (fdcp->c_entries > 0)
5357 fdcp->c_entries--;
5358 fdcp->c_dirchangecnt++;
5359 fdcp->c_flag |= C_MODIFIED;
5360 fdcp->c_touch_chgtime = TRUE;
5361 fdcp->c_touch_modtime = TRUE;
5362
5363 if (ISSET(fcp->c_flag, C_HARDLINK)) {
5364 hfs_relorigin(fcp, fdcp->c_fileid);
5365 if (fdcp->c_fileid != fdcp->c_cnid)
5366 hfs_relorigin(fcp, fdcp->c_cnid);
5367 }
5368
5369 (void) hfs_update(fdvp, 0);
5370 }
5371 hfs_incr_gencount(fdcp);
5372
5373 tdcp->c_childhint = out_desc.cd_hint; /* Cache directory's location */
5374 tdcp->c_touch_chgtime = TRUE;
5375 tdcp->c_touch_modtime = TRUE;
5376
5377 (void) hfs_update(tdvp, 0);
5378
5379 /* Update the vnode's name now that the rename has completed. */
5380 vnode_update_identity(fvp, tdvp, tcnp->cn_nameptr, tcnp->cn_namelen,
5381 tcnp->cn_hash, (VNODE_UPDATE_PARENT | VNODE_UPDATE_NAME));
5382
5383 /*
5384 * At this point, we may have a resource fork vnode attached to the
5385 * 'from' vnode. If it exists, we will want to update its name, because
5386 * it contains the old name + _PATH_RSRCFORKSPEC. ("/..namedfork/rsrc").
5387 *
5388 * Note that the only thing we need to update here is the name attached to
5389 * the vnode, since a resource fork vnode does not have a separate resource
5390 * cnode -- it's still 'fcp'.
5391 */
5392 if (fcp->c_rsrc_vp) {
5393 char* rsrc_path = NULL;
5394 int len;
5395
5396 /* Create a new temporary buffer that's going to hold the new name */
5397 rsrc_path = hfs_malloc(MAXPATHLEN);
5398 len = snprintf (rsrc_path, MAXPATHLEN, "%s%s", tcnp->cn_nameptr, _PATH_RSRCFORKSPEC);
5399 len = MIN(len, MAXPATHLEN);
5400
5401 /*
5402 * vnode_update_identity will do the following for us:
5403 * 1) release reference on the existing rsrc vnode's name.
5404 * 2) copy/insert new name into the name cache
5405 * 3) attach the new name to the resource vnode
5406 * 4) update the vnode's vid
5407 */
5408 vnode_update_identity (fcp->c_rsrc_vp, fvp, rsrc_path, len, 0, (VNODE_UPDATE_NAME | VNODE_UPDATE_CACHE));
5409
5410 /* Free the memory associated with the resource fork's name */
5411 hfs_free(rsrc_path, MAXPATHLEN);
5412 }
5413 out:
5414 if (got_cookie) {
5415 cat_postflight(hfsmp, &cookie, p);
5416 }
5417 if (started_tr) {
5418 hfs_end_transaction(hfsmp);
5419 }
5420
5421 fdcp->c_flag &= ~C_DIR_MODIFICATION;
5422 wakeup((caddr_t)&fdcp->c_flag);
5423 if (fdvp != tdvp) {
5424 tdcp->c_flag &= ~C_DIR_MODIFICATION;
5425 wakeup((caddr_t)&tdcp->c_flag);
5426 }
5427
5428 const ino64_t file_id = fcp->c_fileid;
5429
5430 hfs_unlockfour(fdcp, fcp, tdcp, tcp);
5431
5432 if (took_trunc_lock) {
5433 hfs_unlock_truncate(VTOC(tvp), HFS_LOCK_DEFAULT);
5434 }
5435
5436 /* Now vnode_put the resource forks vnodes if necessary */
5437 if (tvp_rsrc) {
5438 vnode_put(tvp_rsrc);
5439 tvp_rsrc = NULL;
5440 }
5441
5442 /* After tvp is removed the only acceptable error is EIO */
5443 if (error && tvp_deleted)
5444 error = EIO;
5445
5446 /* If we want to reintroduce notifications for renames, this is the
5447 place to do it. */
5448
5449 if (old_doc_vp) {
5450 cnode_t *ocp = VTOC(old_doc_vp);
5451 hfs_lock_always(ocp, HFS_EXCLUSIVE_LOCK);
5452 struct FndrExtendedFileInfo *ofip = (struct FndrExtendedFileInfo *)((char *)&ocp->c_attr.ca_finderinfo + 16);
5453
5454 const uint32_t doc_id = ofip->document_id;
5455 const ino64_t old_file_id = ocp->c_fileid;
5456
5457 // printf("clearing doc-id from ino %d\n", ocp->c_desc.cd_cnid);
5458 ofip->document_id = 0;
5459 ocp->c_bsdflags &= ~UF_TRACKED;
5460 ocp->c_flag |= C_MODIFIED;
5461
5462 hfs_unlock(ocp);
5463 vnode_put(old_doc_vp);
5464
5465 add_fsevent(FSE_DOCID_CHANGED, vfs_context_current(),
5466 FSE_ARG_DEV, hfsmp->hfs_raw_dev,
5467 FSE_ARG_INO, old_file_id, // src inode #
5468 FSE_ARG_INO, file_id, // dst inode #
5469 FSE_ARG_INT32, doc_id,
5470 FSE_ARG_DONE);
5471 }
5472
5473 return (error);
5474 }
5475
5476
5477 /*
5478 * Make a directory.
5479 */
5480 int
5481 hfs_vnop_mkdir(struct vnop_mkdir_args *ap)
5482 {
5483 /***** HACK ALERT ********/
5484 ap->a_cnp->cn_flags |= MAKEENTRY;
5485 return hfs_makenode(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap, ap->a_context);
5486 }
5487
5488
5489 /*
5490 * Create a symbolic link.
5491 */
5492 int
5493 hfs_vnop_symlink(struct vnop_symlink_args *ap)
5494 {
5495 struct vnode **vpp = ap->a_vpp;
5496 struct vnode *dvp = ap->a_dvp;
5497 struct vnode *vp = NULL;
5498 struct cnode *cp = NULL;
5499 struct hfsmount *hfsmp;
5500 struct filefork *fp;
5501 struct buf *bp = NULL;
5502 char *datap;
5503 int started_tr = 0;
5504 u_int32_t len;
5505 int error;
5506
5507 /* HFS standard disks don't support symbolic links */
5508 if (VTOVCB(dvp)->vcbSigWord != kHFSPlusSigWord)
5509 return (ENOTSUP);
5510
5511 /* Check for empty target name */
5512 if (ap->a_target[0] == 0)
5513 return (EINVAL);
5514
5515 hfsmp = VTOHFS(dvp);
5516
5517 len = strlen(ap->a_target);
5518 if (len > MAXPATHLEN)
5519 return (ENAMETOOLONG);
5520
5521 /* Check for free space */
5522 if (((u_int64_t)hfs_freeblks(hfsmp, 0) * (u_int64_t)hfsmp->blockSize) < len) {
5523 return (ENOSPC);
5524 }
5525
5526 /* Create the vnode */
5527 ap->a_vap->va_mode |= S_IFLNK;
5528 if ((error = hfs_makenode(dvp, vpp, ap->a_cnp, ap->a_vap, ap->a_context))) {
5529 goto out;
5530 }
5531 vp = *vpp;
5532 if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) {
5533 goto out;
5534 }
5535 cp = VTOC(vp);
5536 fp = VTOF(vp);
5537
5538 if (cp->c_flag & (C_NOEXISTS | C_DELETED)) {
5539 goto out;
5540 }
5541
5542 #if QUOTA
5543 (void)hfs_getinoquota(cp);
5544 #endif /* QUOTA */
5545
5546 if ((error = hfs_start_transaction(hfsmp)) != 0) {
5547 goto out;
5548 }
5549 started_tr = 1;
5550
5551 /*
5552 * Allocate space for the link.
5553 *
5554 * Since we're already inside a transaction,
5555 *
5556 * Don't need truncate lock since a symlink is treated as a system file.
5557 */
5558 error = hfs_truncate(vp, len, IO_NOZEROFILL, 0, ap->a_context);
5559
5560 /* On errors, remove the symlink file */
5561 if (error) {
5562 /*
5563 * End the transaction so we don't re-take the cnode lock
5564 * below while inside a transaction (lock order violation).
5565 */
5566 hfs_end_transaction(hfsmp);
5567
5568 /* hfs_removefile() requires holding the truncate lock */
5569 hfs_unlock(cp);
5570 hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
5571 hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_ALLOW_NOEXISTS);
5572
5573 if (hfs_start_transaction(hfsmp) != 0) {
5574 started_tr = 0;
5575 hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
5576 goto out;
5577 }
5578
5579 (void) hfs_removefile(dvp, vp, ap->a_cnp, 0, 0, 0, NULL, 0);
5580 hfs_unlock_truncate(cp, HFS_LOCK_DEFAULT);
5581 goto out;
5582 }
5583
5584 /* Write the link to disk */
5585 bp = buf_getblk(vp, (daddr64_t)0, roundup((int)fp->ff_size, hfsmp->hfs_physical_block_size),
5586 0, 0, BLK_META);
5587 if (hfsmp->jnl) {
5588 journal_modify_block_start(hfsmp->jnl, bp);
5589 }
5590 datap = (char *)buf_dataptr(bp);
5591 bzero(datap, buf_size(bp));
5592 bcopy(ap->a_target, datap, len);
5593
5594 if (hfsmp->jnl) {
5595 journal_modify_block_end(hfsmp->jnl, bp, NULL, NULL);
5596 } else {
5597 buf_bawrite(bp);
5598 }
5599 out:
5600 if (started_tr)
5601 hfs_end_transaction(hfsmp);
5602 if ((cp != NULL) && (vp != NULL)) {
5603 hfs_unlock(cp);
5604 }
5605 if (error) {
5606 if (vp) {
5607 vnode_put(vp);
5608 }
5609 *vpp = NULL;
5610 }
5611 return (error);
5612 }
5613
5614
5615 /* structures to hold a "." or ".." directory entry */
5616 struct hfs_stddotentry {
5617 u_int32_t d_fileno; /* unique file number */
5618 u_int16_t d_reclen; /* length of this structure */
5619 u_int8_t d_type; /* dirent file type */
5620 u_int8_t d_namlen; /* len of filename */
5621 char d_name[4]; /* "." or ".." */
5622 };
5623
5624 struct hfs_extdotentry {
5625 u_int64_t d_fileno; /* unique file number */
5626 u_int64_t d_seekoff; /* seek offset (optional, used by servers) */
5627 u_int16_t d_reclen; /* length of this structure */
5628 u_int16_t d_namlen; /* len of filename */
5629 u_int8_t d_type; /* dirent file type */
5630 u_char d_name[3]; /* "." or ".." */
5631 };
5632
5633 typedef union {
5634 struct hfs_stddotentry std;
5635 struct hfs_extdotentry ext;
5636 } hfs_dotentry_t;
5637
5638 /*
5639 * hfs_vnop_readdir reads directory entries into the buffer pointed
5640 * to by uio, in a filesystem independent format. Up to uio_resid
5641 * bytes of data can be transferred. The data in the buffer is a
5642 * series of packed dirent structures where each one contains the
5643 * following entries:
5644 *
5645 * u_int32_t d_fileno; // file number of entry
5646 * u_int16_t d_reclen; // length of this record
5647 * u_int8_t d_type; // file type
5648 * u_int8_t d_namlen; // length of string in d_name
5649 * char d_name[MAXNAMELEN+1]; // null terminated file name
5650 *
5651 * The current position (uio_offset) refers to the next block of
5652 * entries. The offset can only be set to a value previously
5653 * returned by hfs_vnop_readdir or zero. This offset does not have
5654 * to match the number of bytes returned (in uio_resid).
5655 *
5656 * In fact, the offset used by HFS is essentially an index (26 bits)
5657 * with a tag (6 bits). The tag is for associating the next request
5658 * with the current request. This enables us to have multiple threads
5659 * reading the directory while the directory is also being modified.
5660 *
5661 * Each tag/index pair is tied to a unique directory hint. The hint
5662 * contains information (filename) needed to build the catalog b-tree
5663 * key for finding the next set of entries.
5664 *
5665 * If the directory is marked as deleted-but-in-use (cp->c_flag & C_DELETED),
5666 * do NOT synthesize entries for "." and "..".
5667 */
5668 int
5669 hfs_vnop_readdir(struct vnop_readdir_args *ap)
5670 {
5671 struct vnode *vp = ap->a_vp;
5672 uio_t uio = ap->a_uio;
5673 struct cnode *cp = VTOC(vp);
5674 struct hfsmount *hfsmp = VTOHFS(vp);
5675 directoryhint_t *dirhint = NULL;
5676 directoryhint_t localhint;
5677 off_t offset;
5678 off_t startoffset;
5679 int error = 0;
5680 int eofflag = 0;
5681 user_addr_t user_start = 0;
5682 user_size_t user_len = 0;
5683 user_size_t user_original_resid = 0;
5684 int index;
5685 unsigned int tag;
5686 int items;
5687 int lockflags;
5688 int extended;
5689 int nfs_cookies;
5690 cnid_t cnid_hint = 0;
5691 int bump_valence = 0;
5692
5693 items = 0;
5694 startoffset = offset = uio_offset(uio);
5695 extended = (ap->a_flags & VNODE_READDIR_EXTENDED);
5696 nfs_cookies = extended && (ap->a_flags & VNODE_READDIR_REQSEEKOFF);
5697
5698 /* Sanity check the uio data. */
5699 if (uio_iovcnt(uio) > 1)
5700 return (EINVAL);
5701
5702 if (VTOC(vp)->c_bsdflags & UF_COMPRESSED) {
5703 int compressed = hfs_file_is_compressed(VTOC(vp), 0); /* 0 == take the cnode lock */
5704 if (VTOCMP(vp) != NULL && !compressed) {
5705 error = check_for_dataless_file(vp, NAMESPACE_HANDLER_READ_OP);
5706 if (error) {
5707 return error;
5708 }
5709 }
5710 }
5711
5712 //
5713 // We have to lock the user's buffer here so that we won't
5714 // fault on it after we've acquired a shared lock on the
5715 // catalog file. The issue is that you can get a 3-way
5716 // deadlock if someone else starts a transaction and then
5717 // tries to lock the catalog file but can't because we're
5718 // here and we can't service our page fault because VM is
5719 // blocked trying to start a transaction as a result of
5720 // trying to free up pages for our page fault. It's messy
5721 // but it does happen on dual-processors that are paging
5722 // heavily (see radar 3082639 for more info). By locking
5723 // the buffer up-front we prevent ourselves from faulting
5724 // while holding the shared catalog file lock.
5725 //
5726 // Fortunately this and hfs_search() are the only two places
5727 // currently (10/30/02) that can fault on user data with a
5728 // shared lock on the catalog file.
5729 //
5730 if (hfsmp->jnl && uio_isuserspace(uio)) {
5731 user_start = uio_curriovbase(uio);
5732 user_len = uio_curriovlen(uio);
5733
5734 /* Bounds check the user buffer */
5735 if (user_len > (256 * 1024)) {
5736 /* only allow the user to wire down at most 256k */
5737 user_len = (256 * 1024);
5738 user_original_resid = uio_resid(uio);
5739 uio_setresid (uio, (user_ssize_t)(256 * 1024));
5740 }
5741
5742 if ((error = vslock(user_start, user_len)) != 0) {
5743 if (user_original_resid > 0) {
5744 uio_setresid(uio, user_original_resid);
5745 user_original_resid = 0;
5746 }
5747 return error;
5748 }
5749 }
5750
5751 /* Note that the dirhint calls require an exclusive lock. */
5752 if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT))) {
5753 if (user_start) {
5754 if (user_original_resid > 0) {
5755 uio_setresid(uio, user_original_resid);
5756 user_original_resid = 0;
5757 }
5758 vsunlock(user_start, user_len, TRUE);
5759 }
5760 return error;
5761 }
5762
5763 /* Pick up cnid hint (if any). */
5764 if (nfs_cookies) {
5765 cnid_hint = (cnid_t)(uio_offset(uio) >> 32);
5766 uio_setoffset(uio, uio_offset(uio) & 0x00000000ffffffffLL);
5767 if (cnid_hint == INT_MAX) { /* searching pass the last item */
5768 eofflag = 1;
5769 goto out;
5770 }
5771 }
5772 /*
5773 * Synthesize entries for "." and "..", unless the directory has
5774 * been deleted, but not closed yet (lazy delete in progress).
5775 */
5776 if (offset == 0 && !(cp->c_flag & C_DELETED)) {
5777
5778 size_t uiosize;
5779
5780 /*
5781 * We could use a union of the two types of dot entries (HFS / HFS+)
5782 * but it makes static analysis of this code difficult. The problem is that
5783 * the HFS standard dot entry is smaller than the HFS+ one, and we also ideally
5784 * want the uiomove to operate on a two-element adjacent array. If we used the
5785 * array of unions, we would have to do two separate uiomoves because the memory
5786 * for the hfs standard dot entries would not be adjacent to one another.
5787 * So just allocate the entries on the stack in separate cases.
5788 */
5789
5790 if (extended) {
5791 hfs_dotentry_t dotentry[2];
5792
5793 /* HFS Plus */
5794 struct hfs_extdotentry *entry = &dotentry[0].ext;
5795
5796 entry->d_fileno = cp->c_cnid;
5797 entry->d_reclen = sizeof(struct hfs_extdotentry);
5798 entry->d_type = DT_DIR;
5799 entry->d_namlen = 1;
5800 entry->d_name[0] = '.';
5801 entry->d_name[1] = '\0';
5802 entry->d_name[2] = '\0';
5803 entry->d_seekoff = 1;
5804
5805 ++entry;
5806 entry->d_fileno = cp->c_parentcnid;
5807 entry->d_reclen = sizeof(struct hfs_extdotentry);
5808 entry->d_type = DT_DIR;
5809 entry->d_namlen = 2;
5810 entry->d_name[0] = '.';
5811 entry->d_name[1] = '.';
5812 entry->d_name[2] = '\0';
5813 entry->d_seekoff = 2;
5814 uiosize = 2 * sizeof(struct hfs_extdotentry);
5815
5816 if ((error = uiomove((caddr_t)dotentry, uiosize, uio))) {
5817 goto out;
5818 }
5819
5820 } else {
5821 struct hfs_stddotentry hfs_std_dotentries[2];
5822
5823 /* HFS Standard */
5824 struct hfs_stddotentry *entry = &hfs_std_dotentries[0];
5825
5826 entry->d_fileno = cp->c_cnid;
5827 entry->d_reclen = sizeof(struct hfs_stddotentry);
5828 entry->d_type = DT_DIR;
5829 entry->d_namlen = 1;
5830 *(int *)&entry->d_name[0] = 0;
5831 entry->d_name[0] = '.';
5832
5833 ++entry;
5834 entry->d_fileno = cp->c_parentcnid;
5835 entry->d_reclen = sizeof(struct hfs_stddotentry);
5836 entry->d_type = DT_DIR;
5837 entry->d_namlen = 2;
5838 *(int *)&entry->d_name[0] = 0;
5839 entry->d_name[0] = '.';
5840 entry->d_name[1] = '.';
5841 uiosize = 2 * sizeof(struct hfs_stddotentry);
5842
5843 if ((error = uiomove((caddr_t)hfs_std_dotentries, uiosize, uio))) {
5844 goto out;
5845 }
5846 }
5847
5848 offset += 2;
5849 }
5850
5851 /*
5852 * Intentionally avoid checking the valence here. If we
5853 * have FS corruption that reports the valence is 0, even though it
5854 * has contents, we might artificially skip over iterating
5855 * this directory.
5856 */
5857
5858 /* Convert offset into a catalog directory index. */
5859 index = (offset & HFS_INDEX_MASK) - 2;
5860 tag = offset & ~HFS_INDEX_MASK;
5861
5862 /* Lock catalog during cat_findname and cat_getdirentries. */
5863 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
5864
5865 /* When called from NFS, try and resolve a cnid hint. */
5866 if (nfs_cookies && cnid_hint != 0) {
5867 if (cat_findname(hfsmp, cnid_hint, &localhint.dh_desc) == 0) {
5868 if ( localhint.dh_desc.cd_parentcnid == cp->c_fileid) {
5869 localhint.dh_index = index - 1;
5870 localhint.dh_time = 0;
5871 bzero(&localhint.dh_link, sizeof(localhint.dh_link));
5872 dirhint = &localhint; /* don't forget to release the descriptor */
5873 } else {
5874 cat_releasedesc(&localhint.dh_desc);
5875 }
5876 }
5877 }
5878
5879 /* Get a directory hint (cnode must be locked exclusive) */
5880 if (dirhint == NULL) {
5881 dirhint = hfs_getdirhint(cp, ((index - 1) & HFS_INDEX_MASK) | tag, 0);
5882
5883 /* Hide tag from catalog layer. */
5884 dirhint->dh_index &= HFS_INDEX_MASK;
5885 if (dirhint->dh_index == HFS_INDEX_MASK) {
5886 dirhint->dh_index = -1;
5887 }
5888 }
5889
5890 if (index == 0) {
5891 dirhint->dh_threadhint = cp->c_dirthreadhint;
5892 }
5893 else {
5894 /*
5895 * If we have a non-zero index, there is a possibility that during the last
5896 * call to hfs_vnop_readdir we hit EOF for this directory. If that is the case
5897 * then we don't want to return any new entries for the caller. Just return 0
5898 * items, mark the eofflag, and bail out. Because we won't have done any work, the
5899 * code at the end of the function will release the dirhint for us.
5900 *
5901 * Don't forget to unlock the catalog lock on the way out, too.
5902 */
5903 if (dirhint->dh_desc.cd_flags & CD_EOF) {
5904 error = 0;
5905 eofflag = 1;
5906 uio_setoffset(uio, startoffset);
5907 if (user_original_resid > 0) {
5908 uio_setresid(uio, user_original_resid);
5909 user_original_resid = 0;
5910 }
5911 hfs_systemfile_unlock (hfsmp, lockflags);
5912
5913 goto seekoffcalc;
5914 }
5915 }
5916
5917 /* Pack the buffer with dirent entries. */
5918 error = cat_getdirentries(hfsmp, cp->c_entries, dirhint, uio, ap->a_flags, &items, &eofflag);
5919
5920 if (user_original_resid > 0) {
5921 user_original_resid = user_original_resid - ((user_ssize_t)256*1024 - uio_resid(uio));
5922 uio_setresid(uio, user_original_resid);
5923 user_original_resid = 0;
5924 }
5925
5926 if (index == 0 && error == 0) {
5927 cp->c_dirthreadhint = dirhint->dh_threadhint;
5928 }
5929
5930 hfs_systemfile_unlock(hfsmp, lockflags);
5931
5932 if (error != 0) {
5933 goto out;
5934 }
5935
5936 /* Get index to the next item */
5937 index += items;
5938
5939 if (items >= (int)cp->c_entries) {
5940 eofflag = 1;
5941 }
5942
5943 /*
5944 * Detect valence FS corruption.
5945 *
5946 * We are holding the cnode lock exclusive, so there should not be
5947 * anybody modifying the valence field of this cnode. If we enter
5948 * this block, that means we observed filesystem corruption, because
5949 * this directory reported a valence of 0, yet we found at least one
5950 * item. In this case, we need to minimally self-heal this
5951 * directory to prevent userland from tripping over a directory
5952 * that appears empty (getattr of valence reports 0), but actually
5953 * has contents.
5954 *
5955 * We'll force the cnode update at the end of the function after
5956 * completing all of the normal getdirentries steps.
5957 */
5958 if ((cp->c_entries == 0) && (items > 0)) {
5959 /* disk corruption */
5960 cp->c_entries++;
5961 /* Mark the cnode as dirty. */
5962 cp->c_flag |= C_MODIFIED;
5963 printf("hfs_vnop_readdir: repairing valence to non-zero! \n");
5964 bump_valence++;
5965 }
5966
5967
5968 /* Convert catalog directory index back into an offset. */
5969 while (tag == 0)
5970 tag = (++cp->c_dirhinttag) << HFS_INDEX_BITS;
5971 uio_setoffset(uio, (index + 2) | tag);
5972 dirhint->dh_index |= tag;
5973
5974 seekoffcalc:
5975 cp->c_touch_acctime = TRUE;
5976
5977 if (ap->a_numdirent) {
5978 if (startoffset == 0)
5979 items += 2;
5980 *ap->a_numdirent = items;
5981 }
5982
5983 out:
5984 if (user_start) {
5985 if (user_original_resid > 0) {
5986 uio_setresid(uio, user_original_resid);
5987 user_original_resid = 0;
5988 }
5989 vsunlock(user_start, user_len, TRUE);
5990 }
5991 /* If we didn't do anything then go ahead and dump the hint. */
5992 if ((dirhint != NULL) &&
5993 (dirhint != &localhint) &&
5994 (uio_offset(uio) == startoffset)) {
5995 hfs_reldirhint(cp, dirhint);
5996 eofflag = 1;
5997 }
5998 if (ap->a_eofflag) {
5999 *ap->a_eofflag = eofflag;
6000 }
6001 if (dirhint == &localhint) {
6002 cat_releasedesc(&localhint.dh_desc);
6003 }
6004
6005 if (bump_valence) {
6006 /* force the update before dropping the cnode lock*/
6007 hfs_update(vp, 0);
6008 }
6009
6010 hfs_unlock(cp);
6011
6012 return (error);
6013 }
6014
6015
6016 /*
6017 * Read contents of a symbolic link.
6018 */
6019 int
6020 hfs_vnop_readlink(struct vnop_readlink_args *ap)
6021 {
6022 struct vnode *vp = ap->a_vp;
6023 struct cnode *cp;
6024 struct filefork *fp;
6025 int error;
6026
6027 if (!vnode_islnk(vp))
6028 return (EINVAL);
6029
6030 if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT)))
6031 return (error);
6032 cp = VTOC(vp);
6033 fp = VTOF(vp);
6034
6035 /* Zero length sym links are not allowed */
6036 if (fp->ff_size == 0 || fp->ff_size > MAXPATHLEN) {
6037 error = EINVAL;
6038 goto exit;
6039 }
6040
6041 /* Cache the path so we don't waste buffer cache resources */
6042 if (fp->ff_symlinkptr == NULL) {
6043 struct buf *bp = NULL;
6044
6045 fp->ff_symlinkptr = hfs_malloc(fp->ff_size);
6046 error = (int)buf_meta_bread(vp, (daddr64_t)0,
6047 roundup((int)fp->ff_size, VTOHFS(vp)->hfs_physical_block_size),
6048 vfs_context_ucred(ap->a_context), &bp);
6049 if (error) {
6050 if (bp)
6051 buf_brelse(bp);
6052 if (fp->ff_symlinkptr) {
6053 hfs_free(fp->ff_symlinkptr, fp->ff_size);
6054 fp->ff_symlinkptr = NULL;
6055 }
6056 goto exit;
6057 }
6058 bcopy((char *)buf_dataptr(bp), fp->ff_symlinkptr, (size_t)fp->ff_size);
6059
6060 if (VTOHFS(vp)->jnl && (buf_flags(bp) & B_LOCKED) == 0) {
6061 buf_markinvalid(bp); /* data no longer needed */
6062 }
6063 buf_brelse(bp);
6064 }
6065 error = uiomove((caddr_t)fp->ff_symlinkptr, (int)fp->ff_size, ap->a_uio);
6066
6067 /*
6068 * Keep track blocks read
6069 */
6070 if ((VTOHFS(vp)->hfc_stage == HFC_RECORDING) && (error == 0)) {
6071
6072 /*
6073 * If this file hasn't been seen since the start of
6074 * the current sampling period then start over.
6075 */
6076 if (cp->c_atime < VTOHFS(vp)->hfc_timebase)
6077 VTOF(vp)->ff_bytesread = fp->ff_size;
6078 else
6079 VTOF(vp)->ff_bytesread += fp->ff_size;
6080
6081 // if (VTOF(vp)->ff_bytesread > fp->ff_size)
6082 // cp->c_touch_acctime = TRUE;
6083 }
6084
6085 exit:
6086 hfs_unlock(cp);
6087 return (error);
6088 }
6089
6090
6091 /*
6092 * Get configurable pathname variables.
6093 */
6094 int
6095 hfs_vnop_pathconf(struct vnop_pathconf_args *ap)
6096 {
6097
6098 #if CONFIG_HFS_STD
6099 int std_hfs = (VTOHFS(ap->a_vp)->hfs_flags & HFS_STANDARD);
6100 #endif
6101
6102 switch (ap->a_name) {
6103 case _PC_LINK_MAX:
6104 #if CONFIG_HFS_STD
6105 if (std_hfs) {
6106 *ap->a_retval = 1;
6107 } else
6108 #endif
6109 {
6110 *ap->a_retval = HFS_LINK_MAX;
6111 }
6112 break;
6113 case _PC_NAME_MAX:
6114 #if CONFIG_HFS_STD
6115 if (std_hfs) {
6116 *ap->a_retval = kHFSMaxFileNameChars; /* 31 */
6117 } else
6118 #endif
6119 {
6120 *ap->a_retval = kHFSPlusMaxFileNameChars; /* 255 */
6121 }
6122 break;
6123 case _PC_PATH_MAX:
6124 *ap->a_retval = PATH_MAX; /* 1024 */
6125 break;
6126 case _PC_PIPE_BUF:
6127 *ap->a_retval = PIPE_BUF;
6128 break;
6129 case _PC_CHOWN_RESTRICTED:
6130 *ap->a_retval = 200112; /* _POSIX_CHOWN_RESTRICTED */
6131 break;
6132 case _PC_NO_TRUNC:
6133 *ap->a_retval = 200112; /* _POSIX_NO_TRUNC */
6134 break;
6135 case _PC_NAME_CHARS_MAX:
6136 #if CONFIG_HFS_STD
6137 if (std_hfs) {
6138 *ap->a_retval = kHFSMaxFileNameChars; /* 31 */
6139 } else
6140 #endif
6141 {
6142 *ap->a_retval = kHFSPlusMaxFileNameChars; /* 255 */
6143 }
6144 break;
6145 case _PC_CASE_SENSITIVE:
6146 if (VTOHFS(ap->a_vp)->hfs_flags & HFS_CASE_SENSITIVE)
6147 *ap->a_retval = 1;
6148 else
6149 *ap->a_retval = 0;
6150 break;
6151 case _PC_CASE_PRESERVING:
6152 *ap->a_retval = 1;
6153 break;
6154 case _PC_FILESIZEBITS:
6155 /* number of bits to store max file size */
6156 #if CONFIG_HFS_STD
6157 if (std_hfs) {
6158 *ap->a_retval = 32;
6159 } else
6160 #endif
6161 {
6162 *ap->a_retval = 64;
6163 }
6164 break;
6165 case _PC_XATTR_SIZE_BITS:
6166 /* Number of bits to store maximum extended attribute size */
6167 *ap->a_retval = HFS_XATTR_SIZE_BITS;
6168 break;
6169 default:
6170 return (EINVAL);
6171 }
6172
6173 return (0);
6174 }
6175
6176 /*
6177 * Prepares a fork for cat_update by making sure ff_size and ff_blocks
6178 * are no bigger than the valid data on disk thus reducing the chance
6179 * of exposing uninitialised data in the event of a non clean unmount.
6180 * fork_buf is where to put the temporary copy if required. (It can
6181 * be inside pfork.)
6182 */
6183 const struct cat_fork *
6184 hfs_prepare_fork_for_update(filefork_t *ff,
6185 const struct cat_fork *cf,
6186 struct cat_fork *cf_buf,
6187 uint32_t block_size)
6188 {
6189 if (!ff)
6190 return NULL;
6191
6192 if (!cf)
6193 cf = &ff->ff_data;
6194 if (!cf_buf)
6195 cf_buf = &ff->ff_data;
6196
6197 off_t max_size = ff->ff_size;
6198
6199 // Check first invalid range
6200 if (!TAILQ_EMPTY(&ff->ff_invalidranges))
6201 max_size = TAILQ_FIRST(&ff->ff_invalidranges)->rl_start;
6202
6203 if (!ff->ff_unallocblocks && ff->ff_size <= max_size)
6204 return cf; // Nothing to do
6205
6206 if (ff->ff_blocks < ff->ff_unallocblocks) {
6207 panic("hfs: ff_blocks %d is less than unalloc blocks %d\n",
6208 ff->ff_blocks, ff->ff_unallocblocks);
6209 }
6210
6211 struct cat_fork *out = cf_buf;
6212
6213 if (out != cf)
6214 bcopy(cf, out, sizeof(*cf));
6215
6216 // Adjust cf_blocks for cf_vblocks
6217 out->cf_blocks -= out->cf_vblocks;
6218
6219 /*
6220 * Here we trim the size with the updated cf_blocks. This is
6221 * probably unnecessary now because the invalid ranges should
6222 * catch this (but that wasn't always the case).
6223 */
6224 off_t alloc_bytes = hfs_blk_to_bytes(out->cf_blocks, block_size);
6225 if (out->cf_size > alloc_bytes)
6226 out->cf_size = alloc_bytes;
6227
6228 // Trim cf_size to first invalid range
6229 if (out->cf_size > max_size)
6230 out->cf_size = max_size;
6231
6232 return out;
6233 }
6234
6235 /*
6236 * Update a cnode's on-disk metadata.
6237 *
6238 * The cnode must be locked exclusive. See declaration for possible
6239 * options.
6240 */
6241 int
6242 hfs_update(struct vnode *vp, int options)
6243 {
6244 struct cnode *cp = VTOC(vp);
6245 struct proc *p;
6246 const struct cat_fork *dataforkp = NULL;
6247 const struct cat_fork *rsrcforkp = NULL;
6248 struct cat_fork datafork;
6249 struct cat_fork rsrcfork;
6250 struct hfsmount *hfsmp;
6251 int lockflags;
6252 int error;
6253 uint32_t tstate = 0;
6254
6255 if (ISSET(cp->c_flag, C_NOEXISTS))
6256 return 0;
6257
6258 p = current_proc();
6259 hfsmp = VTOHFS(vp);
6260
6261 if (((vnode_issystem(vp) && (cp->c_cnid < kHFSFirstUserCatalogNodeID))) ||
6262 hfsmp->hfs_catalog_vp == NULL){
6263 return (0);
6264 }
6265 if ((hfsmp->hfs_flags & HFS_READ_ONLY) || (cp->c_mode == 0)) {
6266 CLR(cp->c_flag, C_MODIFIED | C_MINOR_MOD | C_NEEDS_DATEADDED);
6267 cp->c_touch_acctime = 0;
6268 cp->c_touch_chgtime = 0;
6269 cp->c_touch_modtime = 0;
6270 return (0);
6271 }
6272 if (kdebug_enable) {
6273 if (cp->c_touch_acctime || cp->c_atime != cp->c_attr.ca_atimeondisk)
6274 tstate |= DBG_HFS_UPDATE_ACCTIME;
6275 if (cp->c_touch_modtime)
6276 tstate |= DBG_HFS_UPDATE_MODTIME;
6277 if (cp->c_touch_chgtime)
6278 tstate |= DBG_HFS_UPDATE_CHGTIME;
6279
6280 if (cp->c_flag & C_MODIFIED)
6281 tstate |= DBG_HFS_UPDATE_MODIFIED;
6282 if (ISSET(options, HFS_UPDATE_FORCE))
6283 tstate |= DBG_HFS_UPDATE_FORCE;
6284 if (cp->c_flag & C_NEEDS_DATEADDED)
6285 tstate |= DBG_HFS_UPDATE_DATEADDED;
6286 if (cp->c_flag & C_MINOR_MOD)
6287 tstate |= DBG_HFS_UPDATE_MINOR;
6288 }
6289 hfs_touchtimes(hfsmp, cp);
6290
6291 if (!ISSET(cp->c_flag, C_MODIFIED | C_MINOR_MOD)
6292 && !hfs_should_save_atime(cp)) {
6293 // Nothing to update
6294 return 0;
6295 }
6296
6297 KDBG(HFSDBG_UPDATE | DBG_FUNC_START, kdebug_vnode(vp), tstate);
6298
6299 bool check_txn = false;
6300
6301 if (!ISSET(options, HFS_UPDATE_FORCE) && !ISSET(cp->c_flag, C_MODIFIED)) {
6302 /*
6303 * This must be a minor modification. If the current
6304 * transaction already has an update for this node, then we
6305 * bundle in the modification.
6306 */
6307 if (hfsmp->jnl
6308 && journal_current_txn(hfsmp->jnl) == cp->c_update_txn) {
6309 check_txn = true;
6310 } else {
6311 tstate |= DBG_HFS_UPDATE_SKIPPED;
6312 error = 0;
6313 goto exit;
6314 }
6315 }
6316
6317 if ((error = hfs_start_transaction(hfsmp)) != 0)
6318 goto exit;
6319
6320 if (check_txn
6321 && journal_current_txn(hfsmp->jnl) != cp->c_update_txn) {
6322 hfs_end_transaction(hfsmp);
6323 tstate |= DBG_HFS_UPDATE_SKIPPED;
6324 error = 0;
6325 goto exit;
6326 }
6327
6328 if (cp->c_datafork)
6329 dataforkp = &cp->c_datafork->ff_data;
6330 if (cp->c_rsrcfork)
6331 rsrcforkp = &cp->c_rsrcfork->ff_data;
6332
6333 /*
6334 * Modify the values passed to cat_update based on whether or not
6335 * the file has invalid ranges or borrowed blocks.
6336 */
6337 dataforkp = hfs_prepare_fork_for_update(cp->c_datafork, NULL, &datafork, hfsmp->blockSize);
6338 rsrcforkp = hfs_prepare_fork_for_update(cp->c_rsrcfork, NULL, &rsrcfork, hfsmp->blockSize);
6339
6340 if (__builtin_expect(kdebug_enable & KDEBUG_TRACE, 0)) {
6341 long dbg_parms[NUMPARMS];
6342 int dbg_namelen;
6343
6344 dbg_namelen = NUMPARMS * sizeof(long);
6345 vn_getpath(vp, (char *)dbg_parms, &dbg_namelen);
6346
6347 if (dbg_namelen < (int)sizeof(dbg_parms))
6348 memset((char *)dbg_parms + dbg_namelen, 0, sizeof(dbg_parms) - dbg_namelen);
6349
6350 kdebug_lookup_gen_events(dbg_parms, dbg_namelen, (void *)vp, TRUE);
6351 }
6352
6353 /*
6354 * Lock the Catalog b-tree file.
6355 */
6356 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
6357
6358 error = cat_update(hfsmp, &cp->c_desc, &cp->c_attr, dataforkp, rsrcforkp);
6359
6360 if (hfsmp->jnl)
6361 cp->c_update_txn = journal_current_txn(hfsmp->jnl);
6362
6363 hfs_systemfile_unlock(hfsmp, lockflags);
6364
6365 CLR(cp->c_flag, C_MODIFIED | C_MINOR_MOD);
6366
6367 hfs_end_transaction(hfsmp);
6368
6369 exit:
6370
6371 KDBG(HFSDBG_UPDATE | DBG_FUNC_END, kdebug_vnode(vp), tstate, error);
6372
6373 return error;
6374 }
6375
6376 /*
6377 * Allocate a new node
6378 */
6379 int
6380 hfs_makenode(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
6381 struct vnode_attr *vap, vfs_context_t ctx)
6382 {
6383 struct cnode *cp = NULL;
6384 struct cnode *dcp = NULL;
6385 struct vnode *tvp;
6386 struct hfsmount *hfsmp;
6387 struct cat_desc in_desc, out_desc;
6388 struct cat_attr attr;
6389 struct timeval tv;
6390 int lockflags;
6391 int error, started_tr = 0;
6392 enum vtype vnodetype;
6393 int mode;
6394 int newvnode_flags = 0;
6395 u_int32_t gnv_flags = 0;
6396 int protectable_target = 0;
6397 int nocache = 0;
6398 vnode_t old_doc_vp = NULL;
6399
6400 #if CONFIG_PROTECT
6401 struct cprotect *entry = NULL;
6402 int32_t cp_class = -1;
6403
6404 /*
6405 * By default, it's OK for AKS to overrride our target class preferences.
6406 */
6407 uint32_t keywrap_flags = CP_KEYWRAP_DIFFCLASS;
6408
6409 if (VATTR_IS_ACTIVE(vap, va_dataprotect_class)) {
6410 cp_class = (int32_t)vap->va_dataprotect_class;
6411 /*
6412 * Since the user specifically requested this target class be used,
6413 * we want to fail this creation operation if we cannot wrap to their
6414 * target class. The CP_KEYWRAP_DIFFCLASS bit says that it is OK to
6415 * use a different class than the one specified, so we turn that off
6416 * now.
6417 */
6418 keywrap_flags &= ~CP_KEYWRAP_DIFFCLASS;
6419 }
6420 int protected_mount = 0;
6421 #endif
6422
6423
6424 if ((error = hfs_lock(VTOC(dvp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT)))
6425 return (error);
6426
6427 /* set the cnode pointer only after successfully acquiring lock */
6428 dcp = VTOC(dvp);
6429
6430 /* Don't allow creation of new entries in open-unlinked directories */
6431 if ((error = hfs_checkdeleted(dcp))) {
6432 hfs_unlock(dcp);
6433 return error;
6434 }
6435
6436 dcp->c_flag |= C_DIR_MODIFICATION;
6437
6438 hfsmp = VTOHFS(dvp);
6439
6440 *vpp = NULL;
6441 tvp = NULL;
6442 out_desc.cd_flags = 0;
6443 out_desc.cd_nameptr = NULL;
6444
6445 vnodetype = vap->va_type;
6446 if (vnodetype == VNON)
6447 vnodetype = VREG;
6448 mode = MAKEIMODE(vnodetype, vap->va_mode);
6449
6450 if (S_ISDIR (mode) || S_ISREG (mode)) {
6451 protectable_target = 1;
6452 }
6453
6454
6455 /* Check if were out of usable disk space. */
6456 if ((hfs_freeblks(hfsmp, 1) == 0) && (vfs_context_suser(ctx) != 0)) {
6457 error = ENOSPC;
6458 goto exit;
6459 }
6460
6461 microtime(&tv);
6462
6463 /* Setup the default attributes */
6464 bzero(&attr, sizeof(attr));
6465 attr.ca_mode = mode;
6466 attr.ca_linkcount = 1;
6467 if (VATTR_IS_ACTIVE(vap, va_rdev)) {
6468 attr.ca_rdev = vap->va_rdev;
6469 }
6470 if (VATTR_IS_ACTIVE(vap, va_create_time)) {
6471 VATTR_SET_SUPPORTED(vap, va_create_time);
6472 attr.ca_itime = vap->va_create_time.tv_sec;
6473 } else {
6474 attr.ca_itime = tv.tv_sec;
6475 }
6476 #if CONFIG_HFS_STD
6477 if ((hfsmp->hfs_flags & HFS_STANDARD) && gTimeZone.tz_dsttime) {
6478 attr.ca_itime += 3600; /* Same as what hfs_update does */
6479 }
6480 #endif
6481 attr.ca_atime = attr.ca_ctime = attr.ca_mtime = attr.ca_itime;
6482 attr.ca_atimeondisk = attr.ca_atime;
6483 if (VATTR_IS_ACTIVE(vap, va_flags)) {
6484 VATTR_SET_SUPPORTED(vap, va_flags);
6485 attr.ca_flags = vap->va_flags;
6486 }
6487
6488 /*
6489 * HFS+ only: all files get ThreadExists
6490 * HFSX only: dirs get HasFolderCount
6491 */
6492 #if CONFIG_HFS_STD
6493 if (!(hfsmp->hfs_flags & HFS_STANDARD))
6494 #endif
6495 {
6496 if (vnodetype == VDIR) {
6497 if (hfsmp->hfs_flags & HFS_FOLDERCOUNT)
6498 attr.ca_recflags = kHFSHasFolderCountMask;
6499 } else {
6500 attr.ca_recflags = kHFSThreadExistsMask;
6501 }
6502 }
6503
6504 #if CONFIG_PROTECT
6505 if (cp_fs_protected(hfsmp->hfs_mp)) {
6506 protected_mount = 1;
6507 }
6508 /*
6509 * On a content-protected HFS+/HFSX filesystem, files and directories
6510 * cannot be created without atomically setting/creating the EA that
6511 * contains the protection class metadata and keys at the same time, in
6512 * the same transaction. As a result, pre-set the "EAs exist" flag
6513 * on the cat_attr for protectable catalog record creations. This will
6514 * cause the cnode creation routine in hfs_getnewvnode to mark the cnode
6515 * as having EAs.
6516 */
6517 if ((protected_mount) && (protectable_target)) {
6518 attr.ca_recflags |= kHFSHasAttributesMask;
6519 /* delay entering in the namecache */
6520 nocache = 1;
6521 }
6522 #endif
6523
6524
6525 /*
6526 * Add the date added to the item. See above, as
6527 * all of the dates are set to the itime.
6528 */
6529 hfs_write_dateadded (&attr, attr.ca_atime);
6530
6531 /* Initialize the gen counter to 1 */
6532 hfs_write_gencount(&attr, (uint32_t)1);
6533
6534 attr.ca_uid = vap->va_uid;
6535 attr.ca_gid = vap->va_gid;
6536 VATTR_SET_SUPPORTED(vap, va_mode);
6537 VATTR_SET_SUPPORTED(vap, va_uid);
6538 VATTR_SET_SUPPORTED(vap, va_gid);
6539
6540 #if QUOTA
6541 /* check to see if this node's creation would cause us to go over
6542 * quota. If so, abort this operation.
6543 */
6544 if (hfsmp->hfs_flags & HFS_QUOTAS) {
6545 if ((error = hfs_quotacheck(hfsmp, 1, attr.ca_uid, attr.ca_gid,
6546 vfs_context_ucred(ctx)))) {
6547 goto exit;
6548 }
6549 }
6550 #endif
6551
6552
6553 /* Tag symlinks with a type and creator. */
6554 if (vnodetype == VLNK) {
6555 struct FndrFileInfo *fip;
6556
6557 fip = (struct FndrFileInfo *)&attr.ca_finderinfo;
6558 fip->fdType = SWAP_BE32(kSymLinkFileType);
6559 fip->fdCreator = SWAP_BE32(kSymLinkCreator);
6560 }
6561
6562 /* Setup the descriptor */
6563 in_desc.cd_nameptr = (const u_int8_t *)cnp->cn_nameptr;
6564 in_desc.cd_namelen = cnp->cn_namelen;
6565 in_desc.cd_parentcnid = dcp->c_fileid;
6566 in_desc.cd_flags = S_ISDIR(mode) ? CD_ISDIR : 0;
6567 in_desc.cd_hint = dcp->c_childhint;
6568 in_desc.cd_encoding = 0;
6569
6570 #if CONFIG_PROTECT
6571 /*
6572 * To preserve file creation atomicity with regards to the content protection EA,
6573 * we must create the file in the catalog and then write out its EA in the same
6574 * transaction.
6575 *
6576 * We only denote the target class in this EA; key generation is not completed
6577 * until the file has been inserted into the catalog and will be done
6578 * in a separate transaction.
6579 */
6580 if ((protected_mount) && (protectable_target)) {
6581 error = cp_setup_newentry(hfsmp, dcp, cp_class, attr.ca_mode, &entry);
6582 if (error) {
6583 goto exit;
6584 }
6585 }
6586 #endif
6587
6588 if ((error = hfs_start_transaction(hfsmp)) != 0) {
6589 goto exit;
6590 }
6591 started_tr = 1;
6592
6593 // have to also lock the attribute file because cat_create() needs
6594 // to check that any fileID it wants to use does not have orphaned
6595 // attributes in it.
6596 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
6597 cnid_t new_id;
6598
6599 /* Reserve some space in the Catalog file. */
6600 if ((error = cat_preflight(hfsmp, CAT_CREATE, NULL, 0))) {
6601 hfs_systemfile_unlock(hfsmp, lockflags);
6602 goto exit;
6603 }
6604
6605 if ((error = cat_acquire_cnid(hfsmp, &new_id))) {
6606 hfs_systemfile_unlock (hfsmp, lockflags);
6607 goto exit;
6608 }
6609
6610 error = cat_create(hfsmp, new_id, &in_desc, &attr, &out_desc);
6611 if (error == 0) {
6612 /* Update the parent directory */
6613 dcp->c_childhint = out_desc.cd_hint; /* Cache directory's location */
6614 dcp->c_entries++;
6615
6616 if (vnodetype == VDIR) {
6617 INC_FOLDERCOUNT(hfsmp, dcp->c_attr);
6618 }
6619 dcp->c_dirchangecnt++;
6620 hfs_incr_gencount(dcp);
6621
6622 dcp->c_touch_chgtime = dcp->c_touch_modtime = true;
6623 dcp->c_flag |= C_MODIFIED;
6624
6625 hfs_update(dcp->c_vp, 0);
6626
6627 #if CONFIG_PROTECT
6628 /*
6629 * If we are creating a content protected file, now is when
6630 * we create the EA. We must create it in the same transaction
6631 * that creates the file. We can also guarantee that the file
6632 * MUST exist because we are still holding the catalog lock
6633 * at this point.
6634 */
6635 if ((attr.ca_fileid != 0) && (protected_mount) && (protectable_target)) {
6636 error = cp_setxattr (NULL, entry, hfsmp, attr.ca_fileid, XATTR_CREATE);
6637
6638 if (error) {
6639 int delete_err;
6640 /*
6641 * If we fail the EA creation, then we need to delete the file.
6642 * Luckily, we are still holding all of the right locks.
6643 */
6644 delete_err = cat_delete (hfsmp, &out_desc, &attr);
6645 if (delete_err == 0) {
6646 /* Update the parent directory */
6647 if (dcp->c_entries > 0)
6648 dcp->c_entries--;
6649 dcp->c_dirchangecnt++;
6650 dcp->c_ctime = tv.tv_sec;
6651 dcp->c_mtime = tv.tv_sec;
6652 (void) cat_update(hfsmp, &dcp->c_desc, &dcp->c_attr, NULL, NULL);
6653 }
6654
6655 /* Emit EINVAL if we fail to create EA*/
6656 error = EINVAL;
6657 }
6658 }
6659 #endif
6660 }
6661 hfs_systemfile_unlock(hfsmp, lockflags);
6662 if (error)
6663 goto exit;
6664
6665 uint32_t txn = hfsmp->jnl ? journal_current_txn(hfsmp->jnl) : 0;
6666
6667 /* Invalidate negative cache entries in the directory */
6668 if (dcp->c_flag & C_NEG_ENTRIES) {
6669 cache_purge_negatives(dvp);
6670 dcp->c_flag &= ~C_NEG_ENTRIES;
6671 }
6672
6673 hfs_volupdate(hfsmp, vnodetype == VDIR ? VOL_MKDIR : VOL_MKFILE,
6674 (dcp->c_cnid == kHFSRootFolderID));
6675
6676 // XXXdbg
6677 // have to end the transaction here before we call hfs_getnewvnode()
6678 // because that can cause us to try and reclaim a vnode on a different
6679 // file system which could cause us to start a transaction which can
6680 // deadlock with someone on that other file system (since we could be
6681 // holding two transaction locks as well as various vnodes and we did
6682 // not obtain the locks on them in the proper order).
6683 //
6684 // NOTE: this means that if the quota check fails or we have to update
6685 // the change time on a block-special device that those changes
6686 // will happen as part of independent transactions.
6687 //
6688 if (started_tr) {
6689 hfs_end_transaction(hfsmp);
6690 started_tr = 0;
6691 }
6692
6693 #if CONFIG_PROTECT
6694 /*
6695 * At this point, we must have encountered success with writing the EA.
6696 * Destroy our temporary cprotect (which had no keys).
6697 */
6698
6699 if ((attr.ca_fileid != 0) && (protected_mount) && (protectable_target)) {
6700 cp_entry_destroy (hfsmp, entry);
6701 entry = NULL;
6702 }
6703 #endif
6704 gnv_flags |= GNV_CREATE;
6705 if (nocache) {
6706 gnv_flags |= GNV_NOCACHE;
6707 }
6708
6709 /*
6710 * Create a vnode for the object just created.
6711 *
6712 * NOTE: Maintaining the cnode lock on the parent directory is important,
6713 * as it prevents race conditions where other threads want to look up entries
6714 * in the directory and/or add things as we are in the process of creating
6715 * the vnode below. However, this has the potential for causing a
6716 * double lock panic when dealing with shadow files on a HFS boot partition.
6717 * The panic could occur if we are not cleaning up after ourselves properly
6718 * when done with a shadow file or in the error cases. The error would occur if we
6719 * try to create a new vnode, and then end up reclaiming another shadow vnode to
6720 * create the new one. However, if everything is working properly, this should
6721 * be a non-issue as we would never enter that reclaim codepath.
6722 *
6723 * The cnode is locked on successful return.
6724 */
6725 error = hfs_getnewvnode(hfsmp, dvp, cnp, &out_desc, gnv_flags, &attr,
6726 NULL, &tvp, &newvnode_flags);
6727 if (error)
6728 goto exit;
6729
6730 cp = VTOC(tvp);
6731
6732 cp->c_update_txn = txn;
6733
6734 struct doc_tombstone *ut;
6735 ut = doc_tombstone_get();
6736 if ( ut->t_lastop_document_id != 0
6737 && ut->t_lastop_parent == dvp
6738 && ut->t_lastop_parent_vid == vnode_vid(dvp)
6739 && strcmp((char *)ut->t_lastop_filename, (const char *)cp->c_desc.cd_nameptr) == 0) {
6740 struct FndrExtendedDirInfo *fip = (struct FndrExtendedDirInfo *)((char *)&cp->c_attr.ca_finderinfo + 16);
6741
6742 //printf("CREATE: preserving doc-id %lld on %s\n", ut->t_lastop_document_id, ut->t_lastop_filename);
6743 fip->document_id = (uint32_t)(ut->t_lastop_document_id & 0xffffffff);
6744
6745 cp->c_bsdflags |= UF_TRACKED;
6746 cp->c_flag |= C_MODIFIED;
6747
6748 if ((error = hfs_start_transaction(hfsmp)) == 0) {
6749 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
6750
6751 (void) cat_update(hfsmp, &cp->c_desc, &cp->c_attr, NULL, NULL);
6752
6753 hfs_systemfile_unlock (hfsmp, lockflags);
6754 (void) hfs_end_transaction(hfsmp);
6755 }
6756
6757 doc_tombstone_clear(ut, &old_doc_vp);
6758 } else if (ut->t_lastop_document_id != 0) {
6759 int len = cnp->cn_namelen;
6760 if (len == 0) {
6761 len = strlen(cnp->cn_nameptr);
6762 }
6763
6764 if (doc_tombstone_should_ignore_name(cnp->cn_nameptr, cnp->cn_namelen)) {
6765 // printf("CREATE: not clearing tombstone because %s is a temp name.\n", cnp->cn_nameptr);
6766 } else {
6767 // Clear the tombstone because the thread is not recreating the same path
6768 // printf("CREATE: clearing tombstone because %s is NOT a temp name.\n", cnp->cn_nameptr);
6769 doc_tombstone_clear(ut, NULL);
6770 }
6771 }
6772
6773 if ((hfsmp->hfs_flags & HFS_CS_HOTFILE_PIN) && (vnode_isfastdevicecandidate(dvp) && !vnode_isautocandidate(dvp))) {
6774
6775 //printf("hfs: flagging %s (fileid: %d) as VFASTDEVCANDIDATE (dvp name: %s)\n",
6776 // cnp->cn_nameptr ? cnp->cn_nameptr : "<NONAME>",
6777 // cp->c_fileid,
6778 // dvp->v_name ? dvp->v_name : "no-dir-name");
6779
6780 //
6781 // On new files we set the FastDevCandidate flag so that
6782 // any new blocks allocated to it will be pinned.
6783 //
6784 cp->c_attr.ca_recflags |= kHFSFastDevCandidateMask;
6785 vnode_setfastdevicecandidate(tvp);
6786
6787 //
6788 // properly inherit auto-cached flags
6789 //
6790 if (vnode_isautocandidate(dvp)) {
6791 cp->c_attr.ca_recflags |= kHFSAutoCandidateMask;
6792 vnode_setautocandidate(tvp);
6793 }
6794
6795
6796 //
6797 // We also want to add it to the hotfile adoption list so
6798 // that it will eventually land in the hotfile btree
6799 //
6800 (void) hfs_addhotfile(tvp);
6801 }
6802
6803 *vpp = tvp;
6804
6805 #if CONFIG_PROTECT
6806 /*
6807 * Now that we have a vnode-in-hand, generate keys for this namespace item.
6808 * If we fail to create the keys, then attempt to delete the item from the
6809 * namespace. If we can't delete the item, that's not desirable but also not fatal..
6810 * All of the places which deal with restoring/unwrapping keys must also be
6811 * prepared to encounter an entry that does not have keys.
6812 */
6813 if ((protectable_target) && (protected_mount)) {
6814 struct cprotect *keyed_entry = NULL;
6815
6816 if (cp->c_cpentry == NULL) {
6817 panic ("hfs_makenode: no cpentry for cnode (%p)", cp);
6818 }
6819
6820 error = cp_generate_keys (hfsmp, cp, CP_CLASS(cp->c_cpentry->cp_pclass), keywrap_flags, &keyed_entry);
6821 if (error == 0) {
6822 /*
6823 * Upon success, the keys were generated and written out.
6824 * Update the cp pointer in the cnode.
6825 */
6826 cp_replace_entry (hfsmp, cp, keyed_entry);
6827 if (nocache) {
6828 cache_enter (dvp, tvp, cnp);
6829 }
6830 }
6831 else {
6832 /* If key creation OR the setxattr failed, emit EPERM to userland */
6833 error = EPERM;
6834
6835 /*
6836 * Beware! This slightly violates the lock ordering for the
6837 * cnode/vnode 'tvp'. Ordinarily, you must acquire the truncate lock
6838 * which guards file size changes before acquiring the normal cnode lock
6839 * and calling hfs_removefile on an item.
6840 *
6841 * However, in this case, we are still holding the directory lock so
6842 * 'tvp' is not lookup-able and it was a newly created vnode so it
6843 * cannot have any content yet. The only reason we are initiating
6844 * the removefile is because we could not generate content protection keys
6845 * for this namespace item. Note also that we pass a '1' in the allow_dirs
6846 * argument for hfs_removefile because we may be creating a directory here.
6847 *
6848 * All this to say that while it is technically a violation it is
6849 * impossible to race with another thread for this cnode so it is safe.
6850 */
6851 int err = hfs_removefile (dvp, tvp, cnp, 0, 0, 1, NULL, 0);
6852 if (err) {
6853 printf("hfs_makenode: removefile failed (%d) for CP entry %p\n", err, tvp);
6854 }
6855
6856 /* Release the cnode lock and mark the vnode for termination */
6857 hfs_unlock (cp);
6858 err = vnode_recycle (tvp);
6859 if (err) {
6860 printf("hfs_makenode: vnode_recycle failed (%d) for CP entry %p\n", err, tvp);
6861 }
6862
6863 /* Drop the iocount on the new vnode to force reclamation/recycling */
6864 vnode_put (tvp);
6865 cp = NULL;
6866 *vpp = NULL;
6867 }
6868 }
6869 #endif
6870
6871 #if QUOTA
6872 /*
6873 * Once we create this vnode, we need to initialize its quota data
6874 * structures, if necessary. We know that it is OK to just go ahead and
6875 * initialize because we've already validated earlier (through the hfs_quotacheck
6876 * function) to see if creating this cnode/vnode would cause us to go over quota.
6877 */
6878 if (hfsmp->hfs_flags & HFS_QUOTAS) {
6879 if (cp) {
6880 /* cp could have been zeroed earlier */
6881 (void) hfs_getinoquota(cp);
6882 }
6883 }
6884 #endif
6885
6886 exit:
6887 cat_releasedesc(&out_desc);
6888
6889 #if CONFIG_PROTECT
6890 /*
6891 * We may have jumped here in error-handling various situations above.
6892 * If we haven't already dumped the temporary CP used to initialize
6893 * the file atomically, then free it now. cp_entry_destroy should null
6894 * out the pointer if it was called already.
6895 */
6896 if (entry) {
6897 cp_entry_destroy (hfsmp, entry);
6898 entry = NULL;
6899 }
6900 #endif
6901
6902 /*
6903 * Make sure we release cnode lock on dcp.
6904 */
6905 if (dcp) {
6906 dcp->c_flag &= ~C_DIR_MODIFICATION;
6907 wakeup((caddr_t)&dcp->c_flag);
6908
6909 hfs_unlock(dcp);
6910 }
6911 ino64_t file_id = 0;
6912 if (error == 0 && cp != NULL) {
6913 file_id = cp->c_fileid;
6914 hfs_unlock(cp);
6915 }
6916 if (started_tr) {
6917 hfs_end_transaction(hfsmp);
6918 started_tr = 0;
6919 }
6920
6921 if (old_doc_vp) {
6922 cnode_t *ocp = VTOC(old_doc_vp);
6923 hfs_lock_always(ocp, HFS_EXCLUSIVE_LOCK);
6924 struct FndrExtendedFileInfo *ofip = (struct FndrExtendedFileInfo *)((char *)&ocp->c_attr.ca_finderinfo + 16);
6925
6926 const uint32_t doc_id = ofip->document_id;
6927 const ino64_t old_file_id = ocp->c_fileid;
6928
6929 // printf("clearing doc-id from ino %d\n", ocp->c_desc.cd_cnid);
6930 ofip->document_id = 0;
6931 ocp->c_bsdflags &= ~UF_TRACKED;
6932 ocp->c_flag |= C_MODIFIED;
6933
6934 hfs_unlock(ocp);
6935 vnode_put(old_doc_vp);
6936
6937 add_fsevent(FSE_DOCID_CHANGED, vfs_context_current(),
6938 FSE_ARG_DEV, hfsmp->hfs_raw_dev,
6939 FSE_ARG_INO, old_file_id, // src inode #
6940 FSE_ARG_INO, file_id, // dst inode #
6941 FSE_ARG_INT32, doc_id,
6942 FSE_ARG_DONE);
6943 }
6944
6945 return (error);
6946 }
6947
6948
6949 /*
6950 * hfs_vgetrsrc acquires a resource fork vnode corresponding to the
6951 * cnode that is found in 'vp'. The cnode should be locked upon entry
6952 * and will be returned locked, but it may be dropped temporarily.
6953 *
6954 * If the resource fork vnode does not exist, HFS will attempt to acquire an
6955 * empty (uninitialized) vnode from VFS so as to avoid deadlocks with
6956 * jetsam. If we let the normal getnewvnode code produce the vnode for us
6957 * we would be doing so while holding the cnode lock of our cnode.
6958 *
6959 * On success, *rvpp wlll hold the resource fork vnode with an
6960 * iocount. *Don't* forget the vnode_put.
6961 */
6962 int
6963 hfs_vgetrsrc(struct hfsmount *hfsmp, struct vnode *vp, struct vnode **rvpp)
6964 {
6965 struct vnode *rvp = NULLVP;
6966 struct vnode *empty_rvp = NULLVP;
6967 struct vnode *dvp = NULLVP;
6968 struct cnode *cp = VTOC(vp);
6969 int error;
6970 int vid;
6971
6972 if (vnode_vtype(vp) == VDIR) {
6973 return EINVAL;
6974 }
6975
6976 restart:
6977 /* Attempt to use existing vnode */
6978 if ((rvp = cp->c_rsrc_vp)) {
6979 vid = vnode_vid(rvp);
6980
6981 // vnode_getwithvid can block so we need to drop the cnode lock
6982 hfs_unlock(cp);
6983
6984 error = vnode_getwithvid(rvp, vid);
6985
6986 hfs_lock_always(cp, HFS_EXCLUSIVE_LOCK);
6987
6988 /*
6989 * When our lock was relinquished, the resource fork
6990 * could have been recycled. Check for this and try
6991 * again.
6992 */
6993 if (error == ENOENT)
6994 goto restart;
6995
6996 if (error) {
6997 const char * name = (const char *)VTOC(vp)->c_desc.cd_nameptr;
6998
6999 if (name)
7000 printf("hfs_vgetrsrc: couldn't get resource"
7001 " fork for %s, vol=%s, err=%d\n", name, hfsmp->vcbVN, error);
7002 return (error);
7003 }
7004 } else {
7005 struct cat_fork rsrcfork;
7006 struct componentname cn;
7007 struct cat_desc *descptr = NULL;
7008 struct cat_desc to_desc;
7009 char delname[32];
7010 int lockflags;
7011 int newvnode_flags = 0;
7012
7013 /*
7014 * In this case, we don't currently see a resource fork vnode attached
7015 * to this cnode. In most cases, we were called from a read-only VNOP
7016 * like getattr, so it should be safe to drop the cnode lock and then
7017 * re-acquire it.
7018 *
7019 * Here, we drop the lock so that we can acquire an empty/husk
7020 * vnode so that we don't deadlock against jetsam.
7021 *
7022 * It does not currently appear possible to hold the truncate lock via
7023 * FS re-entrancy when we get to this point. (8/2014)
7024 */
7025 hfs_unlock (cp);
7026
7027 error = vnode_create_empty (&empty_rvp);
7028
7029 hfs_lock_always (cp, HFS_EXCLUSIVE_LOCK);
7030
7031 if (error) {
7032 /* If acquiring the 'empty' vnode failed, then nothing to clean up */
7033 return error;
7034 }
7035
7036 /*
7037 * We could have raced with another thread here while we dropped our cnode
7038 * lock. See if the cnode now has a resource fork vnode and restart if appropriate.
7039 *
7040 * Note: We just released the cnode lock, so there is a possibility that the
7041 * cnode that we just acquired has been deleted or even removed from disk
7042 * completely, though this is unlikely. If the file is open-unlinked, the
7043 * check below will resolve it for us. If it has been completely
7044 * removed (even from the catalog!), then when we examine the catalog
7045 * directly, below, while holding the catalog lock, we will not find the
7046 * item and we can fail out properly.
7047 */
7048 if (cp->c_rsrc_vp) {
7049 /* Drop the empty vnode before restarting */
7050 vnode_put (empty_rvp);
7051 empty_rvp = NULL;
7052 rvp = NULL;
7053 goto restart;
7054 }
7055
7056 /*
7057 * hfs_vgetsrc may be invoked for a cnode that has already been marked
7058 * C_DELETED. This is because we need to continue to provide rsrc
7059 * fork access to open-unlinked files. In this case, build a fake descriptor
7060 * like in hfs_removefile. If we don't do this, buildkey will fail in
7061 * cat_lookup because this cnode has no name in its descriptor.
7062 */
7063 if ((cp->c_flag & C_DELETED ) && (cp->c_desc.cd_namelen == 0)) {
7064 bzero (&to_desc, sizeof(to_desc));
7065 bzero (delname, 32);
7066 MAKE_DELETED_NAME(delname, sizeof(delname), cp->c_fileid);
7067 to_desc.cd_nameptr = (const u_int8_t*) delname;
7068 to_desc.cd_namelen = strlen(delname);
7069 to_desc.cd_parentcnid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
7070 to_desc.cd_flags = 0;
7071 to_desc.cd_cnid = cp->c_cnid;
7072
7073 descptr = &to_desc;
7074 }
7075 else {
7076 descptr = &cp->c_desc;
7077 }
7078
7079
7080 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
7081
7082 /*
7083 * We call cat_idlookup (instead of cat_lookup) below because we can't
7084 * trust the descriptor in the provided cnode for lookups at this point.
7085 * Between the time of the original lookup of this vnode and now, the
7086 * descriptor could have gotten swapped or replaced. If this occurred,
7087 * the parent/name combo originally desired may not necessarily be provided
7088 * if we use the descriptor. Even worse, if the vnode represents
7089 * a hardlink, we could have removed one of the links from the namespace
7090 * but left the descriptor alone, since hfs_unlink does not invalidate
7091 * the descriptor in the cnode if other links still point to the inode.
7092 *
7093 * Consider the following (slightly contrived) scenario:
7094 * /tmp/a <--> /tmp/b (hardlinks).
7095 * 1. Thread A: open rsrc fork on /tmp/b.
7096 * 1a. Thread A: does lookup, goes out to lunch right before calling getnamedstream.
7097 * 2. Thread B does 'mv /foo/b /tmp/b'
7098 * 2. Thread B succeeds.
7099 * 3. Thread A comes back and wants rsrc fork info for /tmp/b.
7100 *
7101 * Even though the hardlink backing /tmp/b is now eliminated, the descriptor
7102 * is not removed/updated during the unlink process. So, if you were to
7103 * do a lookup on /tmp/b, you'd acquire an entirely different record's resource
7104 * fork.
7105 *
7106 * As a result, we use the fileid, which should be invariant for the lifetime
7107 * of the cnode (possibly barring calls to exchangedata).
7108 *
7109 * Addendum: We can't do the above for HFS standard since we aren't guaranteed to
7110 * have thread records for files. They were only required for directories. So
7111 * we need to do the lookup with the catalog name. This is OK since hardlinks were
7112 * never allowed on HFS standard.
7113 */
7114
7115 /* Get resource fork data */
7116 #if CONFIG_HFS_STD
7117 if (ISSET(hfsmp->hfs_flags, HFS_STANDARD)) {
7118 /*
7119 * HFS standard only:
7120 *
7121 * Get the resource fork for this item with a cat_lookup call, but do not
7122 * force a case lookup since HFS standard is case-insensitive only. We
7123 * don't want the descriptor; just the fork data here. If we tried to
7124 * do a ID lookup (via thread record -> catalog record), then we might fail
7125 * prematurely since, as noted above, thread records were not strictly required
7126 * on files in HFS.
7127 */
7128 error = cat_lookup (hfsmp, descptr, 1, 0, (struct cat_desc*)NULL,
7129 (struct cat_attr*)NULL, &rsrcfork, NULL);
7130 } else
7131 #endif
7132 {
7133 error = cat_idlookup (hfsmp, cp->c_fileid, 0, 1, NULL, NULL, &rsrcfork);
7134 }
7135
7136 hfs_systemfile_unlock(hfsmp, lockflags);
7137 if (error) {
7138 /* Drop our 'empty' vnode ! */
7139 vnode_put (empty_rvp);
7140 return (error);
7141 }
7142 /*
7143 * Supply hfs_getnewvnode with a component name.
7144 */
7145 cn.cn_pnbuf = NULL;
7146 if (descptr->cd_nameptr) {
7147 void *buf = hfs_malloc(MAXPATHLEN);
7148
7149 cn = (struct componentname){
7150 .cn_nameiop = LOOKUP,
7151 .cn_flags = ISLASTCN,
7152 .cn_pnlen = MAXPATHLEN,
7153 .cn_pnbuf = buf,
7154 .cn_nameptr = buf,
7155 .cn_namelen = snprintf(buf, MAXPATHLEN,
7156 "%s%s", descptr->cd_nameptr,
7157 _PATH_RSRCFORKSPEC)
7158 };
7159
7160 // Should never happen because cn.cn_nameptr won't ever be long...
7161 if (cn.cn_namelen >= MAXPATHLEN) {
7162 hfs_free(buf, MAXPATHLEN);
7163 /* Drop our 'empty' vnode ! */
7164 vnode_put (empty_rvp);
7165 return ENAMETOOLONG;
7166
7167 }
7168 }
7169 dvp = vnode_getparent(vp);
7170
7171 /*
7172 * We are about to call hfs_getnewvnode and pass in the vnode that we acquired
7173 * earlier when we were not holding any locks. The semantics of GNV_USE_VP require that
7174 * either hfs_getnewvnode consume the vnode and vend it back to us, properly initialized,
7175 * or it will consume/dispose of it properly if it errors out.
7176 */
7177 rvp = empty_rvp;
7178
7179 error = hfs_getnewvnode(hfsmp, dvp, cn.cn_pnbuf ? &cn : NULL,
7180 descptr, (GNV_WANTRSRC | GNV_SKIPLOCK | GNV_USE_VP),
7181 &cp->c_attr, &rsrcfork, &rvp, &newvnode_flags);
7182
7183 if (dvp)
7184 vnode_put(dvp);
7185 hfs_free(cn.cn_pnbuf, MAXPATHLEN);
7186 if (error)
7187 return (error);
7188 } /* End 'else' for rsrc fork not existing */
7189
7190 *rvpp = rvp;
7191 return (0);
7192 }
7193
7194 /*
7195 * Wrapper for special device reads
7196 */
7197 int
7198 hfsspec_read(struct vnop_read_args *ap)
7199 {
7200 /*
7201 * Set access flag.
7202 */
7203 cnode_t *cp = VTOC(ap->a_vp);
7204
7205 if (cp)
7206 cp->c_touch_acctime = TRUE;
7207
7208 return spec_read(ap);
7209 }
7210
7211 /*
7212 * Wrapper for special device writes
7213 */
7214 int
7215 hfsspec_write(struct vnop_write_args *ap)
7216 {
7217 /*
7218 * Set update and change flags.
7219 */
7220 cnode_t *cp = VTOC(ap->a_vp);
7221
7222 if (cp) {
7223 cp->c_touch_chgtime = TRUE;
7224 cp->c_touch_modtime = TRUE;
7225 }
7226
7227 return spec_write(ap);
7228 }
7229
7230 /*
7231 * Wrapper for special device close
7232 *
7233 * Update the times on the cnode then do device close.
7234 */
7235 int
7236 hfsspec_close(struct vnop_close_args *ap)
7237 {
7238 struct vnode *vp = ap->a_vp;
7239 cnode_t *cp = VTOC(vp);
7240
7241 if (cp && vnode_isinuse(ap->a_vp, 0)) {
7242 if (hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT) == 0) {
7243 hfs_touchtimes(VTOHFS(vp), cp);
7244 hfs_unlock(cp);
7245 }
7246 }
7247 return spec_close(ap);
7248 }
7249
7250 #if FIFO
7251 /*
7252 * Wrapper for fifo reads
7253 */
7254 static int
7255 hfsfifo_read(struct vnop_read_args *ap)
7256 {
7257 /*
7258 * Set access flag.
7259 */
7260 VTOC(ap->a_vp)->c_touch_acctime = TRUE;
7261 return fifo_read(ap);
7262 }
7263
7264 /*
7265 * Wrapper for fifo writes
7266 */
7267 static int
7268 hfsfifo_write(struct vnop_write_args *ap)
7269 {
7270 /*
7271 * Set update and change flags.
7272 */
7273 VTOC(ap->a_vp)->c_touch_chgtime = TRUE;
7274 VTOC(ap->a_vp)->c_touch_modtime = TRUE;
7275 return fifo_write(ap);
7276 }
7277
7278 /*
7279 * Wrapper for fifo close
7280 *
7281 * Update the times on the cnode then do device close.
7282 */
7283 static int
7284 hfsfifo_close(struct vnop_close_args *ap)
7285 {
7286 struct vnode *vp = ap->a_vp;
7287 struct cnode *cp;
7288
7289 if (vnode_isinuse(ap->a_vp, 1)) {
7290 if (hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT) == 0) {
7291 cp = VTOC(vp);
7292 hfs_touchtimes(VTOHFS(vp), cp);
7293 hfs_unlock(cp);
7294 }
7295 }
7296 return fifo_close(ap);
7297 }
7298
7299
7300 #endif /* FIFO */
7301
7302 /*
7303 * Getter for the document_id
7304 * the document_id is stored in FndrExtendedFileInfo/FndrExtendedDirInfo
7305 */
7306 static u_int32_t
7307 hfs_get_document_id_internal(const uint8_t *finderinfo, mode_t mode)
7308 {
7309 const uint8_t *finfo = NULL;
7310 u_int32_t doc_id = 0;
7311
7312 /* overlay the FinderInfo to the correct pointer, and advance */
7313 finfo = finderinfo + 16;
7314
7315 if (S_ISDIR(mode) || S_ISREG(mode)) {
7316 const struct FndrExtendedFileInfo *extinfo = (const struct FndrExtendedFileInfo *)finfo;
7317 doc_id = extinfo->document_id;
7318 }
7319
7320 return doc_id;
7321 }
7322
7323
7324 /* getter(s) for document id */
7325 u_int32_t
7326 hfs_get_document_id(struct cnode *cp)
7327 {
7328 return (hfs_get_document_id_internal((u_int8_t*)cp->c_finderinfo,
7329 cp->c_attr.ca_mode));
7330 }
7331
7332 /* If you have finderinfo and mode, you can use this */
7333 u_int32_t
7334 hfs_get_document_id_from_blob(const uint8_t *finderinfo, mode_t mode)
7335 {
7336 return (hfs_get_document_id_internal(finderinfo, mode));
7337 }
7338
7339 /*
7340 * Synchronize a file's in-core state with that on disk.
7341 */
7342 int
7343 hfs_vnop_fsync(struct vnop_fsync_args *ap)
7344 {
7345 struct vnode* vp = ap->a_vp;
7346 int error;
7347
7348 /* Note: We check hfs flags instead of vfs mount flag because during
7349 * read-write update, hfs marks itself read-write much earlier than
7350 * the vfs, and hence won't result in skipping of certain writes like
7351 * zero'ing out of unused nodes, creation of hotfiles btree, etc.
7352 */
7353 if (VTOHFS(vp)->hfs_flags & HFS_READ_ONLY) {
7354 return 0;
7355 }
7356
7357 /*
7358 * No need to call cp_handle_vnop to resolve fsync(). Any dirty data
7359 * should have caused the keys to be unwrapped at the time the data was
7360 * put into the UBC, either at mmap/pagein/read-write. If we did manage
7361 * to let this by, then strategy will auto-resolve for us.
7362 *
7363 * We also need to allow ENOENT lock errors since unlink
7364 * system call can call VNOP_FSYNC during vclean.
7365 */
7366 error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
7367 if (error)
7368 return (0);
7369
7370 error = hfs_fsync(vp, ap->a_waitfor, 0, vfs_context_proc(ap->a_context));
7371
7372 hfs_unlock(VTOC(vp));
7373 return (error);
7374 }
7375
7376 int (**hfs_vnodeop_p)(void *);
7377
7378 #define VOPFUNC int (*)(void *)
7379
7380
7381 #if CONFIG_HFS_STD
7382 int (**hfs_std_vnodeop_p) (void *);
7383 static int hfs_readonly_op (__unused void* ap) { return (EROFS); }
7384
7385 /*
7386 * In 10.6 and forward, HFS Standard is read-only and deprecated. The vnop table below
7387 * is for use with HFS standard to block out operations that would modify the file system
7388 */
7389
7390 struct vnodeopv_entry_desc hfs_standard_vnodeop_entries[] = {
7391 { &vnop_default_desc, (VOPFUNC)vn_default_error },
7392 { &vnop_lookup_desc, (VOPFUNC)hfs_vnop_lookup }, /* lookup */
7393 { &vnop_create_desc, (VOPFUNC)hfs_readonly_op }, /* create (READONLY) */
7394 { &vnop_mknod_desc, (VOPFUNC)hfs_readonly_op }, /* mknod (READONLY) */
7395 { &vnop_open_desc, (VOPFUNC)hfs_vnop_open }, /* open */
7396 { &vnop_close_desc, (VOPFUNC)hfs_vnop_close }, /* close */
7397 { &vnop_getattr_desc, (VOPFUNC)hfs_vnop_getattr }, /* getattr */
7398 { &vnop_setattr_desc, (VOPFUNC)hfs_readonly_op }, /* setattr */
7399 { &vnop_read_desc, (VOPFUNC)hfs_vnop_read }, /* read */
7400 { &vnop_write_desc, (VOPFUNC)hfs_readonly_op }, /* write (READONLY) */
7401 { &vnop_ioctl_desc, (VOPFUNC)hfs_vnop_ioctl }, /* ioctl */
7402 { &vnop_select_desc, (VOPFUNC)hfs_vnop_select }, /* select */
7403 { &vnop_revoke_desc, (VOPFUNC)nop_revoke }, /* revoke */
7404 { &vnop_exchange_desc, (VOPFUNC)hfs_readonly_op }, /* exchange (READONLY)*/
7405 { &vnop_mmap_desc, (VOPFUNC)err_mmap }, /* mmap */
7406 { &vnop_fsync_desc, (VOPFUNC)hfs_readonly_op}, /* fsync (READONLY) */
7407 { &vnop_remove_desc, (VOPFUNC)hfs_readonly_op }, /* remove (READONLY) */
7408 { &vnop_link_desc, (VOPFUNC)hfs_readonly_op }, /* link ( READONLLY) */
7409 { &vnop_rename_desc, (VOPFUNC)hfs_readonly_op }, /* rename (READONLY)*/
7410 { &vnop_mkdir_desc, (VOPFUNC)hfs_readonly_op }, /* mkdir (READONLY) */
7411 { &vnop_rmdir_desc, (VOPFUNC)hfs_readonly_op }, /* rmdir (READONLY) */
7412 { &vnop_symlink_desc, (VOPFUNC)hfs_readonly_op }, /* symlink (READONLY) */
7413 { &vnop_readdir_desc, (VOPFUNC)hfs_vnop_readdir }, /* readdir */
7414 { &vnop_readdirattr_desc, (VOPFUNC)hfs_vnop_readdirattr }, /* readdirattr */
7415 { &vnop_readlink_desc, (VOPFUNC)hfs_vnop_readlink }, /* readlink */
7416 { &vnop_inactive_desc, (VOPFUNC)hfs_vnop_inactive }, /* inactive */
7417 { &vnop_reclaim_desc, (VOPFUNC)hfs_vnop_reclaim }, /* reclaim */
7418 { &vnop_strategy_desc, (VOPFUNC)hfs_vnop_strategy }, /* strategy */
7419 { &vnop_pathconf_desc, (VOPFUNC)hfs_vnop_pathconf }, /* pathconf */
7420 { &vnop_advlock_desc, (VOPFUNC)err_advlock }, /* advlock */
7421 { &vnop_allocate_desc, (VOPFUNC)hfs_readonly_op }, /* allocate (READONLY) */
7422 #if CONFIG_SEARCHFS
7423 { &vnop_searchfs_desc, (VOPFUNC)hfs_vnop_search }, /* search fs */
7424 #else
7425 { &vnop_searchfs_desc, (VOPFUNC)err_searchfs }, /* search fs */
7426 #endif
7427 { &vnop_bwrite_desc, (VOPFUNC)hfs_readonly_op }, /* bwrite (READONLY) */
7428 { &vnop_pagein_desc, (VOPFUNC)hfs_vnop_pagein }, /* pagein */
7429 { &vnop_pageout_desc,(VOPFUNC) hfs_readonly_op }, /* pageout (READONLY) */
7430 { &vnop_copyfile_desc, (VOPFUNC)hfs_readonly_op }, /* copyfile (READONLY)*/
7431 { &vnop_blktooff_desc, (VOPFUNC)hfs_vnop_blktooff }, /* blktooff */
7432 { &vnop_offtoblk_desc, (VOPFUNC)hfs_vnop_offtoblk }, /* offtoblk */
7433 { &vnop_blockmap_desc, (VOPFUNC)hfs_vnop_blockmap }, /* blockmap */
7434 { &vnop_getxattr_desc, (VOPFUNC)hfs_vnop_getxattr},
7435 { &vnop_setxattr_desc, (VOPFUNC)hfs_readonly_op}, /* set xattr (READONLY) */
7436 { &vnop_removexattr_desc, (VOPFUNC)hfs_readonly_op}, /* remove xattr (READONLY) */
7437 { &vnop_listxattr_desc, (VOPFUNC)hfs_vnop_listxattr},
7438 #if NAMEDSTREAMS
7439 { &vnop_getnamedstream_desc, (VOPFUNC)hfs_vnop_getnamedstream },
7440 { &vnop_makenamedstream_desc, (VOPFUNC)hfs_readonly_op },
7441 { &vnop_removenamedstream_desc, (VOPFUNC)hfs_readonly_op },
7442 #endif
7443 { &vnop_getattrlistbulk_desc, (VOPFUNC)hfs_vnop_getattrlistbulk }, /* getattrlistbulk */
7444 { NULL, (VOPFUNC)NULL }
7445 };
7446
7447 struct vnodeopv_desc hfs_std_vnodeop_opv_desc =
7448 { &hfs_std_vnodeop_p, hfs_standard_vnodeop_entries };
7449 #endif
7450
7451 /* VNOP table for HFS+ */
7452 struct vnodeopv_entry_desc hfs_vnodeop_entries[] = {
7453 { &vnop_default_desc, (VOPFUNC)vn_default_error },
7454 { &vnop_lookup_desc, (VOPFUNC)hfs_vnop_lookup }, /* lookup */
7455 { &vnop_create_desc, (VOPFUNC)hfs_vnop_create }, /* create */
7456 { &vnop_mknod_desc, (VOPFUNC)hfs_vnop_mknod }, /* mknod */
7457 { &vnop_open_desc, (VOPFUNC)hfs_vnop_open }, /* open */
7458 { &vnop_close_desc, (VOPFUNC)hfs_vnop_close }, /* close */
7459 { &vnop_getattr_desc, (VOPFUNC)hfs_vnop_getattr }, /* getattr */
7460 { &vnop_setattr_desc, (VOPFUNC)hfs_vnop_setattr }, /* setattr */
7461 { &vnop_read_desc, (VOPFUNC)hfs_vnop_read }, /* read */
7462 { &vnop_write_desc, (VOPFUNC)hfs_vnop_write }, /* write */
7463 { &vnop_ioctl_desc, (VOPFUNC)hfs_vnop_ioctl }, /* ioctl */
7464 { &vnop_select_desc, (VOPFUNC)hfs_vnop_select }, /* select */
7465 { &vnop_revoke_desc, (VOPFUNC)nop_revoke }, /* revoke */
7466 { &vnop_exchange_desc, (VOPFUNC)hfs_vnop_exchange }, /* exchange */
7467 { &vnop_mmap_desc, (VOPFUNC)hfs_vnop_mmap }, /* mmap */
7468 { &vnop_fsync_desc, (VOPFUNC)hfs_vnop_fsync }, /* fsync */
7469 { &vnop_remove_desc, (VOPFUNC)hfs_vnop_remove }, /* remove */
7470 { &vnop_link_desc, (VOPFUNC)hfs_vnop_link }, /* link */
7471 { &vnop_rename_desc, (VOPFUNC)hfs_vnop_rename }, /* rename */
7472 { &vnop_renamex_desc, (VOPFUNC)hfs_vnop_renamex }, /* renamex (with flags) */
7473 { &vnop_mkdir_desc, (VOPFUNC)hfs_vnop_mkdir }, /* mkdir */
7474 { &vnop_rmdir_desc, (VOPFUNC)hfs_vnop_rmdir }, /* rmdir */
7475 { &vnop_symlink_desc, (VOPFUNC)hfs_vnop_symlink }, /* symlink */
7476 { &vnop_readdir_desc, (VOPFUNC)hfs_vnop_readdir }, /* readdir */
7477 { &vnop_readdirattr_desc, (VOPFUNC)hfs_vnop_readdirattr }, /* readdirattr */
7478 { &vnop_readlink_desc, (VOPFUNC)hfs_vnop_readlink }, /* readlink */
7479 { &vnop_inactive_desc, (VOPFUNC)hfs_vnop_inactive }, /* inactive */
7480 { &vnop_reclaim_desc, (VOPFUNC)hfs_vnop_reclaim }, /* reclaim */
7481 { &vnop_strategy_desc, (VOPFUNC)hfs_vnop_strategy }, /* strategy */
7482 { &vnop_pathconf_desc, (VOPFUNC)hfs_vnop_pathconf }, /* pathconf */
7483 { &vnop_advlock_desc, (VOPFUNC)err_advlock }, /* advlock */
7484 { &vnop_allocate_desc, (VOPFUNC)hfs_vnop_allocate }, /* allocate */
7485 #if CONFIG_SEARCHFS
7486 { &vnop_searchfs_desc, (VOPFUNC)hfs_vnop_search }, /* search fs */
7487 #else
7488 { &vnop_searchfs_desc, (VOPFUNC)err_searchfs }, /* search fs */
7489 #endif
7490 { &vnop_bwrite_desc, (VOPFUNC)hfs_vnop_bwrite }, /* bwrite */
7491 { &vnop_pagein_desc, (VOPFUNC)hfs_vnop_pagein }, /* pagein */
7492 { &vnop_pageout_desc,(VOPFUNC) hfs_vnop_pageout }, /* pageout */
7493 { &vnop_copyfile_desc, (VOPFUNC)err_copyfile }, /* copyfile */
7494 { &vnop_blktooff_desc, (VOPFUNC)hfs_vnop_blktooff }, /* blktooff */
7495 { &vnop_offtoblk_desc, (VOPFUNC)hfs_vnop_offtoblk }, /* offtoblk */
7496 { &vnop_blockmap_desc, (VOPFUNC)hfs_vnop_blockmap }, /* blockmap */
7497 { &vnop_getxattr_desc, (VOPFUNC)hfs_vnop_getxattr},
7498 { &vnop_setxattr_desc, (VOPFUNC)hfs_vnop_setxattr},
7499 { &vnop_removexattr_desc, (VOPFUNC)hfs_vnop_removexattr},
7500 { &vnop_listxattr_desc, (VOPFUNC)hfs_vnop_listxattr},
7501 #if NAMEDSTREAMS
7502 { &vnop_getnamedstream_desc, (VOPFUNC)hfs_vnop_getnamedstream },
7503 { &vnop_makenamedstream_desc, (VOPFUNC)hfs_vnop_makenamedstream },
7504 { &vnop_removenamedstream_desc, (VOPFUNC)hfs_vnop_removenamedstream },
7505 #endif
7506 { &vnop_getattrlistbulk_desc, (VOPFUNC)hfs_vnop_getattrlistbulk }, /* getattrlistbulk */
7507 { &vnop_mnomap_desc, (VOPFUNC)hfs_vnop_mnomap },
7508 { NULL, (VOPFUNC)NULL }
7509 };
7510
7511 struct vnodeopv_desc hfs_vnodeop_opv_desc =
7512 { &hfs_vnodeop_p, hfs_vnodeop_entries };
7513
7514
7515 /* Spec Op vnop table for HFS+ */
7516 int (**hfs_specop_p)(void *);
7517 struct vnodeopv_entry_desc hfs_specop_entries[] = {
7518 { &vnop_default_desc, (VOPFUNC)vn_default_error },
7519 { &vnop_lookup_desc, (VOPFUNC)spec_lookup }, /* lookup */
7520 { &vnop_create_desc, (VOPFUNC)spec_create }, /* create */
7521 { &vnop_mknod_desc, (VOPFUNC)spec_mknod }, /* mknod */
7522 { &vnop_open_desc, (VOPFUNC)spec_open }, /* open */
7523 { &vnop_close_desc, (VOPFUNC)hfsspec_close }, /* close */
7524 { &vnop_getattr_desc, (VOPFUNC)hfs_vnop_getattr }, /* getattr */
7525 { &vnop_setattr_desc, (VOPFUNC)hfs_vnop_setattr }, /* setattr */
7526 { &vnop_read_desc, (VOPFUNC)hfsspec_read }, /* read */
7527 { &vnop_write_desc, (VOPFUNC)hfsspec_write }, /* write */
7528 { &vnop_ioctl_desc, (VOPFUNC)spec_ioctl }, /* ioctl */
7529 { &vnop_select_desc, (VOPFUNC)spec_select }, /* select */
7530 { &vnop_revoke_desc, (VOPFUNC)spec_revoke }, /* revoke */
7531 { &vnop_mmap_desc, (VOPFUNC)spec_mmap }, /* mmap */
7532 { &vnop_fsync_desc, (VOPFUNC)hfs_vnop_fsync }, /* fsync */
7533 { &vnop_remove_desc, (VOPFUNC)spec_remove }, /* remove */
7534 { &vnop_link_desc, (VOPFUNC)spec_link }, /* link */
7535 { &vnop_rename_desc, (VOPFUNC)spec_rename }, /* rename */
7536 { &vnop_mkdir_desc, (VOPFUNC)spec_mkdir }, /* mkdir */
7537 { &vnop_rmdir_desc, (VOPFUNC)spec_rmdir }, /* rmdir */
7538 { &vnop_symlink_desc, (VOPFUNC)spec_symlink }, /* symlink */
7539 { &vnop_readdir_desc, (VOPFUNC)spec_readdir }, /* readdir */
7540 { &vnop_readlink_desc, (VOPFUNC)spec_readlink }, /* readlink */
7541 { &vnop_inactive_desc, (VOPFUNC)hfs_vnop_inactive }, /* inactive */
7542 { &vnop_reclaim_desc, (VOPFUNC)hfs_vnop_reclaim }, /* reclaim */
7543 { &vnop_strategy_desc, (VOPFUNC)spec_strategy }, /* strategy */
7544 { &vnop_pathconf_desc, (VOPFUNC)spec_pathconf }, /* pathconf */
7545 { &vnop_advlock_desc, (VOPFUNC)err_advlock }, /* advlock */
7546 { &vnop_bwrite_desc, (VOPFUNC)hfs_vnop_bwrite },
7547 { &vnop_pagein_desc, (VOPFUNC)hfs_vnop_pagein }, /* Pagein */
7548 { &vnop_pageout_desc, (VOPFUNC)hfs_vnop_pageout }, /* Pageout */
7549 { &vnop_copyfile_desc, (VOPFUNC)err_copyfile }, /* copyfile */
7550 { &vnop_blktooff_desc, (VOPFUNC)hfs_vnop_blktooff }, /* blktooff */
7551 { &vnop_offtoblk_desc, (VOPFUNC)hfs_vnop_offtoblk }, /* offtoblk */
7552 { &vnop_getxattr_desc, (VOPFUNC)hfs_vnop_getxattr},
7553 { &vnop_setxattr_desc, (VOPFUNC)hfs_vnop_setxattr},
7554 { &vnop_removexattr_desc, (VOPFUNC)hfs_vnop_removexattr},
7555 { &vnop_listxattr_desc, (VOPFUNC)hfs_vnop_listxattr},
7556 { (struct vnodeop_desc*)NULL, (VOPFUNC)NULL }
7557 };
7558 struct vnodeopv_desc hfs_specop_opv_desc =
7559 { &hfs_specop_p, hfs_specop_entries };
7560
7561 #if FIFO
7562 /* HFS+ FIFO VNOP table */
7563 int (**hfs_fifoop_p)(void *);
7564 struct vnodeopv_entry_desc hfs_fifoop_entries[] = {
7565 { &vnop_default_desc, (VOPFUNC)vn_default_error },
7566 { &vnop_lookup_desc, (VOPFUNC)fifo_lookup }, /* lookup */
7567 { &vnop_create_desc, (VOPFUNC)fifo_create }, /* create */
7568 { &vnop_mknod_desc, (VOPFUNC)fifo_mknod }, /* mknod */
7569 { &vnop_open_desc, (VOPFUNC)fifo_open }, /* open */
7570 { &vnop_close_desc, (VOPFUNC)hfsfifo_close }, /* close */
7571 { &vnop_getattr_desc, (VOPFUNC)hfs_vnop_getattr }, /* getattr */
7572 { &vnop_setattr_desc, (VOPFUNC)hfs_vnop_setattr }, /* setattr */
7573 { &vnop_read_desc, (VOPFUNC)hfsfifo_read }, /* read */
7574 { &vnop_write_desc, (VOPFUNC)hfsfifo_write }, /* write */
7575 { &vnop_ioctl_desc, (VOPFUNC)fifo_ioctl }, /* ioctl */
7576 { &vnop_select_desc, (VOPFUNC)fifo_select }, /* select */
7577 { &vnop_revoke_desc, (VOPFUNC)fifo_revoke }, /* revoke */
7578 { &vnop_mmap_desc, (VOPFUNC)fifo_mmap }, /* mmap */
7579 { &vnop_fsync_desc, (VOPFUNC)hfs_vnop_fsync }, /* fsync */
7580 { &vnop_remove_desc, (VOPFUNC)fifo_remove }, /* remove */
7581 { &vnop_link_desc, (VOPFUNC)fifo_link }, /* link */
7582 { &vnop_rename_desc, (VOPFUNC)fifo_rename }, /* rename */
7583 { &vnop_mkdir_desc, (VOPFUNC)fifo_mkdir }, /* mkdir */
7584 { &vnop_rmdir_desc, (VOPFUNC)fifo_rmdir }, /* rmdir */
7585 { &vnop_symlink_desc, (VOPFUNC)fifo_symlink }, /* symlink */
7586 { &vnop_readdir_desc, (VOPFUNC)fifo_readdir }, /* readdir */
7587 { &vnop_readlink_desc, (VOPFUNC)fifo_readlink }, /* readlink */
7588 { &vnop_inactive_desc, (VOPFUNC)hfs_vnop_inactive }, /* inactive */
7589 { &vnop_reclaim_desc, (VOPFUNC)hfs_vnop_reclaim }, /* reclaim */
7590 { &vnop_strategy_desc, (VOPFUNC)fifo_strategy }, /* strategy */
7591 { &vnop_pathconf_desc, (VOPFUNC)fifo_pathconf }, /* pathconf */
7592 { &vnop_advlock_desc, (VOPFUNC)err_advlock }, /* advlock */
7593 { &vnop_bwrite_desc, (VOPFUNC)hfs_vnop_bwrite },
7594 { &vnop_pagein_desc, (VOPFUNC)hfs_vnop_pagein }, /* Pagein */
7595 { &vnop_pageout_desc, (VOPFUNC)hfs_vnop_pageout }, /* Pageout */
7596 { &vnop_copyfile_desc, (VOPFUNC)err_copyfile }, /* copyfile */
7597 { &vnop_blktooff_desc, (VOPFUNC)hfs_vnop_blktooff }, /* blktooff */
7598 { &vnop_offtoblk_desc, (VOPFUNC)hfs_vnop_offtoblk }, /* offtoblk */
7599 { &vnop_blockmap_desc, (VOPFUNC)hfs_vnop_blockmap }, /* blockmap */
7600 { &vnop_getxattr_desc, (VOPFUNC)hfs_vnop_getxattr},
7601 { &vnop_setxattr_desc, (VOPFUNC)hfs_vnop_setxattr},
7602 { &vnop_removexattr_desc, (VOPFUNC)hfs_vnop_removexattr},
7603 { &vnop_listxattr_desc, (VOPFUNC)hfs_vnop_listxattr},
7604 { (struct vnodeop_desc*)NULL, (VOPFUNC)NULL }
7605 };
7606 struct vnodeopv_desc hfs_fifoop_opv_desc =
7607 { &hfs_fifoop_p, hfs_fifoop_entries };
7608 #endif /* FIFO */