]> git.saurik.com Git - apple/hfs.git/blob - livefiles_hfs_plugin/lf_hfs_cnode.c
hfs-522.100.5.tar.gz
[apple/hfs.git] / livefiles_hfs_plugin / lf_hfs_cnode.c
1 /* Copyright © 2017-2018 Apple Inc. All rights reserved.
2 *
3 * lf_hfs_cnode.c
4 * livefiles_hfs
5 *
6 * Created by Or Haimovich on 20/3/18.
7 */
8
9 #include "lf_hfs_cnode.h"
10 #include "lf_hfs.h"
11 #include "lf_hfs_vfsops.h"
12 #include "lf_hfs_chash.h"
13 #include "lf_hfs_vfsutils.h"
14 #include "lf_hfs_vnops.h"
15 #include "lf_hfs_logger.h"
16 #include "lf_hfs_utils.h"
17 #include "lf_hfs_btrees_internal.h"
18 #include "lf_hfs_readwrite_ops.h"
19 #include "lf_hfs_utils.h"
20 #include <sys/stat.h>
21 #include "lf_hfs_xattr.h"
22 #include "lf_hfs_link.h"
23 #include "lf_hfs_generic_buf.h"
24
25 static void
26 hfs_reclaim_cnode(struct cnode *cp)
27 {
28 /*
29 * If the descriptor has a name then release it
30 */
31 if ((cp->c_desc.cd_flags & CD_HASBUF) && (cp->c_desc.cd_nameptr != 0))
32 {
33 cp->c_desc.cd_flags &= ~CD_HASBUF;
34 cp->c_desc.cd_namelen = 0;
35 hfs_free((void*)cp->c_desc.cd_nameptr);
36 cp->c_desc.cd_nameptr = NULL;
37 }
38
39 /*
40 * We only call this function if we are in hfs_vnop_reclaim and
41 * attempting to reclaim a cnode with only one live fork. Because the vnode
42 * went through reclaim, any future attempts to use this item will have to
43 * go through lookup again, which will need to create a new vnode. Thus,
44 * destroying the locks below is safe.
45 */
46
47 lf_lck_rw_destroy(&cp->c_rwlock);
48 lf_cond_destroy(&cp->c_cacsh_cond);
49 lf_lck_rw_destroy(&cp->c_truncatelock);
50
51 hfs_free(cp);
52 }
53
54 /*
55 * hfs_getnewvnode - get new default vnode
56 *
57 * The vnode is returned with an iocount and the cnode locked.
58 * The cnode of the parent vnode 'dvp' may or may not be locked, depending on
59 * the circumstances. The cnode in question (if acquiring the resource fork),
60 * may also already be locked at the time we enter this function.
61 *
62 * Note that there are both input and output flag arguments to this function.
63 * If one of the input flags (specifically, GNV_USE_VP), is set, then
64 * hfs_getnewvnode will use the parameter *vpp, which is traditionally only
65 * an output parameter, as both an input and output parameter. It will use
66 * the vnode provided in the output, and pass it to vnode_create with the
67 * proper flavor so that a new vnode is _NOT_ created on our behalf when
68 * we dispatch to VFS. This may be important in various HFS vnode creation
69 * routines, such a create or get-resource-fork, because we risk deadlock if
70 * jetsam is involved.
71 *
72 * Deadlock potential exists if jetsam is synchronously invoked while we are waiting
73 * for a vnode to be recycled in order to give it the identity we want. If jetsam
74 * happens to target a process for termination that is blocked in-kernel, waiting to
75 * acquire the cnode lock on our parent 'dvp', while our current thread has it locked,
76 * neither side will make forward progress and the watchdog timer will eventually fire.
77 * To prevent this, a caller of hfs_getnewvnode may choose to proactively force
78 * any necessary vnode reclamation/recycling while it is not holding any locks and
79 * thus not prone to deadlock. If this is the case, GNV_USE_VP will be set and
80 * the parameter will be used as described above.
81 *
82 * !!! <NOTE> !!!!
83 * In circumstances when GNV_USE_VP is set, this function _MUST_ clean up and either consume
84 * or dispose of the provided vnode. We funnel all errors to a single return value so that
85 * if provided_vp is still non-NULL, then we will dispose of the vnode. This will occur in
86 * all error cases of this function -- anywhere we zero/NULL out the *vpp parameter. It may
87 * also occur if the current thread raced with another to create the same vnode, and we
88 * find the entry already present in the cnode hash.
89 * !!! </NOTE> !!!
90 */
91 int
92 hfs_getnewvnode(struct hfsmount *hfsmp, struct vnode *dvp, struct componentname *cnp, struct cat_desc *descp, int flags, struct cat_attr *attrp, struct cat_fork *forkp, struct vnode **vpp, int *out_flags)
93 {
94 struct mount *mp = HFSTOVFS(hfsmp);
95 struct vnode *vp = NULL;
96 struct vnode **cvpp;
97 struct vnode *tvp = NULL;
98 struct cnode *cp = NULL;
99 struct filefork *fp = NULL;
100 struct vnode *provided_vp = NULL;
101 struct vnode_fsparam vfsp = {0};
102 enum vtype vtype = IFTOVT(attrp->ca_mode);
103 int retval = 0;
104 int hflags = 0;
105 int issystemfile = (descp->cd_flags & CD_ISMETA) && (vtype == VREG);
106 int wantrsrc = flags & GNV_WANTRSRC;;
107 int need_update_identity = 0;
108
109 /* Zero out the out_flags */
110 *out_flags = 0;
111
112 if (flags & GNV_USE_VP)
113 {
114 /* Store the provided VP for later use */
115 provided_vp = *vpp;
116 }
117
118 /* Zero out the vpp regardless of provided input */
119 *vpp = NULL;
120
121 if (attrp->ca_fileid == 0)
122 {
123 retval = ENOENT;
124 goto gnv_exit;
125 }
126
127 /* Sanity checks: */
128 if ( (vtype == VBAD) ||
129 ( (vtype != VDIR && forkp &&
130 ( (attrp->ca_blocks < forkp->cf_blocks) || (howmany((uint64_t)forkp->cf_size, hfsmp->blockSize) > forkp->cf_blocks) ||
131 ( (vtype == VLNK) && ((uint64_t)forkp->cf_size > MAXPATHLEN) ) ) ) ) )
132 {
133 /* Mark the FS as corrupt and bail out */
134 hfs_mark_inconsistent(hfsmp, HFS_INCONSISTENCY_DETECTED);
135 retval = EINVAL;
136 goto gnv_exit;
137 }
138
139 /*
140 * Get a cnode (new or existing)
141 */
142 cp = hfs_chash_getcnode(hfsmp, attrp->ca_fileid, vpp, wantrsrc, (flags & GNV_SKIPLOCK), out_flags, &hflags);
143
144 /*
145 * If the id is no longer valid for lookups we'll get back a NULL cp.
146 */
147 if (cp == NULL)
148 {
149 retval = ENOENT;
150 goto gnv_exit;
151 }
152
153 /*
154 * We may have been provided a vnode via
155 * GNV_USE_VP. In this case, we have raced with
156 * a 2nd thread to create the target vnode. The provided
157 * vnode that was passed in will be dealt with at the
158 * end of the function, as we don't zero out the field
159 * until we're ready to pass responsibility to VFS.
160 */
161
162
163 /*
164 * If we get a cnode/vnode pair out of hfs_chash_getcnode, then update the
165 * descriptor in the cnode as needed if the cnode represents a hardlink.
166 * We want the caller to get the most up-to-date copy of the descriptor
167 * as possible. However, we only do anything here if there was a valid vnode.
168 * If there isn't a vnode, then the cnode is brand new and needs to be initialized
169 * as it doesn't have a descriptor or cat_attr yet.
170 *
171 * If we are about to replace the descriptor with the user-supplied one, then validate
172 * that the descriptor correctly acknowledges this item is a hardlink. We could be
173 * subject to a race where the calling thread invoked cat_lookup, got a valid lookup
174 * result but the file was not yet a hardlink. With sufficient delay between there
175 * and here, we might accidentally copy in the raw inode ID into the descriptor in the
176 * call below. If the descriptor's CNID is the same as the fileID then it must
177 * not yet have been a hardlink when the lookup occurred.
178 */
179
180 if (!(cp->c_flag & (C_DELETED | C_NOEXISTS)))
181 {
182 //
183 // If the bytes of the filename in the descp do not match the bytes in the
184 // cnp (and we're not looking up the resource fork), then we want to update
185 // the vnode identity to contain the bytes that HFS stores so that when an
186 // fsevent gets generated, it has the correct filename. otherwise daemons
187 // that match filenames produced by fsevents with filenames they have stored
188 // elsewhere (e.g. bladerunner, backupd, mds), the filenames will not match.
189 // See: <rdar://problem/8044697> FSEvents doesn't always decompose diacritical unicode chars in the paths of the changed directories
190 // for more details.
191 //
192 if (*vpp && cnp && cnp->cn_nameptr && descp && descp->cd_nameptr && strncmp((const char *)cnp->cn_nameptr, (const char *)descp->cd_nameptr, descp->cd_namelen) != 0)
193 {
194 vnode_update_identity (*vpp, dvp, (const char *)descp->cd_nameptr, descp->cd_namelen, 0, VNODE_UPDATE_NAME);
195 }
196
197 if ((cp->c_flag & C_HARDLINK) && descp->cd_nameptr && descp->cd_namelen > 0)
198 {
199 /* If cnode is uninitialized, its c_attr will be zeroed out; cnids wont match. */
200 if ((descp->cd_cnid == cp->c_attr.ca_fileid) && (attrp->ca_linkcount != cp->c_attr.ca_linkcount))
201 {
202
203 if ((flags & GNV_SKIPLOCK) == 0)
204 {
205 /*
206 * Then we took the lock. Drop it before calling
207 * vnode_put, which may invoke hfs_vnop_inactive and need to take
208 * the cnode lock again.
209 */
210 hfs_unlock(cp);
211 }
212
213 /*
214 * Emit ERECYCLE and GNV_CAT_ATTRCHANGED to
215 * force a re-drive in the lookup routine.
216 * Drop the iocount on the vnode obtained from
217 * chash_getcnode if needed.
218 */
219 if (*vpp != NULL)
220 {
221 hfs_free(*vpp);
222 *vpp = NULL;
223 }
224
225 /*
226 * If we raced with VNOP_RECLAIM for this vnode, the hash code could
227 * have observed it after the c_vp or c_rsrc_vp fields had been torn down;
228 * the hash code peeks at those fields without holding the cnode lock because
229 * it needs to be fast. As a result, we may have set H_ATTACH in the chash
230 * call above. Since we're bailing out, unset whatever flags we just set, and
231 * wake up all waiters for this cnode.
232 */
233 if (hflags)
234 {
235 hfs_chashwakeup(hfsmp, cp, hflags);
236 }
237
238 *out_flags = GNV_CAT_ATTRCHANGED;
239 retval = ERECYCLE;
240 goto gnv_exit;
241 }
242 else
243 {
244 /*
245 * Otherwise, CNID != fileid. Go ahead and copy in the new descriptor.
246 *
247 * Replacing the descriptor here is fine because we looked up the item without
248 * a vnode in hand before. If a vnode existed, its identity must be attached to this
249 * item. We are not susceptible to the lookup fastpath issue at this point.
250 */
251 replace_desc(cp, descp);
252
253 /*
254 * This item was a hardlink, and its name needed to be updated. By replacing the
255 * descriptor above, we've now updated the cnode's internal representation of
256 * its link ID/CNID, parent ID, and its name. However, VFS must now be alerted
257 * to the fact that this vnode now has a new parent, since we cannot guarantee
258 * that the new link lived in the same directory as the alternative name for
259 * this item.
260 */
261 if ((*vpp != NULL) && (cnp || cp->c_desc.cd_nameptr))
262 {
263 /* we could be requesting the rsrc of a hardlink file... */
264 if (cp->c_desc.cd_nameptr)
265 {
266 // Update the identity with what we have stored on disk as the name of this file.
267 vnode_update_identity (*vpp, dvp, (const char *)cp->c_desc.cd_nameptr, cp->c_desc.cd_namelen, 0, (VNODE_UPDATE_PARENT | VNODE_UPDATE_NAME));
268 }
269 else if (cnp)
270 {
271 vnode_update_identity (*vpp, dvp, cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, (VNODE_UPDATE_PARENT | VNODE_UPDATE_NAME));
272 }
273 }
274 }
275 }
276 }
277
278 /*
279 * At this point, we have performed hardlink and open-unlinked checks
280 * above. We have now validated the state of the vnode that was given back
281 * to us from the cnode hash code and find it safe to return.
282 */
283 if (*vpp != NULL)
284 {
285 retval = 0;
286 goto gnv_exit;
287 }
288
289 /*
290 * If this is a new cnode then initialize it.
291 */
292 if (ISSET(cp->c_hflag, H_ALLOC))
293 {
294 lf_lck_rw_init(&cp->c_truncatelock);
295
296 /* Make sure its still valid (ie exists on disk). */
297 if (!(flags & GNV_CREATE))
298 {
299 int error = 0;
300 if (!hfs_valid_cnode (hfsmp, dvp, (wantrsrc ? NULL : cnp), cp->c_fileid, attrp, &error))
301 {
302 hfs_chash_abort(hfsmp, cp);
303 if ((flags & GNV_SKIPLOCK) == 0)
304 {
305 hfs_unlock(cp);
306 }
307
308 hfs_reclaim_cnode(cp);
309 *vpp = NULL;
310 /*
311 * If we hit this case, that means that the entry was there in the catalog when
312 * we did a cat_lookup earlier. Think hfs_lookup. However, in between the time
313 * that we checked the catalog and the time we went to get a vnode/cnode for it,
314 * it had been removed from the namespace and the vnode totally reclaimed. As a result,
315 * it's not there in the catalog during the check in hfs_valid_cnode and we bubble out
316 * an ENOENT. To indicate to the caller that they should really double-check the
317 * entry (it could have been renamed over and gotten a new fileid), we mark a bit
318 * in the output flags.
319 */
320 if (error == ENOENT)
321 {
322 *out_flags = GNV_CAT_DELETED;
323 retval = ENOENT;
324 goto gnv_exit;
325 }
326
327 /*
328 * Also, we need to protect the cat_attr acquired during hfs_lookup and passed into
329 * this function as an argument because the catalog may have changed w.r.t hardlink
330 * link counts and the firstlink field. If that validation check fails, then let
331 * lookup re-drive itself to get valid/consistent data with the same failure condition below.
332 */
333 if (error == ERECYCLE)
334 {
335 *out_flags = GNV_CAT_ATTRCHANGED;
336 retval = ERECYCLE;
337 goto gnv_exit;
338 }
339 }
340 }
341 bcopy(attrp, &cp->c_attr, sizeof(struct cat_attr));
342 bcopy(descp, &cp->c_desc, sizeof(struct cat_desc));
343
344 /* The name was inherited so clear descriptor state... */
345 descp->cd_nameptr = NULL;
346 descp->cd_namelen = 0;
347 descp->cd_flags &= ~CD_HASBUF;
348
349 /* Tag hardlinks */
350 if ( (vtype == VREG || vtype == VDIR || vtype == VSOCK || vtype == VFIFO) &&
351 (descp->cd_cnid != attrp->ca_fileid || ISSET(attrp->ca_recflags, kHFSHasLinkChainMask) ) )
352 {
353 cp->c_flag |= C_HARDLINK;
354 }
355
356 /*
357 * Fix-up dir link counts.
358 *
359 * Earlier versions of Leopard used ca_linkcount for posix
360 * nlink support (effectively the sub-directory count + 2).
361 * That is now accomplished using the ca_dircount field with
362 * the corresponding kHFSHasFolderCountMask flag.
363 *
364 * For directories the ca_linkcount is the true link count,
365 * tracking the number of actual hardlinks to a directory.
366 *
367 * We only do this if the mount has HFS_FOLDERCOUNT set;
368 * at the moment, we only set that for HFSX volumes.
369 */
370 if ( (hfsmp->hfs_flags & HFS_FOLDERCOUNT) && (vtype == VDIR) &&
371 (!(attrp->ca_recflags & kHFSHasFolderCountMask)) && (cp->c_attr.ca_linkcount > 1) )
372 {
373 if (cp->c_attr.ca_entries == 0)
374 {
375 cp->c_attr.ca_dircount = 0;
376 }
377 else
378 {
379 cp->c_attr.ca_dircount = cp->c_attr.ca_linkcount - 2;
380 }
381
382 cp->c_attr.ca_linkcount = 1;
383 cp->c_attr.ca_recflags |= kHFSHasFolderCountMask;
384 if ( !(hfsmp->hfs_flags & HFS_READ_ONLY) )
385 {
386 cp->c_flag |= C_MODIFIED;
387 }
388 }
389
390 /* Mark the output flag that we're vending a new cnode */
391 *out_flags |= GNV_NEW_CNODE;
392 }
393
394 if (vtype == VDIR)
395 {
396 if (cp->c_vp != NULL)
397 {
398 LFHFS_LOG(LEVEL_ERROR, "hfs_getnewvnode: orphaned vnode (data)");
399 assert(0);
400 }
401 cvpp = &cp->c_vp;
402 }
403 else
404 {
405 /*
406 * Allocate and initialize a file fork...
407 */
408 fp = hfs_malloc(sizeof(struct filefork));
409 if (fp == NULL)
410 {
411 retval = ENOMEM;
412 goto gnv_exit;
413 }
414 memset(fp,0,sizeof(struct filefork));
415
416 fp->ff_cp = cp;
417 if (forkp)
418 {
419 bcopy(forkp, &fp->ff_data, sizeof(struct cat_fork));
420 }
421 else
422 {
423 bzero(&fp->ff_data, sizeof(struct cat_fork));
424 }
425 rl_init(&fp->ff_invalidranges);
426 fp->ff_sysfileinfo = 0;
427
428 if (wantrsrc)
429 {
430 if (cp->c_rsrcfork != NULL)
431 {
432 LFHFS_LOG(LEVEL_ERROR, "hfs_getnewvnode: orphaned rsrc fork");
433 hfs_assert(0);
434 }
435 if (cp->c_rsrc_vp != NULL)
436 {
437 LFHFS_LOG(LEVEL_ERROR, "hfs_getnewvnode: orphaned vnode (rsrc)");
438 hfs_assert(0);
439 }
440 cp->c_rsrcfork = fp;
441 cvpp = &cp->c_rsrc_vp;
442 if ( (tvp = cp->c_vp) != NULL )
443 {
444 cp->c_flag |= C_NEED_DVNODE_PUT;
445 }
446 }
447 else
448 {
449 if (cp->c_datafork != NULL)
450 {
451 LFHFS_LOG(LEVEL_ERROR, "hfs_getnewvnode: orphaned data fork");
452 hfs_assert(0);
453 }
454 if (cp->c_vp != NULL)
455 {
456 LFHFS_LOG(LEVEL_ERROR, "hfs_getnewvnode: orphaned vnode (data)");
457 hfs_assert(0);
458 }
459
460 cp->c_datafork = fp;
461 cvpp = &cp->c_vp;
462 if ( (tvp = cp->c_rsrc_vp) != NULL)
463 {
464 cp->c_flag |= C_NEED_RVNODE_PUT;
465 }
466 }
467 }
468
469 vfsp.vnfs_mp = mp;
470 vfsp.vnfs_vtype = vtype;
471 vfsp.vnfs_str = "hfs";
472 if ((cp->c_flag & C_HARDLINK) && (vtype == VDIR))
473 {
474 vfsp.vnfs_dvp = NULL; /* no parent for me! */
475 vfsp.vnfs_cnp = NULL; /* no name for me! */
476 }
477 else
478 {
479 vfsp.vnfs_dvp = dvp;
480 if (cnp)
481 {
482 vfsp.vnfs_cnp = hfs_malloc(sizeof(struct componentname));
483 if (vfsp.vnfs_cnp == NULL)
484 {
485 if (fp)
486 {
487 hfs_free(fp);
488 }
489 retval = ENOMEM;
490 goto gnv_exit;
491 }
492
493 memcpy((void*) vfsp.vnfs_cnp, (void*)cnp, sizeof(struct componentname));
494 vfsp.vnfs_cnp->cn_nameptr = lf_hfs_utils_allocate_and_copy_string( (char*) cnp->cn_nameptr, cnp->cn_namelen );
495
496 } else {
497 // Incase of ScanID of hardlinks, take the filename from the cnode
498 if (cp && cp->c_desc.cd_nameptr) {
499 vfsp.vnfs_cnp = hfs_malloc(sizeof(struct componentname));
500 if (vfsp.vnfs_cnp == NULL) {
501 if (fp) hfs_free(fp);
502 retval = ENOMEM;
503 goto gnv_exit;
504 }
505 bzero(vfsp.vnfs_cnp, sizeof(struct componentname));
506 vfsp.vnfs_cnp->cn_nameptr = lf_hfs_utils_allocate_and_copy_string( (char*) cp->c_desc.cd_nameptr, cp->c_desc.cd_namelen );
507 vfsp.vnfs_cnp->cn_namelen = cp->c_desc.cd_namelen;
508 }
509 }
510 }
511
512 vfsp.vnfs_fsnode = cp;
513 vfsp.vnfs_rdev = 0;
514
515 if (forkp)
516 {
517 vfsp.vnfs_filesize = forkp->cf_size;
518 }
519 else
520 {
521 vfsp.vnfs_filesize = 0;
522 }
523
524 if (cnp && cnp->cn_nameptr && cp->c_desc.cd_nameptr && strncmp((const char *)cnp->cn_nameptr, (const char *)cp->c_desc.cd_nameptr, cp->c_desc.cd_namelen) != 0)
525 {
526 //
527 // We don't want VFS to add an entry for this vnode because the name in the
528 // cnp does not match the bytes stored on disk for this file. Instead we'll
529 // update the identity later after the vnode is created and we'll do so with
530 // the correct bytes for this filename. For more details, see:
531 // <rdar://problem/8044697> FSEvents doesn't always decompose diacritical unicode chars in the paths of the changed directories
532 //
533 need_update_identity = 1;
534 }
535
536
537 /* Tag system files */
538 vfsp.vnfs_marksystem = issystemfile;
539
540 /* Tag root directory */
541 if (descp->cd_cnid == kHFSRootFolderID)
542 {
543 vfsp.vnfs_markroot = 1;
544 }
545 else
546 {
547 vfsp.vnfs_markroot = 0;
548 }
549
550 /*
551 * If provided_vp was non-NULL, then it is an already-allocated (but not
552 * initialized) vnode. We simply need to initialize it to this identity.
553 * If it was NULL, then assume that we need to call vnode_create with the
554 * normal arguments/types.
555 */
556 if (provided_vp)
557 {
558 vp = provided_vp;
559 /*
560 * After we assign the value of provided_vp into 'vp' (so that it can be
561 * mutated safely by vnode_initialize), we can NULL it out. At this point, the disposal
562 * and handling of the provided vnode will be the responsibility of VFS, which will
563 * clean it up and vnode_put it properly if vnode_initialize fails.
564 */
565 provided_vp = NULL;
566 retval = vnode_initialize (sizeof(struct vnode_fsparam), &vfsp, &vp);
567 /* See error handling below for resolving provided_vp */
568 }
569 else
570 {
571 /* Do a standard vnode_create */
572 retval = vnode_create (sizeof(struct vnode_fsparam), &vfsp, &vp);
573 }
574
575 /*
576 * We used a local variable to hold the result of vnode_create/vnode_initialize so that
577 * on error cases in vnode_create we won't accidentally harm the cnode's fields
578 */
579
580 if (retval)
581 {
582 /* Clean up if we encountered an error */
583 if (fp) {
584 if (fp == cp->c_datafork)
585 cp->c_datafork = NULL;
586 else
587 cp->c_rsrcfork = NULL;
588
589 hfs_free(fp);
590 }
591 /*
592 * If this is a newly created cnode or a vnode reclaim
593 * occurred during the attachment, then cleanup the cnode.
594 */
595 if ((cp->c_vp == NULL) && (cp->c_rsrc_vp == NULL))
596 {
597 hfs_chash_abort(hfsmp, cp);
598
599 if ((flags & GNV_SKIPLOCK) == 0)
600 {
601 hfs_unlock(cp);
602 }
603 hfs_reclaim_cnode(cp);
604 }
605 else
606 {
607 hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_ATTACH);
608 if ((flags & GNV_SKIPLOCK) == 0)
609 {
610 hfs_unlock(cp);
611 }
612 }
613 *vpp = NULL;
614 goto gnv_exit;
615 }
616
617 /* If no error, then assign the value into the cnode's fields */
618 *cvpp = vp;
619
620 if (cp->c_flag & C_HARDLINK)
621 {
622 //TBD - this set is for vfs -> since we have the C_HARDLINK
623 // currently disable this set.
624 //vnode_setmultipath(vp);
625 }
626
627 if (vp && need_update_identity)
628 {
629 //
630 // As above, update the name of the vnode if the bytes stored in hfs do not match
631 // the bytes in the cnp. See this radar:
632 // <rdar://problem/8044697> FSEvents doesn't always decompose diacritical unicode chars in the paths of the changed directories
633 // for more details.
634 //
635 vnode_update_identity (vp, dvp, (const char *)cp->c_desc.cd_nameptr, cp->c_desc.cd_namelen, 0, VNODE_UPDATE_NAME);
636 }
637 /*
638 * Tag resource fork vnodes as needing an VNOP_INACTIVE
639 * so that any deferred removes (open unlinked files)
640 * have the chance to process the resource fork.
641 */
642 if (vp && VNODE_IS_RSRC(vp))
643 {
644 vp->is_rsrc = true;
645 }
646 hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_ATTACH);
647
648 SET_NODE_AS_VALID(vp);
649 *vpp = vp;
650 retval = 0;
651
652 gnv_exit:
653 if (provided_vp)
654 {
655 /* Release our empty vnode if it was not used */
656 vnode_rele (provided_vp);
657 }
658 return retval;
659 }
660
661 /*
662 * Check ordering of two cnodes. Return true if they are are in-order.
663 */
664 static int
665 hfs_isordered(struct cnode *cp1, struct cnode *cp2)
666 {
667 if (cp1 == cp2)
668 return (0);
669 if (cp1 == NULL || cp2 == (struct cnode *)0xffffffff)
670 return (1);
671 if (cp2 == NULL || cp1 == (struct cnode *)0xffffffff)
672 return (0);
673 /*
674 * Locking order is cnode address order.
675 */
676 return (cp1 < cp2);
677 }
678
679 /*
680 * Acquire 4 cnode locks.
681 * - locked in cnode address order (lesser address first).
682 * - all or none of the locks are taken
683 * - only one lock taken per cnode (dup cnodes are skipped)
684 * - some of the cnode pointers may be null
685 */
686 int
687 hfs_lockfour(struct cnode *cp1, struct cnode *cp2, struct cnode *cp3,
688 struct cnode *cp4, enum hfs_locktype locktype, struct cnode **error_cnode)
689 {
690 struct cnode * a[3];
691 struct cnode * b[3];
692 struct cnode * list[4];
693 struct cnode * tmp;
694 int i, j, k;
695 int error;
696 if (error_cnode) {
697 *error_cnode = NULL;
698 }
699
700 if (hfs_isordered(cp1, cp2))
701 {
702 a[0] = cp1; a[1] = cp2;
703 }
704 else {
705 a[0] = cp2; a[1] = cp1;
706 }
707 if (hfs_isordered(cp3, cp4)) {
708 b[0] = cp3; b[1] = cp4;
709 } else {
710 b[0] = cp4; b[1] = cp3;
711 }
712 a[2] = (struct cnode *)0xffffffff; /* sentinel value */
713 b[2] = (struct cnode *)0xffffffff; /* sentinel value */
714
715 /*
716 * Build the lock list, skipping over duplicates
717 */
718 for (i = 0, j = 0, k = 0; (i < 2 || j < 2); ) {
719 tmp = hfs_isordered(a[i], b[j]) ? a[i++] : b[j++];
720 if (k == 0 || tmp != list[k-1])
721 list[k++] = tmp;
722 }
723
724 /*
725 * Now we can lock using list[0 - k].
726 * Skip over NULL entries.
727 */
728 for (i = 0; i < k; ++i) {
729 if (list[i])
730 if ((error = hfs_lock(list[i], locktype, HFS_LOCK_DEFAULT))) {
731 /* Only stuff error_cnode if requested */
732 if (error_cnode) {
733 *error_cnode = list[i];
734 }
735 /* Drop any locks we acquired. */
736 while (--i >= 0) {
737 if (list[i])
738 hfs_unlock(list[i]);
739 }
740 return (error);
741 }
742 }
743 return (0);
744 }
745
746 /*
747 * Unlock a group of cnodes.
748 */
749 void
750 hfs_unlockfour(struct cnode *cp1, struct cnode *cp2, struct cnode *cp3, struct cnode *cp4)
751 {
752 struct cnode * list[4];
753 int i, k = 0;
754
755 if (cp1) {
756 hfs_unlock(cp1);
757 list[k++] = cp1;
758 }
759 if (cp2) {
760 for (i = 0; i < k; ++i) {
761 if (list[i] == cp2)
762 goto skip1;
763 }
764 hfs_unlock(cp2);
765 list[k++] = cp2;
766 }
767 skip1:
768 if (cp3) {
769 for (i = 0; i < k; ++i) {
770 if (list[i] == cp3)
771 goto skip2;
772 }
773 hfs_unlock(cp3);
774 list[k++] = cp3;
775 }
776 skip2:
777 if (cp4) {
778 for (i = 0; i < k; ++i) {
779 if (list[i] == cp4)
780 return;
781 }
782 hfs_unlock(cp4);
783 }
784 }
785
786 /*
787 * Lock a cnode.
788 * N.B. If you add any failure cases, *make* sure hfs_lock_always works
789 */
790 int
791 hfs_lock(struct cnode *cp, enum hfs_locktype locktype, enum hfs_lockflags flags)
792 {
793 pthread_t thread = pthread_self();
794
795 if (cp->c_lockowner == thread)
796 {
797 /*
798 * Only the extents and bitmap files support lock recursion
799 * here. The other system files support lock recursion in
800 * hfs_systemfile_lock. Eventually, we should change to
801 * handle recursion solely in hfs_systemfile_lock.
802 */
803 if ((cp->c_fileid == kHFSExtentsFileID) || (cp->c_fileid == kHFSAllocationFileID))
804 {
805 cp->c_syslockcount++;
806 }
807 else
808 {
809 LFHFS_LOG(LEVEL_ERROR, "hfs_lock: locking against myself!");
810 hfs_assert(0);
811 }
812 }
813 else if (locktype == HFS_SHARED_LOCK)
814 {
815 lf_lck_rw_lock_shared(&cp->c_rwlock);
816 cp->c_lockowner = HFS_SHARED_OWNER;
817 }
818 else if (locktype == HFS_TRY_EXCLUSIVE_LOCK)
819 {
820 if (!lf_lck_rw_try_lock(&cp->c_rwlock, LCK_RW_TYPE_EXCLUSIVE))
821 {
822 cp->c_lockowner = thread;
823
824 /* Only the extents and bitmap files support lock recursion. */
825 if ((cp->c_fileid == kHFSExtentsFileID) || (cp->c_fileid == kHFSAllocationFileID))
826 {
827 cp->c_syslockcount = 1;
828 }
829 }
830 else
831 {
832 return (1);
833 }
834 }
835 else
836 { /* HFS_EXCLUSIVE_LOCK */
837 lf_lck_rw_lock_exclusive(&cp->c_rwlock);
838 cp->c_lockowner = thread;
839 /* Only the extents and bitmap files support lock recursion. */
840 if ((cp->c_fileid == kHFSExtentsFileID) || (cp->c_fileid == kHFSAllocationFileID))
841 {
842 cp->c_syslockcount = 1;
843 }
844 }
845
846 /*
847 * Skip cnodes for regular files that no longer exist
848 * (marked deleted, catalog entry gone).
849 */
850 if (((flags & HFS_LOCK_ALLOW_NOEXISTS) == 0) && ((cp->c_desc.cd_flags & CD_ISMETA) == 0) && (cp->c_flag & C_NOEXISTS))
851 {
852 hfs_unlock(cp);
853 return (ENOENT);
854 }
855 return (0);
856 }
857
858 /*
859 * Unlock a cnode.
860 */
861 void
862 hfs_unlock(struct cnode *cp)
863 {
864 u_int32_t c_flag = 0;
865
866 /*
867 * Only the extents and bitmap file's support lock recursion.
868 */
869 if ((cp->c_fileid == kHFSExtentsFileID) || (cp->c_fileid == kHFSAllocationFileID))
870 {
871 if (--cp->c_syslockcount > 0)
872 {
873 return;
874 }
875 }
876
877 pthread_t thread = pthread_self();
878
879 if (cp->c_lockowner == thread)
880 {
881 c_flag = cp->c_flag;
882
883 // If we have the truncate lock, we must defer the puts
884 if (cp->c_truncatelockowner == thread)
885 {
886 if (ISSET(c_flag, C_NEED_DVNODE_PUT)
887 && !cp->c_need_dvnode_put_after_truncate_unlock)
888 {
889 CLR(c_flag, C_NEED_DVNODE_PUT);
890 cp->c_need_dvnode_put_after_truncate_unlock = true;
891 }
892 if (ISSET(c_flag, C_NEED_RVNODE_PUT)
893 && !cp->c_need_rvnode_put_after_truncate_unlock)
894 {
895 CLR(c_flag, C_NEED_RVNODE_PUT);
896 cp->c_need_rvnode_put_after_truncate_unlock = true;
897 }
898 }
899
900 CLR(cp->c_flag, (C_NEED_DATA_SETSIZE | C_NEED_RSRC_SETSIZE | C_NEED_DVNODE_PUT | C_NEED_RVNODE_PUT));
901
902 cp->c_lockowner = NULL;
903 lf_lck_rw_unlock_exclusive(&cp->c_rwlock);
904 }
905 else
906 {
907 cp->c_lockowner = NULL;
908 lf_lck_rw_unlock_shared(&cp->c_rwlock);
909 }
910 }
911
912 /*
913 * hfs_valid_cnode
914 *
915 * This function is used to validate data that is stored in-core against what is contained
916 * in the catalog. Common uses include validating that the parent-child relationship still exist
917 * for a specific directory entry (guaranteeing it has not been renamed into a different spot) at
918 * the point of the check.
919 */
920 int
921 hfs_valid_cnode(struct hfsmount *hfsmp, struct vnode *dvp, struct componentname *cnp, cnid_t cnid, struct cat_attr *cattr, int *error)
922 {
923 struct cat_attr attr;
924 struct cat_desc cndesc;
925 int stillvalid = 0;
926
927 /* System files are always valid */
928 if (cnid < kHFSFirstUserCatalogNodeID)
929 {
930 *error = 0;
931 return (1);
932 }
933
934 /* XXX optimization: check write count in dvp */
935 int lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
936
937 if (dvp && cnp)
938 {
939 int lookup = 0;
940 struct cat_fork fork;
941 bzero(&cndesc, sizeof(cndesc));
942 cndesc.cd_nameptr = (const u_int8_t *)cnp->cn_nameptr;
943 cndesc.cd_namelen = cnp->cn_namelen;
944 cndesc.cd_parentcnid = VTOC(dvp)->c_fileid;
945 cndesc.cd_hint = VTOC(dvp)->c_childhint;
946
947 /*
948 * We have to be careful when calling cat_lookup. The result argument
949 * 'attr' may get different results based on whether or not you ask
950 * for the filefork to be supplied as output. This is because cat_lookupbykey
951 * will attempt to do basic validation/smoke tests against the resident
952 * extents if there are no overflow extent records, but it needs someplace
953 * in memory to store the on-disk fork structures.
954 *
955 * Since hfs_lookup calls cat_lookup with a filefork argument, we should
956 * do the same here, to verify that block count differences are not
957 * due to calling the function with different styles. cat_lookupbykey
958 * will request the volume be fsck'd if there is true on-disk corruption
959 * where the number of blocks does not match the number generated by
960 * summing the number of blocks in the resident extents.
961 */
962 lookup = cat_lookup (hfsmp, &cndesc, 0, NULL, &attr, &fork, NULL);
963
964 if ((lookup == 0) && (cnid == attr.ca_fileid))
965 {
966 stillvalid = 1;
967 *error = 0;
968 }
969 else
970 {
971 *error = ENOENT;
972 }
973 /*
974 * In hfs_getnewvnode, we may encounter a time-of-check vs. time-of-vnode creation
975 * race. Specifically, if there is no vnode/cnode pair for the directory entry
976 * being looked up, we have to go to the catalog. But since we don't hold any locks (aside
977 * from the dvp in 'shared' mode) there is nothing to protect us against the catalog record
978 * changing in between the time we do the cat_lookup there and the time we re-grab the
979 * catalog lock above to do another cat_lookup.
980 *
981 * However, we need to check more than just the CNID and parent-child name relationships above.
982 * Hardlinks can suffer the same race in the following scenario: Suppose we do a
983 * cat_lookup, and find a leaf record and a raw inode for a hardlink. Now, we have
984 * the cat_attr in hand (passed in above). But in between then and now, the vnode was
985 * created by a competing hfs_getnewvnode call, and is manipulated and reclaimed before we get
986 * a chance to do anything. This is possible if there are a lot of threads thrashing around
987 * with the cnode hash. In this case, if we don't check/validate the cat_attr in-hand, we will
988 * blindly stuff it into the cnode, which will make the in-core data inconsistent with what is
989 * on disk. So validate the cat_attr below, if required. This race cannot happen if the cnode/vnode
990 * already exists, as it does in the case of rename and delete.
991 */
992 if (stillvalid && cattr != NULL)
993 {
994 if (cattr->ca_linkcount != attr.ca_linkcount)
995 {
996 stillvalid = 0;
997 *error = ERECYCLE;
998 goto notvalid;
999 }
1000
1001 if (cattr->ca_union1.cau_linkref != attr.ca_union1.cau_linkref)
1002 {
1003 stillvalid = 0;
1004 *error = ERECYCLE;
1005 goto notvalid;
1006 }
1007
1008 if (cattr->ca_union3.cau_firstlink != attr.ca_union3.cau_firstlink)
1009 {
1010 stillvalid = 0;
1011 *error = ERECYCLE;
1012 goto notvalid;
1013 }
1014 if (cattr->ca_union2.cau_blocks != attr.ca_union2.cau_blocks)
1015 {
1016 stillvalid = 0;
1017 *error = ERECYCLE;
1018 goto notvalid;
1019 }
1020 }
1021 }
1022 else
1023 {
1024 if (cat_idlookup(hfsmp, cnid, 0, 0, NULL, NULL, NULL) == 0)
1025 {
1026 stillvalid = 1;
1027 *error = 0;
1028 }
1029 else
1030 {
1031 *error = ENOENT;
1032 }
1033 }
1034
1035 notvalid:
1036 hfs_systemfile_unlock(hfsmp, lockflags);
1037
1038 return (stillvalid);
1039 }
1040
1041 /*
1042 * Protect a cnode against a truncation.
1043 *
1044 * Used mainly by read/write since they don't hold the
1045 * cnode lock across calls to the cluster layer.
1046 *
1047 * The process doing a truncation must take the lock
1048 * exclusive. The read/write processes can take it
1049 * shared. The locktype argument is the same as supplied to
1050 * hfs_lock.
1051 */
1052 void
1053 hfs_lock_truncate(struct cnode *cp, enum hfs_locktype locktype, enum hfs_lockflags flags)
1054 {
1055 pthread_t thread = pthread_self();
1056
1057 if (cp->c_truncatelockowner == thread) {
1058 /*
1059 * Ignore grabbing the lock if it the current thread already
1060 * holds exclusive lock.
1061 *
1062 * This is needed on the hfs_vnop_pagein path where we need to ensure
1063 * the file does not change sizes while we are paging in. However,
1064 * we may already hold the lock exclusive due to another
1065 * VNOP from earlier in the call stack. So if we already hold
1066 * the truncate lock exclusive, allow it to proceed, but ONLY if
1067 * it's in the recursive case.
1068 */
1069 if ((flags & HFS_LOCK_SKIP_IF_EXCLUSIVE) == 0)
1070 {
1071 LFHFS_LOG(LEVEL_ERROR, "hfs_lock_truncate: cnode %p locked!", cp);
1072 hfs_assert(0);
1073 }
1074 } else if (locktype == HFS_SHARED_LOCK) {
1075 lf_lck_rw_lock_shared(&cp->c_truncatelock);
1076 cp->c_truncatelockowner = HFS_SHARED_OWNER;
1077 } else { /* HFS_EXCLUSIVE_LOCK */
1078 lf_lck_rw_lock_exclusive(&cp->c_truncatelock);
1079 cp->c_truncatelockowner = thread;
1080 }
1081 }
1082
1083 /*
1084 * Unlock the truncate lock, which protects against size changes.
1085 *
1086 * If HFS_LOCK_SKIP_IF_EXCLUSIVE flag was set, it means that a previous
1087 * hfs_lock_truncate() might have skipped grabbing a lock because
1088 * the current thread was already holding the lock exclusive and
1089 * we may need to return from this function without actually unlocking
1090 * the truncate lock.
1091 */
1092 void
1093 hfs_unlock_truncate(struct cnode *cp, enum hfs_lockflags flags)
1094 {
1095 pthread_t thread = pthread_self();
1096
1097 /*
1098 * If HFS_LOCK_SKIP_IF_EXCLUSIVE is set in the flags AND the current
1099 * lock owner of the truncate lock is our current thread, then
1100 * we must have skipped taking the lock earlier by in
1101 * hfs_lock_truncate() by setting HFS_LOCK_SKIP_IF_EXCLUSIVE in the
1102 * flags (as the current thread was current lock owner).
1103 *
1104 * If HFS_LOCK_SKIP_IF_EXCLUSIVE is not set (most of the time) then
1105 * we check the lockowner field to infer whether the lock was taken
1106 * exclusively or shared in order to know what underlying lock
1107 * routine to call.
1108 */
1109 if (flags & HFS_LOCK_SKIP_IF_EXCLUSIVE) {
1110 if (cp->c_truncatelockowner == thread) {
1111 return;
1112 }
1113 }
1114
1115 /* HFS_LOCK_EXCLUSIVE */
1116 if (thread == cp->c_truncatelockowner) {
1117 // vnode_t vp = NULL, rvp = NULL;
1118
1119 /*
1120 * If there are pending set sizes, the cnode lock should be dropped
1121 * first.
1122 */
1123 hfs_assert(!(cp->c_lockowner == thread
1124 && ISSET(cp->c_flag, C_NEED_DATA_SETSIZE | C_NEED_RSRC_SETSIZE)));
1125
1126 // if (cp->c_need_dvnode_put_after_truncate_unlock) {
1127 // vp = cp->c_vp;
1128 // cp->c_need_dvnode_put_after_truncate_unlock = false;
1129 // }
1130 // if (cp->c_need_rvnode_put_after_truncate_unlock) {
1131 // rvp = cp->c_rsrc_vp;
1132 // cp->c_need_rvnode_put_after_truncate_unlock = false;
1133 // }
1134
1135 cp->c_truncatelockowner = NULL;
1136 lf_lck_rw_unlock_exclusive(&cp->c_truncatelock);
1137 //
1138 // // Do the puts now
1139 // if (vp)
1140 // vnode_put(vp);
1141 // if (rvp)
1142 // vnode_put(rvp);
1143 } else
1144 { /* HFS_LOCK_SHARED */
1145 lf_lck_rw_unlock_shared(&cp->c_truncatelock);
1146 }
1147 }
1148
1149 /*
1150 * Lock a pair of cnodes.
1151 */
1152 int
1153 hfs_lockpair(struct cnode *cp1, struct cnode *cp2, enum hfs_locktype locktype)
1154 {
1155 struct cnode *first, *last;
1156 int error;
1157
1158 /*
1159 * If cnodes match then just lock one.
1160 */
1161 if (cp1 == cp2)
1162 {
1163 return hfs_lock(cp1, locktype, HFS_LOCK_DEFAULT);
1164 }
1165
1166 /*
1167 * Lock in cnode address order.
1168 */
1169 if (cp1 < cp2)
1170 {
1171 first = cp1;
1172 last = cp2;
1173 }
1174 else
1175 {
1176 first = cp2;
1177 last = cp1;
1178 }
1179
1180 if ( (error = hfs_lock(first, locktype, HFS_LOCK_DEFAULT)))
1181 {
1182 return (error);
1183 }
1184 if ( (error = hfs_lock(last, locktype, HFS_LOCK_DEFAULT)))
1185 {
1186 hfs_unlock(first);
1187 return (error);
1188 }
1189 return (0);
1190 }
1191
1192 /*
1193 * Unlock a pair of cnodes.
1194 */
1195 void
1196 hfs_unlockpair(struct cnode *cp1, struct cnode *cp2)
1197 {
1198 hfs_unlock(cp1);
1199 if (cp2 != cp1)
1200 hfs_unlock(cp2);
1201 }
1202
1203 /*
1204 * Increase the gen count by 1; if it wraps around to 0, increment by
1205 * two. The cnode *must* be locked exclusively by the caller.
1206 *
1207 * You may think holding the lock is unnecessary because we only need
1208 * to change the counter, but consider this sequence of events: thread
1209 * A calls hfs_incr_gencount and the generation counter is 2 upon
1210 * entry. A context switch occurs and thread B increments the counter
1211 * to 3, thread C now gets the generation counter (for whatever
1212 * purpose), and then another thread makes another change and the
1213 * generation counter is incremented again---it's now 4. Now thread A
1214 * continues and it sets the generation counter back to 3. So you can
1215 * see, thread C would miss the change that caused the generation
1216 * counter to increment to 4 and for this reason the cnode *must*
1217 * always be locked exclusively.
1218 */
1219 uint32_t hfs_incr_gencount (struct cnode *cp)
1220 {
1221 u_int8_t *finfo = NULL;
1222 u_int32_t gcount = 0;
1223
1224 /* overlay the FinderInfo to the correct pointer, and advance */
1225 finfo = (u_int8_t*)cp->c_finderinfo;
1226 finfo = finfo + 16;
1227
1228 /*
1229 * FinderInfo is written out in big endian... make sure to convert it to host
1230 * native before we use it.
1231 *
1232 * NOTE: the write_gen_counter is stored in the same location in both the
1233 * FndrExtendedFileInfo and FndrExtendedDirInfo structs (it's the
1234 * last 32-bit word) so it is safe to have one code path here.
1235 */
1236 if (S_ISDIR(cp->c_attr.ca_mode) || S_ISREG(cp->c_attr.ca_mode))
1237 {
1238 struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
1239 gcount = extinfo->write_gen_counter;
1240
1241 /* Was it zero to begin with (file originated in 10.8 or earlier?) */
1242 if (gcount == 0)
1243 {
1244 gcount++;
1245 }
1246
1247 /* now bump it */
1248 gcount++;
1249
1250 /* Did it wrap around ? */
1251 if (gcount == 0)
1252 {
1253 gcount++;
1254 }
1255 extinfo->write_gen_counter = OSSwapHostToBigInt32 (gcount);
1256
1257 SET(cp->c_flag, C_MINOR_MOD);
1258 }
1259 else
1260 {
1261 gcount = 0;
1262 }
1263
1264 return gcount;
1265 }
1266
1267 void hfs_write_gencount (struct cat_attr *attrp, uint32_t gencount)
1268 {
1269 u_int8_t *finfo = NULL;
1270
1271 /* overlay the FinderInfo to the correct pointer, and advance */
1272 finfo = (u_int8_t*)attrp->ca_finderinfo;
1273 finfo = finfo + 16;
1274
1275 /*
1276 * Make sure to write it out as big endian, since that's how
1277 * finder info is defined.
1278 *
1279 * Generation count is only supported for files.
1280 */
1281 if (S_ISREG(attrp->ca_mode)) {
1282 struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
1283 extinfo->write_gen_counter = OSSwapHostToBigInt32(gencount);
1284 }
1285
1286 /* If it were neither directory/file, then we'd bail out */
1287 return;
1288 }
1289
1290 void hfs_clear_might_be_dirty_flag(cnode_t *cp)
1291 {
1292 /*
1293 * If we're about to touch both mtime and ctime, we can clear the
1294 * C_MIGHT_BE_DIRTY_FROM_MAPPING since we can guarantee that
1295 * subsequent page-outs can only be for data made dirty before
1296 * now.
1297 */
1298 CLR(cp->c_flag, C_MIGHT_BE_DIRTY_FROM_MAPPING);
1299 }
1300
1301 /*
1302 * Touch cnode times based on c_touch_xxx flags
1303 *
1304 * cnode must be locked exclusive
1305 *
1306 * This will also update the volume modify time
1307 */
1308 void
1309 hfs_touchtimes(struct hfsmount *hfsmp, struct cnode* cp)
1310 {
1311
1312 if (ISSET(hfsmp->hfs_flags, HFS_READ_ONLY) || ISSET(cp->c_flag, C_NOEXISTS)) {
1313 cp->c_touch_acctime = FALSE;
1314 cp->c_touch_chgtime = FALSE;
1315 cp->c_touch_modtime = FALSE;
1316 CLR(cp->c_flag, C_NEEDS_DATEADDED);
1317 return;
1318 }
1319
1320 if (cp->c_touch_acctime || cp->c_touch_chgtime ||
1321 cp->c_touch_modtime || (cp->c_flag & C_NEEDS_DATEADDED)) {
1322 struct timeval tv;
1323 int touchvol = 0;
1324
1325 if (cp->c_touch_modtime && cp->c_touch_chgtime)
1326 hfs_clear_might_be_dirty_flag(cp);
1327
1328 microtime(&tv);
1329
1330 if (cp->c_touch_acctime) {
1331 /*
1332 * When the access time is the only thing changing, we
1333 * won't necessarily write it to disk immediately. We
1334 * only do the atime update at vnode recycle time, when
1335 * fsync is called or when there's another reason to write
1336 * to the metadata.
1337 */
1338 cp->c_atime = tv.tv_sec;
1339 cp->c_touch_acctime = FALSE;
1340 }
1341 if (cp->c_touch_modtime) {
1342 cp->c_touch_modtime = FALSE;
1343 time_t new_time = tv.tv_sec;
1344 if (cp->c_mtime != new_time) {
1345 cp->c_mtime = new_time;
1346 cp->c_flag |= C_MINOR_MOD;
1347 touchvol = 1;
1348 }
1349 }
1350 if (cp->c_touch_chgtime) {
1351 cp->c_touch_chgtime = FALSE;
1352 if (cp->c_ctime != tv.tv_sec) {
1353 cp->c_ctime = tv.tv_sec;
1354 cp->c_flag |= C_MINOR_MOD;
1355 touchvol = 1;
1356 }
1357 }
1358
1359 if (cp->c_flag & C_NEEDS_DATEADDED) {
1360 hfs_write_dateadded (&(cp->c_attr), tv.tv_sec);
1361 cp->c_flag |= C_MINOR_MOD;
1362 /* untwiddle the bit */
1363 cp->c_flag &= ~C_NEEDS_DATEADDED;
1364 touchvol = 1;
1365 }
1366
1367 /* Touch the volume modtime if needed */
1368 if (touchvol) {
1369 hfs_note_header_minor_change(hfsmp);
1370 HFSTOVCB(hfsmp)->vcbLsMod = tv.tv_sec;
1371 }
1372 }
1373 }
1374
1375 /*
1376 * Per HI and Finder requirements, HFS should add in the
1377 * date/time that a particular directory entry was added
1378 * to the containing directory.
1379 * This is stored in the extended Finder Info for the
1380 * item in question.
1381 *
1382 * Note that this field is also set explicitly in the hfs_vnop_setxattr code.
1383 * We must ignore user attempts to set this part of the finderinfo, and
1384 * so we need to save a local copy of the date added, write in the user
1385 * finderinfo, then stuff the value back in.
1386 */
1387 void hfs_write_dateadded (struct cat_attr *attrp, uint64_t dateadded)
1388 {
1389 u_int8_t *finfo = NULL;
1390
1391 /* overlay the FinderInfo to the correct pointer, and advance */
1392 finfo = (u_int8_t*)attrp->ca_finderinfo;
1393 finfo = finfo + 16;
1394
1395 /*
1396 * Make sure to write it out as big endian, since that's how
1397 * finder info is defined.
1398 *
1399 * NOTE: This is a Unix-epoch timestamp, not a HFS/Traditional Mac timestamp.
1400 */
1401 if (S_ISREG(attrp->ca_mode)) {
1402 struct FndrExtendedFileInfo *extinfo = (struct FndrExtendedFileInfo *)finfo;
1403 extinfo->date_added = OSSwapHostToBigInt32(dateadded);
1404 attrp->ca_recflags |= kHFSHasDateAddedMask;
1405 }
1406 else if (S_ISDIR(attrp->ca_mode)) {
1407 struct FndrExtendedDirInfo *extinfo = (struct FndrExtendedDirInfo *)finfo;
1408 extinfo->date_added = OSSwapHostToBigInt32(dateadded);
1409 attrp->ca_recflags |= kHFSHasDateAddedMask;
1410 }
1411 /* If it were neither directory/file, then we'd bail out */
1412 return;
1413 }
1414
1415 static u_int32_t
1416 hfs_get_dateadded_internal(const uint8_t *finderinfo, mode_t mode)
1417 {
1418 const uint8_t *finfo = NULL;
1419 u_int32_t dateadded = 0;
1420
1421 /* overlay the FinderInfo to the correct pointer, and advance */
1422 finfo = finderinfo + 16;
1423
1424 /*
1425 * FinderInfo is written out in big endian... make sure to convert it to host
1426 * native before we use it.
1427 */
1428 if (S_ISREG(mode)) {
1429 const struct FndrExtendedFileInfo *extinfo = (const struct FndrExtendedFileInfo *)finfo;
1430 dateadded = OSSwapBigToHostInt32 (extinfo->date_added);
1431 }
1432 else if (S_ISDIR(mode)) {
1433 const struct FndrExtendedDirInfo *extinfo = (const struct FndrExtendedDirInfo *)finfo;
1434 dateadded = OSSwapBigToHostInt32 (extinfo->date_added);
1435 }
1436
1437 return dateadded;
1438 }
1439
1440 u_int32_t
1441 hfs_get_dateadded(struct cnode *cp)
1442 {
1443 if ((cp->c_attr.ca_recflags & kHFSHasDateAddedMask) == 0) {
1444 /* Date added was never set. Return 0. */
1445 return (0);
1446 }
1447
1448 return (hfs_get_dateadded_internal((u_int8_t*)cp->c_finderinfo,
1449 cp->c_attr.ca_mode));
1450 }
1451
1452 static bool
1453 hfs_cnode_isinuse(struct cnode *cp, uint32_t uRefCount)
1454 {
1455 return (cp->uOpenLookupRefCount > uRefCount);
1456 }
1457
1458 /*
1459 * hfs_cnode_teardown
1460 *
1461 * This is an internal function that is invoked from both hfs_vnop_inactive
1462 * and hfs_vnop_reclaim. As VNOP_INACTIVE is not necessarily called from vnodes
1463 * being recycled and reclaimed, it is important that we do any post-processing
1464 * necessary for the cnode in both places. Important tasks include things such as
1465 * releasing the blocks from an open-unlinked file when all references to it have dropped,
1466 * and handling resource forks separately from data forks.
1467 *
1468 * Note that we take only the vnode as an argument here (rather than the cnode).
1469 * Recall that each cnode supports two forks (rsrc/data), and we can always get the right
1470 * cnode from either of the vnodes, but the reverse is not true -- we can't determine which
1471 * vnode we need to reclaim if only the cnode is supplied.
1472 *
1473 * This function is idempotent and safe to call from both hfs_vnop_inactive and hfs_vnop_reclaim
1474 * if both are invoked right after the other. In the second call, most of this function's if()
1475 * conditions will fail, since they apply generally to cnodes still marked with C_DELETED.
1476 * As a quick check to see if this function is necessary, determine if the cnode is already
1477 * marked C_NOEXISTS. If it is, then it is safe to skip this function. The only tasks that
1478 * remain for cnodes marked in such a fashion is to teardown their fork references and
1479 * release all directory hints and hardlink origins. However, both of those are done
1480 * in hfs_vnop_reclaim. hfs_update, by definition, is not necessary if the cnode's catalog
1481 * entry is no longer there.
1482 *
1483 * 'reclaim' argument specifies whether or not we were called from hfs_vnop_reclaim. If we are
1484 * invoked from hfs_vnop_reclaim, we can not call functions that cluster_push since the UBC info
1485 * is totally gone by that point.
1486 *
1487 * Assumes that both truncate and cnode locks for 'cp' are held.
1488 */
1489 static int
1490 hfs_cnode_teardown (struct vnode *vp, int reclaim)
1491 {
1492 int forkcount = 0;
1493 enum vtype v_type = vp->sFSParams.vnfs_vtype;
1494 struct cnode* cp = VTOC(vp);
1495 int error = 0;
1496 bool started_tr = false;
1497 struct hfsmount *hfsmp = VTOHFS(vp);
1498 int truncated = 0;
1499 cat_cookie_t cookie;
1500 int cat_reserve = 0;
1501 int lockflags = 0;
1502 int ea_error = 0;
1503
1504 if (cp->c_datafork) {
1505 ++forkcount;
1506 }
1507 if (cp->c_rsrcfork) {
1508 ++forkcount;
1509 }
1510
1511 /*
1512 * Remove any directory hints or cached origins
1513 */
1514 if (v_type == VDIR) {
1515 hfs_reldirhints(cp, 0);
1516 }
1517 if (cp->c_flag & C_HARDLINK) {
1518 hfs_relorigins(cp);
1519 }
1520 /*
1521 * -- Handle open unlinked files --
1522 *
1523 * If the vnode is in use, it means a force unmount is in progress
1524 * in which case we defer cleaning up until either we come back
1525 * through here via hfs_vnop_reclaim, at which point the UBC
1526 * information will have been torn down and the vnode might no
1527 * longer be in use, or if it's still in use, it will get cleaned
1528 * up when next remounted.
1529 */
1530 if (ISSET(cp->c_flag, C_DELETED) && !hfs_cnode_isinuse(cp, 0)) {
1531 /*
1532 * This check is slightly complicated. We should only truncate data
1533 * in very specific cases for open-unlinked files. This is because
1534 * we want to ensure that the resource fork continues to be available
1535 * if the caller has the data fork open. However, this is not symmetric;
1536 * someone who has the resource fork open need not be able to access the data
1537 * fork once the data fork has gone inactive.
1538 *
1539 * If we're the last fork, then we have cleaning up to do.
1540 *
1541 * A) last fork, and vp == c_vp
1542 * Truncate away own fork data. If rsrc fork is not in core, truncate it too.
1543 *
1544 * B) last fork, and vp == c_rsrc_vp
1545 * Truncate ourselves, assume data fork has been cleaned due to C).
1546 *
1547 * If we're not the last fork, then things are a little different:
1548 *
1549 * C) not the last fork, vp == c_vp
1550 * Truncate ourselves. Once the file has gone out of the namespace,
1551 * it cannot be further opened. Further access to the rsrc fork may
1552 * continue, however.
1553 *
1554 * D) not the last fork, vp == c_rsrc_vp
1555 * Don't enter the block below, just clean up vnode and push it out of core.
1556 */
1557
1558 if ((v_type == VREG || v_type == VLNK) &&
1559 ((forkcount == 1) || (!VNODE_IS_RSRC(vp)))) {
1560
1561 /* Truncate away our own fork data. (Case A, B, C above) */
1562 if (VTOF(vp) && VTOF(vp)->ff_blocks != 0) {
1563 /*
1564 * SYMLINKS only:
1565 *
1566 * Encapsulate the entire change (including truncating the link) in
1567 * nested transactions if we are modifying a symlink, because we know that its
1568 * file length will be at most 4k, and we can fit both the truncation and
1569 * any relevant bitmap changes into a single journal transaction. We also want
1570 * the kill_block code to execute in the same transaction so that any dirty symlink
1571 * blocks will not be written. Otherwise, rely on
1572 * hfs_truncate doing its own transactions to ensure that we don't blow up
1573 * the journal.
1574 */
1575 if (!started_tr && (v_type == VLNK)) {
1576 if (hfs_start_transaction(hfsmp) != 0) {
1577 error = EINVAL;
1578 goto out;
1579 }
1580 else {
1581 started_tr = true;
1582 }
1583 }
1584
1585 /*
1586 * At this point, we have decided that this cnode is
1587 * suitable for full removal. We are about to deallocate
1588 * its blocks and remove its entry from the catalog.
1589 * If it was a symlink, then it's possible that the operation
1590 * which created it is still in the current transaction group
1591 * due to coalescing. Take action here to kill the data blocks
1592 * of the symlink out of the journal before moving to
1593 * deallocate the blocks. We need to be in the middle of
1594 * a transaction before calling buf_iterate like this.
1595 *
1596 * Note: we have to kill any potential symlink buffers out of
1597 * the journal prior to deallocating their blocks. This is so
1598 * that we don't race with another thread that may be doing an
1599 * an allocation concurrently and pick up these blocks. It could
1600 * generate I/O against them which could go out ahead of our journal
1601 * transaction.
1602 */
1603
1604 if (hfsmp->jnl && vnode_islnk(vp)) {
1605 lf_hfs_generic_buf_write_iterate(vp, hfs_removefile_callback, BUF_SKIP_NONLOCKED, (void *)hfsmp);
1606 }
1607
1608 /*
1609 * This truncate call (and the one below) is fine from VNOP_RECLAIM's
1610 * context because we're only removing blocks, not zero-filling new
1611 * ones. The C_DELETED check above makes things much simpler.
1612 */
1613 error = hfs_truncate(vp, (off_t)0, IO_NDELAY, 0);
1614 if (error) {
1615 goto out;
1616 }
1617 truncated = 1;
1618
1619 /* (SYMLINKS ONLY): Close/End our transaction after truncating the file record */
1620 if (started_tr) {
1621 hfs_end_transaction(hfsmp);
1622 started_tr = false;
1623 }
1624
1625 }
1626
1627 /*
1628 * Truncate away the resource fork, if we represent the data fork and
1629 * it is the last fork. That means, by definition, the rsrc fork is not in
1630 * core. To avoid bringing a vnode into core for the sole purpose of deleting the
1631 * data in the resource fork, we call cat_lookup directly, then hfs_release_storage
1632 * to get rid of the resource fork's data. Note that because we are holding the
1633 * cnode lock, it is impossible for a competing thread to create the resource fork
1634 * vnode from underneath us while we do this.
1635 *
1636 * This is invoked via case A above only.
1637 */
1638 if ((cp->c_blocks > 0) && (forkcount == 1) && (vp != cp->c_rsrc_vp)) {
1639 struct cat_lookup_buffer *lookup_rsrc = NULL;
1640 struct cat_desc *desc_ptr = NULL;
1641
1642 lookup_rsrc = hfs_mallocz(sizeof(struct cat_lookup_buffer));
1643
1644 if (cp->c_desc.cd_namelen == 0) {
1645 /* Initialize the rsrc descriptor for lookup if necessary*/
1646 MAKE_DELETED_NAME (lookup_rsrc->lookup_name, HFS_TEMPLOOKUP_NAMELEN, cp->c_fileid);
1647
1648 lookup_rsrc->lookup_desc.cd_nameptr = (const uint8_t*) lookup_rsrc->lookup_name;
1649 lookup_rsrc->lookup_desc.cd_namelen = strlen (lookup_rsrc->lookup_name);
1650 lookup_rsrc->lookup_desc.cd_parentcnid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
1651 lookup_rsrc->lookup_desc.cd_cnid = cp->c_cnid;
1652
1653 desc_ptr = &lookup_rsrc->lookup_desc;
1654 }
1655 else {
1656 desc_ptr = &cp->c_desc;
1657 }
1658
1659 lockflags = hfs_systemfile_lock (hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
1660
1661 error = cat_lookup (hfsmp, desc_ptr, 1, (struct cat_desc *) NULL, (struct cat_attr*) NULL, &lookup_rsrc->lookup_fork.ff_data, NULL);
1662
1663 hfs_systemfile_unlock (hfsmp, lockflags);
1664
1665 if (error) {
1666 hfs_free(lookup_rsrc);
1667 goto out;
1668 }
1669
1670 /*
1671 * Make the filefork in our temporary struct look like a real
1672 * filefork. Fill in the cp, sysfileinfo and rangelist fields..
1673 */
1674 rl_init (&lookup_rsrc->lookup_fork.ff_invalidranges);
1675 lookup_rsrc->lookup_fork.ff_cp = cp;
1676
1677 /*
1678 * If there were no errors, then we have the catalog's fork information
1679 * for the resource fork in question. Go ahead and delete the data in it now.
1680 */
1681
1682 error = hfs_release_storage (hfsmp, NULL, &lookup_rsrc->lookup_fork, cp->c_fileid);
1683 hfs_free(lookup_rsrc);
1684
1685 if (error) {
1686 goto out;
1687 }
1688
1689 /*
1690 * This fileid's resource fork extents have now been fully deleted on-disk
1691 * and this CNID is no longer valid. At this point, we should be able to
1692 * zero out cp->c_blocks to indicate there is no data left in this file.
1693 */
1694 cp->c_blocks = 0;
1695 }
1696 }
1697
1698 /*
1699 * If we represent the last fork (or none in the case of a dir),
1700 * and the cnode has become open-unlinked...
1701 *
1702 * We check c_blocks here because it is possible in the force
1703 * unmount case for the data fork to be in use but the resource
1704 * fork to not be in use in which case we will truncate the
1705 * resource fork, but not the data fork. It will get cleaned
1706 * up upon next mount.
1707 */
1708 if (forkcount <= 1 && !cp->c_blocks) {
1709 /*
1710 * If it has EA's, then we need to get rid of them.
1711 *
1712 * Note that this must happen outside of any other transactions
1713 * because it starts/ends its own transactions and grabs its
1714 * own locks. This is to prevent a file with a lot of attributes
1715 * from creating a transaction that is too large (which panics).
1716 */
1717 if (ISSET(cp->c_attr.ca_recflags, kHFSHasAttributesMask))
1718 {
1719 ea_error = hfs_removeallattr(hfsmp, cp->c_fileid, &started_tr);
1720 if (ea_error)
1721 goto out;
1722 }
1723
1724 /*
1725 * Remove the cnode's catalog entry and release all blocks it
1726 * may have been using.
1727 */
1728
1729 /*
1730 * Mark cnode in transit so that no one can get this
1731 * cnode from cnode hash.
1732 */
1733 // hfs_chash_mark_in_transit(hfsmp, cp);
1734 // XXXdbg - remove the cnode from the hash table since it's deleted
1735 // otherwise someone could go to sleep on the cnode and not
1736 // be woken up until this vnode gets recycled which could be
1737 // a very long time...
1738 hfs_chashremove(hfsmp, cp);
1739
1740 cp->c_flag |= C_NOEXISTS; // XXXdbg
1741 cp->c_rdev = 0;
1742
1743 if (!started_tr) {
1744 if (hfs_start_transaction(hfsmp) != 0) {
1745 error = EINVAL;
1746 goto out;
1747 }
1748 started_tr = true;
1749 }
1750
1751 /*
1752 * Reserve some space in the Catalog file.
1753 */
1754 if ((error = cat_preflight(hfsmp, CAT_DELETE, &cookie))) {
1755 goto out;
1756 }
1757 cat_reserve = 1;
1758
1759 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
1760
1761 if (cp->c_blocks > 0) {
1762 LFHFS_LOG(LEVEL_ERROR, "hfs_inactive: deleting non-empty%sfile %d, "
1763 "blks %d\n", VNODE_IS_RSRC(vp) ? " rsrc " : " ",
1764 (int)cp->c_fileid, (int)cp->c_blocks);
1765 }
1766
1767 //
1768 // release the name pointer in the descriptor so that
1769 // cat_delete() will use the file-id to do the deletion.
1770 // in the case of hard links this is imperative (in the
1771 // case of regular files the fileid and cnid are the
1772 // same so it doesn't matter).
1773 //
1774 cat_releasedesc(&cp->c_desc);
1775
1776 /*
1777 * The descriptor name may be zero,
1778 * in which case the fileid is used.
1779 */
1780 error = cat_delete(hfsmp, &cp->c_desc, &cp->c_attr);
1781
1782 if (error && truncated && (error != ENXIO)) {
1783 LFHFS_LOG(LEVEL_ERROR, "hfs_inactive: couldn't delete a truncated file!");
1784 }
1785
1786 /* Update HFS Private Data dir */
1787 if (error == 0) {
1788 hfsmp->hfs_private_attr[FILE_HARDLINKS].ca_entries--;
1789 if (vnode_isdir(vp)) {
1790 DEC_FOLDERCOUNT(hfsmp, hfsmp->hfs_private_attr[FILE_HARDLINKS]);
1791 }
1792 (void)cat_update(hfsmp, &hfsmp->hfs_private_desc[FILE_HARDLINKS],
1793 &hfsmp->hfs_private_attr[FILE_HARDLINKS], NULL, NULL);
1794 }
1795
1796 hfs_systemfile_unlock(hfsmp, lockflags);
1797
1798 if (error) {
1799 goto out;
1800 }
1801
1802 /* Already set C_NOEXISTS at the beginning of this block */
1803 cp->c_flag &= ~C_DELETED;
1804 cp->c_touch_chgtime = TRUE;
1805 cp->c_touch_modtime = TRUE;
1806
1807 if (error == 0)
1808 hfs_volupdate(hfsmp, (v_type == VDIR) ? VOL_RMDIR : VOL_RMFILE, 0);
1809 }
1810 } // if <open unlinked>
1811
1812 hfs_update(vp, reclaim ? HFS_UPDATE_FORCE : 0);
1813
1814 /*
1815 * Since we are about to finish what might be an inactive call, propagate
1816 * any remaining modified or touch bits from the cnode to the vnode. This
1817 * serves as a hint to vnode recycling that we shouldn't recycle this vnode
1818 * synchronously.
1819 *
1820 * For now, if the node *only* has a dirty atime, we don't mark
1821 * the vnode as dirty. VFS's asynchronous recycling can actually
1822 * lead to worse performance than having it synchronous. When VFS
1823 * is fixed to be more performant, we can be more honest about
1824 * marking vnodes as dirty when it's only the atime that's dirty.
1825 */
1826 #if LF_HFS_FULL_VNODE_SUPPORT
1827 //TBD - need to decide how we mark a file as dirty
1828 if (hfs_is_dirty(cp) == HFS_DIRTY || ISSET(cp->c_flag, C_DELETED)) {
1829 vnode_setdirty(vp);
1830 } else {
1831 vnode_cleardirty(vp);
1832 }
1833 #endif
1834
1835 out:
1836 if (cat_reserve)
1837 cat_postflight(hfsmp, &cookie);
1838
1839 if (started_tr) {
1840 hfs_end_transaction(hfsmp);
1841 started_tr = false;
1842 }
1843
1844 return error;
1845 }
1846
1847 int
1848 hfs_fork_release(struct cnode* cp, struct vnode *vp, bool bIsRsc, int* piErr)
1849 {
1850 struct hfsmount *hfsmp = VTOHFS(vp);
1851 struct filefork *fp = NULL;
1852 struct filefork *altfp = NULL;
1853 int reclaim_cnode = 0;
1854
1855 /*
1856 * Sync to disk any remaining data in the cnode/vnode. This includes
1857 * a call to hfs_update if the cnode has outbound data.
1858 *
1859 * If C_NOEXISTS is set on the cnode, then there's nothing teardown needs to do
1860 * because the catalog entry for this cnode is already gone.
1861 */
1862 INVALIDATE_NODE(vp);
1863
1864 if (!ISSET(cp->c_flag, C_NOEXISTS)) {
1865 *piErr = hfs_cnode_teardown(vp, 1);
1866 if (*piErr)
1867 {
1868 return 0;
1869 }
1870 }
1871
1872 if (vp->sFSParams.vnfs_cnp)
1873 {
1874 if (vp->sFSParams.vnfs_cnp->cn_nameptr)
1875 hfs_free(vp->sFSParams.vnfs_cnp->cn_nameptr);
1876 hfs_free(vp->sFSParams.vnfs_cnp);
1877 }
1878
1879
1880 if (!bIsRsc) {
1881 fp = cp->c_datafork;
1882 altfp = cp->c_rsrcfork;
1883
1884 cp->c_datafork = NULL;
1885 cp->c_vp = NULL;
1886 } else {
1887 fp = cp->c_rsrcfork;
1888 altfp = cp->c_datafork;
1889
1890 cp->c_rsrcfork = NULL;
1891 cp->c_rsrc_vp = NULL;
1892 }
1893
1894 /*
1895 * On the last fork, remove the cnode from its hash chain.
1896 */
1897 if (altfp == NULL) {
1898 /* If we can't remove it then the cnode must persist! */
1899 if (hfs_chashremove(hfsmp, cp) == 0)
1900 reclaim_cnode = 1;
1901 /*
1902 * Remove any directory hints
1903 */
1904 if (vnode_isdir(vp)) {
1905 hfs_reldirhints(cp, 0);
1906 }
1907
1908 if(cp->c_flag & C_HARDLINK) {
1909 hfs_relorigins(cp);
1910 }
1911 }
1912
1913 /* Release the file fork and related data */
1914 if (fp)
1915 {
1916 /* Dump cached symlink data */
1917 if (vnode_islnk(vp) && (fp->ff_symlinkptr != NULL)) {
1918 hfs_free(fp->ff_symlinkptr);
1919 }
1920 rl_remove_all(&fp->ff_invalidranges);
1921 hfs_free(fp);
1922 }
1923
1924 return reclaim_cnode;
1925 }
1926
1927
1928 /*
1929 * Reclaim a cnode so that it can be used for other purposes.
1930 */
1931 int
1932 hfs_vnop_reclaim(struct vnode *vp)
1933 {
1934 struct cnode* cp = VTOC(vp);
1935 struct hfsmount *hfsmp = VTOHFS(vp);
1936 struct vnode *altvp = NULL;
1937 int reclaim_cnode = 0;
1938 int err = 0;
1939
1940 /*
1941 * We don't take the truncate lock since by the time reclaim comes along,
1942 * all dirty pages have been synced and nobody should be competing
1943 * with us for this thread.
1944 */
1945 hfs_chash_mark_in_transit(hfsmp, cp);
1946
1947 hfs_lock(cp, HFS_EXCLUSIVE_LOCK, HFS_LOCK_DEFAULT);
1948 lf_hfs_generic_buf_cache_LockBufCache();
1949
1950 //In case we have other open lookups
1951 //We need to decrease the counter and exit
1952 if (cp->uOpenLookupRefCount > 1)
1953 {
1954 hfs_chash_lower_OpenLookupCounter(cp);
1955 hfs_chashwakeup(hfsmp, cp, H_ALLOC | H_TRANSIT);
1956 lf_hfs_generic_buf_cache_UnLockBufCache();
1957 hfs_unlock(cp);
1958 return err;
1959 }
1960
1961 if (cp->uOpenLookupRefCount == 0) assert(0);
1962
1963 hfs_chash_lower_OpenLookupCounter(cp);
1964 lf_hfs_generic_buf_cache_remove_vnode(vp);
1965
1966 lf_hfs_generic_buf_cache_UnLockBufCache();
1967
1968 /*
1969 * Find file fork for this vnode (if any)
1970 * Also check if another fork is active
1971 */
1972 if (cp->c_vp == vp) {
1973
1974 reclaim_cnode = hfs_fork_release(cp, vp, false, &err);
1975 if (err) return err;
1976
1977 if (!reclaim_cnode && cp->c_rsrc_vp != NULL)
1978 {
1979 altvp = cp->c_rsrc_vp;
1980 reclaim_cnode = hfs_fork_release(cp, altvp, true, &err);
1981 if (err) return err;
1982 }
1983 } else if (cp->c_rsrc_vp == vp) {
1984 reclaim_cnode = hfs_fork_release(cp, vp, true, &err);
1985 if (err) return err;
1986
1987 if (!reclaim_cnode && cp->c_vp != NULL)
1988 {
1989 altvp = cp->c_vp;
1990 reclaim_cnode = hfs_fork_release(cp, altvp, false, &err);
1991 if (err) return err;
1992 }
1993 } else {
1994 LFHFS_LOG(LEVEL_ERROR, "hfs_vnop_reclaim: vp points to wrong cnode (vp=%p cp->c_vp=%p cp->c_rsrc_vp=%p)\n", vp, cp->c_vp, cp->c_rsrc_vp);
1995 hfs_assert(0);
1996 }
1997
1998 /*
1999 * If there was only one active fork then we can release the cnode.
2000 */
2001 if (reclaim_cnode) {
2002 hfs_unlock(cp);
2003 hfs_chashwakeup(hfsmp, cp, H_ALLOC);
2004 hfs_reclaim_cnode(cp);
2005 }
2006 else
2007 {
2008 /*
2009 * cnode in use. If it is a directory, it could have
2010 * no live forks. Just release the lock.
2011 */
2012 hfs_unlock(cp);
2013 }
2014
2015 hfs_free(vp);
2016 if (altvp)
2017 hfs_free(altvp);
2018
2019 vp = NULL;
2020 return (0);
2021 }