2 * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <libkern/OSAtomic.h>
31 #include <sys/systm.h>
32 #include <sys/param.h>
33 #include <sys/kernel.h>
34 #include <sys/dirent.h>
37 #include <sys/mount.h>
38 #include <sys/vnode_if.h>
39 #include <sys/malloc.h>
41 #include <sys/paths.h>
42 #include <sys/quota.h>
45 #include <sys/kauth.h>
46 #include <sys/fsctl.h>
47 #include <sys/xattr.h>
48 #include <sys/decmpfs.h>
50 #include <sys/doc_tombstone.h>
51 #include <sys/namei.h>
53 #include <sys/fsevents.h>
55 #include <miscfs/specfs/specdev.h>
56 #include <miscfs/fifofs/fifo.h>
57 #include <vfs/vfs_support.h>
58 #include <machine/spl.h>
60 #include <sys/kdebug.h>
61 #include <sys/sysctl.h>
65 #include "hfs_catalog.h"
66 #include "hfs_cnode.h"
68 #include "hfs_mount.h"
69 #include "hfs_quota.h"
70 #include "hfs_endian.h"
71 #include "hfs_kdebug.h"
72 #include "hfs_cprotect.h"
74 #if HFS_CONFIG_KEY_ROLL
75 #include "hfs_key_roll.h"
78 #include "BTreesInternal.h"
79 #include "FileMgrInternal.h"
81 /* Global vfs data structures for hfs */
84 * Always F_FULLFSYNC? 1=yes,0=no (default due to "various" reasons is
85 * 'no'). At some point this might need to move into VFS and we might
86 * need to provide an API to get at it, but for now, this is only used
89 int always_do_fullfsync
= 0;
90 SYSCTL_DECL(_vfs_generic
);
91 HFS_SYSCTL(INT
, _vfs_generic
, OID_AUTO
, always_do_fullfsync
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &always_do_fullfsync
, 0, "always F_FULLFSYNC when fsync is called")
93 int hfs_makenode(struct vnode
*dvp
, struct vnode
**vpp
,
94 struct componentname
*cnp
, struct vnode_attr
*vap
,
96 int hfs_metasync(struct hfsmount
*hfsmp
, daddr64_t node
, __unused
struct proc
*p
);
97 int hfs_metasync_all(struct hfsmount
*hfsmp
);
99 int hfs_removedir(struct vnode
*, struct vnode
*, struct componentname
*,
101 int hfs_removefile(struct vnode
*, struct vnode
*, struct componentname
*,
102 int, int, int, struct vnode
*, int);
104 /* Used here and in cnode teardown -- for symlinks */
105 int hfs_removefile_callback(struct buf
*bp
, void *hfsmp
);
108 HFS_MOVE_DATA_INCLUDE_RSRC
= 1,
110 typedef uint32_t hfs_move_data_options_t
;
112 static int hfs_move_data(cnode_t
*from_cp
, cnode_t
*to_cp
,
113 hfs_move_data_options_t options
);
114 static int hfs_move_fork(filefork_t
*srcfork
, cnode_t
*src
,
115 filefork_t
*dstfork
, cnode_t
*dst
);
118 static int hfs_move_compressed(cnode_t
*from_vp
, cnode_t
*to_vp
);
121 decmpfs_cnode
* hfs_lazy_init_decmpfs_cnode (struct cnode
*cp
);
124 static int hfsfifo_read(struct vnop_read_args
*);
125 static int hfsfifo_write(struct vnop_write_args
*);
126 static int hfsfifo_close(struct vnop_close_args
*);
128 extern int (**fifo_vnodeop_p
)(void *);
131 int hfs_vnop_close(struct vnop_close_args
*);
132 int hfs_vnop_exchange(struct vnop_exchange_args
*);
133 int hfs_vnop_fsync(struct vnop_fsync_args
*);
134 int hfs_vnop_mkdir(struct vnop_mkdir_args
*);
135 int hfs_vnop_mknod(struct vnop_mknod_args
*);
136 int hfs_vnop_getattr(struct vnop_getattr_args
*);
137 int hfs_vnop_open(struct vnop_open_args
*);
138 int hfs_vnop_readdir(struct vnop_readdir_args
*);
139 int hfs_vnop_rename(struct vnop_rename_args
*);
140 int hfs_vnop_renamex(struct vnop_renamex_args
*);
141 int hfs_vnop_rmdir(struct vnop_rmdir_args
*);
142 int hfs_vnop_symlink(struct vnop_symlink_args
*);
143 int hfs_vnop_setattr(struct vnop_setattr_args
*);
144 int hfs_vnop_readlink(struct vnop_readlink_args
*);
145 int hfs_vnop_pathconf(struct vnop_pathconf_args
*);
146 int hfs_vnop_mmap(struct vnop_mmap_args
*ap
);
147 int hfsspec_read(struct vnop_read_args
*);
148 int hfsspec_write(struct vnop_write_args
*);
149 int hfsspec_close(struct vnop_close_args
*);
151 /* Options for hfs_removedir and hfs_removefile */
152 #define HFSRM_SKIP_RESERVE 0x01
156 /*****************************************************************************
158 * Common Operations on vnodes
160 *****************************************************************************/
163 * Is the given cnode either the .journal or .journal_info_block file on
164 * a volume with an active journal? Many VNOPs use this to deny access
167 * Note: the .journal file on a volume with an external journal still
168 * returns true here, even though it does not actually hold the contents
169 * of the volume's journal.
172 hfs_is_journal_file(struct hfsmount
*hfsmp
, struct cnode
*cp
)
174 if (hfsmp
->jnl
!= NULL
&&
175 (cp
->c_fileid
== hfsmp
->hfs_jnlinfoblkid
||
176 cp
->c_fileid
== hfsmp
->hfs_jnlfileid
)) {
184 * Create a regular file.
187 hfs_vnop_create(struct vnop_create_args
*ap
)
190 * We leave handling of certain race conditions here to the caller
191 * which will have a better understanding of the semantics it
192 * requires. For example, if it turns out that the file exists,
193 * it would be wrong of us to return a reference to the existing
194 * file because the caller might not want that and it would be
195 * misleading to suggest the file had been created when it hadn't
196 * been. Note that our NFS server code does not set the
197 * VA_EXCLUSIVE flag so you cannot assume that callers don't want
198 * EEXIST errors if it's not set. The common case, where users
199 * are calling open with the O_CREAT mode, is handled in VFS; when
200 * we return EEXIST, it will loop and do the look-up again.
202 return hfs_makenode(ap
->a_dvp
, ap
->a_vpp
, ap
->a_cnp
, ap
->a_vap
, ap
->a_context
);
206 * Make device special file.
209 hfs_vnop_mknod(struct vnop_mknod_args
*ap
)
211 struct vnode_attr
*vap
= ap
->a_vap
;
212 struct vnode
*dvp
= ap
->a_dvp
;
213 struct vnode
**vpp
= ap
->a_vpp
;
217 if (VTOVCB(dvp
)->vcbSigWord
!= kHFSPlusSigWord
) {
221 /* Create the vnode */
222 error
= hfs_makenode(dvp
, vpp
, ap
->a_cnp
, vap
, ap
->a_context
);
227 cp
->c_touch_acctime
= TRUE
;
228 cp
->c_touch_chgtime
= TRUE
;
229 cp
->c_touch_modtime
= TRUE
;
231 if ((vap
->va_rdev
!= VNOVAL
) &&
232 (vap
->va_type
== VBLK
|| vap
->va_type
== VCHR
))
233 cp
->c_rdev
= vap
->va_rdev
;
240 * hfs_ref_data_vp(): returns the data fork vnode for a given cnode.
241 * In the (hopefully rare) case where the data fork vnode is not
242 * present, it will use hfs_vget() to create a new vnode for the
245 * NOTE: If successful and a vnode is returned, the caller is responsible
246 * for releasing the returned vnode with vnode_rele().
249 hfs_ref_data_vp(struct cnode
*cp
, struct vnode
**data_vp
, int skiplock
)
253 if (!data_vp
|| !cp
) /* sanity check incoming parameters */
256 /* maybe we should take the hfs cnode lock here, and if so, use the skiplock parameter to tell us not to */
258 if (!skiplock
) hfs_lock(cp
, HFS_SHARED_LOCK
, HFS_LOCK_DEFAULT
);
259 struct vnode
*c_vp
= cp
->c_vp
;
261 /* we already have a data vnode */
263 vref
= vnode_ref(*data_vp
);
264 if (!skiplock
) hfs_unlock(cp
);
270 /* no data fork vnode in the cnode, so ask hfs for one. */
272 if (!cp
->c_rsrc_vp
) {
273 /* if we don't have either a c_vp or c_rsrc_vp, we can't really do anything useful */
275 if (!skiplock
) hfs_unlock(cp
);
279 if (0 == hfs_vget(VTOHFS(cp
->c_rsrc_vp
), cp
->c_cnid
, data_vp
, 1, 0) &&
281 vref
= vnode_ref(*data_vp
);
283 if (!skiplock
) hfs_unlock(cp
);
289 /* there was an error getting the vnode */
291 if (!skiplock
) hfs_unlock(cp
);
296 * hfs_lazy_init_decmpfs_cnode(): returns the decmpfs_cnode for a cnode,
297 * allocating it if necessary; returns NULL if there was an allocation error.
298 * function is non-static so that it can be used from the FCNTL handler.
301 hfs_lazy_init_decmpfs_cnode(struct cnode
*cp
)
304 decmpfs_cnode
*dp
= decmpfs_cnode_alloc();
305 decmpfs_cnode_init(dp
);
306 if (!OSCompareAndSwapPtr(NULL
, dp
, (void * volatile *)&cp
->c_decmp
)) {
307 /* another thread got here first, so free the decmpfs_cnode we allocated */
308 decmpfs_cnode_destroy(dp
);
309 decmpfs_cnode_free(dp
);
317 * hfs_file_is_compressed(): returns 1 if the file is compressed, and 0 (zero) if not.
318 * if the file's compressed flag is set, makes sure that the decmpfs_cnode field
319 * is allocated by calling hfs_lazy_init_decmpfs_cnode(), then makes sure it is populated,
320 * or else fills it in via the decmpfs_file_is_compressed() function.
323 hfs_file_is_compressed(struct cnode
*cp
, int skiplock
)
327 /* fast check to see if file is compressed. If flag is clear, just answer no */
328 if (!(cp
->c_bsdflags
& UF_COMPRESSED
)) {
332 decmpfs_cnode
*dp
= hfs_lazy_init_decmpfs_cnode(cp
);
334 /* error allocating a decmpfs cnode, treat the file as uncompressed */
338 /* flag was set, see if the decmpfs_cnode state is valid (zero == invalid) */
339 uint32_t decmpfs_state
= decmpfs_cnode_get_vnode_state(dp
);
340 switch(decmpfs_state
) {
341 case FILE_IS_COMPRESSED
:
342 case FILE_IS_CONVERTING
: /* treat decompressing files as if they are compressed */
344 case FILE_IS_NOT_COMPRESSED
:
346 /* otherwise the state is not cached yet */
349 /* decmpfs hasn't seen this file yet, so call decmpfs_file_is_compressed() to init the decmpfs_cnode struct */
350 struct vnode
*data_vp
= NULL
;
351 if (0 == hfs_ref_data_vp(cp
, &data_vp
, skiplock
)) {
353 ret
= decmpfs_file_is_compressed(data_vp
, VTOCMP(data_vp
)); // fill in decmpfs_cnode
360 /* hfs_uncompressed_size_of_compressed_file() - get the uncompressed size of the file.
361 * if the caller has passed a valid vnode (has a ref count > 0), then hfsmp and fid are not required.
362 * if the caller doesn't have a vnode, pass NULL in vp, and pass valid hfsmp and fid.
363 * files size is returned in size (required)
364 * if the indicated file is a directory (or something that doesn't have a data fork), then this call
365 * will return an error and the caller should fall back to treating the item as an uncompressed file
368 hfs_uncompressed_size_of_compressed_file(struct hfsmount
*hfsmp
, struct vnode
*vp
, cnid_t fid
, off_t
*size
, int skiplock
)
371 int putaway
= 0; /* flag to remember if we used hfs_vget() */
374 return EINVAL
; /* no place to put the file size */
378 if (!hfsmp
|| !fid
) { /* make sure we have the required parameters */
381 if (0 != hfs_vget(hfsmp
, fid
, &vp
, skiplock
, 0)) { /* vnode is null, use hfs_vget() to get it */
384 putaway
= 1; /* note that hfs_vget() was used to aquire the vnode */
387 /* this double check for compression (hfs_file_is_compressed)
388 * ensures the cached size is present in case decmpfs hasn't
389 * encountered this node yet.
392 if (hfs_file_is_compressed(VTOC(vp
), skiplock
) ) {
393 *size
= decmpfs_cnode_get_vnode_cached_size(VTOCMP(vp
)); /* file info will be cached now, so get size */
394 } else if (VTOCMP(vp
)) {
395 uint32_t cmp_type
= decmpfs_cnode_cmp_type(VTOCMP(vp
));
397 if (cmp_type
== DATALESS_CMPFS_TYPE
) {
398 *size
= decmpfs_cnode_get_vnode_cached_size(VTOCMP(vp
)); /* file info will be cached now, so get size */
400 } else if (cmp_type
>= CMP_MAX
&& VTOC(vp
)->c_datafork
) {
401 // if we don't recognize this type, just use the real data fork size
402 *size
= VTOC(vp
)->c_datafork
->ff_size
;
410 if (putaway
) { /* did we use hfs_vget() to get this vnode? */
411 vnode_put(vp
); /* if so, release it and set it to null */
418 hfs_hides_rsrc(vfs_context_t ctx
, struct cnode
*cp
, int skiplock
)
420 if (ctx
== decmpfs_ctx
)
422 if (!hfs_file_is_compressed(cp
, skiplock
))
424 return decmpfs_hides_rsrc(ctx
, cp
->c_decmp
);
428 hfs_hides_xattr(vfs_context_t ctx
, struct cnode
*cp
, const char *name
, int skiplock
)
430 if (ctx
== decmpfs_ctx
)
432 if (!hfs_file_is_compressed(cp
, skiplock
))
434 return decmpfs_hides_xattr(ctx
, cp
->c_decmp
, name
);
436 #endif /* HFS_COMPRESSION */
439 * Open a file/directory.
442 hfs_vnop_open(struct vnop_open_args
*ap
)
444 struct vnode
*vp
= ap
->a_vp
;
448 static int past_bootup
= 0;
449 struct cnode
*cp
= VTOC(vp
);
450 struct hfsmount
*hfsmp
= VTOHFS(vp
);
453 error
= cp_handle_open(vp
, ap
->a_mode
);
459 if (ap
->a_mode
& FWRITE
) {
461 if ( hfs_file_is_compressed(cp
, 1) ) { /* 1 == don't take the cnode lock */
462 /* opening a compressed file for write, so convert it to decompressed */
463 struct vnode
*data_vp
= NULL
;
464 error
= hfs_ref_data_vp(cp
, &data_vp
, 1); /* 1 == don't take the cnode lock */
467 error
= decmpfs_decompress_file(data_vp
, VTOCMP(data_vp
), -1, 1, 0);
478 if (hfs_file_is_compressed(cp
, 1) ) { /* 1 == don't take the cnode lock */
479 if (VNODE_IS_RSRC(vp
)) {
480 /* opening the resource fork of a compressed file, so nothing to do */
482 /* opening a compressed file for read, make sure it validates */
483 error
= decmpfs_validate_compressed_file(vp
, VTOCMP(vp
));
492 * Files marked append-only must be opened for appending.
494 if ((cp
->c_bsdflags
& APPEND
) && !vnode_isdir(vp
) &&
495 (ap
->a_mode
& (FWRITE
| O_APPEND
)) == FWRITE
)
498 if (vnode_issystem(vp
))
499 return (EBUSY
); /* file is in use by the kernel */
501 /* Don't allow journal to be opened externally. */
502 if (hfs_is_journal_file(hfsmp
, cp
))
505 bool have_lock
= false;
508 if (ISSET(ap
->a_mode
, FENCRYPTED
) && cp
->c_cpentry
&& vnode_isreg(vp
)) {
509 bool have_trunc_lock
= false;
511 #if HFS_CONFIG_KEY_ROLL
515 if ((error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
))) {
517 hfs_unlock_truncate(cp
, 0);
523 if (cp
->c_cpentry
->cp_raw_open_count
+ 1
524 < cp
->c_cpentry
->cp_raw_open_count
) {
525 // Overflow; too many raw opens on this file
528 hfs_unlock_truncate(cp
, 0);
532 #if HFS_CONFIG_KEY_ROLL
533 if (cp_should_auto_roll(hfsmp
, cp
->c_cpentry
)) {
534 if (!have_trunc_lock
) {
536 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, 0);
537 have_trunc_lock
= true;
541 error
= hfs_key_roll_start(cp
);
544 hfs_unlock_truncate(cp
, 0);
551 hfs_unlock_truncate(cp
, 0);
553 ++cp
->c_cpentry
->cp_raw_open_count
;
557 if (ISSET(hfsmp
->hfs_flags
, HFS_READ_ONLY
)
560 || vnode_isnamedstream(vp
)
562 || !hfsmp
->jnl
|| vnode_isinuse(vp
, 0)) {
572 if (!have_lock
&& (error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
)))
576 /* If we're going to write to the file, initialize quotas. */
577 if ((ap
->a_mode
& FWRITE
) && (hfsmp
->hfs_flags
& HFS_QUOTAS
))
578 (void)hfs_getinoquota(cp
);
582 * On the first (non-busy) open of a fragmented
583 * file attempt to de-frag it, if it's less than hfs_defrag_max bytes.
584 * That field is initially set to 20MB.
588 fp
->ff_extents
[7].blockCount
!= 0 &&
589 fp
->ff_size
<= hfsmp
->hfs_defrag_max
) {
594 * Wait until system bootup is done (3 min).
595 * And don't relocate a file that's been modified
596 * within the past minute -- this can lead to
600 if (hfsmp
->hfs_defrag_nowait
) {
601 /* If this is toggled, then issue the defrag if appropriate */
608 if (tv
.tv_sec
> (60*3)) {
614 if ((now
.tv_sec
- cp
->c_mtime
) > 60) {
618 if (past_bootup
&& no_mods
) {
619 (void) hfs_relocate(vp
, hfsmp
->nextAllocation
+ 4096,
620 vfs_context_ucred(ap
->a_context
),
621 vfs_context_proc(ap
->a_context
));
632 * Close a file/directory.
635 hfs_vnop_close(struct vnop_close_args
*ap
)
637 register struct vnode
*vp
= ap
->a_vp
;
638 register struct cnode
*cp
;
639 struct proc
*p
= vfs_context_proc(ap
->a_context
);
640 struct hfsmount
*hfsmp
;
642 int tooktrunclock
= 0;
645 if ( hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
) != 0)
651 if (cp
->c_cpentry
&& ISSET(ap
->a_fflag
, FENCRYPTED
) && vnode_isreg(vp
)) {
652 hfs_assert(cp
->c_cpentry
->cp_raw_open_count
> 0);
653 --cp
->c_cpentry
->cp_raw_open_count
;
658 * If the rsrc fork is a named stream, it can cause the data fork to
659 * stay around, preventing de-allocation of these blocks.
660 * Do checks for truncation on close. Purge extra extents if they exist.
661 * Make sure the vp is not a directory, and that it has a resource fork,
662 * and that resource fork is also a named stream.
665 if ((vnode_vtype(vp
) == VREG
) && (cp
->c_rsrc_vp
)
666 && (vnode_isnamedstream(cp
->c_rsrc_vp
))) {
669 blks
= howmany(VTOF(vp
)->ff_size
, VTOVCB(vp
)->blockSize
);
671 * If there are extra blocks and there are only 2 refs on
672 * this vp (ourselves + rsrc fork holding ref on us), go ahead
673 * and try to truncate.
675 if ((blks
< VTOF(vp
)->ff_blocks
) && (!vnode_isinuse(vp
, 2))) {
676 // release cnode lock; must acquire truncate lock BEFORE cnode lock
679 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
682 if (hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
) != 0) {
683 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
684 // bail out if we can't re-acquire cnode lock
687 // now re-test to make sure it's still valid
689 knownrefs
= 1 + vnode_isnamedstream(cp
->c_rsrc_vp
);
690 if (!vnode_isinuse(vp
, knownrefs
)){
691 // now we can truncate the file, if necessary
692 blks
= howmany(VTOF(vp
)->ff_size
, VTOVCB(vp
)->blockSize
);
693 if (blks
< VTOF(vp
)->ff_blocks
){
694 (void) hfs_truncate(vp
, VTOF(vp
)->ff_size
, IO_NDELAY
,
703 // if we froze the fs and we're exiting, then "thaw" the fs
704 if (hfsmp
->hfs_freeze_state
== HFS_FROZEN
705 && hfsmp
->hfs_freezing_proc
== p
&& proc_exiting(p
)) {
709 busy
= vnode_isinuse(vp
, 1);
712 hfs_touchtimes(VTOHFS(vp
), cp
);
714 if (vnode_isdir(vp
)) {
715 hfs_reldirhints(cp
, busy
);
716 } else if (vnode_issystem(vp
) && !busy
) {
721 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
725 if (ap
->a_fflag
& FWASWRITTEN
) {
726 hfs_sync_ejectable(hfsmp
);
732 static bool hfs_should_generate_document_id(hfsmount_t
*hfsmp
, cnode_t
*cp
)
734 return (!ISSET(hfsmp
->hfs_flags
, HFS_READ_ONLY
)
735 && ISSET(cp
->c_bsdflags
, UF_TRACKED
)
736 && cp
->c_desc
.cd_cnid
!= kHFSRootFolderID
737 && (S_ISDIR(cp
->c_mode
) || S_ISREG(cp
->c_mode
) || S_ISLNK(cp
->c_mode
)));
741 * Get basic attributes.
744 hfs_vnop_getattr(struct vnop_getattr_args
*ap
)
746 #define VNODE_ATTR_TIMES \
747 (VNODE_ATTR_va_access_time|VNODE_ATTR_va_change_time|VNODE_ATTR_va_modify_time)
748 #define VNODE_ATTR_AUTH \
749 (VNODE_ATTR_va_mode | VNODE_ATTR_va_uid | VNODE_ATTR_va_gid | \
750 VNODE_ATTR_va_flags | VNODE_ATTR_va_acl)
752 struct vnode
*vp
= ap
->a_vp
;
753 struct vnode_attr
*vap
= ap
->a_vap
;
754 struct vnode
*rvp
= NULLVP
;
755 struct hfsmount
*hfsmp
;
763 /* we need to inspect the decmpfs state of the file before we take the hfs cnode lock */
766 off_t uncompressed_size
= -1;
767 if (VATTR_IS_ACTIVE(vap
, va_data_size
) || VATTR_IS_ACTIVE(vap
, va_total_alloc
) || VATTR_IS_ACTIVE(vap
, va_data_alloc
) || VATTR_IS_ACTIVE(vap
, va_total_size
)) {
768 /* we only care about whether the file is compressed if asked for the uncompressed size */
769 if (VNODE_IS_RSRC(vp
)) {
770 /* if it's a resource fork, decmpfs may want us to hide the size */
771 hide_size
= hfs_hides_rsrc(ap
->a_context
, cp
, 0);
773 /* if it's a data fork, we need to know if it was compressed so we can report the uncompressed size */
774 compressed
= hfs_file_is_compressed(cp
, 0);
776 if ((VATTR_IS_ACTIVE(vap
, va_data_size
) || VATTR_IS_ACTIVE(vap
, va_total_size
))) {
777 // if it's compressed
778 if (compressed
|| (!VNODE_IS_RSRC(vp
) && cp
->c_decmp
&& decmpfs_cnode_cmp_type(cp
->c_decmp
) >= CMP_MAX
)) {
779 if (0 != hfs_uncompressed_size_of_compressed_file(NULL
, vp
, 0, &uncompressed_size
, 0)) {
780 /* failed to get the uncompressed size, we'll check for this later */
781 uncompressed_size
= -1;
783 // fake that it's compressed
792 * Shortcut for vnode_authorize path. Each of the attributes
793 * in this set is updated atomically so we don't need to take
794 * the cnode lock to access them.
796 if ((vap
->va_active
& ~VNODE_ATTR_AUTH
) == 0) {
797 /* Make sure file still exists. */
798 if (cp
->c_flag
& C_NOEXISTS
)
801 vap
->va_uid
= cp
->c_uid
;
802 vap
->va_gid
= cp
->c_gid
;
803 vap
->va_mode
= cp
->c_mode
;
804 vap
->va_flags
= cp
->c_bsdflags
;
805 vap
->va_supported
|= VNODE_ATTR_AUTH
& ~VNODE_ATTR_va_acl
;
807 if ((cp
->c_attr
.ca_recflags
& kHFSHasSecurityMask
) == 0) {
808 vap
->va_acl
= (kauth_acl_t
) KAUTH_FILESEC_NONE
;
809 VATTR_SET_SUPPORTED(vap
, va_acl
);
816 v_type
= vnode_vtype(vp
);
818 if (VATTR_IS_ACTIVE(vap
, va_document_id
)) {
819 uint32_t document_id
;
821 if (cp
->c_desc
.cd_cnid
== kHFSRootFolderID
)
822 document_id
= kHFSRootFolderID
;
825 * This is safe without a lock because we're just reading
826 * a 32 bit aligned integer which should be atomic on all
827 * platforms we support.
829 document_id
= hfs_get_document_id(cp
);
831 if (!document_id
&& hfs_should_generate_document_id(hfsmp
, cp
)) {
832 uint32_t new_document_id
;
834 error
= hfs_generate_document_id(hfsmp
, &new_document_id
);
838 error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
842 bool want_docid_fsevent
= false;
844 // Need to check again now that we have the lock
845 document_id
= hfs_get_document_id(cp
);
846 if (!document_id
&& hfs_should_generate_document_id(hfsmp
, cp
)) {
847 cp
->c_attr
.ca_finderextendeddirinfo
.document_id
= document_id
= new_document_id
;
848 want_docid_fsevent
= true;
849 SET(cp
->c_flag
, C_MODIFIED
);
854 if (want_docid_fsevent
) {
855 add_fsevent(FSE_DOCID_CHANGED
, ap
->a_context
,
856 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
857 FSE_ARG_INO
, (ino64_t
)0, // src inode #
858 FSE_ARG_INO
, (ino64_t
)cp
->c_fileid
, // dst inode #
859 FSE_ARG_INT32
, document_id
,
862 if (need_fsevent(FSE_STAT_CHANGED
, vp
)) {
863 add_fsevent(FSE_STAT_CHANGED
, ap
->a_context
,
864 FSE_ARG_VNODE
, vp
, FSE_ARG_DONE
);
870 vap
->va_document_id
= document_id
;
871 VATTR_SET_SUPPORTED(vap
, va_document_id
);
875 * If time attributes are requested and we have cnode times
876 * that require updating, then acquire an exclusive lock on
877 * the cnode before updating the times. Otherwise we can
878 * just acquire a shared lock.
880 if ((vap
->va_active
& VNODE_ATTR_TIMES
) &&
881 (cp
->c_touch_acctime
|| cp
->c_touch_chgtime
|| cp
->c_touch_modtime
)) {
882 if ((error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
)))
884 hfs_touchtimes(hfsmp
, cp
);
886 // downgrade to a shared lock since that's all we need from here on out
887 cp
->c_lockowner
= HFS_SHARED_OWNER
;
888 lck_rw_lock_exclusive_to_shared(&cp
->c_rwlock
);
890 } else if ((error
= hfs_lock(cp
, HFS_SHARED_LOCK
, HFS_LOCK_DEFAULT
))) {
894 if (v_type
== VDIR
) {
895 data_size
= (cp
->c_entries
+ 2) * AVERAGE_HFSDIRENTRY_SIZE
;
897 if (VATTR_IS_ACTIVE(vap
, va_nlink
)) {
901 * For directories, the va_nlink is esentially a count
902 * of the ".." references to a directory plus the "."
903 * reference and the directory itself. So for HFS+ this
904 * becomes the sub-directory count plus two.
906 * In the absence of a sub-directory count we use the
907 * directory's item count. This will be too high in
908 * most cases since it also includes files.
910 if ((hfsmp
->hfs_flags
& HFS_FOLDERCOUNT
) &&
911 (cp
->c_attr
.ca_recflags
& kHFSHasFolderCountMask
))
912 nlink
= cp
->c_attr
.ca_dircount
; /* implied ".." entries */
914 nlink
= cp
->c_entries
;
916 /* Account for ourself and our "." entry */
918 /* Hide our private directories. */
919 if (cp
->c_cnid
== kHFSRootFolderID
) {
920 if (hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
!= 0) {
923 if (hfsmp
->hfs_private_desc
[DIR_HARDLINKS
].cd_cnid
!= 0) {
927 VATTR_RETURN(vap
, va_nlink
, (u_int64_t
)nlink
);
929 if (VATTR_IS_ACTIVE(vap
, va_nchildren
)) {
932 entries
= cp
->c_entries
;
933 /* Hide our private files and directories. */
934 if (cp
->c_cnid
== kHFSRootFolderID
) {
935 if (hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
!= 0)
937 if (hfsmp
->hfs_private_desc
[DIR_HARDLINKS
].cd_cnid
!= 0)
939 if (hfsmp
->jnl
|| ((hfsmp
->vcbAtrb
& kHFSVolumeJournaledMask
) && (hfsmp
->hfs_flags
& HFS_READ_ONLY
)))
940 entries
-= 2; /* hide the journal files */
942 VATTR_RETURN(vap
, va_nchildren
, entries
);
945 * The va_dirlinkcount is the count of real directory hard links.
946 * (i.e. its not the sum of the implied "." and ".." references)
948 if (VATTR_IS_ACTIVE(vap
, va_dirlinkcount
)) {
949 VATTR_RETURN(vap
, va_dirlinkcount
, (uint32_t)cp
->c_linkcount
);
952 data_size
= VCTOF(vp
, cp
)->ff_size
;
954 VATTR_RETURN(vap
, va_nlink
, (u_int64_t
)cp
->c_linkcount
);
955 if (VATTR_IS_ACTIVE(vap
, va_data_alloc
)) {
960 VATTR_RETURN(vap
, va_data_alloc
, 0);
961 } else if (compressed
) {
962 /* for compressed files, we report all allocated blocks as belonging to the data fork */
963 blocks
= cp
->c_blocks
;
964 VATTR_RETURN(vap
, va_data_alloc
, blocks
* (u_int64_t
)hfsmp
->blockSize
);
969 blocks
= VCTOF(vp
, cp
)->ff_blocks
;
970 VATTR_RETURN(vap
, va_data_alloc
, blocks
* (u_int64_t
)hfsmp
->blockSize
);
975 /* conditional because 64-bit arithmetic can be expensive */
976 if (VATTR_IS_ACTIVE(vap
, va_total_size
)) {
977 if (v_type
== VDIR
) {
978 VATTR_RETURN(vap
, va_total_size
, (cp
->c_entries
+ 2) * AVERAGE_HFSDIRENTRY_SIZE
);
980 u_int64_t total_size
= ~0ULL;
984 /* we're hiding the size of this file, so just return 0 */
986 } else if (compressed
) {
987 if (uncompressed_size
== -1) {
989 * We failed to get the uncompressed size above,
990 * so we'll fall back to the standard path below
991 * since total_size is still -1
994 /* use the uncompressed size we fetched above */
995 total_size
= uncompressed_size
;
999 if (total_size
== ~0ULL) {
1000 if (cp
->c_datafork
) {
1001 total_size
= cp
->c_datafork
->ff_size
;
1004 if (cp
->c_blocks
- VTOF(vp
)->ff_blocks
) {
1005 /* We deal with rsrc fork vnode iocount at the end of the function */
1006 error
= hfs_vgetrsrc(hfsmp
, vp
, &rvp
);
1009 * Note that we call hfs_vgetrsrc with error_on_unlinked
1010 * set to FALSE. This is because we may be invoked via
1011 * fstat() on an open-unlinked file descriptor and we must
1012 * continue to support access to the rsrc fork until it disappears.
1013 * The code at the end of this function will be
1014 * responsible for releasing the iocount generated by
1015 * hfs_vgetrsrc. This is because we can't drop the iocount
1016 * without unlocking the cnode first.
1022 if (rcp
&& rcp
->c_rsrcfork
) {
1023 total_size
+= rcp
->c_rsrcfork
->ff_size
;
1028 VATTR_RETURN(vap
, va_total_size
, total_size
);
1031 if (VATTR_IS_ACTIVE(vap
, va_total_alloc
)) {
1032 if (v_type
== VDIR
) {
1033 VATTR_RETURN(vap
, va_total_alloc
, 0);
1035 VATTR_RETURN(vap
, va_total_alloc
, (u_int64_t
)cp
->c_blocks
* (u_int64_t
)hfsmp
->blockSize
);
1040 * If the VFS wants extended security data, and we know that we
1041 * don't have any (because it never told us it was setting any)
1042 * then we can return the supported bit and no data. If we do
1043 * have extended security, we can just leave the bit alone and
1044 * the VFS will use the fallback path to fetch it.
1046 if (VATTR_IS_ACTIVE(vap
, va_acl
)) {
1047 if ((cp
->c_attr
.ca_recflags
& kHFSHasSecurityMask
) == 0) {
1048 vap
->va_acl
= (kauth_acl_t
) KAUTH_FILESEC_NONE
;
1049 VATTR_SET_SUPPORTED(vap
, va_acl
);
1053 vap
->va_access_time
.tv_sec
= cp
->c_atime
;
1054 vap
->va_access_time
.tv_nsec
= 0;
1055 vap
->va_create_time
.tv_sec
= cp
->c_itime
;
1056 vap
->va_create_time
.tv_nsec
= 0;
1057 vap
->va_modify_time
.tv_sec
= cp
->c_mtime
;
1058 vap
->va_modify_time
.tv_nsec
= 0;
1059 vap
->va_change_time
.tv_sec
= cp
->c_ctime
;
1060 vap
->va_change_time
.tv_nsec
= 0;
1061 vap
->va_backup_time
.tv_sec
= cp
->c_btime
;
1062 vap
->va_backup_time
.tv_nsec
= 0;
1064 /* See if we need to emit the date added field to the user */
1065 if (VATTR_IS_ACTIVE(vap
, va_addedtime
)) {
1066 u_int32_t dateadded
= hfs_get_dateadded (cp
);
1068 vap
->va_addedtime
.tv_sec
= dateadded
;
1069 vap
->va_addedtime
.tv_nsec
= 0;
1070 VATTR_SET_SUPPORTED (vap
, va_addedtime
);
1074 /* XXX is this really a good 'optimal I/O size'? */
1075 vap
->va_iosize
= hfsmp
->hfs_logBlockSize
;
1076 vap
->va_uid
= cp
->c_uid
;
1077 vap
->va_gid
= cp
->c_gid
;
1078 vap
->va_mode
= cp
->c_mode
;
1079 vap
->va_flags
= cp
->c_bsdflags
;
1082 * Exporting file IDs from HFS Plus:
1084 * For "normal" files the c_fileid is the same value as the
1085 * c_cnid. But for hard link files, they are different - the
1086 * c_cnid belongs to the active directory entry (ie the link)
1087 * and the c_fileid is for the actual inode (ie the data file).
1089 * The stat call (getattr) uses va_fileid and the Carbon APIs,
1090 * which are hardlink-ignorant, will ask for va_linkid.
1092 vap
->va_fileid
= (u_int64_t
)cp
->c_fileid
;
1094 * We need to use the origin cache for both hardlinked files
1095 * and directories. Hardlinked directories have multiple cnids
1096 * and parents (one per link). Hardlinked files also have their
1097 * own parents and link IDs separate from the indirect inode number.
1098 * If we don't use the cache, we could end up vending the wrong ID
1099 * because the cnode will only reflect the link that was looked up most recently.
1101 if (cp
->c_flag
& C_HARDLINK
) {
1102 vap
->va_linkid
= (u_int64_t
)hfs_currentcnid(cp
);
1103 vap
->va_parentid
= (u_int64_t
)hfs_currentparent(cp
, /* have_lock: */ true);
1105 vap
->va_linkid
= (u_int64_t
)cp
->c_cnid
;
1106 vap
->va_parentid
= (u_int64_t
)cp
->c_parentcnid
;
1109 vap
->va_fsid
= hfsmp
->hfs_raw_dev
;
1110 if (VATTR_IS_ACTIVE(vap
, va_devid
)) {
1111 VATTR_RETURN(vap
, va_devid
, hfsmp
->hfs_raw_dev
);
1113 vap
->va_filerev
= 0;
1114 vap
->va_encoding
= cp
->c_encoding
;
1115 vap
->va_rdev
= (v_type
== VBLK
|| v_type
== VCHR
) ? cp
->c_rdev
: 0;
1117 if (VATTR_IS_ACTIVE(vap
, va_data_size
)) {
1119 vap
->va_data_size
= 0;
1120 else if (compressed
) {
1121 if (uncompressed_size
== -1) {
1122 /* failed to get the uncompressed size above, so just return data_size */
1123 vap
->va_data_size
= data_size
;
1125 /* use the uncompressed size we fetched above */
1126 vap
->va_data_size
= uncompressed_size
;
1129 vap
->va_data_size
= data_size
;
1130 VATTR_SET_SUPPORTED(vap
, va_data_size
);
1133 vap
->va_data_size
= data_size
;
1134 vap
->va_supported
|= VNODE_ATTR_va_data_size
;
1138 if (VATTR_IS_ACTIVE(vap
, va_dataprotect_class
)) {
1139 vap
->va_dataprotect_class
= cp
->c_cpentry
? CP_CLASS(cp
->c_cpentry
->cp_pclass
) : 0;
1140 VATTR_SET_SUPPORTED(vap
, va_dataprotect_class
);
1143 if (VATTR_IS_ACTIVE(vap
, va_write_gencount
)) {
1144 if (ubc_is_mapped_writable(vp
)) {
1146 * Return 0 to the caller to indicate the file may be
1147 * changing. There is no need for us to increment the
1148 * generation counter here because it gets done as part of
1149 * page-out and also when the file is unmapped (to account
1150 * for changes we might not have seen).
1152 vap
->va_write_gencount
= 0;
1154 vap
->va_write_gencount
= hfs_get_gencount(cp
);
1157 VATTR_SET_SUPPORTED(vap
, va_write_gencount
);
1160 /* Mark them all at once instead of individual VATTR_SET_SUPPORTED calls. */
1161 vap
->va_supported
|= VNODE_ATTR_va_access_time
|
1162 VNODE_ATTR_va_create_time
| VNODE_ATTR_va_modify_time
|
1163 VNODE_ATTR_va_change_time
| VNODE_ATTR_va_backup_time
|
1164 VNODE_ATTR_va_iosize
| VNODE_ATTR_va_uid
|
1165 VNODE_ATTR_va_gid
| VNODE_ATTR_va_mode
|
1166 VNODE_ATTR_va_flags
|VNODE_ATTR_va_fileid
|
1167 VNODE_ATTR_va_linkid
| VNODE_ATTR_va_parentid
|
1168 VNODE_ATTR_va_fsid
| VNODE_ATTR_va_filerev
|
1169 VNODE_ATTR_va_encoding
| VNODE_ATTR_va_rdev
;
1171 /* If this is the root, let VFS to find out the mount name, which
1172 * may be different from the real name. Otherwise, we need to take care
1173 * for hardlinked files, which need to be looked up, if necessary
1175 if (VATTR_IS_ACTIVE(vap
, va_name
) && (cp
->c_cnid
!= kHFSRootFolderID
)) {
1176 struct cat_desc linkdesc
;
1178 int uselinkdesc
= 0;
1179 cnid_t nextlinkid
= 0;
1180 cnid_t prevlinkid
= 0;
1182 /* Get the name for ATTR_CMN_NAME. We need to take special care for hardlinks
1183 * here because the info. for the link ID requested by getattrlist may be
1184 * different than what's currently in the cnode. This is because the cnode
1185 * will be filled in with the information for the most recent link ID that went
1186 * through namei/lookup(). If there are competing lookups for hardlinks that point
1187 * to the same inode, one (or more) getattrlists could be vended incorrect name information.
1188 * Also, we need to beware of open-unlinked files which could have a namelen of 0.
1191 if ((cp
->c_flag
& C_HARDLINK
) &&
1192 ((cp
->c_desc
.cd_namelen
== 0) || (vap
->va_linkid
!= cp
->c_cnid
))) {
1194 * If we have no name and our link ID is the raw inode number, then we may
1195 * have an open-unlinked file. Go to the next link in this case.
1197 if ((cp
->c_desc
.cd_namelen
== 0) && (vap
->va_linkid
== cp
->c_fileid
)) {
1198 if ((error
= hfs_lookup_siblinglinks(hfsmp
, vap
->va_linkid
, &prevlinkid
, &nextlinkid
))){
1203 /* just use link obtained from vap above */
1204 nextlinkid
= vap
->va_linkid
;
1207 /* We need to probe the catalog for the descriptor corresponding to the link ID
1208 * stored in nextlinkid. Note that we don't know if we have the exclusive lock
1209 * for the cnode here, so we can't just update the descriptor. Instead,
1210 * we should just store the descriptor's value locally and then use it to pass
1211 * out the name value as needed below.
1214 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
1215 error
= cat_findname(hfsmp
, nextlinkid
, &linkdesc
);
1216 hfs_systemfile_unlock(hfsmp
, lockflags
);
1223 /* By this point, we've either patched up the name above and the c_desc
1224 * points to the correct data, or it already did, in which case we just proceed
1225 * by copying the name into the vap. Note that we will never set va_name to
1226 * supported if nextlinkid is never initialized. This could happen in the degenerate
1227 * case above involving the raw inode number, where it has no nextlinkid. In this case
1228 * we will simply not mark the name bit as supported.
1231 strlcpy(vap
->va_name
, (const char*) linkdesc
.cd_nameptr
, MAXPATHLEN
);
1232 VATTR_SET_SUPPORTED(vap
, va_name
);
1233 cat_releasedesc(&linkdesc
);
1235 else if (cp
->c_desc
.cd_namelen
) {
1236 strlcpy(vap
->va_name
, (const char*) cp
->c_desc
.cd_nameptr
, MAXPATHLEN
);
1237 VATTR_SET_SUPPORTED(vap
, va_name
);
1244 * We need to vnode_put the rsrc fork vnode only *after* we've released
1245 * the cnode lock, since vnode_put can trigger an inactive call, which
1246 * will go back into HFS and try to acquire a cnode lock.
1256 hfs_vnop_setattr(struct vnop_setattr_args
*ap
)
1258 struct vnode_attr
*vap
= ap
->a_vap
;
1259 struct vnode
*vp
= ap
->a_vp
;
1260 struct cnode
*cp
= NULL
;
1261 struct hfsmount
*hfsmp
;
1262 kauth_cred_t cred
= vfs_context_ucred(ap
->a_context
);
1263 struct proc
*p
= vfs_context_proc(ap
->a_context
);
1269 orig_ctime
= VTOC(vp
)->c_ctime
;
1272 int decmpfs_reset_state
= 0;
1274 we call decmpfs_update_attributes even if the file is not compressed
1275 because we want to update the incoming flags if the xattrs are invalid
1277 error
= decmpfs_update_attributes(vp
, vap
);
1282 // if this is not a size-changing setattr and it is not just
1283 // an atime update, then check for a snapshot.
1285 if (!VATTR_IS_ACTIVE(vap
, va_data_size
) && !(vap
->va_active
== VNODE_ATTR_va_access_time
)) {
1286 nspace_snapshot_event(vp
, orig_ctime
, NAMESPACE_HANDLER_METADATA_MOD
, NSPACE_REARM_NO_ARG
);
1291 * All metadata changes should be allowed except a size-changing setattr, which
1292 * has effects on file content and requires calling into cp_handle_vnop
1293 * to have content protection check.
1295 if (VATTR_IS_ACTIVE(vap
, va_data_size
)) {
1296 if ((error
= cp_handle_vnop(vp
, CP_WRITE_ACCESS
, 0)) != 0) {
1300 #endif /* CONFIG_PROTECT */
1304 /* Don't allow modification of the journal. */
1305 if (hfs_is_journal_file(hfsmp
, VTOC(vp
))) {
1310 // Check if we'll need a document_id and if so, get it before we lock the
1311 // the cnode to avoid any possible deadlock with the root vnode which has
1312 // to get locked to get the document id
1314 u_int32_t document_id
=0;
1315 if (VATTR_IS_ACTIVE(vap
, va_flags
) && (vap
->va_flags
& UF_TRACKED
) && !(VTOC(vp
)->c_bsdflags
& UF_TRACKED
)) {
1316 struct FndrExtendedDirInfo
*fip
= (struct FndrExtendedDirInfo
*)((char *)&(VTOC(vp
)->c_attr
.ca_finderinfo
) + 16);
1318 // If the document_id is not set, get a new one. It will be set
1319 // on the file down below once we hold the cnode lock.
1321 if (fip
->document_id
== 0) {
1322 if (hfs_generate_document_id(hfsmp
, &document_id
) != 0) {
1330 * File size change request.
1331 * We are guaranteed that this is not a directory, and that
1332 * the filesystem object is writeable.
1334 * NOTE: HFS COMPRESSION depends on the data_size being set *before* the bsd flags are updated
1336 VATTR_SET_SUPPORTED(vap
, va_data_size
);
1337 if (VATTR_IS_ACTIVE(vap
, va_data_size
)) {
1338 if (!vnode_isreg(vp
)) {
1339 if (vnode_isdir(vp
)) {
1342 //otherwise return EINVAL
1347 /* keep the compressed state locked until we're done truncating the file */
1348 decmpfs_cnode
*dp
= VTOCMP(vp
);
1351 * call hfs_lazy_init_decmpfs_cnode() to make sure that the decmpfs_cnode
1352 * is filled in; we need a decmpfs_cnode to lock out decmpfs state changes
1353 * on this file while it's truncating
1355 dp
= hfs_lazy_init_decmpfs_cnode(VTOC(vp
));
1357 /* failed to allocate a decmpfs_cnode */
1358 return ENOMEM
; /* what should this be? */
1362 nspace_snapshot_event(vp
, orig_ctime
, vap
->va_data_size
== 0 ? NAMESPACE_HANDLER_TRUNCATE_OP
|NAMESPACE_HANDLER_DELETE_OP
: NAMESPACE_HANDLER_TRUNCATE_OP
, NULL
);
1364 decmpfs_lock_compressed_data(dp
, 1);
1365 if (hfs_file_is_compressed(VTOC(vp
), 1)) {
1366 error
= decmpfs_decompress_file(vp
, dp
, -1/*vap->va_data_size*/, 0, 1);
1368 decmpfs_unlock_compressed_data(dp
, 1);
1374 // Take truncate lock
1375 hfs_lock_truncate(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
1377 // hfs_truncate will deal with the cnode lock
1378 error
= hfs_truncate(vp
, vap
->va_data_size
, vap
->va_vaflags
& 0xffff,
1381 hfs_unlock_truncate(VTOC(vp
), HFS_LOCK_DEFAULT
);
1383 decmpfs_unlock_compressed_data(dp
, 1);
1389 if ((error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
)))
1395 * If it is just an access time update request by itself
1396 * we know the request is from kernel level code, and we
1397 * can delay it without being as worried about consistency.
1398 * This change speeds up mmaps, in the rare case that they
1399 * get caught behind a sync.
1402 if (vap
->va_active
== VNODE_ATTR_va_access_time
) {
1403 cp
->c_touch_acctime
=TRUE
;
1410 * Owner/group change request.
1411 * We are guaranteed that the new owner/group is valid and legal.
1413 VATTR_SET_SUPPORTED(vap
, va_uid
);
1414 VATTR_SET_SUPPORTED(vap
, va_gid
);
1415 nuid
= VATTR_IS_ACTIVE(vap
, va_uid
) ? vap
->va_uid
: (uid_t
)VNOVAL
;
1416 ngid
= VATTR_IS_ACTIVE(vap
, va_gid
) ? vap
->va_gid
: (gid_t
)VNOVAL
;
1417 if (((nuid
!= (uid_t
)VNOVAL
) || (ngid
!= (gid_t
)VNOVAL
)) &&
1418 ((error
= hfs_chown(vp
, nuid
, ngid
, cred
, p
)) != 0))
1422 * Mode change request.
1423 * We are guaranteed that the mode value is valid and that in
1424 * conjunction with the owner and group, this change is legal.
1426 VATTR_SET_SUPPORTED(vap
, va_mode
);
1427 if (VATTR_IS_ACTIVE(vap
, va_mode
) &&
1428 ((error
= hfs_chmod(vp
, (int)vap
->va_mode
, cred
, p
)) != 0))
1432 * File flags change.
1433 * We are guaranteed that only flags allowed to change given the
1434 * current securelevel are being changed.
1436 VATTR_SET_SUPPORTED(vap
, va_flags
);
1437 if (VATTR_IS_ACTIVE(vap
, va_flags
)) {
1441 if ((cp
->c_bsdflags
^ vap
->va_flags
) & UF_COMPRESSED
) {
1443 * the UF_COMPRESSED was toggled, so reset our cached compressed state
1444 * but we don't want to actually do the update until we've released the cnode lock down below
1445 * NOTE: turning the flag off doesn't actually decompress the file, so that we can
1446 * turn off the flag and look at the "raw" file for debugging purposes
1448 decmpfs_reset_state
= 1;
1451 if ((vap
->va_flags
& UF_TRACKED
) && !(cp
->c_bsdflags
& UF_TRACKED
)) {
1452 struct FndrExtendedDirInfo
*fip
= (struct FndrExtendedDirInfo
*)((char *)&cp
->c_attr
.ca_finderinfo
+ 16);
1455 // we're marking this item UF_TRACKED. if the document_id is
1456 // not set, get a new one and put it on the file.
1458 if (fip
->document_id
== 0) {
1459 if (document_id
!= 0) {
1460 // printf("SETATTR: assigning doc-id %d to %s (ino %d)\n", document_id, vp->v_name, cp->c_desc.cd_cnid);
1461 fip
->document_id
= (uint32_t)document_id
;
1462 add_fsevent(FSE_DOCID_CHANGED
, ap
->a_context
,
1463 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
1464 FSE_ARG_INO
, (ino64_t
)0, // src inode #
1465 FSE_ARG_INO
, (ino64_t
)cp
->c_fileid
, // dst inode #
1466 FSE_ARG_INT32
, document_id
,
1469 // printf("hfs: could not acquire a new document_id for %s (ino %d)\n", vp->v_name, cp->c_desc.cd_cnid);
1473 } else if (!(vap
->va_flags
& UF_TRACKED
) && (cp
->c_bsdflags
& UF_TRACKED
)) {
1475 // UF_TRACKED is being cleared so clear the document_id
1477 struct FndrExtendedDirInfo
*fip
= (struct FndrExtendedDirInfo
*)((char *)&cp
->c_attr
.ca_finderinfo
+ 16);
1478 if (fip
->document_id
) {
1479 // printf("SETATTR: clearing doc-id %d from %s (ino %d)\n", fip->document_id, vp->v_name, cp->c_desc.cd_cnid);
1480 add_fsevent(FSE_DOCID_CHANGED
, ap
->a_context
,
1481 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
1482 FSE_ARG_INO
, (ino64_t
)cp
->c_fileid
, // src inode #
1483 FSE_ARG_INO
, (ino64_t
)0, // dst inode #
1484 FSE_ARG_INT32
, fip
->document_id
, // document id
1486 fip
->document_id
= 0;
1487 cp
->c_bsdflags
&= ~UF_TRACKED
;
1491 cp
->c_bsdflags
= vap
->va_flags
;
1492 cp
->c_flag
|= C_MODIFIED
;
1493 cp
->c_touch_chgtime
= TRUE
;
1497 * Mirror the UF_HIDDEN flag to the invisible bit of the Finder Info.
1499 * The fdFlags for files and frFlags for folders are both 8 bytes
1500 * into the userInfo (the first 16 bytes of the Finder Info). They
1501 * are both 16-bit fields.
1503 fdFlags
= (u_int16_t
*) &cp
->c_finderinfo
[8];
1504 if (vap
->va_flags
& UF_HIDDEN
)
1505 *fdFlags
|= OSSwapHostToBigConstInt16(kFinderInvisibleMask
);
1507 *fdFlags
&= ~OSSwapHostToBigConstInt16(kFinderInvisibleMask
);
1511 * Timestamp updates.
1513 VATTR_SET_SUPPORTED(vap
, va_create_time
);
1514 VATTR_SET_SUPPORTED(vap
, va_access_time
);
1515 VATTR_SET_SUPPORTED(vap
, va_modify_time
);
1516 VATTR_SET_SUPPORTED(vap
, va_backup_time
);
1517 VATTR_SET_SUPPORTED(vap
, va_change_time
);
1518 if (VATTR_IS_ACTIVE(vap
, va_create_time
) ||
1519 VATTR_IS_ACTIVE(vap
, va_access_time
) ||
1520 VATTR_IS_ACTIVE(vap
, va_modify_time
) ||
1521 VATTR_IS_ACTIVE(vap
, va_backup_time
)) {
1522 if (VATTR_IS_ACTIVE(vap
, va_create_time
))
1523 cp
->c_itime
= vap
->va_create_time
.tv_sec
;
1524 if (VATTR_IS_ACTIVE(vap
, va_access_time
)) {
1525 cp
->c_atime
= vap
->va_access_time
.tv_sec
;
1526 cp
->c_touch_acctime
= FALSE
;
1528 if (VATTR_IS_ACTIVE(vap
, va_modify_time
)) {
1529 cp
->c_mtime
= vap
->va_modify_time
.tv_sec
;
1530 cp
->c_touch_modtime
= FALSE
;
1531 cp
->c_touch_chgtime
= TRUE
;
1533 hfs_clear_might_be_dirty_flag(cp
);
1536 * The utimes system call can reset the modification
1537 * time but it doesn't know about HFS create times.
1538 * So we need to ensure that the creation time is
1539 * always at least as old as the modification time.
1541 if ((VTOVCB(vp
)->vcbSigWord
== kHFSPlusSigWord
) &&
1542 (cp
->c_cnid
!= kHFSRootFolderID
) &&
1543 !VATTR_IS_ACTIVE(vap
, va_create_time
) &&
1544 (cp
->c_mtime
< cp
->c_itime
)) {
1545 cp
->c_itime
= cp
->c_mtime
;
1548 if (VATTR_IS_ACTIVE(vap
, va_backup_time
))
1549 cp
->c_btime
= vap
->va_backup_time
.tv_sec
;
1550 cp
->c_flag
|= C_MINOR_MOD
;
1553 // Set the date added time
1554 VATTR_SET_SUPPORTED(vap
, va_addedtime
);
1555 if (VATTR_IS_ACTIVE(vap
, va_addedtime
)) {
1556 hfs_write_dateadded(&cp
->c_attr
, vap
->va_addedtime
.tv_sec
);
1557 cp
->c_flag
&= ~C_NEEDS_DATEADDED
;
1558 cp
->c_touch_chgtime
= true;
1562 * Set name encoding.
1564 VATTR_SET_SUPPORTED(vap
, va_encoding
);
1565 if (VATTR_IS_ACTIVE(vap
, va_encoding
)) {
1566 cp
->c_encoding
= vap
->va_encoding
;
1567 cp
->c_flag
|= C_MODIFIED
;
1568 hfs_setencodingbits(hfsmp
, cp
->c_encoding
);
1571 if ((error
= hfs_update(vp
, 0)) != 0)
1576 /* Purge origin cache for cnode, since caller now has correct link ID for it
1577 * We purge it here since it was acquired for us during lookup, and we no longer need it.
1579 if ((cp
->c_flag
& C_HARDLINK
) && (vnode_vtype(vp
) != VDIR
)){
1580 hfs_relorigin(cp
, 0);
1585 if (decmpfs_reset_state
) {
1587 * we've changed the UF_COMPRESSED flag, so reset the decmpfs state for this cnode
1588 * but don't do it while holding the hfs cnode lock
1590 decmpfs_cnode
*dp
= VTOCMP(vp
);
1593 * call hfs_lazy_init_decmpfs_cnode() to make sure that the decmpfs_cnode
1594 * is filled in; we need a decmpfs_cnode to prevent decmpfs state changes
1595 * on this file if it's locked
1597 dp
= hfs_lazy_init_decmpfs_cnode(VTOC(vp
));
1599 /* failed to allocate a decmpfs_cnode */
1600 return ENOMEM
; /* what should this be? */
1603 decmpfs_cnode_set_vnode_state(dp
, FILE_TYPE_UNKNOWN
, 0);
1609 VATTR_SET_SUPPORTED(vap
, va_dataprotect_class
);
1610 if (!error
&& VATTR_IS_ACTIVE(vap
, va_dataprotect_class
))
1611 error
= cp_vnode_setclass(vp
, vap
->va_dataprotect_class
);
1619 * Change the mode on a file.
1620 * cnode must be locked before calling.
1623 hfs_chmod(struct vnode
*vp
, int mode
, __unused kauth_cred_t cred
, __unused
struct proc
*p
)
1625 register struct cnode
*cp
= VTOC(vp
);
1627 if (VTOVCB(vp
)->vcbSigWord
!= kHFSPlusSigWord
)
1630 // Don't allow modification of the journal or journal_info_block
1631 if (hfs_is_journal_file(VTOHFS(vp
), cp
)) {
1635 #if OVERRIDE_UNKNOWN_PERMISSIONS
1636 if (((unsigned int)vfs_flags(VTOVFS(vp
))) & MNT_UNKNOWNPERMISSIONS
) {
1641 mode_t new_mode
= (cp
->c_mode
& ~ALLPERMS
) | (mode
& ALLPERMS
);
1642 if (new_mode
!= cp
->c_mode
) {
1643 cp
->c_mode
= new_mode
;
1644 cp
->c_flag
|= C_MINOR_MOD
;
1646 cp
->c_touch_chgtime
= TRUE
;
1652 hfs_write_access(struct vnode
*vp
, kauth_cred_t cred
, struct proc
*p
, Boolean considerFlags
)
1654 struct cnode
*cp
= VTOC(vp
);
1659 * Disallow write attempts on read-only file systems;
1660 * unless the file is a socket, fifo, or a block or
1661 * character device resident on the file system.
1663 switch (vnode_vtype(vp
)) {
1667 if (VTOHFS(vp
)->hfs_flags
& HFS_READ_ONLY
)
1674 /* If immutable bit set, nobody gets to write it. */
1675 if (considerFlags
&& (cp
->c_bsdflags
& IMMUTABLE
))
1678 /* Otherwise, user id 0 always gets access. */
1679 if (!suser(cred
, NULL
))
1682 /* Otherwise, check the owner. */
1683 if ((retval
= hfs_owner_rights(VTOHFS(vp
), cp
->c_uid
, cred
, p
, false)) == 0)
1684 return ((cp
->c_mode
& S_IWUSR
) == S_IWUSR
? 0 : EACCES
);
1686 /* Otherwise, check the groups. */
1687 if (kauth_cred_ismember_gid(cred
, cp
->c_gid
, &is_member
) == 0 && is_member
) {
1688 return ((cp
->c_mode
& S_IWGRP
) == S_IWGRP
? 0 : EACCES
);
1691 /* Otherwise, check everyone else. */
1692 return ((cp
->c_mode
& S_IWOTH
) == S_IWOTH
? 0 : EACCES
);
1697 * Perform chown operation on cnode cp;
1698 * code must be locked prior to call.
1702 hfs_chown(struct vnode
*vp
, uid_t uid
, gid_t gid
, __unused kauth_cred_t cred
,
1703 __unused
struct proc
*p
)
1705 hfs_chown(struct vnode
*vp
, uid_t uid
, gid_t gid
, kauth_cred_t cred
,
1706 __unused
struct proc
*p
)
1709 register struct cnode
*cp
= VTOC(vp
);
1718 if (VTOVCB(vp
)->vcbSigWord
!= kHFSPlusSigWord
)
1721 if (((unsigned int)vfs_flags(VTOVFS(vp
))) & MNT_UNKNOWNPERMISSIONS
)
1724 if (uid
== (uid_t
)VNOVAL
)
1726 if (gid
== (gid_t
)VNOVAL
)
1729 #if 0 /* we are guaranteed that this is already the case */
1731 * If we don't own the file, are trying to change the owner
1732 * of the file, or are not a member of the target group,
1733 * the caller must be superuser or the call fails.
1735 if ((kauth_cred_getuid(cred
) != cp
->c_uid
|| uid
!= cp
->c_uid
||
1736 (gid
!= cp
->c_gid
&&
1737 (kauth_cred_ismember_gid(cred
, gid
, &is_member
) || !is_member
))) &&
1738 (error
= suser(cred
, 0)))
1745 if (ouid
== uid
&& ogid
== gid
) {
1746 // No change, just set change time
1747 cp
->c_touch_chgtime
= TRUE
;
1752 if ((error
= hfs_getinoquota(cp
)))
1755 dqrele(cp
->c_dquot
[USRQUOTA
]);
1756 cp
->c_dquot
[USRQUOTA
] = NODQUOT
;
1759 dqrele(cp
->c_dquot
[GRPQUOTA
]);
1760 cp
->c_dquot
[GRPQUOTA
] = NODQUOT
;
1764 * Eventually need to account for (fake) a block per directory
1765 * if (vnode_isdir(vp))
1766 * change = VTOHFS(vp)->blockSize;
1770 change
= (int64_t)(cp
->c_blocks
) * (int64_t)VTOVCB(vp
)->blockSize
;
1771 (void) hfs_chkdq(cp
, -change
, cred
, CHOWN
);
1772 (void) hfs_chkiq(cp
, -1, cred
, CHOWN
);
1773 for (i
= 0; i
< MAXQUOTAS
; i
++) {
1774 dqrele(cp
->c_dquot
[i
]);
1775 cp
->c_dquot
[i
] = NODQUOT
;
1781 if ((error
= hfs_getinoquota(cp
)) == 0) {
1783 dqrele(cp
->c_dquot
[USRQUOTA
]);
1784 cp
->c_dquot
[USRQUOTA
] = NODQUOT
;
1787 dqrele(cp
->c_dquot
[GRPQUOTA
]);
1788 cp
->c_dquot
[GRPQUOTA
] = NODQUOT
;
1790 if ((error
= hfs_chkdq(cp
, change
, cred
, CHOWN
)) == 0) {
1791 if ((error
= hfs_chkiq(cp
, 1, cred
, CHOWN
)) == 0)
1794 (void) hfs_chkdq(cp
, -change
, cred
, CHOWN
|FORCE
);
1796 for (i
= 0; i
< MAXQUOTAS
; i
++) {
1797 dqrele(cp
->c_dquot
[i
]);
1798 cp
->c_dquot
[i
] = NODQUOT
;
1803 if (hfs_getinoquota(cp
) == 0) {
1805 dqrele(cp
->c_dquot
[USRQUOTA
]);
1806 cp
->c_dquot
[USRQUOTA
] = NODQUOT
;
1809 dqrele(cp
->c_dquot
[GRPQUOTA
]);
1810 cp
->c_dquot
[GRPQUOTA
] = NODQUOT
;
1812 (void) hfs_chkdq(cp
, change
, cred
, FORCE
|CHOWN
);
1813 (void) hfs_chkiq(cp
, 1, cred
, FORCE
|CHOWN
);
1814 (void) hfs_getinoquota(cp
);
1818 if (hfs_getinoquota(cp
))
1819 panic("hfs_chown: lost quota");
1823 * Without quotas, we could probably make this a minor
1826 cp
->c_flag
|= C_MODIFIED
;
1829 According to the SUSv3 Standard, chown() shall mark
1830 for update the st_ctime field of the file.
1831 (No exceptions mentioned)
1833 cp
->c_touch_chgtime
= TRUE
;
1839 * Flush the resource fork if it exists. vp is the data fork and has
1842 static int hfs_flush_rsrc(vnode_t vp
, vfs_context_t ctx
)
1844 cnode_t
*cp
= VTOC(vp
);
1846 hfs_lock(cp
, HFS_SHARED_LOCK
, 0);
1848 vnode_t rvp
= cp
->c_rsrc_vp
;
1855 int vid
= vnode_vid(rvp
);
1859 int error
= vnode_getwithvid(rvp
, vid
);
1862 return error
== ENOENT
? 0 : error
;
1864 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, 0);
1865 hfs_lock_always(cp
, HFS_EXCLUSIVE_LOCK
);
1866 hfs_filedone(rvp
, ctx
, HFS_FILE_DONE_NO_SYNC
);
1868 hfs_unlock_truncate(cp
, 0);
1870 error
= ubc_msync(rvp
, 0, ubc_getsize(rvp
), NULL
,
1871 UBC_PUSHALL
| UBC_SYNC
);
1877 #endif // HFS_COMPRESSION
1880 * hfs_vnop_exchange:
1883 * 'from' vnode/cnode
1889 * hfs_vnop_exchange is used to service the exchangedata(2) system call.
1890 * Per the requirements of that system call, this function "swaps" some
1891 * of the information that lives in one catalog record for some that
1892 * lives in another. Note that not everything is swapped; in particular,
1893 * the extent information stored in each cnode is kept local to that
1894 * cnode. This allows existing file descriptor references to continue
1895 * to operate on the same content, regardless of the location in the
1896 * namespace that the file may have moved to. See inline comments
1897 * in the function for more information.
1900 hfs_vnop_exchange(struct vnop_exchange_args
*ap
)
1902 struct vnode
*from_vp
= ap
->a_fvp
;
1903 struct vnode
*to_vp
= ap
->a_tvp
;
1904 struct cnode
*from_cp
;
1905 struct cnode
*to_cp
;
1906 struct hfsmount
*hfsmp
;
1907 struct cat_desc tempdesc
;
1908 struct cat_attr tempattr
;
1909 const unsigned char *from_nameptr
;
1910 const unsigned char *to_nameptr
;
1911 char from_iname
[32];
1913 uint32_t to_flag_special
;
1914 uint32_t from_flag_special
;
1918 int error
= 0, started_tr
= 0, got_cookie
= 0;
1919 cat_cookie_t cookie
;
1920 time_t orig_from_ctime
, orig_to_ctime
;
1921 bool have_cnode_locks
= false, have_from_trunc_lock
= false, have_to_trunc_lock
= false;
1924 * VFS does the following checks:
1925 * 1. Validate that both are files.
1926 * 2. Validate that both are on the same mount.
1927 * 3. Validate that they're not the same vnode.
1930 from_cp
= VTOC(from_vp
);
1931 to_cp
= VTOC(to_vp
);
1932 hfsmp
= VTOHFS(from_vp
);
1934 orig_from_ctime
= from_cp
->c_ctime
;
1935 orig_to_ctime
= to_cp
->c_ctime
;
1939 * Do not allow exchangedata/F_MOVEDATAEXTENTS on data-protected filesystems
1940 * because the EAs will not be swapped. As a result, the persistent keys would not
1941 * match and the files will be garbage.
1943 if (cp_fs_protected (vnode_mount(from_vp
))) {
1949 if (!ISSET(ap
->a_options
, FSOPT_EXCHANGE_DATA_ONLY
)) {
1950 if ( hfs_file_is_compressed(from_cp
, 0) ) {
1951 if ( 0 != ( error
= decmpfs_decompress_file(from_vp
, VTOCMP(from_vp
), -1, 0, 1) ) ) {
1956 if ( hfs_file_is_compressed(to_cp
, 0) ) {
1957 if ( 0 != ( error
= decmpfs_decompress_file(to_vp
, VTOCMP(to_vp
), -1, 0, 1) ) ) {
1962 #endif // HFS_COMPRESSION
1964 // Resource forks cannot be exchanged.
1965 if (VNODE_IS_RSRC(from_vp
) || VNODE_IS_RSRC(to_vp
))
1969 * Normally, we want to notify the user handlers about the event,
1970 * except if it's a handler driving the event.
1972 if ((ap
->a_options
& FSOPT_EXCHANGE_DATA_ONLY
) == 0) {
1973 nspace_snapshot_event(from_vp
, orig_from_ctime
, NAMESPACE_HANDLER_WRITE_OP
, NULL
);
1974 nspace_snapshot_event(to_vp
, orig_to_ctime
, NAMESPACE_HANDLER_WRITE_OP
, NULL
);
1977 * This is currently used by mtmd so we should tidy up the
1978 * file now because the data won't be used again in the
1981 hfs_lock_truncate(from_cp
, HFS_EXCLUSIVE_LOCK
, 0);
1982 hfs_lock_always(from_cp
, HFS_EXCLUSIVE_LOCK
);
1983 hfs_filedone(from_vp
, ap
->a_context
, HFS_FILE_DONE_NO_SYNC
);
1984 hfs_unlock(from_cp
);
1985 hfs_unlock_truncate(from_cp
, 0);
1987 // Flush all the data from the source file
1988 error
= ubc_msync(from_vp
, 0, ubc_getsize(from_vp
), NULL
,
1989 UBC_PUSHALL
| UBC_SYNC
);
1995 * If this is a compressed file, we need to do the same for
1996 * the resource fork.
1998 if (ISSET(from_cp
->c_bsdflags
, UF_COMPRESSED
)) {
1999 error
= hfs_flush_rsrc(from_vp
, ap
->a_context
);
2006 * We're doing a data-swap so we need to take the truncate
2007 * lock exclusively. We need an exclusive lock because we
2008 * will be completely truncating the source file and we must
2009 * make sure nobody else sneaks in and trys to issue I/O
2010 * whilst we don't have the cnode lock.
2012 * After taking the truncate lock we do a quick check to
2013 * verify there are no other references (including mmap
2014 * references), but we must remember that this does not stop
2015 * anybody coming in later and taking a reference. We will
2016 * have the truncate lock exclusively so that will prevent
2017 * them from issuing any I/O.
2020 if (to_cp
< from_cp
) {
2021 hfs_lock_truncate(to_cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2022 have_to_trunc_lock
= true;
2025 hfs_lock_truncate(from_cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2026 have_from_trunc_lock
= true;
2029 * Do an early check to verify the source is not in use by
2030 * anyone. We should be called from an FD opened as F_EVTONLY
2031 * so that doesn't count as a reference.
2033 if (vnode_isinuse(from_vp
, 0)) {
2038 if (to_cp
>= from_cp
) {
2039 hfs_lock_truncate(to_cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2040 have_to_trunc_lock
= true;
2044 if ((error
= hfs_lockpair(from_cp
, to_cp
, HFS_EXCLUSIVE_LOCK
)))
2046 have_cnode_locks
= true;
2048 // Don't allow modification of the journal or journal_info_block
2049 if (hfs_is_journal_file(hfsmp
, from_cp
) ||
2050 hfs_is_journal_file(hfsmp
, to_cp
)) {
2056 * Ok, now that all of the pre-flighting is done, call the underlying
2057 * function if needed.
2059 if (ISSET(ap
->a_options
, FSOPT_EXCHANGE_DATA_ONLY
)) {
2061 if (ISSET(from_cp
->c_bsdflags
, UF_COMPRESSED
)) {
2062 error
= hfs_move_compressed(from_cp
, to_cp
);
2067 error
= hfs_move_data(from_cp
, to_cp
, 0);
2071 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
2077 * Reserve some space in the Catalog file.
2079 if ((error
= cat_preflight(hfsmp
, CAT_EXCHANGE
, &cookie
, vfs_context_proc(ap
->a_context
)))) {
2084 /* The backend code always tries to delete the virtual
2085 * extent id for exchanging files so we need to lock
2086 * the extents b-tree.
2088 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_EXTENTS
| SFL_ATTRIBUTE
, HFS_EXCLUSIVE_LOCK
);
2090 /* Account for the location of the catalog objects. */
2091 if (from_cp
->c_flag
& C_HARDLINK
) {
2092 MAKE_INODE_NAME(from_iname
, sizeof(from_iname
),
2093 from_cp
->c_attr
.ca_linkref
);
2094 from_nameptr
= (unsigned char *)from_iname
;
2095 from_parid
= hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
;
2096 from_cp
->c_hint
= 0;
2098 from_nameptr
= from_cp
->c_desc
.cd_nameptr
;
2099 from_parid
= from_cp
->c_parentcnid
;
2101 if (to_cp
->c_flag
& C_HARDLINK
) {
2102 MAKE_INODE_NAME(to_iname
, sizeof(to_iname
),
2103 to_cp
->c_attr
.ca_linkref
);
2104 to_nameptr
= (unsigned char *)to_iname
;
2105 to_parid
= hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
;
2108 to_nameptr
= to_cp
->c_desc
.cd_nameptr
;
2109 to_parid
= to_cp
->c_parentcnid
;
2113 * ExchangeFileIDs swaps the on-disk, or in-BTree extent information
2114 * attached to two different file IDs. It also swaps the extent
2115 * information that may live in the extents-overflow B-Tree.
2117 * We do this in a transaction as this may require a lot of B-Tree nodes
2118 * to do completely, particularly if one of the files in question
2119 * has a lot of extents.
2121 * For example, assume "file1" has fileID 50, and "file2" has fileID 52.
2122 * For the on-disk records, which are assumed to be synced, we will
2123 * first swap the resident inline-8 extents as part of the catalog records.
2124 * Then we will swap any extents overflow records for each file.
2126 * When ExchangeFileIDs returns successfully, "file1" will have fileID 52,
2127 * and "file2" will have fileID 50. However, note that this is only
2128 * approximately half of the work that exchangedata(2) will need to
2129 * accomplish. In other words, we swap "too much" of the information
2130 * because if we only called ExchangeFileIDs, both the fileID and extent
2131 * information would be the invariants of this operation. We don't
2132 * actually want that; we want to conclude with "file1" having
2133 * file ID 50, and "file2" having fileID 52.
2135 * The remainder of hfs_vnop_exchange will swap the file ID and other cnode
2136 * data back to the proper ownership, while still allowing the cnode to remain
2137 * pointing at the same set of extents that it did originally.
2139 error
= ExchangeFileIDs(hfsmp
, from_nameptr
, to_nameptr
, from_parid
,
2140 to_parid
, from_cp
->c_hint
, to_cp
->c_hint
);
2141 hfs_systemfile_unlock(hfsmp
, lockflags
);
2144 * Note that we don't need to exchange any extended attributes
2145 * since the attributes are keyed by file ID.
2148 if (error
!= E_NONE
) {
2149 error
= MacToVFSError(error
);
2153 /* Purge the vnodes from the name cache */
2155 cache_purge(from_vp
);
2159 /* Bump both source and destination write counts before any swaps. */
2161 hfs_incr_gencount (from_cp
);
2162 hfs_incr_gencount (to_cp
);
2165 /* Save a copy of "from" attributes before swapping. */
2166 bcopy(&from_cp
->c_desc
, &tempdesc
, sizeof(struct cat_desc
));
2167 bcopy(&from_cp
->c_attr
, &tempattr
, sizeof(struct cat_attr
));
2169 /* Save whether or not each cnode is a hardlink or has EAs */
2170 from_flag_special
= from_cp
->c_flag
& (C_HARDLINK
| C_HASXATTRS
);
2171 to_flag_special
= to_cp
->c_flag
& (C_HARDLINK
| C_HASXATTRS
);
2173 /* Drop the special bits from each cnode */
2174 from_cp
->c_flag
&= ~(C_HARDLINK
| C_HASXATTRS
);
2175 to_cp
->c_flag
&= ~(C_HARDLINK
| C_HASXATTRS
);
2178 * Now complete the in-memory portion of the copy.
2180 * ExchangeFileIDs swaps the on-disk records involved. We complete the
2181 * operation by swapping the in-memory contents of the two files here.
2182 * We swap the cnode descriptors, which contain name, BSD attributes,
2183 * timestamps, etc, about the file.
2185 * NOTE: We do *NOT* swap the fileforks of the two cnodes. We have
2186 * already swapped the on-disk extent information. As long as we swap the
2187 * IDs, the in-line resident 8 extents that live in the filefork data
2188 * structure will point to the right data for the new file ID if we leave
2191 * As a result, any file descriptor that points to a particular
2192 * vnode (even though it should change names), will continue
2193 * to point to the same content.
2196 /* Copy the "to" -> "from" cnode */
2197 bcopy(&to_cp
->c_desc
, &from_cp
->c_desc
, sizeof(struct cat_desc
));
2199 from_cp
->c_hint
= 0;
2201 * If 'to' was a hardlink, then we copied over its link ID/CNID/(namespace ID)
2202 * when we bcopy'd the descriptor above. However, the cnode attributes
2203 * are not bcopied. As a result, make sure to swap the file IDs of each item.
2205 * Further, other hardlink attributes must be moved along in this swap:
2206 * the linkcount, the linkref, and the firstlink all need to move
2207 * along with the file IDs. See note below regarding the flags and
2208 * what moves vs. what does not.
2211 * linkcount == total # of hardlinks.
2212 * linkref == the indirect inode pointer.
2213 * firstlink == the first hardlink in the chain (written to the raw inode).
2214 * These three are tied to the fileID and must move along with the rest of the data.
2216 from_cp
->c_fileid
= to_cp
->c_attr
.ca_fileid
;
2218 from_cp
->c_itime
= to_cp
->c_itime
;
2219 from_cp
->c_btime
= to_cp
->c_btime
;
2220 from_cp
->c_atime
= to_cp
->c_atime
;
2221 from_cp
->c_ctime
= to_cp
->c_ctime
;
2222 from_cp
->c_gid
= to_cp
->c_gid
;
2223 from_cp
->c_uid
= to_cp
->c_uid
;
2224 from_cp
->c_bsdflags
= to_cp
->c_bsdflags
;
2225 from_cp
->c_mode
= to_cp
->c_mode
;
2226 from_cp
->c_linkcount
= to_cp
->c_linkcount
;
2227 from_cp
->c_attr
.ca_linkref
= to_cp
->c_attr
.ca_linkref
;
2228 from_cp
->c_attr
.ca_firstlink
= to_cp
->c_attr
.ca_firstlink
;
2231 * The cnode flags need to stay with the cnode and not get transferred
2232 * over along with everything else because they describe the content; they are
2233 * not attributes that reflect changes specific to the file ID. In general,
2234 * fields that are tied to the file ID are the ones that will move.
2236 * This reflects the fact that the file may have borrowed blocks, dirty metadata,
2237 * or other extents, which may not yet have been written to the catalog. If
2238 * they were, they would have been transferred above in the ExchangeFileIDs call above...
2240 * The flags that are special are:
2241 * C_HARDLINK, C_HASXATTRS
2243 * These flags move with the item and file ID in the namespace since their
2244 * state is tied to that of the file ID.
2246 * So to transfer the flags, we have to take the following steps
2247 * 1) Store in a localvar whether or not the special bits are set.
2248 * 2) Drop the special bits from the current flags
2249 * 3) swap the special flag bits to their destination
2251 from_cp
->c_flag
|= to_flag_special
| C_MODIFIED
;
2252 from_cp
->c_attr
.ca_recflags
= to_cp
->c_attr
.ca_recflags
;
2253 bcopy(to_cp
->c_finderinfo
, from_cp
->c_finderinfo
, 32);
2256 /* Copy the "from" -> "to" cnode */
2257 bcopy(&tempdesc
, &to_cp
->c_desc
, sizeof(struct cat_desc
));
2260 * Pull the file ID from the tempattr we copied above. We can't assume
2261 * it is the same as the CNID.
2263 to_cp
->c_fileid
= tempattr
.ca_fileid
;
2264 to_cp
->c_itime
= tempattr
.ca_itime
;
2265 to_cp
->c_btime
= tempattr
.ca_btime
;
2266 to_cp
->c_atime
= tempattr
.ca_atime
;
2267 to_cp
->c_ctime
= tempattr
.ca_ctime
;
2268 to_cp
->c_gid
= tempattr
.ca_gid
;
2269 to_cp
->c_uid
= tempattr
.ca_uid
;
2270 to_cp
->c_bsdflags
= tempattr
.ca_flags
;
2271 to_cp
->c_mode
= tempattr
.ca_mode
;
2272 to_cp
->c_linkcount
= tempattr
.ca_linkcount
;
2273 to_cp
->c_attr
.ca_linkref
= tempattr
.ca_linkref
;
2274 to_cp
->c_attr
.ca_firstlink
= tempattr
.ca_firstlink
;
2277 * Only OR in the "from" flags into our cnode flags below.
2278 * Leave the rest of the flags alone.
2280 to_cp
->c_flag
|= from_flag_special
| C_MODIFIED
;
2282 to_cp
->c_attr
.ca_recflags
= tempattr
.ca_recflags
;
2283 bcopy(tempattr
.ca_finderinfo
, to_cp
->c_finderinfo
, 32);
2286 /* Rehash the cnodes using their new file IDs */
2287 hfs_chash_rehash(hfsmp
, from_cp
, to_cp
);
2290 * When a file moves out of "Cleanup At Startup"
2291 * we can drop its NODUMP status.
2293 if ((from_cp
->c_bsdflags
& UF_NODUMP
) &&
2294 (from_cp
->c_parentcnid
!= to_cp
->c_parentcnid
)) {
2295 from_cp
->c_bsdflags
&= ~UF_NODUMP
;
2296 from_cp
->c_touch_chgtime
= TRUE
;
2298 if ((to_cp
->c_bsdflags
& UF_NODUMP
) &&
2299 (to_cp
->c_parentcnid
!= from_cp
->c_parentcnid
)) {
2300 to_cp
->c_bsdflags
&= ~UF_NODUMP
;
2301 to_cp
->c_touch_chgtime
= TRUE
;
2306 cat_postflight(hfsmp
, &cookie
, vfs_context_proc(ap
->a_context
));
2309 hfs_end_transaction(hfsmp
);
2312 if (have_cnode_locks
)
2313 hfs_unlockpair(from_cp
, to_cp
);
2315 if (have_from_trunc_lock
)
2316 hfs_unlock_truncate(from_cp
, 0);
2318 if (have_to_trunc_lock
)
2319 hfs_unlock_truncate(to_cp
, 0);
2326 * This function is used specifically for the case when a namespace
2327 * handler is trying to steal data before it's deleted. Note that we
2328 * don't bother deleting the xattr from the source because it will get
2329 * deleted a short time later anyway.
2331 * cnodes must be locked
2333 static int hfs_move_compressed(cnode_t
*from_cp
, cnode_t
*to_cp
)
2338 CLR(from_cp
->c_bsdflags
, UF_COMPRESSED
);
2339 SET(from_cp
->c_flag
, C_MODIFIED
);
2341 ret
= hfs_move_data(from_cp
, to_cp
, HFS_MOVE_DATA_INCLUDE_RSRC
);
2346 * Transfer the xattr that decmpfs uses. Ideally, this code
2347 * should be with the other decmpfs code but it's file system
2348 * agnostic and this path is currently, and likely to remain, HFS+
2349 * specific. It's easier and more performant if we implement it
2354 data
= hfs_malloc(size
= MAX_DECMPFS_XATTR_SIZE
);
2356 ret
= hfs_xattr_read(from_cp
->c_vp
, DECMPFS_XATTR_NAME
, data
, &size
);
2360 ret
= hfs_xattr_write(to_cp
->c_vp
, DECMPFS_XATTR_NAME
, data
, size
);
2364 SET(to_cp
->c_bsdflags
, UF_COMPRESSED
);
2365 SET(to_cp
->c_flag
, C_MODIFIED
);
2368 hfs_free(data
, MAX_DECMPFS_XATTR_SIZE
);
2372 #endif // HFS_COMPRESSION
2375 hfs_vnop_mmap(struct vnop_mmap_args
*ap
)
2377 struct vnode
*vp
= ap
->a_vp
;
2378 cnode_t
*cp
= VTOC(vp
);
2381 if (VNODE_IS_RSRC(vp
)) {
2382 /* allow pageins of the resource fork */
2384 int compressed
= hfs_file_is_compressed(cp
, 1); /* 1 == don't take the cnode lock */
2385 time_t orig_ctime
= cp
->c_ctime
;
2387 if (!compressed
&& (cp
->c_bsdflags
& UF_COMPRESSED
)) {
2388 error
= check_for_dataless_file(vp
, NAMESPACE_HANDLER_READ_OP
);
2394 if (ap
->a_fflags
& PROT_WRITE
) {
2395 nspace_snapshot_event(vp
, orig_ctime
, NAMESPACE_HANDLER_WRITE_OP
, NULL
);
2400 error
= cp_handle_vnop(vp
, (ap
->a_fflags
& PROT_WRITE
2401 ? CP_WRITE_ACCESS
: 0) | CP_READ_ACCESS
, 0);
2407 // NOTE: we return ENOTSUP because we want the cluster layer
2408 // to actually do all the real work.
2413 static errno_t
hfs_vnop_mnomap(struct vnop_mnomap_args
*ap
)
2415 vnode_t vp
= ap
->a_vp
;
2418 * Whilst the file was mapped, there may not have been any
2419 * page-outs so we need to increment the generation counter now.
2420 * Unfortunately this may lead to a change in the generation
2421 * counter when no actual change has been made, but there is
2422 * little we can do about that with our current architecture.
2424 if (ubc_is_mapped_writable(vp
)) {
2425 cnode_t
*cp
= VTOC(vp
);
2426 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
2427 hfs_incr_gencount(cp
);
2430 * We don't want to set the modification time here since a
2431 * change to that is not acceptable if no changes were made.
2432 * Instead we set a flag so that if we get any page-outs we
2433 * know to update the modification time. It's possible that
2434 * they weren't actually because of changes made whilst the
2435 * file was mapped but that's not easy to fix now.
2437 SET(cp
->c_flag
, C_MIGHT_BE_DIRTY_FROM_MAPPING
);
2446 * Mark the resource fork as needing a ubc_setsize when we drop the
2449 static void hfs_rsrc_setsize(cnode_t
*cp
)
2452 * We need to take an iocount if we don't have one. vnode_get
2453 * will return ENOENT if the vnode is terminating which is what we
2454 * want as it's not safe to call ubc_setsize in that case.
2456 if (cp
->c_rsrc_vp
&& !vnode_get(cp
->c_rsrc_vp
)) {
2457 // Shouldn't happen, but better safe...
2458 if (ISSET(cp
->c_flag
, C_NEED_RVNODE_PUT
))
2459 vnode_put(cp
->c_rsrc_vp
);
2460 SET(cp
->c_flag
, C_NEED_RVNODE_PUT
| C_NEED_RSRC_SETSIZE
);
2467 * This is a non-symmetric variant of exchangedata. In this function,
2468 * the contents of the data fork (and optionally the resource fork)
2469 * are moved from from_cp to to_cp.
2471 * The cnodes must be locked.
2473 * The cnode pointed to by 'to_cp' *must* be empty prior to invoking
2474 * this function. We impose this restriction because we may not be
2475 * able to fully delete the entire file's contents in a single
2476 * transaction, particularly if it has a lot of extents. In the
2477 * normal file deletion codepath, the file is screened for two
2478 * conditions: 1) bigger than 400MB, and 2) more than 8 extents. If
2479 * so, the file is relocated to the hidden directory and the deletion
2480 * is broken up into multiple truncates. We can't do that here
2481 * because both files need to exist in the namespace. The main reason
2482 * this is imposed is that we may have to touch a whole lot of bitmap
2483 * blocks if there are many extents.
2485 * Any data written to 'from_cp' after this call completes is not
2486 * guaranteed to be moved.
2489 * cnode_t *from_cp : source file
2490 * cnode_t *to_cp : destination file; must be empty
2494 * EBUSY - File has been deleted or is in use
2495 * EFBIG - Destination file was not empty
2496 * EIO - An I/O error
2498 * other - Other errors that can be returned from called functions
2500 int hfs_move_data(cnode_t
*from_cp
, cnode_t
*to_cp
,
2501 hfs_move_data_options_t options
)
2503 hfsmount_t
*hfsmp
= VTOHFS(from_cp
->c_vp
);
2506 bool return_EIO_on_error
= false;
2507 const bool include_rsrc
= ISSET(options
, HFS_MOVE_DATA_INCLUDE_RSRC
);
2509 /* Verify that neither source/dest file is open-unlinked */
2510 if (ISSET(from_cp
->c_flag
, C_DELETED
| C_NOEXISTS
)
2511 || ISSET(to_cp
->c_flag
, C_DELETED
| C_NOEXISTS
)) {
2516 * Verify the source file is not in use by anyone besides us.
2518 * This function is typically invoked by a namespace handler
2519 * process responding to a temporarily stalled system call.
2520 * The FD that it is working off of is opened O_EVTONLY, so
2521 * it really has no active usecounts (the kusecount from O_EVTONLY
2522 * is subtracted from the total usecounts).
2524 * As a result, we shouldn't have any active usecounts against
2525 * this vnode when we go to check it below.
2527 if (vnode_isinuse(from_cp
->c_vp
, 0))
2530 if (include_rsrc
&& from_cp
->c_rsrc_vp
) {
2531 if (vnode_isinuse(from_cp
->c_rsrc_vp
, 0))
2535 * In the code below, if the destination file doesn't have a
2536 * c_rsrcfork then we don't create it which means we we cannot
2537 * transfer the ff_invalidranges and cf_vblocks fields. These
2538 * shouldn't be set because we flush the resource fork before
2539 * calling this function but there is a tiny window when we
2540 * did not have any locks...
2542 if (!to_cp
->c_rsrcfork
2543 && (!TAILQ_EMPTY(&from_cp
->c_rsrcfork
->ff_invalidranges
)
2544 || from_cp
->c_rsrcfork
->ff_unallocblocks
)) {
2546 * The file isn't really busy now but something did slip
2547 * in and tinker with the file while we didn't have any
2548 * locks, so this is the most meaningful return code for
2555 // Check the destination file is empty
2556 if (to_cp
->c_datafork
->ff_blocks
2557 || to_cp
->c_datafork
->ff_size
2560 || (to_cp
->c_rsrcfork
&& to_cp
->c_rsrcfork
->ff_size
)))) {
2564 if ((error
= hfs_start_transaction (hfsmp
)))
2567 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_EXTENTS
| SFL_ATTRIBUTE
,
2568 HFS_EXCLUSIVE_LOCK
);
2570 // filefork_t is 128 bytes which should be OK
2571 filefork_t rfork_buf
, *from_rfork
= NULL
;
2574 from_rfork
= from_cp
->c_rsrcfork
;
2577 * Creating resource fork vnodes is expensive, so just get get
2578 * the fork data if we need it.
2580 if (!from_rfork
&& hfs_has_rsrc(from_cp
)) {
2581 from_rfork
= &rfork_buf
;
2583 from_rfork
->ff_cp
= from_cp
;
2584 TAILQ_INIT(&from_rfork
->ff_invalidranges
);
2586 error
= cat_idlookup(hfsmp
, from_cp
->c_fileid
, 0, 1, NULL
, NULL
,
2587 &from_rfork
->ff_data
);
2595 * From here on, any failures mean that we might be leaving things
2596 * in a weird or inconsistent state. Ideally, we should back out
2597 * all the changes, but to do that properly we need to fix
2598 * MoveData. We'll save fixing that for another time. For now,
2599 * just return EIO in all cases to the caller so that they know.
2601 return_EIO_on_error
= true;
2603 bool data_overflow_extents
= overflow_extents(from_cp
->c_datafork
);
2605 // Move the data fork
2606 if ((error
= hfs_move_fork (from_cp
->c_datafork
, from_cp
,
2607 to_cp
->c_datafork
, to_cp
))) {
2611 SET(from_cp
->c_flag
, C_NEED_DATA_SETSIZE
);
2612 SET(to_cp
->c_flag
, C_NEED_DATA_SETSIZE
);
2614 // We move the resource fork later
2617 * Note that because all we're doing is moving the extents around,
2618 * we can probably do this in a single transaction: Each extent
2619 * record (group of 8) is 64 bytes. A extent overflow B-Tree node
2620 * is typically 4k. This means each node can hold roughly ~60
2621 * extent records == (480 extents).
2623 * If a file was massively fragmented and had 20k extents, this
2624 * means we'd roughly touch 20k/480 == 41 to 42 nodes, plus the
2625 * index nodes, for half of the operation. (inserting or
2626 * deleting). So if we're manipulating 80-100 nodes, this is
2627 * basically 320k of data to write to the journal in a bad case.
2629 if (data_overflow_extents
) {
2630 if ((error
= MoveData(hfsmp
, from_cp
->c_cnid
, to_cp
->c_cnid
, 0)))
2634 if (from_rfork
&& overflow_extents(from_rfork
)) {
2635 if ((error
= MoveData(hfsmp
, from_cp
->c_cnid
, to_cp
->c_cnid
, 1)))
2640 from_cp
->c_touch_acctime
= TRUE
;
2641 from_cp
->c_touch_chgtime
= TRUE
;
2642 from_cp
->c_touch_modtime
= TRUE
;
2643 hfs_touchtimes(hfsmp
, from_cp
);
2645 to_cp
->c_touch_acctime
= TRUE
;
2646 to_cp
->c_touch_chgtime
= TRUE
;
2647 to_cp
->c_touch_modtime
= TRUE
;
2648 hfs_touchtimes(hfsmp
, to_cp
);
2650 struct cat_fork dfork_buf
;
2651 const struct cat_fork
*dfork
, *rfork
;
2653 dfork
= hfs_prepare_fork_for_update(to_cp
->c_datafork
, NULL
,
2654 &dfork_buf
, hfsmp
->blockSize
);
2655 rfork
= hfs_prepare_fork_for_update(from_rfork
, NULL
,
2656 &rfork_buf
.ff_data
, hfsmp
->blockSize
);
2658 // Update the catalog nodes, to_cp first
2659 if ((error
= cat_update(hfsmp
, &to_cp
->c_desc
, &to_cp
->c_attr
,
2664 CLR(to_cp
->c_flag
, C_MODIFIED
| C_MINOR_MOD
);
2666 // Update in-memory resource fork data here
2669 uint32_t moving
= from_rfork
->ff_blocks
+ from_rfork
->ff_unallocblocks
;
2671 from_cp
->c_blocks
-= moving
;
2672 to_cp
->c_blocks
+= moving
;
2674 // Update to_cp's resource data if it has it
2675 filefork_t
*to_rfork
= to_cp
->c_rsrcfork
;
2677 TAILQ_SWAP(&to_rfork
->ff_invalidranges
,
2678 &from_rfork
->ff_invalidranges
, rl_entry
, rl_link
);
2679 to_rfork
->ff_data
= from_rfork
->ff_data
;
2681 // Deal with ubc_setsize
2682 hfs_rsrc_setsize(to_cp
);
2685 // Wipe out the resource fork in from_cp
2686 rl_init(&from_rfork
->ff_invalidranges
);
2687 bzero(&from_rfork
->ff_data
, sizeof(from_rfork
->ff_data
));
2689 // Deal with ubc_setsize
2690 hfs_rsrc_setsize(from_cp
);
2693 // Currently unnecessary, but might be useful in future...
2694 dfork
= hfs_prepare_fork_for_update(from_cp
->c_datafork
, NULL
, &dfork_buf
,
2696 rfork
= hfs_prepare_fork_for_update(from_rfork
, NULL
, &rfork_buf
.ff_data
,
2700 if ((error
= cat_update(hfsmp
, &from_cp
->c_desc
, &from_cp
->c_attr
,
2705 CLR(from_cp
->c_flag
, C_MODIFIED
| C_MINOR_MOD
);
2709 hfs_systemfile_unlock(hfsmp
, lockflags
);
2710 hfs_end_transaction(hfsmp
);
2713 if (error
&& error
!= EIO
&& return_EIO_on_error
) {
2714 printf("hfs_move_data: encountered error %d\n", error
);
2722 * Move all of the catalog and runtime data in srcfork to dstfork.
2724 * This allows us to maintain the invalid ranges across the move data
2725 * operation so we don't need to force all of the pending IO right
2726 * now. In addition, we move all non overflow-extent extents into the
2729 * The destination fork must be empty and should have been checked
2730 * prior to calling this.
2732 static int hfs_move_fork(filefork_t
*srcfork
, cnode_t
*src_cp
,
2733 filefork_t
*dstfork
, cnode_t
*dst_cp
)
2735 // Move the invalid ranges
2736 TAILQ_SWAP(&dstfork
->ff_invalidranges
, &srcfork
->ff_invalidranges
,
2738 rl_remove_all(&srcfork
->ff_invalidranges
);
2740 // Move the fork data (copy whole structure)
2741 dstfork
->ff_data
= srcfork
->ff_data
;
2742 bzero(&srcfork
->ff_data
, sizeof(srcfork
->ff_data
));
2745 src_cp
->c_blocks
-= dstfork
->ff_blocks
+ dstfork
->ff_unallocblocks
;
2746 dst_cp
->c_blocks
+= dstfork
->ff_blocks
+ dstfork
->ff_unallocblocks
;
2752 * cnode must be locked
2755 hfs_fsync(struct vnode
*vp
, int waitfor
, hfs_fsync_mode_t fsyncmode
, struct proc
*p
)
2757 struct cnode
*cp
= VTOC(vp
);
2758 struct filefork
*fp
= NULL
;
2760 struct hfsmount
*hfsmp
= VTOHFS(vp
);
2762 int waitdata
; /* attributes necessary for data retrieval */
2763 int wait
; /* all other attributes (e.g. atime, etc.) */
2764 int took_trunc_lock
= 0;
2765 int fsync_default
= 1;
2768 * Applications which only care about data integrity rather than full
2769 * file integrity may opt out of (delay) expensive metadata update
2770 * operations as a performance optimization.
2772 wait
= (waitfor
== MNT_WAIT
);
2773 waitdata
= (waitfor
== MNT_DWAIT
) | wait
;
2775 if (always_do_fullfsync
)
2776 fsyncmode
= HFS_FSYNC_FULL
;
2777 if (fsyncmode
!= HFS_FSYNC
)
2780 /* HFS directories don't have any data blocks. */
2781 if (vnode_isdir(vp
))
2786 * For system files flush the B-tree header and
2787 * for regular files write out any clusters
2789 if (vnode_issystem(vp
)) {
2790 if (VTOF(vp
)->fcbBTCBPtr
!= NULL
) {
2792 if (hfsmp
->jnl
== NULL
) {
2793 BTFlushPath(VTOF(vp
));
2798 hfs_lock_truncate(cp
, HFS_SHARED_LOCK
, HFS_LOCK_DEFAULT
);
2799 took_trunc_lock
= 1;
2801 if (fp
->ff_unallocblocks
!= 0) {
2802 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
2804 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2807 /* Don't hold cnode lock when calling into cluster layer. */
2808 (void) cluster_push(vp
, waitdata
? IO_SYNC
: 0);
2810 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
2813 * When MNT_WAIT is requested and the zero fill timeout
2814 * has expired then we must explicitly zero out any areas
2815 * that are currently marked invalid (holes).
2817 * Files with NODUMP can bypass zero filling here.
2819 if (fp
&& (((cp
->c_flag
& C_ALWAYS_ZEROFILL
) && !TAILQ_EMPTY(&fp
->ff_invalidranges
)) ||
2820 ((wait
|| (cp
->c_flag
& C_ZFWANTSYNC
)) &&
2821 ((cp
->c_bsdflags
& UF_NODUMP
) == 0) &&
2822 (vnode_issystem(vp
) ==0) &&
2823 cp
->c_zftimeout
!= 0))) {
2826 if ((cp
->c_flag
& C_ALWAYS_ZEROFILL
) == 0 && fsync_default
&& tv
.tv_sec
< (long)cp
->c_zftimeout
) {
2827 /* Remember that a force sync was requested. */
2828 cp
->c_flag
|= C_ZFWANTSYNC
;
2831 if (!TAILQ_EMPTY(&fp
->ff_invalidranges
)) {
2832 if (!took_trunc_lock
|| (cp
->c_truncatelockowner
== HFS_SHARED_OWNER
)) {
2834 if (took_trunc_lock
) {
2835 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
2837 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2838 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
2839 took_trunc_lock
= 1;
2841 hfs_flush_invalid_ranges(vp
);
2843 (void) cluster_push(vp
, waitdata
? IO_SYNC
: 0);
2844 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
2848 if (took_trunc_lock
) {
2849 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
2850 took_trunc_lock
= 0;
2854 buf_flushdirtyblks(vp
, waitdata
, 0, "hfs_fsync");
2855 else if (fsync_default
&& vnode_islnk(vp
)
2856 && vnode_hasdirtyblks(vp
) && vnode_isrecycled(vp
)) {
2858 * If it's a symlink that's dirty and is about to be recycled,
2859 * we need to flush the journal.
2865 if (vnode_isreg(vp
) && vnode_issystem(vp
)) {
2866 if (VTOF(vp
)->fcbBTCBPtr
!= NULL
) {
2868 BTSetLastSync(VTOF(vp
), tv
.tv_sec
);
2870 cp
->c_touch_acctime
= FALSE
;
2871 cp
->c_touch_chgtime
= FALSE
;
2872 cp
->c_touch_modtime
= FALSE
;
2873 } else if (!vnode_isswap(vp
)) {
2874 retval
= hfs_update(vp
, HFS_UPDATE_FORCE
);
2877 * When MNT_WAIT is requested push out the catalog record for
2878 * this file. If they asked for a full fsync, we can skip this
2879 * because the journal_flush or hfs_metasync_all will push out
2880 * all of the metadata changes.
2882 if ((retval
== 0) && wait
&& fsync_default
&& cp
->c_hint
&&
2883 !ISSET(cp
->c_flag
, C_DELETED
| C_NOEXISTS
)) {
2884 hfs_metasync(VTOHFS(vp
), (daddr64_t
)cp
->c_hint
, p
);
2888 * If this was a full fsync, make sure all metadata
2889 * changes get to stable storage.
2891 if (!fsync_default
) {
2893 if (fsyncmode
== HFS_FSYNC_FULL
)
2894 hfs_flush(hfsmp
, HFS_FLUSH_FULL
);
2896 hfs_flush(hfsmp
, HFS_FLUSH_JOURNAL_BARRIER
);
2898 retval
= hfs_metasync_all(hfsmp
);
2899 /* XXX need to pass context! */
2900 hfs_flush(hfsmp
, HFS_FLUSH_CACHE
);
2905 if (!hfs_is_dirty(cp
) && !ISSET(cp
->c_flag
, C_DELETED
))
2906 vnode_cleardirty(vp
);
2912 /* Sync an hfs catalog b-tree node */
2914 hfs_metasync(struct hfsmount
*hfsmp
, daddr64_t node
, __unused
struct proc
*p
)
2920 vp
= HFSTOVCB(hfsmp
)->catalogRefNum
;
2922 // XXXdbg - don't need to do this on a journaled volume
2927 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
2929 * Look for a matching node that has been delayed
2930 * but is not part of a set (B_LOCKED).
2932 * BLK_ONLYVALID causes buf_getblk to return a
2933 * buf_t for the daddr64_t specified only if it's
2934 * currently resident in the cache... the size
2935 * parameter to buf_getblk is ignored when this flag
2938 bp
= buf_getblk(vp
, node
, 0, 0, 0, BLK_META
| BLK_ONLYVALID
);
2941 if ((buf_flags(bp
) & (B_LOCKED
| B_DELWRI
)) == B_DELWRI
)
2942 (void) VNOP_BWRITE(bp
);
2947 hfs_systemfile_unlock(hfsmp
, lockflags
);
2954 * Sync all hfs B-trees. Use this instead of journal_flush for a volume
2955 * without a journal. Note that the volume bitmap does not get written;
2956 * we rely on fsck_hfs to fix that up (which it can do without any loss
2960 hfs_metasync_all(struct hfsmount
*hfsmp
)
2964 /* Lock all of the B-trees so we get a mutually consistent state */
2965 lockflags
= hfs_systemfile_lock(hfsmp
,
2966 SFL_CATALOG
|SFL_EXTENTS
|SFL_ATTRIBUTE
, HFS_EXCLUSIVE_LOCK
);
2968 /* Sync each of the B-trees */
2969 if (hfsmp
->hfs_catalog_vp
)
2970 hfs_btsync(hfsmp
->hfs_catalog_vp
, 0);
2971 if (hfsmp
->hfs_extents_vp
)
2972 hfs_btsync(hfsmp
->hfs_extents_vp
, 0);
2973 if (hfsmp
->hfs_attribute_vp
)
2974 hfs_btsync(hfsmp
->hfs_attribute_vp
, 0);
2976 /* Wait for all of the writes to complete */
2977 if (hfsmp
->hfs_catalog_vp
)
2978 vnode_waitforwrites(hfsmp
->hfs_catalog_vp
, 0, 0, 0, "hfs_metasync_all");
2979 if (hfsmp
->hfs_extents_vp
)
2980 vnode_waitforwrites(hfsmp
->hfs_extents_vp
, 0, 0, 0, "hfs_metasync_all");
2981 if (hfsmp
->hfs_attribute_vp
)
2982 vnode_waitforwrites(hfsmp
->hfs_attribute_vp
, 0, 0, 0, "hfs_metasync_all");
2984 hfs_systemfile_unlock(hfsmp
, lockflags
);
2992 hfs_btsync_callback(struct buf
*bp
, __unused
void *dummy
)
2994 buf_clearflags(bp
, B_LOCKED
);
2995 (void) buf_bawrite(bp
);
2997 return(BUF_CLAIMED
);
3002 hfs_btsync(struct vnode
*vp
, int sync_transaction
)
3004 struct cnode
*cp
= VTOC(vp
);
3008 if (sync_transaction
)
3009 flags
|= BUF_SKIP_NONLOCKED
;
3011 * Flush all dirty buffers associated with b-tree.
3013 buf_iterate(vp
, hfs_btsync_callback
, flags
, 0);
3016 if (vnode_issystem(vp
) && (VTOF(vp
)->fcbBTCBPtr
!= NULL
))
3017 (void) BTSetLastSync(VTOF(vp
), tv
.tv_sec
);
3018 cp
->c_touch_acctime
= FALSE
;
3019 cp
->c_touch_chgtime
= FALSE
;
3020 cp
->c_touch_modtime
= FALSE
;
3026 * Remove a directory.
3029 hfs_vnop_rmdir(struct vnop_rmdir_args
*ap
)
3031 struct vnode
*dvp
= ap
->a_dvp
;
3032 struct vnode
*vp
= ap
->a_vp
;
3033 struct cnode
*dcp
= VTOC(dvp
);
3034 struct cnode
*cp
= VTOC(vp
);
3038 orig_ctime
= VTOC(vp
)->c_ctime
;
3040 if (!S_ISDIR(cp
->c_mode
)) {
3047 nspace_snapshot_event(vp
, orig_ctime
, NAMESPACE_HANDLER_DELETE_OP
, NULL
);
3050 if ((error
= hfs_lockpair(dcp
, cp
, HFS_EXCLUSIVE_LOCK
))) {
3054 /* Check for a race with rmdir on the parent directory */
3055 if (dcp
->c_flag
& (C_DELETED
| C_NOEXISTS
)) {
3056 hfs_unlockpair (dcp
, cp
);
3061 // if the item is tracked but doesn't have a document_id, assign one and generate an fsevent for it
3063 if ((cp
->c_bsdflags
& UF_TRACKED
) && ((struct FndrExtendedDirInfo
*)((char *)&cp
->c_attr
.ca_finderinfo
+ 16))->document_id
== 0) {
3066 hfs_unlockpair(dcp
, cp
);
3068 if (hfs_generate_document_id(VTOHFS(vp
), &newid
) == 0) {
3069 hfs_lockpair(dcp
, cp
, HFS_EXCLUSIVE_LOCK
);
3070 ((struct FndrExtendedDirInfo
*)((char *)&cp
->c_attr
.ca_finderinfo
+ 16))->document_id
= newid
;
3071 add_fsevent(FSE_DOCID_CHANGED
, vfs_context_current(),
3072 FSE_ARG_DEV
, VTOHFS(vp
)->hfs_raw_dev
,
3073 FSE_ARG_INO
, (ino64_t
)0, // src inode #
3074 FSE_ARG_INO
, (ino64_t
)cp
->c_fileid
, // dst inode #
3075 FSE_ARG_INT32
, newid
,
3078 // XXXdbg - couldn't get a new docid... what to do? can't really fail the rm...
3079 hfs_lockpair(dcp
, cp
, HFS_EXCLUSIVE_LOCK
);
3083 error
= hfs_removedir(dvp
, vp
, ap
->a_cnp
, 0, 0);
3085 hfs_unlockpair(dcp
, cp
);
3091 * Remove a directory
3093 * Both dvp and vp cnodes are locked
3096 hfs_removedir(struct vnode
*dvp
, struct vnode
*vp
, struct componentname
*cnp
,
3097 int skip_reserve
, int only_unlink
)
3101 struct hfsmount
* hfsmp
;
3102 struct cat_desc desc
;
3104 int error
= 0, started_tr
= 0;
3111 return (EINVAL
); /* cannot remove "." */
3113 if (cp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) {
3116 if (cp
->c_entries
!= 0) {
3121 * If the directory is open or in use (e.g. opendir() or current working
3122 * directory for some process); wait for inactive/reclaim to actually
3123 * remove cnode from the catalog. Both inactive and reclaim codepaths are capable
3124 * of removing open-unlinked directories from the catalog, as well as getting rid
3125 * of EAs still on the element. So change only_unlink to true, so that it will get
3128 * Otherwise, we can get into a weird old mess where the directory has C_DELETED,
3129 * but it really means C_NOEXISTS because the item was actually removed from the
3130 * catalog. Then when we try to remove the entry from the catalog later on, it won't
3131 * really be there anymore.
3133 if (vnode_isinuse(vp
, 0)) {
3137 /* Deal with directory hardlinks */
3138 if (cp
->c_flag
& C_HARDLINK
) {
3140 * Note that if we have a directory which was a hardlink at any point,
3141 * its actual directory data is stored in the directory inode in the hidden
3142 * directory rather than the leaf element(s) present in the namespace.
3144 * If there are still other hardlinks to this directory,
3145 * then we'll just eliminate this particular link and the vnode will still exist.
3146 * If this is the last link to an empty directory, then we'll open-unlink the
3147 * directory and it will be only tagged with C_DELETED (as opposed to C_NOEXISTS).
3149 * We could also return EBUSY here.
3152 return hfs_unlink(hfsmp
, dvp
, vp
, cnp
, skip_reserve
);
3156 * In a few cases, we may want to allow the directory to persist in an
3157 * open-unlinked state. If the directory is being open-unlinked (still has usecount
3158 * references), or if it has EAs, or if it was being deleted as part of a rename,
3159 * then we go ahead and move it to the hidden directory.
3161 * If the directory is being open-unlinked, then we want to keep the catalog entry
3162 * alive so that future EA calls and fchmod/fstat etc. do not cause issues later.
3164 * If the directory had EAs, then we want to use the open-unlink trick so that the
3165 * EA removal is not done in one giant transaction. Otherwise, it could cause a panic
3166 * due to overflowing the journal.
3168 * Finally, if it was deleted as part of a rename, we move it to the hidden directory
3169 * in order to maintain rename atomicity.
3171 * Note that the allow_dirs argument to hfs_removefile specifies that it is
3172 * supposed to handle directories for this case.
3175 if (((hfsmp
->hfs_attribute_vp
!= NULL
) &&
3176 ((cp
->c_attr
.ca_recflags
& kHFSHasAttributesMask
) != 0)) ||
3177 (only_unlink
!= 0)) {
3179 int ret
= hfs_removefile(dvp
, vp
, cnp
, 0, 0, 1, NULL
, only_unlink
);
3181 * Even though hfs_vnop_rename calls vnode_recycle for us on tvp we call
3182 * it here just in case we were invoked by rmdir() on a directory that had
3183 * EAs. To ensure that we start reclaiming the space as soon as possible,
3184 * we call vnode_recycle on the directory.
3192 dcp
->c_flag
|= C_DIR_MODIFICATION
;
3195 if (hfsmp
->hfs_flags
& HFS_QUOTAS
)
3196 (void)hfs_getinoquota(cp
);
3198 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
3204 * Verify the directory is empty (and valid).
3205 * (Rmdir ".." won't be valid since
3206 * ".." will contain a reference to
3207 * the current directory and thus be
3210 if ((dcp
->c_bsdflags
& APPEND
) || (cp
->c_bsdflags
& (IMMUTABLE
| APPEND
))) {
3215 /* Remove the entry from the namei cache: */
3219 * Protect against a race with rename by using the component
3220 * name passed in and parent id from dvp (instead of using
3221 * the cp->c_desc which may have changed).
3223 desc
.cd_nameptr
= (const u_int8_t
*)cnp
->cn_nameptr
;
3224 desc
.cd_namelen
= cnp
->cn_namelen
;
3225 desc
.cd_parentcnid
= dcp
->c_fileid
;
3226 desc
.cd_cnid
= cp
->c_cnid
;
3227 desc
.cd_flags
= CD_ISDIR
;
3228 desc
.cd_encoding
= cp
->c_encoding
;
3231 if (!hfs_valid_cnode(hfsmp
, dvp
, cnp
, cp
->c_fileid
, NULL
, &error
)) {
3236 /* Remove entry from catalog */
3237 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_ATTRIBUTE
| SFL_BITMAP
, HFS_EXCLUSIVE_LOCK
);
3239 if (!skip_reserve
) {
3241 * Reserve some space in the Catalog file.
3243 if ((error
= cat_preflight(hfsmp
, CAT_DELETE
, NULL
, 0))) {
3244 hfs_systemfile_unlock(hfsmp
, lockflags
);
3249 error
= cat_delete(hfsmp
, &desc
, &cp
->c_attr
);
3253 // if skip_reserve == 1 then we're being called from hfs_vnop_rename() and thus
3254 // we don't need to touch the document_id as it's handled by the rename code.
3255 // otherwise it's a normal remove and we need to save the document id in the
3256 // per thread struct and clear it from the cnode.
3258 struct doc_tombstone
*ut
;
3259 ut
= doc_tombstone_get();
3260 if (!skip_reserve
&& (cp
->c_bsdflags
& UF_TRACKED
)
3261 && doc_tombstone_should_save(ut
, vp
, cnp
)) {
3263 uint32_t doc_id
= hfs_get_document_id(cp
);
3265 // this event is more of a "pending-delete"
3266 if (ut
->t_lastop_document_id
) {
3267 add_fsevent(FSE_DOCID_CHANGED
, vfs_context_current(),
3268 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
3269 FSE_ARG_INO
, (ino64_t
)cp
->c_fileid
, // src inode #
3270 FSE_ARG_INO
, (ino64_t
)0, // dst inode #
3271 FSE_ARG_INT32
, doc_id
,
3275 doc_tombstone_save(dvp
, vp
, cnp
, doc_id
, cp
->c_fileid
);
3277 struct FndrExtendedFileInfo
*fip
= (struct FndrExtendedFileInfo
*)((char *)&cp
->c_attr
.ca_finderinfo
+ 16);
3279 // clear this so it's never returned again
3280 fip
->document_id
= 0;
3281 cp
->c_bsdflags
&= ~UF_TRACKED
;
3284 /* The parent lost a child */
3285 if (dcp
->c_entries
> 0)
3287 DEC_FOLDERCOUNT(hfsmp
, dcp
->c_attr
);
3288 dcp
->c_dirchangecnt
++;
3289 hfs_incr_gencount(dcp
);
3291 dcp
->c_touch_chgtime
= TRUE
;
3292 dcp
->c_touch_modtime
= TRUE
;
3293 dcp
->c_flag
|= C_MODIFIED
;
3295 hfs_update(dcp
->c_vp
, 0);
3298 hfs_systemfile_unlock(hfsmp
, lockflags
);
3304 if (hfsmp
->hfs_flags
& HFS_QUOTAS
)
3305 (void)hfs_chkiq(cp
, -1, NOCRED
, 0);
3308 hfs_volupdate(hfsmp
, VOL_RMDIR
, (dcp
->c_cnid
== kHFSRootFolderID
));
3310 /* Mark C_NOEXISTS since the catalog entry is now gone */
3311 cp
->c_flag
|= C_NOEXISTS
;
3314 dcp
->c_flag
&= ~C_DIR_MODIFICATION
;
3315 wakeup((caddr_t
)&dcp
->c_flag
);
3318 hfs_end_transaction(hfsmp
);
3326 * Remove a file or link.
3329 hfs_vnop_remove(struct vnop_remove_args
*ap
)
3331 struct vnode
*dvp
= ap
->a_dvp
;
3332 struct vnode
*vp
= ap
->a_vp
;
3333 struct cnode
*dcp
= VTOC(dvp
);
3335 struct vnode
*rvp
= NULL
;
3336 int error
=0, recycle_rsrc
=0;
3337 int recycle_vnode
= 0;
3338 uint32_t rsrc_vid
= 0;
3345 orig_ctime
= VTOC(vp
)->c_ctime
;
3346 if (!vnode_isnamedstream(vp
) && ((ap
->a_flags
& VNODE_REMOVE_SKIP_NAMESPACE_EVENT
) == 0)) {
3347 error
= nspace_snapshot_event(vp
, orig_ctime
, NAMESPACE_HANDLER_DELETE_OP
, NULL
);
3349 // XXXdbg - decide on a policy for handling namespace handler failures!
3350 // for now we just let them proceed.
3359 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
3361 if ((error
= hfs_lockpair(dcp
, cp
, HFS_EXCLUSIVE_LOCK
))) {
3362 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
3369 // if the item is tracked but doesn't have a document_id, assign one and generate an fsevent for it
3371 if ((cp
->c_bsdflags
& UF_TRACKED
) && ((struct FndrExtendedDirInfo
*)((char *)&cp
->c_attr
.ca_finderinfo
+ 16))->document_id
== 0) {
3374 hfs_unlockpair(dcp
, cp
);
3376 if (hfs_generate_document_id(VTOHFS(vp
), &newid
) == 0) {
3377 hfs_lockpair(dcp
, cp
, HFS_EXCLUSIVE_LOCK
);
3378 ((struct FndrExtendedDirInfo
*)((char *)&cp
->c_attr
.ca_finderinfo
+ 16))->document_id
= newid
;
3379 add_fsevent(FSE_DOCID_CHANGED
, vfs_context_current(),
3380 FSE_ARG_DEV
, VTOHFS(vp
)->hfs_raw_dev
,
3381 FSE_ARG_INO
, (ino64_t
)0, // src inode #
3382 FSE_ARG_INO
, (ino64_t
)cp
->c_fileid
, // dst inode #
3383 FSE_ARG_INT32
, newid
,
3386 // XXXdbg - couldn't get a new docid... what to do? can't really fail the rm...
3387 hfs_lockpair(dcp
, cp
, HFS_EXCLUSIVE_LOCK
);
3392 * Lazily respond to determining if there is a valid resource fork
3393 * vnode attached to 'cp' if it is a regular file or symlink.
3394 * If the vnode does not exist, then we may proceed without having to
3397 * If, however, it does exist, then we need to acquire an iocount on the
3398 * vnode after acquiring its vid. This ensures that if we have to do I/O
3399 * against it, it can't get recycled from underneath us in the middle
3402 * Note: this function may be invoked for directory hardlinks, so just skip these
3403 * steps if 'vp' is a directory.
3406 enum vtype vtype
= vnode_vtype(vp
);
3407 if ((vtype
== VLNK
) || (vtype
== VREG
)) {
3408 if ((cp
->c_rsrc_vp
) && (rvp
== NULL
)) {
3409 /* We need to acquire the rsrc vnode */
3410 rvp
= cp
->c_rsrc_vp
;
3411 rsrc_vid
= vnode_vid (rvp
);
3413 /* Unlock everything to acquire iocount on the rsrc vnode */
3414 hfs_unlock_truncate (cp
, HFS_LOCK_DEFAULT
);
3415 hfs_unlockpair (dcp
, cp
);
3416 /* Use the vid to maintain identity on rvp */
3417 if (vnode_getwithvid(rvp
, rsrc_vid
)) {
3419 * If this fails, then it was recycled or
3420 * reclaimed in the interim. Reset fields and
3431 * Check to see if we raced rmdir for the parent directory
3432 * hfs_removefile already checks for a race on vp/cp
3434 if (dcp
->c_flag
& (C_DELETED
| C_NOEXISTS
)) {
3439 error
= hfs_removefile(dvp
, vp
, ap
->a_cnp
, ap
->a_flags
, 0, 0, NULL
, 0);
3442 * If the remove succeeded in deleting the file, then we may need to mark
3443 * the resource fork for recycle so that it is reclaimed as quickly
3444 * as possible. If it were not recycled quickly, then this resource fork
3445 * vnode could keep a v_parent reference on the data fork, which prevents it
3446 * from going through reclaim (by giving it extra usecounts), except in the force-
3449 * However, a caveat: we need to continue to supply resource fork
3450 * access to open-unlinked files even if the resource fork is not open. This is
3451 * a requirement for the compressed files work. Luckily, hfs_vgetrsrc will handle
3452 * this already if the data fork has been re-parented to the hidden directory.
3454 * As a result, all we really need to do here is mark the resource fork vnode
3455 * for recycle. If it goes out of core, it can be brought in again if needed.
3456 * If the cnode was instead marked C_NOEXISTS, then there wouldn't be any
3460 hfs_hotfile_deleted(vp
);
3466 * If the target was actually removed from the catalog schedule it for
3467 * full reclamation/inactivation. We hold an iocount on it so it should just
3468 * get marked with MARKTERM
3470 if (cp
->c_flag
& C_NOEXISTS
) {
3477 * Drop the truncate lock before unlocking the cnode
3478 * (which can potentially perform a vnode_put and
3479 * recycle the vnode which in turn might require the
3483 hfs_unlockpair(dcp
, cp
);
3484 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
3487 /* inactive or reclaim on rvp will clean up the blocks from the rsrc fork */
3490 if (recycle_vnode
) {
3495 /* drop iocount on rsrc fork, was obtained at beginning of fxn */
3504 hfs_removefile_callback(struct buf
*bp
, void *hfsmp
) {
3506 if ( !(buf_flags(bp
) & B_META
))
3507 panic("hfs: symlink bp @ %p is not marked meta-data!\n", bp
);
3509 * it's part of the current transaction, kill it.
3511 journal_kill_block(((struct hfsmount
*)hfsmp
)->jnl
, bp
);
3513 return (BUF_CLAIMED
);
3519 * Similar to hfs_vnop_remove except there are additional options.
3520 * This function may be used to remove directories if they have
3521 * lots of EA's -- note the 'allow_dirs' argument.
3523 * This function is able to delete blocks & fork data for the resource
3524 * fork even if it does not exist in core (and have a backing vnode).
3525 * It should infer the correct behavior based on the number of blocks
3526 * in the cnode and whether or not the resource fork pointer exists or
3527 * not. As a result, one only need pass in the 'vp' corresponding to the
3528 * data fork of this file (or main vnode in the case of a directory).
3529 * Passing in a resource fork will result in an error.
3531 * Because we do not create any vnodes in this function, we are not at
3532 * risk of deadlocking against ourselves by double-locking.
3534 * Requires cnode and truncate locks to be held.
3537 hfs_removefile(struct vnode
*dvp
, struct vnode
*vp
, struct componentname
*cnp
,
3538 int flags
, int skip_reserve
, int allow_dirs
,
3539 __unused
struct vnode
*rvp
, int only_unlink
)
3543 struct vnode
*rsrc_vp
= NULL
;
3544 struct hfsmount
*hfsmp
;
3545 struct cat_desc desc
;
3547 int dataforkbusy
= 0;
3548 int rsrcforkbusy
= 0;
3552 int isbigfile
= 0, defer_remove
=0, isdir
=0;
3559 /* Check if we lost a race post lookup. */
3560 if (cp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) {
3564 if (!hfs_valid_cnode(hfsmp
, dvp
, cnp
, cp
->c_fileid
, NULL
, &error
)) {
3568 /* Make sure a remove is permitted */
3569 if (VNODE_IS_RSRC(vp
)) {
3574 * We know it's a data fork.
3575 * Probe the cnode to see if we have a valid resource fork
3578 rsrc_vp
= cp
->c_rsrc_vp
;
3581 /* Don't allow deleting the journal or journal_info_block. */
3582 if (hfs_is_journal_file(hfsmp
, cp
)) {
3587 * Hard links require special handling.
3589 if (cp
->c_flag
& C_HARDLINK
) {
3590 if ((flags
& VNODE_REMOVE_NODELETEBUSY
) && vnode_isinuse(vp
, 0)) {
3593 /* A directory hard link with a link count of one is
3594 * treated as a regular directory. Therefore it should
3595 * only be removed using rmdir().
3597 if ((vnode_isdir(vp
) == 1) && (cp
->c_linkcount
== 1) &&
3598 (allow_dirs
== 0)) {
3601 return hfs_unlink(hfsmp
, dvp
, vp
, cnp
, skip_reserve
);
3605 /* Directories should call hfs_rmdir! (unless they have a lot of attributes) */
3606 if (vnode_isdir(vp
)) {
3607 if (allow_dirs
== 0)
3608 return (EPERM
); /* POSIX */
3611 /* Sanity check the parent ids. */
3612 if ((cp
->c_parentcnid
!= hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
) &&
3613 (cp
->c_parentcnid
!= dcp
->c_fileid
)) {
3617 dcp
->c_flag
|= C_DIR_MODIFICATION
;
3619 // this guy is going away so mark him as such
3620 cp
->c_flag
|= C_DELETED
;
3623 /* Remove our entry from the namei cache. */
3627 * If the caller was operating on a file (as opposed to a
3628 * directory with EAs), then we need to figure out
3629 * whether or not it has a valid resource fork vnode.
3631 * If there was a valid resource fork vnode, then we need
3632 * to use hfs_truncate to eliminate its data. If there is
3633 * no vnode, then we hold the cnode lock which would
3634 * prevent it from being created. As a result,
3635 * we can use the data deletion functions which do not
3636 * require that a cnode/vnode pair exist.
3639 /* Check if this file is being used. */
3641 dataforkbusy
= vnode_isinuse(vp
, 0);
3643 * At this point, we know that 'vp' points to the
3644 * a data fork because we checked it up front. And if
3645 * there is no rsrc fork, rsrc_vp will be NULL.
3647 if (rsrc_vp
&& (cp
->c_blocks
- VTOF(vp
)->ff_blocks
)) {
3648 rsrcforkbusy
= vnode_isinuse(rsrc_vp
, 0);
3652 /* Check if we have to break the deletion into multiple pieces. */
3654 isbigfile
= cp
->c_datafork
->ff_size
>= HFS_BIGFILE_SIZE
;
3656 /* Check if the file has xattrs. If it does we'll have to delete them in
3657 individual transactions in case there are too many */
3658 if ((hfsmp
->hfs_attribute_vp
!= NULL
) &&
3659 (cp
->c_attr
.ca_recflags
& kHFSHasAttributesMask
) != 0) {
3663 /* If we are explicitly told to only unlink item and move to hidden dir, then do it */
3669 * Carbon semantics prohibit deleting busy files.
3670 * (enforced when VNODE_REMOVE_NODELETEBUSY is requested)
3672 if (dataforkbusy
|| rsrcforkbusy
) {
3673 if ((flags
& VNODE_REMOVE_NODELETEBUSY
) ||
3674 (hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
== 0)) {
3681 if (hfsmp
->hfs_flags
& HFS_QUOTAS
)
3682 (void)hfs_getinoquota(cp
);
3686 * Do a ubc_setsize to indicate we need to wipe contents if:
3687 * 1) item is a regular file.
3688 * 2) Neither fork is busy AND we are not told to unlink this.
3690 * We need to check for the defer_remove since it can be set without
3691 * having a busy data or rsrc fork
3693 if (isdir
== 0 && (!dataforkbusy
|| !rsrcforkbusy
) && (defer_remove
== 0)) {
3695 * A ubc_setsize can cause a pagein so defer it
3696 * until after the cnode lock is dropped. The
3697 * cnode lock cannot be dropped/reacquired here
3698 * since we might already hold the journal lock.
3700 if (!dataforkbusy
&& cp
->c_datafork
->ff_blocks
&& !isbigfile
) {
3701 cp
->c_flag
|= C_NEED_DATA_SETSIZE
;
3703 if (!rsrcforkbusy
&& rsrc_vp
) {
3704 cp
->c_flag
|= C_NEED_RSRC_SETSIZE
;
3708 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
3713 // XXXdbg - if we're journaled, kill any dirty symlink buffers
3714 if (hfsmp
->jnl
&& vnode_islnk(vp
) && (defer_remove
== 0)) {
3715 buf_iterate(vp
, hfs_removefile_callback
, BUF_SKIP_NONLOCKED
, (void *)hfsmp
);
3719 * Prepare to truncate any non-busy forks. Busy forks will
3720 * get truncated when their vnode goes inactive.
3721 * Note that we will only enter this region if we
3722 * can avoid creating an open-unlinked file. If
3723 * either region is busy, we will have to create an open
3726 * Since we are deleting the file, we need to stagger the runtime
3727 * modifications to do things in such a way that a crash won't
3728 * result in us getting overlapped extents or any other
3729 * bad inconsistencies. As such, we call prepare_release_storage
3730 * which updates the UBC, updates quota information, and releases
3731 * any loaned blocks that belong to this file. No actual
3732 * truncation or bitmap manipulation is done until *AFTER*
3733 * the catalog record is removed.
3735 if (isdir
== 0 && (!dataforkbusy
&& !rsrcforkbusy
) && (only_unlink
== 0)) {
3737 if (!dataforkbusy
&& !isbigfile
&& cp
->c_datafork
->ff_blocks
!= 0) {
3739 error
= hfs_prepare_release_storage (hfsmp
, vp
);
3747 * If the resource fork vnode does not exist, we can skip this step.
3749 if (!rsrcforkbusy
&& rsrc_vp
) {
3750 error
= hfs_prepare_release_storage (hfsmp
, rsrc_vp
);
3759 * Protect against a race with rename by using the component
3760 * name passed in and parent id from dvp (instead of using
3761 * the cp->c_desc which may have changed). Also, be aware that
3762 * because we allow directories to be passed in, we need to special case
3763 * this temporary descriptor in case we were handed a directory.
3766 desc
.cd_flags
= CD_ISDIR
;
3771 desc
.cd_encoding
= cp
->c_desc
.cd_encoding
;
3772 desc
.cd_nameptr
= (const u_int8_t
*)cnp
->cn_nameptr
;
3773 desc
.cd_namelen
= cnp
->cn_namelen
;
3774 desc
.cd_parentcnid
= dcp
->c_fileid
;
3775 desc
.cd_hint
= cp
->c_desc
.cd_hint
;
3776 desc
.cd_cnid
= cp
->c_cnid
;
3780 * There are two cases to consider:
3781 * 1. File/Dir is busy/big/defer_remove ==> move/rename the file/dir
3782 * 2. File is not in use ==> remove the file
3784 * We can get a directory in case 1 because it may have had lots of attributes,
3785 * which need to get removed here.
3787 if (dataforkbusy
|| rsrcforkbusy
|| isbigfile
|| defer_remove
) {
3789 struct cat_desc to_desc
;
3790 struct cat_desc todir_desc
;
3793 * Orphan this file or directory (move to hidden directory).
3794 * Again, we need to take care that we treat directories as directories,
3795 * and files as files. Because directories with attributes can be passed in
3796 * check to make sure that we have a directory or a file before filling in the
3797 * temporary descriptor's flags. We keep orphaned directories AND files in
3798 * the FILE_HARDLINKS private directory since we're generalizing over all
3799 * orphaned filesystem objects.
3801 bzero(&todir_desc
, sizeof(todir_desc
));
3802 todir_desc
.cd_parentcnid
= 2;
3804 MAKE_DELETED_NAME(delname
, sizeof(delname
), cp
->c_fileid
);
3805 bzero(&to_desc
, sizeof(to_desc
));
3806 to_desc
.cd_nameptr
= (const u_int8_t
*)delname
;
3807 to_desc
.cd_namelen
= strlen(delname
);
3808 to_desc
.cd_parentcnid
= hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
;
3810 to_desc
.cd_flags
= CD_ISDIR
;
3813 to_desc
.cd_flags
= 0;
3815 to_desc
.cd_cnid
= cp
->c_cnid
;
3817 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
3818 if (!skip_reserve
) {
3819 if ((error
= cat_preflight(hfsmp
, CAT_RENAME
, NULL
, 0))) {
3820 hfs_systemfile_unlock(hfsmp
, lockflags
);
3825 error
= cat_rename(hfsmp
, &desc
, &todir_desc
,
3826 &to_desc
, (struct cat_desc
*)NULL
);
3829 hfsmp
->hfs_private_attr
[FILE_HARDLINKS
].ca_entries
++;
3831 INC_FOLDERCOUNT(hfsmp
, hfsmp
->hfs_private_attr
[FILE_HARDLINKS
]);
3833 (void) cat_update(hfsmp
, &hfsmp
->hfs_private_desc
[FILE_HARDLINKS
],
3834 &hfsmp
->hfs_private_attr
[FILE_HARDLINKS
], NULL
, NULL
);
3836 /* Update the parent directory */
3837 if (dcp
->c_entries
> 0)
3840 DEC_FOLDERCOUNT(hfsmp
, dcp
->c_attr
);
3842 dcp
->c_dirchangecnt
++;
3843 hfs_incr_gencount(dcp
);
3845 dcp
->c_ctime
= tv
.tv_sec
;
3846 dcp
->c_mtime
= tv
.tv_sec
;
3847 (void) cat_update(hfsmp
, &dcp
->c_desc
, &dcp
->c_attr
, NULL
, NULL
);
3849 /* Update the file or directory's state */
3850 cp
->c_flag
|= C_DELETED
;
3851 cp
->c_ctime
= tv
.tv_sec
;
3853 (void) cat_update(hfsmp
, &to_desc
, &cp
->c_attr
, NULL
, NULL
);
3855 hfs_systemfile_unlock(hfsmp
, lockflags
);
3862 * Nobody is using this item; we can safely remove everything.
3864 struct filefork
*temp_rsrc_fork
= NULL
;
3867 int blksize
= hfsmp
->blockSize
;
3869 u_int32_t fileid
= cp
->c_fileid
;
3872 * Figure out if we need to read the resource fork data into
3873 * core before wiping out the catalog record.
3875 * 1) Must not be a directory
3876 * 2) cnode's c_rsrcfork ptr must be NULL.
3877 * 3) rsrc fork must have actual blocks
3879 if ((isdir
== 0) && (cp
->c_rsrcfork
== NULL
) &&
3880 (cp
->c_blocks
- VTOF(vp
)->ff_blocks
)) {
3882 * The resource fork vnode & filefork did not exist.
3883 * Create a temporary one for use in this function only.
3885 temp_rsrc_fork
= hfs_zalloc(HFS_FILEFORK_ZONE
);
3886 bzero(temp_rsrc_fork
, sizeof(struct filefork
));
3887 temp_rsrc_fork
->ff_cp
= cp
;
3888 rl_init(&temp_rsrc_fork
->ff_invalidranges
);
3891 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_ATTRIBUTE
| SFL_BITMAP
, HFS_EXCLUSIVE_LOCK
);
3893 /* Look up the resource fork first, if necessary */
3894 if (temp_rsrc_fork
) {
3895 error
= cat_lookup (hfsmp
, &desc
, 1, 0, (struct cat_desc
*) NULL
,
3896 (struct cat_attr
*) NULL
, &temp_rsrc_fork
->ff_data
, NULL
);
3898 hfs_zfree(temp_rsrc_fork
, HFS_FILEFORK_ZONE
);
3899 hfs_systemfile_unlock (hfsmp
, lockflags
);
3904 if (!skip_reserve
) {
3905 if ((error
= cat_preflight(hfsmp
, CAT_DELETE
, NULL
, 0))) {
3906 if (temp_rsrc_fork
) {
3907 hfs_zfree(temp_rsrc_fork
, HFS_FILEFORK_ZONE
);
3909 hfs_systemfile_unlock(hfsmp
, lockflags
);
3914 error
= cat_delete(hfsmp
, &desc
, &cp
->c_attr
);
3916 if (error
&& error
!= ENXIO
&& error
!= ENOENT
) {
3917 printf("hfs_removefile: deleting file %s (id=%d) vol=%s err=%d\n",
3918 cp
->c_desc
.cd_nameptr
, cp
->c_attr
.ca_fileid
, hfsmp
->vcbVN
, error
);
3922 /* Update the parent directory */
3923 if (dcp
->c_entries
> 0)
3925 dcp
->c_dirchangecnt
++;
3926 hfs_incr_gencount(dcp
);
3928 dcp
->c_ctime
= tv
.tv_sec
;
3929 dcp
->c_mtime
= tv
.tv_sec
;
3930 (void) cat_update(hfsmp
, &dcp
->c_desc
, &dcp
->c_attr
, NULL
, NULL
);
3932 hfs_systemfile_unlock(hfsmp
, lockflags
);
3935 if (temp_rsrc_fork
) {
3936 hfs_zfree(temp_rsrc_fork
, HFS_FILEFORK_ZONE
);
3942 * Now that we've wiped out the catalog record, the file effectively doesn't
3943 * exist anymore. So update the quota records to reflect the loss of the
3944 * data fork and the resource fork.
3947 if (cp
->c_datafork
->ff_blocks
> 0) {
3948 savedbytes
= ((off_t
)cp
->c_datafork
->ff_blocks
* (off_t
)blksize
);
3949 (void) hfs_chkdq(cp
, (int64_t)-(savedbytes
), NOCRED
, 0);
3953 * We may have just deleted the catalog record for a resource fork even
3954 * though it did not exist in core as a vnode. However, just because there
3955 * was a resource fork pointer in the cnode does not mean that it had any blocks.
3957 if (temp_rsrc_fork
|| cp
->c_rsrcfork
) {
3958 if (cp
->c_rsrcfork
) {
3959 if (cp
->c_rsrcfork
->ff_blocks
> 0) {
3960 savedbytes
= ((off_t
)cp
->c_rsrcfork
->ff_blocks
* (off_t
)blksize
);
3961 (void) hfs_chkdq(cp
, (int64_t)-(savedbytes
), NOCRED
, 0);
3965 /* we must have used a temporary fork */
3966 savedbytes
= ((off_t
)temp_rsrc_fork
->ff_blocks
* (off_t
)blksize
);
3967 (void) hfs_chkdq(cp
, (int64_t)-(savedbytes
), NOCRED
, 0);
3971 if (hfsmp
->hfs_flags
& HFS_QUOTAS
) {
3972 (void)hfs_chkiq(cp
, -1, NOCRED
, 0);
3976 if (vnode_islnk(vp
) && cp
->c_datafork
->ff_symlinkptr
) {
3977 hfs_free(cp
->c_datafork
->ff_symlinkptr
, cp
->c_datafork
->ff_size
);
3978 cp
->c_datafork
->ff_symlinkptr
= NULL
;
3982 * If we didn't get any errors deleting the catalog entry, then go ahead
3983 * and release the backing store now. The filefork pointers are still valid.
3985 if (temp_rsrc_fork
) {
3986 error
= hfs_release_storage (hfsmp
, cp
->c_datafork
, temp_rsrc_fork
, fileid
);
3989 /* if cp->c_rsrcfork == NULL, hfs_release_storage will skip over it. */
3990 error
= hfs_release_storage (hfsmp
, cp
->c_datafork
, cp
->c_rsrcfork
, fileid
);
3994 * If we encountered an error updating the extents and bitmap,
3995 * mark the volume inconsistent. At this point, the catalog record has
3996 * already been deleted, so we can't recover it at this point. We need
3997 * to proceed and update the volume header and mark the cnode C_NOEXISTS.
3998 * The subsequent fsck should be able to recover the free space for us.
4000 hfs_mark_inconsistent(hfsmp
, HFS_OP_INCOMPLETE
);
4003 /* reset update_vh to 0, since hfs_release_storage should have done it for us */
4007 /* Get rid of the temporary rsrc fork */
4008 if (temp_rsrc_fork
) {
4009 hfs_zfree(temp_rsrc_fork
, HFS_FILEFORK_ZONE
);
4012 cp
->c_flag
|= C_NOEXISTS
;
4013 cp
->c_flag
&= ~C_DELETED
;
4015 cp
->c_touch_chgtime
= TRUE
;
4019 * We must never get a directory if we're in this else block. We could
4020 * accidentally drop the number of files in the volume header if we did.
4022 hfs_volupdate(hfsmp
, VOL_RMFILE
, (dcp
->c_cnid
== kHFSRootFolderID
));
4027 // if skip_reserve == 1 then we're being called from hfs_vnop_rename() and thus
4028 // we don't need to touch the document_id as it's handled by the rename code.
4029 // otherwise it's a normal remove and we need to save the document id in the
4030 // per thread struct and clear it from the cnode.
4032 if (!error
&& !skip_reserve
&& (cp
->c_bsdflags
& UF_TRACKED
)
4033 && cp
->c_linkcount
<= 1) {
4034 struct doc_tombstone
*ut
;
4035 ut
= doc_tombstone_get();
4036 if (doc_tombstone_should_save(ut
, vp
, cnp
)) {
4037 add_fsevent(FSE_DOCID_CHANGED
, vfs_context_current(),
4038 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
4039 FSE_ARG_INO
, (ino64_t
)cp
->c_fileid
, // src inode #
4040 FSE_ARG_INO
, (ino64_t
)0, // dst inode #
4041 FSE_ARG_INT32
, hfs_get_document_id(cp
), // document id
4044 doc_tombstone_save(dvp
, vp
, cnp
, hfs_get_document_id(cp
),
4047 struct FndrExtendedFileInfo
*fip
= (struct FndrExtendedFileInfo
*)((char *)&cp
->c_attr
.ca_finderinfo
+ 16);
4049 fip
->document_id
= 0;
4050 cp
->c_bsdflags
&= ~UF_TRACKED
;
4055 * All done with this cnode's descriptor...
4057 * Note: all future catalog calls for this cnode must be by
4058 * fileid only. This is OK for HFS (which doesn't have file
4059 * thread records) since HFS doesn't support the removal of
4062 cat_releasedesc(&cp
->c_desc
);
4066 cp
->c_flag
&= ~C_DELETED
;
4071 * If we bailed out earlier, we may need to update the volume header
4072 * to deal with the borrowed blocks accounting.
4074 hfs_volupdate (hfsmp
, VOL_UPDATE
, 0);
4078 hfs_end_transaction(hfsmp
);
4081 dcp
->c_flag
&= ~C_DIR_MODIFICATION
;
4082 wakeup((caddr_t
)&dcp
->c_flag
);
4089 replace_desc(struct cnode
*cp
, struct cat_desc
*cdp
)
4091 // fixes 4348457 and 4463138
4092 if (&cp
->c_desc
== cdp
) {
4096 /* First release allocated name buffer */
4097 if (cp
->c_desc
.cd_flags
& CD_HASBUF
&& cp
->c_desc
.cd_nameptr
!= 0) {
4098 const u_int8_t
*name
= cp
->c_desc
.cd_nameptr
;
4100 cp
->c_desc
.cd_nameptr
= 0;
4101 cp
->c_desc
.cd_namelen
= 0;
4102 cp
->c_desc
.cd_flags
&= ~CD_HASBUF
;
4103 vfs_removename((const char *)name
);
4105 bcopy(cdp
, &cp
->c_desc
, sizeof(cp
->c_desc
));
4107 /* Cnode now owns the name buffer */
4108 cdp
->cd_nameptr
= 0;
4109 cdp
->cd_namelen
= 0;
4110 cdp
->cd_flags
&= ~CD_HASBUF
;
4116 * Just forwards the arguments from VNOP_RENAME into those of
4117 * VNOP_RENAMEX but zeros out the flags word.
4119 int hfs_vnop_rename (struct vnop_rename_args
*args
) {
4120 struct vnop_renamex_args vrx
;
4122 vrx
.a_desc
= args
->a_desc
; // we aren't using it to switch into the vnop array, so fine as is.
4123 vrx
.a_fdvp
= args
->a_fdvp
;
4124 vrx
.a_fvp
= args
->a_fvp
;
4125 vrx
.a_fcnp
= args
->a_fcnp
;
4126 vrx
.a_tdvp
= args
->a_tdvp
;
4127 vrx
.a_tvp
= args
->a_tvp
;
4128 vrx
.a_tcnp
= args
->a_tcnp
;
4129 vrx
.a_vap
= NULL
; // not used
4130 vrx
.a_flags
= 0; //zero out the flags.
4131 vrx
.a_context
= args
->a_context
;
4133 return hfs_vnop_renamex (&vrx
);
4141 * The VFS layer guarantees that:
4142 * - source and destination will either both be directories, or
4143 * both not be directories.
4144 * - all the vnodes are from the same file system
4146 * When the target is a directory, HFS must ensure that its empty.
4148 * Note that this function requires up to 6 vnodes in order to work properly
4149 * if it is operating on files (and not on directories). This is because only
4150 * files can have resource forks, and we now require iocounts to be held on the
4151 * vnodes corresponding to the resource forks (if applicable) as well as
4152 * the files or directories undergoing rename. The problem with not holding
4153 * iocounts on the resource fork vnodes is that it can lead to a deadlock
4154 * situation: The rsrc fork of the source file may be recycled and reclaimed
4155 * in order to provide a vnode for the destination file's rsrc fork. Since
4156 * data and rsrc forks share the same cnode, we'd eventually try to lock the
4157 * source file's cnode in order to sync its rsrc fork to disk, but it's already
4158 * been locked. By taking the rsrc fork vnodes up front we ensure that they
4159 * cannot be recycled, and that the situation mentioned above cannot happen.
4162 hfs_vnop_renamex(struct vnop_renamex_args
*ap
)
4164 struct vnode
*tvp
= ap
->a_tvp
;
4165 struct vnode
*tdvp
= ap
->a_tdvp
;
4166 struct vnode
*fvp
= ap
->a_fvp
;
4167 struct vnode
*fdvp
= ap
->a_fdvp
;
4169 * Note that we only need locals for the target/destination's
4170 * resource fork vnode (and only if necessary). We don't care if the
4171 * source has a resource fork vnode or not.
4173 struct vnode
*tvp_rsrc
= NULLVP
;
4174 uint32_t tvp_rsrc_vid
= 0;
4175 struct componentname
*tcnp
= ap
->a_tcnp
;
4176 struct componentname
*fcnp
= ap
->a_fcnp
;
4177 struct proc
*p
= vfs_context_proc(ap
->a_context
);
4182 struct cnode
*error_cnode
;
4183 struct cat_desc from_desc
;
4184 struct cat_desc to_desc
;
4185 struct cat_desc out_desc
;
4186 struct hfsmount
*hfsmp
;
4187 cat_cookie_t cookie
;
4188 int tvp_deleted
= 0;
4189 int started_tr
= 0, got_cookie
= 0;
4190 int took_trunc_lock
= 0;
4193 time_t orig_from_ctime
, orig_to_ctime
;
4194 int emit_rename
= 1;
4195 int emit_delete
= 1;
4198 vnode_t old_doc_vp
= NULL
;
4199 int rename_exclusive
= 0;
4201 orig_from_ctime
= VTOC(fvp
)->c_ctime
;
4202 if (tvp
&& VTOC(tvp
)) {
4203 orig_to_ctime
= VTOC(tvp
)->c_ctime
;
4208 hfsmp
= VTOHFS(tdvp
);
4210 /* Check the flags first, so we can avoid grabbing locks if necessary */
4212 /* These are the only flags we support for now */
4213 if ((ap
->a_flags
& (VFS_RENAME_EXCL
)) == 0) {
4217 /* The rename flags are mutually exclusive for HFS+ */
4218 switch (ap
->a_flags
& VFS_RENAME_FLAGS_MASK
) {
4219 case VFS_RENAME_EXCL
:
4220 rename_exclusive
= true;
4228 * Do special case checks here. If fvp == tvp then we need to check the
4229 * cnode with locks held.
4232 int is_hardlink
= 0;
4234 * In this case, we do *NOT* ever emit a DELETE event.
4235 * We may not necessarily emit a RENAME event
4238 if ((error
= hfs_lock(VTOC(fvp
), HFS_SHARED_LOCK
, HFS_LOCK_DEFAULT
))) {
4241 /* Check to see if the item is a hardlink or not */
4242 is_hardlink
= (VTOC(fvp
)->c_flag
& C_HARDLINK
);
4243 hfs_unlock (VTOC(fvp
));
4246 * If the item is not a hardlink, then case sensitivity must be off, otherwise
4247 * two names should not resolve to the same cnode unless they were case variants.
4252 * Hardlinks are a little trickier. We only want to emit a rename event
4253 * if the item is a hardlink, the parent directories are the same, case sensitivity
4254 * is off, and the case folded names are the same. See the fvp == tvp case below for more
4258 if ((fdvp
== tdvp
) && ((hfsmp
->hfs_flags
& HFS_CASE_SENSITIVE
) == 0)) {
4259 if (hfs_namecmp((const u_int8_t
*)fcnp
->cn_nameptr
, fcnp
->cn_namelen
,
4260 (const u_int8_t
*)tcnp
->cn_nameptr
, tcnp
->cn_namelen
) == 0) {
4261 /* Then in this case only it is ok to emit a rename */
4268 /* c_bsdflags should only be assessed while holding the cnode lock.
4269 * This is not done consistently throughout the code and can result
4270 * in race. This will be fixed via rdar://12181064
4272 if (VTOC(fvp
)->c_bsdflags
& UF_TRACKED
) {
4275 nspace_snapshot_event(fvp
, orig_from_ctime
, NAMESPACE_HANDLER_RENAME_OP
, NULL
);
4278 if (tvp
&& VTOC(tvp
)) {
4280 nspace_snapshot_event(tvp
, orig_to_ctime
, NAMESPACE_HANDLER_DELETE_OP
, NULL
);
4285 /* When tvp exists, take the truncate lock for hfs_removefile(). */
4286 if (tvp
&& (vnode_isreg(tvp
) || vnode_islnk(tvp
))) {
4287 hfs_lock_truncate(VTOC(tvp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
4288 took_trunc_lock
= 1;
4292 error
= hfs_lockfour(VTOC(fdvp
), VTOC(fvp
), VTOC(tdvp
), tvp
? VTOC(tvp
) : NULL
,
4293 HFS_EXCLUSIVE_LOCK
, &error_cnode
);
4295 if (took_trunc_lock
) {
4296 hfs_unlock_truncate(VTOC(tvp
), HFS_LOCK_DEFAULT
);
4297 took_trunc_lock
= 0;
4301 * We hit an error path. If we were trying to re-acquire the locks
4302 * after coming through here once, we might have already obtained
4303 * an iocount on tvp's resource fork vnode. Drop that before dealing
4304 * with the failure. Note this is safe -- since we are in an
4305 * error handling path, we can't be holding the cnode locks.
4308 vnode_put (tvp_rsrc
);
4314 * tvp might no longer exist. If the cause of the lock failure
4315 * was tvp, then we can try again with tvp/tcp set to NULL.
4316 * This is ok because the vfs syscall will vnode_put the vnodes
4317 * after we return from hfs_vnop_rename.
4319 if ((error
== ENOENT
) && (tvp
!= NULL
) && (error_cnode
== VTOC(tvp
))) {
4325 /* If we want to reintroduce notifications for failed renames, this
4326 is the place to do it. */
4334 tcp
= tvp
? VTOC(tvp
) : NULL
;
4338 * If caller requested an exclusive rename (VFS_RENAME_EXCL) and 'tcp' exists
4339 * then we must fail the operation.
4341 if (tcp
&& rename_exclusive
) {
4347 // if the item is tracked but doesn't have a document_id, assign one and generate an fsevent for it
4350 if ((fcp
->c_bsdflags
& UF_TRACKED
) && ((struct FndrExtendedDirInfo
*)((char *)&fcp
->c_attr
.ca_finderinfo
+ 16))->document_id
== 0) {
4353 hfs_unlockfour(VTOC(fdvp
), VTOC(fvp
), VTOC(tdvp
), tvp
? VTOC(tvp
) : NULL
);
4356 if (hfs_generate_document_id(hfsmp
, &newid
) == 0) {
4357 hfs_lock(fcp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
4358 ((struct FndrExtendedDirInfo
*)((char *)&fcp
->c_attr
.ca_finderinfo
+ 16))->document_id
= newid
;
4359 add_fsevent(FSE_DOCID_CHANGED
, vfs_context_current(),
4360 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
4361 FSE_ARG_INO
, (ino64_t
)0, // src inode #
4362 FSE_ARG_INO
, (ino64_t
)fcp
->c_fileid
, // dst inode #
4363 FSE_ARG_INT32
, newid
,
4367 // XXXdbg - couldn't get a new docid... what to do? can't really fail the rename...
4371 // check if we're going to need to fix tcp as well. if we aren't, go back relock
4372 // everything. otherwise continue on and fix up tcp as well before relocking.
4374 if (tcp
== NULL
|| !(tcp
->c_bsdflags
& UF_TRACKED
) || ((struct FndrExtendedDirInfo
*)((char *)&tcp
->c_attr
.ca_finderinfo
+ 16))->document_id
!= 0) {
4380 // same thing for tcp if it's set
4382 if (tcp
&& (tcp
->c_bsdflags
& UF_TRACKED
) && ((struct FndrExtendedDirInfo
*)((char *)&tcp
->c_attr
.ca_finderinfo
+ 16))->document_id
== 0) {
4386 hfs_unlockfour(VTOC(fdvp
), VTOC(fvp
), VTOC(tdvp
), tvp
? VTOC(tvp
) : NULL
);
4390 if (hfs_generate_document_id(hfsmp
, &newid
) == 0) {
4391 hfs_lock(tcp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
4392 ((struct FndrExtendedDirInfo
*)((char *)&tcp
->c_attr
.ca_finderinfo
+ 16))->document_id
= newid
;
4393 add_fsevent(FSE_DOCID_CHANGED
, vfs_context_current(),
4394 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
4395 FSE_ARG_INO
, (ino64_t
)0, // src inode #
4396 FSE_ARG_INO
, (ino64_t
)tcp
->c_fileid
, // dst inode #
4397 FSE_ARG_INT32
, newid
,
4401 // XXXdbg - couldn't get a new docid... what to do? can't really fail the rename...
4404 // go back up and relock everything. next time through the if statement won't be true
4405 // and we'll skip over this block of code.
4412 * Acquire iocounts on the destination's resource fork vnode
4413 * if necessary. If dst/src are files and the dst has a resource
4414 * fork vnode, then we need to try and acquire an iocount on the rsrc vnode.
4415 * If it does not exist, then we don't care and can skip it.
4417 if ((vnode_isreg(fvp
)) || (vnode_islnk(fvp
))) {
4418 if ((tvp
) && (tcp
->c_rsrc_vp
) && (tvp_rsrc
== NULL
)) {
4419 tvp_rsrc
= tcp
->c_rsrc_vp
;
4421 * We can look at the vid here because we're holding the
4422 * cnode lock on the underlying cnode for this rsrc vnode.
4424 tvp_rsrc_vid
= vnode_vid (tvp_rsrc
);
4426 /* Unlock everything to acquire iocount on this rsrc vnode */
4427 if (took_trunc_lock
) {
4428 hfs_unlock_truncate (VTOC(tvp
), HFS_LOCK_DEFAULT
);
4429 took_trunc_lock
= 0;
4431 hfs_unlockfour(fdcp
, fcp
, tdcp
, tcp
);
4433 if (vnode_getwithvid (tvp_rsrc
, tvp_rsrc_vid
)) {
4434 /* iocount acquisition failed. Reset fields and start over.. */
4444 /* Ensure we didn't race src or dst parent directories with rmdir. */
4445 if (fdcp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) {
4450 if (tdcp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) {
4456 /* Check for a race against unlink. The hfs_valid_cnode checks validate
4457 * the parent/child relationship with fdcp and tdcp, as well as the
4458 * component name of the target cnodes.
4460 if ((fcp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) || !hfs_valid_cnode(hfsmp
, fdvp
, fcnp
, fcp
->c_fileid
, NULL
, &error
)) {
4465 if (tcp
&& ((tcp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) || !hfs_valid_cnode(hfsmp
, tdvp
, tcnp
, tcp
->c_fileid
, NULL
, &error
))) {
4467 // hmm, the destination vnode isn't valid any more.
4468 // in this case we can just drop him and pretend he
4469 // never existed in the first place.
4471 if (took_trunc_lock
) {
4472 hfs_unlock_truncate(VTOC(tvp
), HFS_LOCK_DEFAULT
);
4473 took_trunc_lock
= 0;
4477 hfs_unlockfour(fdcp
, fcp
, tdcp
, tcp
);
4482 // retry the locking with tvp null'ed out
4486 fdcp
->c_flag
|= C_DIR_MODIFICATION
;
4488 tdcp
->c_flag
|= C_DIR_MODIFICATION
;
4492 * Disallow renaming of a directory hard link if the source and
4493 * destination parent directories are different, or a directory whose
4494 * descendant is a directory hard link and the one of the ancestors
4495 * of the destination directory is a directory hard link.
4497 if (vnode_isdir(fvp
) && (fdvp
!= tdvp
)) {
4498 if (fcp
->c_flag
& C_HARDLINK
) {
4502 if (fcp
->c_attr
.ca_recflags
& kHFSHasChildLinkMask
) {
4503 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
4504 if (cat_check_link_ancestry(hfsmp
, tdcp
->c_fileid
, 0)) {
4506 hfs_systemfile_unlock(hfsmp
, lockflags
);
4509 hfs_systemfile_unlock(hfsmp
, lockflags
);
4514 * The following edge case is caught here:
4515 * (to cannot be a descendent of from)
4528 if (tdcp
->c_parentcnid
== fcp
->c_fileid
) {
4534 * The following two edge cases are caught here:
4535 * (note tvp is not empty)
4548 if (tvp
&& vnode_isdir(tvp
) && (tcp
->c_entries
!= 0) && fvp
!= tvp
) {
4554 * The following edge case is caught here:
4555 * (the from child and parent are the same)
4568 * Make sure "from" vnode and its parent are changeable.
4570 if ((fcp
->c_bsdflags
& (IMMUTABLE
| APPEND
)) || (fdcp
->c_bsdflags
& APPEND
)) {
4576 * If the destination parent directory is "sticky", then the
4577 * user must own the parent directory, or the destination of
4578 * the rename, otherwise the destination may not be changed
4579 * (except by root). This implements append-only directories.
4581 * Note that checks for immutable and write access are done
4582 * by the call to hfs_removefile.
4584 if (tvp
&& (tdcp
->c_mode
& S_ISTXT
) &&
4585 (suser(vfs_context_ucred(ap
->a_context
), NULL
)) &&
4586 (kauth_cred_getuid(vfs_context_ucred(ap
->a_context
)) != tdcp
->c_uid
) &&
4587 (hfs_owner_rights(hfsmp
, tcp
->c_uid
, vfs_context_ucred(ap
->a_context
), p
, false)) ) {
4592 /* Don't allow modification of the journal or journal_info_block */
4593 if (hfs_is_journal_file(hfsmp
, fcp
) ||
4594 (tcp
&& hfs_is_journal_file(hfsmp
, tcp
))) {
4601 (void)hfs_getinoquota(tcp
);
4603 /* Preflighting done, take fvp out of the name space. */
4606 #if CONFIG_SECLUDED_RENAME
4608 * Check for "secure" rename that imposes additional restrictions on the
4609 * source vnode. We wait until here to check in order to prevent a race
4610 * with other threads that manage to look up fvp, but their open or link
4611 * is blocked by our locks. At this point, with fvp out of the name cache,
4612 * and holding the lock on fdvp, no other thread can find fvp.
4614 * TODO: Do we need to limit these checks to regular files only?
4616 if (fcnp
->cn_flags
& CN_SECLUDE_RENAME
) {
4617 if (vnode_isdir(fvp
)) {
4623 * Neither fork of source may be open or memory mapped.
4624 * We also don't want it in use by any other system call.
4625 * The file must not have hard links.
4627 * We can't simply use vnode_isinuse() because that does not
4628 * count opens with O_EVTONLY. We don't want a malicious
4629 * process using O_EVTONLY to subvert a secluded rename.
4631 if (fcp
->c_linkcount
!= 1) {
4636 if (fcp
->c_rsrc_vp
&& (vnode_usecount(fcp
->c_rsrc_vp
) > 0 ||
4637 vnode_iocount(fcp
->c_rsrc_vp
) > 0)) {
4638 /* Resource fork is in use (including O_EVTONLY) */
4642 if (fcp
->c_vp
&& (vnode_usecount(fcp
->c_vp
) > (fcp
->c_rsrc_vp
? 1 : 0) ||
4643 vnode_iocount(fcp
->c_vp
) > 1)) {
4645 * Data fork is in use, including O_EVTONLY, but not
4646 * including a reference from the resource fork.
4654 bzero(&from_desc
, sizeof(from_desc
));
4655 from_desc
.cd_nameptr
= (const u_int8_t
*)fcnp
->cn_nameptr
;
4656 from_desc
.cd_namelen
= fcnp
->cn_namelen
;
4657 from_desc
.cd_parentcnid
= fdcp
->c_fileid
;
4658 from_desc
.cd_flags
= fcp
->c_desc
.cd_flags
& ~(CD_HASBUF
| CD_DECOMPOSED
);
4659 from_desc
.cd_cnid
= fcp
->c_cnid
;
4661 bzero(&to_desc
, sizeof(to_desc
));
4662 to_desc
.cd_nameptr
= (const u_int8_t
*)tcnp
->cn_nameptr
;
4663 to_desc
.cd_namelen
= tcnp
->cn_namelen
;
4664 to_desc
.cd_parentcnid
= tdcp
->c_fileid
;
4665 to_desc
.cd_flags
= fcp
->c_desc
.cd_flags
& ~(CD_HASBUF
| CD_DECOMPOSED
);
4666 to_desc
.cd_cnid
= fcp
->c_cnid
;
4668 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
4673 /* hfs_vnop_link() and hfs_vnop_rename() set kHFSHasChildLinkMask
4674 * inside a journal transaction and without holding a cnode lock.
4675 * As setting of this bit depends on being in journal transaction for
4676 * concurrency, check this bit again after we start journal transaction for rename
4677 * to ensure that this directory does not have any descendant that
4678 * is a directory hard link.
4680 if (vnode_isdir(fvp
) && (fdvp
!= tdvp
)) {
4681 if (fcp
->c_attr
.ca_recflags
& kHFSHasChildLinkMask
) {
4682 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
4683 if (cat_check_link_ancestry(hfsmp
, tdcp
->c_fileid
, 0)) {
4685 hfs_systemfile_unlock(hfsmp
, lockflags
);
4688 hfs_systemfile_unlock(hfsmp
, lockflags
);
4692 // if it's a hardlink then re-lookup the name so
4693 // that we get the correct cnid in from_desc (see
4694 // the comment in hfs_removefile for more details)
4696 if (fcp
->c_flag
& C_HARDLINK
) {
4697 struct cat_desc tmpdesc
;
4700 tmpdesc
.cd_nameptr
= (const u_int8_t
*)fcnp
->cn_nameptr
;
4701 tmpdesc
.cd_namelen
= fcnp
->cn_namelen
;
4702 tmpdesc
.cd_parentcnid
= fdcp
->c_fileid
;
4703 tmpdesc
.cd_hint
= fdcp
->c_childhint
;
4704 tmpdesc
.cd_flags
= fcp
->c_desc
.cd_flags
& CD_ISDIR
;
4705 tmpdesc
.cd_encoding
= 0;
4707 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
4709 if (cat_lookup(hfsmp
, &tmpdesc
, 0, 0, NULL
, NULL
, NULL
, &real_cnid
) != 0) {
4710 hfs_systemfile_unlock(hfsmp
, lockflags
);
4714 // use the real cnid instead of whatever happened to be there
4715 from_desc
.cd_cnid
= real_cnid
;
4716 hfs_systemfile_unlock(hfsmp
, lockflags
);
4720 * Reserve some space in the Catalog file.
4722 if ((error
= cat_preflight(hfsmp
, CAT_RENAME
+ CAT_DELETE
, &cookie
, p
))) {
4728 * If the destination exists then it may need to be removed.
4730 * Due to HFS's locking system, we should always move the
4731 * existing 'tvp' element to the hidden directory in hfs_vnop_rename.
4732 * Because the VNOP_LOOKUP call enters and exits the filesystem independently
4733 * of the actual vnop that it was trying to do (stat, link, readlink),
4734 * we must release the cnode lock of that element during the interim to
4735 * do MAC checking, vnode authorization, and other calls. In that time,
4736 * the item can be deleted (or renamed over). However, only in the rename
4737 * case is it inappropriate to return ENOENT from any of those calls. Either
4738 * the call should return information about the old element (stale), or get
4739 * information about the newer element that we are about to write in its place.
4741 * HFS lookup has been modified to detect a rename and re-drive its
4742 * lookup internally. For other calls that have already succeeded in
4743 * their lookup call and are waiting to acquire the cnode lock in order
4744 * to proceed, that cnode lock will not fail due to the cnode being marked
4745 * C_NOEXISTS, because it won't have been marked as such. It will only
4746 * have C_DELETED. Thus, they will simply act on the stale open-unlinked
4747 * element. All future callers will get the new element.
4749 * To implement this behavior, we pass the "only_unlink" argument to
4750 * hfs_removefile and hfs_removedir. This will result in the vnode acting
4751 * as though it is open-unlinked. Additionally, when we are done moving the
4752 * element to the hidden directory, we vnode_recycle the target so that it is
4753 * reclaimed as soon as possible. Reclaim and inactive are both
4754 * capable of clearing out unused blocks for an open-unlinked file or dir.
4758 // if the destination has a document id, we need to preserve it
4761 uint32_t document_id
;
4762 struct FndrExtendedDirInfo
*ffip
= (struct FndrExtendedDirInfo
*)((char *)&fcp
->c_attr
.ca_finderinfo
+ 16);
4763 struct FndrExtendedDirInfo
*tfip
= (struct FndrExtendedDirInfo
*)((char *)&tcp
->c_attr
.ca_finderinfo
+ 16);
4765 if (ffip
->document_id
&& tfip
->document_id
) {
4766 // both documents are tracked. only save a tombstone from tcp and do nothing else.
4767 doc_tombstone_save(tdvp
, tvp
, tcnp
, hfs_get_document_id(tcp
),
4770 struct doc_tombstone
*ut
;
4771 ut
= doc_tombstone_get();
4773 document_id
= tfip
->document_id
;
4774 tfip
->document_id
= 0;
4776 if (document_id
!= 0) {
4777 // clear UF_TRACKED as well since tcp is now no longer tracked
4778 tcp
->c_bsdflags
&= ~UF_TRACKED
;
4779 (void) cat_update(hfsmp
, &tcp
->c_desc
, &tcp
->c_attr
, NULL
, NULL
);
4782 if (ffip
->document_id
== 0 && document_id
!= 0) {
4783 // printf("RENAME: preserving doc-id %d onto %s (from ino %d, to ino %d)\n", document_id, tcp->c_desc.cd_nameptr, tcp->c_desc.cd_cnid, fcp->c_desc.cd_cnid);
4784 fcp
->c_bsdflags
|= UF_TRACKED
;
4785 ffip
->document_id
= document_id
;
4787 (void) cat_update(hfsmp
, &fcp
->c_desc
, &fcp
->c_attr
, NULL
, NULL
);
4788 add_fsevent(FSE_DOCID_CHANGED
, vfs_context_current(),
4789 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
4790 FSE_ARG_INO
, (ino64_t
)tcp
->c_fileid
, // src inode #
4791 FSE_ARG_INO
, (ino64_t
)fcp
->c_fileid
, // dst inode #
4792 FSE_ARG_INT32
, (uint32_t)ffip
->document_id
,
4795 else if ((fcp
->c_bsdflags
& UF_TRACKED
) && doc_tombstone_should_save(ut
, fvp
, fcnp
)) {
4797 if (ut
->t_lastop_document_id
) {
4798 doc_tombstone_clear(ut
, NULL
);
4800 doc_tombstone_save(fdvp
, fvp
, fcnp
,
4801 hfs_get_document_id(fcp
), fcp
->c_fileid
);
4803 //printf("RENAME: (dest-exists): saving tombstone doc-id %lld @ %s (ino %d)\n",
4804 // ut->t_lastop_document_id, ut->t_lastop_filename, fcp->c_desc.cd_cnid);
4810 * When fvp matches tvp they could be case variants
4811 * or matching hard links.
4814 if (!(fcp
->c_flag
& C_HARDLINK
)) {
4816 * If they're not hardlinks, then fvp == tvp must mean we
4817 * are using case-insensitive HFS because case-sensitive would
4818 * not use the same vnode for both. In this case we just update
4819 * the catalog for: a -> A
4821 goto skip_rm
; /* simple case variant */
4824 /* For all cases below, we must be using hardlinks */
4825 else if ((fdvp
!= tdvp
) ||
4826 (hfsmp
->hfs_flags
& HFS_CASE_SENSITIVE
)) {
4828 * If the parent directories are not the same, AND the two items
4829 * are hardlinks, posix says to do nothing:
4830 * dir1/fred <-> dir2/bob and the op was mv dir1/fred -> dir2/bob
4831 * We just return 0 in this case.
4833 * If case sensitivity is on, and we are using hardlinks
4834 * then renaming is supposed to do nothing.
4835 * dir1/fred <-> dir2/FRED, and op == mv dir1/fred -> dir2/FRED
4837 goto out
; /* matching hardlinks, nothing to do */
4839 } else if (hfs_namecmp((const u_int8_t
*)fcnp
->cn_nameptr
, fcnp
->cn_namelen
,
4840 (const u_int8_t
*)tcnp
->cn_nameptr
, tcnp
->cn_namelen
) == 0) {
4842 * If we get here, then the following must be true:
4843 * a) We are running case-insensitive HFS+.
4844 * b) Both paths 'fvp' and 'tvp' are in the same parent directory.
4845 * c) the two names are case-variants of each other.
4847 * In this case, we are really only dealing with a single catalog record
4848 * whose name is being updated.
4850 * op is dir1/fred -> dir1/FRED
4852 * We need to special case the name matching, because if
4853 * dir1/fred <-> dir1/bob were the two links, and the
4854 * op was dir1/fred -> dir1/bob
4855 * That would fail/do nothing.
4857 goto skip_rm
; /* case-variant hardlink in the same dir */
4859 goto out
; /* matching hardlink, nothing to do */
4864 if (vnode_isdir(tvp
)) {
4866 * hfs_removedir will eventually call hfs_removefile on the directory
4867 * we're working on, because only hfs_removefile does the renaming of the
4868 * item to the hidden directory. The directory will stay around in the
4869 * hidden directory with C_DELETED until it gets an inactive or a reclaim.
4870 * That way, we can destroy all of the EAs as needed and allow new ones to be
4873 error
= hfs_removedir(tdvp
, tvp
, tcnp
, HFSRM_SKIP_RESERVE
, 1);
4876 error
= hfs_removefile(tdvp
, tvp
, tcnp
, 0, HFSRM_SKIP_RESERVE
, 0, NULL
, 1);
4879 * If the destination file had a resource fork vnode, then we need to get rid of
4880 * its blocks when there are no more references to it. Because the call to
4881 * hfs_removefile above always open-unlinks things, we need to force an inactive/reclaim
4882 * on the resource fork vnode, in order to prevent block leaks. Otherwise,
4883 * the resource fork vnode could prevent the data fork vnode from going out of scope
4884 * because it holds a v_parent reference on it. So we mark it for termination
4885 * with a call to vnode_recycle. hfs_vnop_reclaim has been modified so that it
4886 * can clean up the blocks of open-unlinked files and resource forks.
4888 * We can safely call vnode_recycle on the resource fork because we took an iocount
4889 * reference on it at the beginning of the function.
4892 if ((error
== 0) && (tcp
->c_flag
& C_DELETED
) && (tvp_rsrc
)) {
4893 vnode_recycle(tvp_rsrc
);
4903 /* Mark 'tcp' as being deleted due to a rename */
4904 tcp
->c_flag
|= C_RENAMED
;
4907 * Aggressively mark tvp/tcp for termination to ensure that we recover all blocks
4908 * as quickly as possible.
4912 struct doc_tombstone
*ut
;
4913 ut
= doc_tombstone_get();
4916 // There is nothing at the destination. If the file being renamed is
4917 // tracked, save a "tombstone" of the document_id. If the file is
4918 // not a tracked file, then see if it needs to inherit a tombstone.
4920 // NOTE: we do not save a tombstone if the file being renamed begins
4921 // with "atmp" which is done to work-around AutoCad's bizarre
4922 // 5-step un-safe save behavior
4924 if (fcp
->c_bsdflags
& UF_TRACKED
) {
4925 if (doc_tombstone_should_save(ut
, fvp
, fcnp
)) {
4926 doc_tombstone_save(fdvp
, fvp
, fcnp
, hfs_get_document_id(fcp
),
4929 //printf("RENAME: (no dest): saving tombstone doc-id %lld @ %s (ino %d)\n",
4930 // ut->t_lastop_document_id, ut->t_lastop_filename, fcp->c_desc.cd_cnid);
4932 // intentionally do nothing
4934 } else if ( ut
->t_lastop_document_id
!= 0
4935 && tdvp
== ut
->t_lastop_parent
4936 && vnode_vid(tdvp
) == ut
->t_lastop_parent_vid
4937 && strcmp((char *)ut
->t_lastop_filename
, (char *)tcnp
->cn_nameptr
) == 0) {
4939 //printf("RENAME: %s (ino %d) inheriting doc-id %lld\n", tcnp->cn_nameptr, fcp->c_desc.cd_cnid, ut->t_lastop_document_id);
4940 struct FndrExtendedFileInfo
*fip
= (struct FndrExtendedFileInfo
*)((char *)&fcp
->c_attr
.ca_finderinfo
+ 16);
4941 fcp
->c_bsdflags
|= UF_TRACKED
;
4942 fip
->document_id
= ut
->t_lastop_document_id
;
4943 cat_update(hfsmp
, &fcp
->c_desc
, &fcp
->c_attr
, NULL
, NULL
);
4945 doc_tombstone_clear(ut
, &old_doc_vp
);
4946 } else if (ut
->t_lastop_document_id
&& doc_tombstone_should_save(ut
, fvp
, fcnp
) && doc_tombstone_should_save(ut
, tvp
, tcnp
)) {
4947 // no match, clear the tombstone
4948 //printf("RENAME: clearing the tombstone %lld @ %s\n", ut->t_lastop_document_id, ut->t_lastop_filename);
4949 doc_tombstone_clear(ut
, NULL
);
4955 * All done with tvp and fvp.
4957 * We also jump to this point if there was no destination observed during lookup and namei.
4958 * However, because only iocounts are held at the VFS layer, there is nothing preventing a
4959 * competing thread from racing us and creating a file or dir at the destination of this rename
4960 * operation. If this occurs, it may cause us to get a spurious EEXIST out of the cat_rename
4961 * call below. To preserve rename's atomicity, we need to signal VFS to re-drive the
4962 * namei/lookup and restart the rename operation. EEXIST is an allowable errno to be bubbled
4963 * out of the rename syscall, but not for this reason, since it is a synonym errno for ENOTEMPTY.
4964 * To signal VFS, we return ERECYCLE (which is also used for lookup restarts). This errno
4965 * will be swallowed and it will restart the operation.
4968 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
4969 error
= cat_rename(hfsmp
, &from_desc
, &tdcp
->c_desc
, &to_desc
, &out_desc
);
4970 hfs_systemfile_unlock(hfsmp
, lockflags
);
4973 if (error
== EEXIST
) {
4979 /* Invalidate negative cache entries in the destination directory */
4980 if (tdcp
->c_flag
& C_NEG_ENTRIES
) {
4981 cache_purge_negatives(tdvp
);
4982 tdcp
->c_flag
&= ~C_NEG_ENTRIES
;
4985 /* Update cnode's catalog descriptor */
4986 replace_desc(fcp
, &out_desc
);
4987 fcp
->c_parentcnid
= tdcp
->c_fileid
;
4991 * Now indicate this cnode needs to have date-added written to the
4992 * finderinfo, but only if moving to a different directory, or if
4993 * it doesn't already have it.
4995 if (fdvp
!= tdvp
|| !ISSET(fcp
->c_attr
.ca_recflags
, kHFSHasDateAddedMask
))
4996 fcp
->c_flag
|= C_NEEDS_DATEADDED
;
4998 (void) hfs_update (fvp
, 0);
5000 hfs_volupdate(hfsmp
, vnode_isdir(fvp
) ? VOL_RMDIR
: VOL_RMFILE
,
5001 (fdcp
->c_cnid
== kHFSRootFolderID
));
5002 hfs_volupdate(hfsmp
, vnode_isdir(fvp
) ? VOL_MKDIR
: VOL_MKFILE
,
5003 (tdcp
->c_cnid
== kHFSRootFolderID
));
5005 /* Update both parent directories. */
5007 if (vnode_isdir(fvp
)) {
5008 /* If the source directory has directory hard link
5009 * descendants, set the kHFSHasChildLinkBit in the
5010 * destination parent hierarchy
5012 if ((fcp
->c_attr
.ca_recflags
& kHFSHasChildLinkMask
) &&
5013 !(tdcp
->c_attr
.ca_recflags
& kHFSHasChildLinkMask
)) {
5015 tdcp
->c_attr
.ca_recflags
|= kHFSHasChildLinkMask
;
5017 error
= cat_set_childlinkbit(hfsmp
, tdcp
->c_parentcnid
);
5019 printf ("hfs_vnop_rename: error updating parent chain for %u\n", tdcp
->c_cnid
);
5023 INC_FOLDERCOUNT(hfsmp
, tdcp
->c_attr
);
5024 DEC_FOLDERCOUNT(hfsmp
, fdcp
->c_attr
);
5027 tdcp
->c_dirchangecnt
++;
5028 tdcp
->c_flag
|= C_MODIFIED
;
5029 hfs_incr_gencount(tdcp
);
5031 if (fdcp
->c_entries
> 0)
5033 fdcp
->c_dirchangecnt
++;
5034 fdcp
->c_flag
|= C_MODIFIED
;
5035 fdcp
->c_touch_chgtime
= TRUE
;
5036 fdcp
->c_touch_modtime
= TRUE
;
5038 if (ISSET(fcp
->c_flag
, C_HARDLINK
)) {
5039 hfs_relorigin(fcp
, fdcp
->c_fileid
);
5040 if (fdcp
->c_fileid
!= fdcp
->c_cnid
)
5041 hfs_relorigin(fcp
, fdcp
->c_cnid
);
5044 (void) hfs_update(fdvp
, 0);
5046 hfs_incr_gencount(fdcp
);
5048 tdcp
->c_childhint
= out_desc
.cd_hint
; /* Cache directory's location */
5049 tdcp
->c_touch_chgtime
= TRUE
;
5050 tdcp
->c_touch_modtime
= TRUE
;
5052 (void) hfs_update(tdvp
, 0);
5054 /* Update the vnode's name now that the rename has completed. */
5055 vnode_update_identity(fvp
, tdvp
, tcnp
->cn_nameptr
, tcnp
->cn_namelen
,
5056 tcnp
->cn_hash
, (VNODE_UPDATE_PARENT
| VNODE_UPDATE_NAME
));
5059 * At this point, we may have a resource fork vnode attached to the
5060 * 'from' vnode. If it exists, we will want to update its name, because
5061 * it contains the old name + _PATH_RSRCFORKSPEC. ("/..namedfork/rsrc").
5063 * Note that the only thing we need to update here is the name attached to
5064 * the vnode, since a resource fork vnode does not have a separate resource
5065 * cnode -- it's still 'fcp'.
5067 if (fcp
->c_rsrc_vp
) {
5068 char* rsrc_path
= NULL
;
5071 /* Create a new temporary buffer that's going to hold the new name */
5072 rsrc_path
= hfs_malloc(MAXPATHLEN
);
5073 len
= snprintf (rsrc_path
, MAXPATHLEN
, "%s%s", tcnp
->cn_nameptr
, _PATH_RSRCFORKSPEC
);
5074 len
= MIN(len
, MAXPATHLEN
);
5077 * vnode_update_identity will do the following for us:
5078 * 1) release reference on the existing rsrc vnode's name.
5079 * 2) copy/insert new name into the name cache
5080 * 3) attach the new name to the resource vnode
5081 * 4) update the vnode's vid
5083 vnode_update_identity (fcp
->c_rsrc_vp
, fvp
, rsrc_path
, len
, 0, (VNODE_UPDATE_NAME
| VNODE_UPDATE_CACHE
));
5085 /* Free the memory associated with the resource fork's name */
5086 hfs_free(rsrc_path
, MAXPATHLEN
);
5090 cat_postflight(hfsmp
, &cookie
, p
);
5093 hfs_end_transaction(hfsmp
);
5096 fdcp
->c_flag
&= ~C_DIR_MODIFICATION
;
5097 wakeup((caddr_t
)&fdcp
->c_flag
);
5099 tdcp
->c_flag
&= ~C_DIR_MODIFICATION
;
5100 wakeup((caddr_t
)&tdcp
->c_flag
);
5103 const ino64_t file_id
= fcp
->c_fileid
;
5105 hfs_unlockfour(fdcp
, fcp
, tdcp
, tcp
);
5107 if (took_trunc_lock
) {
5108 hfs_unlock_truncate(VTOC(tvp
), HFS_LOCK_DEFAULT
);
5111 /* Now vnode_put the resource forks vnodes if necessary */
5113 vnode_put(tvp_rsrc
);
5117 /* After tvp is removed the only acceptable error is EIO */
5118 if (error
&& tvp_deleted
)
5121 /* If we want to reintroduce notifications for renames, this is the
5125 cnode_t
*ocp
= VTOC(old_doc_vp
);
5126 hfs_lock_always(ocp
, HFS_EXCLUSIVE_LOCK
);
5127 struct FndrExtendedFileInfo
*ofip
= (struct FndrExtendedFileInfo
*)((char *)&ocp
->c_attr
.ca_finderinfo
+ 16);
5129 const uint32_t doc_id
= ofip
->document_id
;
5130 const ino64_t old_file_id
= ocp
->c_fileid
;
5132 // printf("clearing doc-id from ino %d\n", ocp->c_desc.cd_cnid);
5133 ofip
->document_id
= 0;
5134 ocp
->c_bsdflags
&= ~UF_TRACKED
;
5135 ocp
->c_flag
|= C_MODIFIED
;
5138 vnode_put(old_doc_vp
);
5140 add_fsevent(FSE_DOCID_CHANGED
, vfs_context_current(),
5141 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
5142 FSE_ARG_INO
, old_file_id
, // src inode #
5143 FSE_ARG_INO
, file_id
, // dst inode #
5144 FSE_ARG_INT32
, doc_id
,
5156 hfs_vnop_mkdir(struct vnop_mkdir_args
*ap
)
5158 /***** HACK ALERT ********/
5159 ap
->a_cnp
->cn_flags
|= MAKEENTRY
;
5160 return hfs_makenode(ap
->a_dvp
, ap
->a_vpp
, ap
->a_cnp
, ap
->a_vap
, ap
->a_context
);
5165 * Create a symbolic link.
5168 hfs_vnop_symlink(struct vnop_symlink_args
*ap
)
5170 struct vnode
**vpp
= ap
->a_vpp
;
5171 struct vnode
*dvp
= ap
->a_dvp
;
5172 struct vnode
*vp
= NULL
;
5173 struct cnode
*cp
= NULL
;
5174 struct hfsmount
*hfsmp
;
5175 struct filefork
*fp
;
5176 struct buf
*bp
= NULL
;
5182 /* HFS standard disks don't support symbolic links */
5183 if (VTOVCB(dvp
)->vcbSigWord
!= kHFSPlusSigWord
)
5186 /* Check for empty target name */
5187 if (ap
->a_target
[0] == 0)
5190 hfsmp
= VTOHFS(dvp
);
5192 len
= strlen(ap
->a_target
);
5193 if (len
> MAXPATHLEN
)
5194 return (ENAMETOOLONG
);
5196 /* Check for free space */
5197 if (((u_int64_t
)hfs_freeblks(hfsmp
, 0) * (u_int64_t
)hfsmp
->blockSize
) < len
) {
5201 /* Create the vnode */
5202 ap
->a_vap
->va_mode
|= S_IFLNK
;
5203 if ((error
= hfs_makenode(dvp
, vpp
, ap
->a_cnp
, ap
->a_vap
, ap
->a_context
))) {
5207 if ((error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
))) {
5213 if (cp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) {
5218 (void)hfs_getinoquota(cp
);
5221 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
5227 * Allocate space for the link.
5229 * Since we're already inside a transaction,
5231 * Don't need truncate lock since a symlink is treated as a system file.
5233 error
= hfs_truncate(vp
, len
, IO_NOZEROFILL
, 0, ap
->a_context
);
5235 /* On errors, remove the symlink file */
5238 * End the transaction so we don't re-take the cnode lock
5239 * below while inside a transaction (lock order violation).
5241 hfs_end_transaction(hfsmp
);
5243 /* hfs_removefile() requires holding the truncate lock */
5245 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
5246 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
5248 if (hfs_start_transaction(hfsmp
) != 0) {
5250 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
5254 (void) hfs_removefile(dvp
, vp
, ap
->a_cnp
, 0, 0, 0, NULL
, 0);
5255 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
5259 /* Write the link to disk */
5260 bp
= buf_getblk(vp
, (daddr64_t
)0, roundup((int)fp
->ff_size
, hfsmp
->hfs_physical_block_size
),
5263 journal_modify_block_start(hfsmp
->jnl
, bp
);
5265 datap
= (char *)buf_dataptr(bp
);
5266 bzero(datap
, buf_size(bp
));
5267 bcopy(ap
->a_target
, datap
, len
);
5270 journal_modify_block_end(hfsmp
->jnl
, bp
, NULL
, NULL
);
5276 hfs_end_transaction(hfsmp
);
5277 if ((cp
!= NULL
) && (vp
!= NULL
)) {
5290 /* structures to hold a "." or ".." directory entry */
5291 struct hfs_stddotentry
{
5292 u_int32_t d_fileno
; /* unique file number */
5293 u_int16_t d_reclen
; /* length of this structure */
5294 u_int8_t d_type
; /* dirent file type */
5295 u_int8_t d_namlen
; /* len of filename */
5296 char d_name
[4]; /* "." or ".." */
5299 struct hfs_extdotentry
{
5300 u_int64_t d_fileno
; /* unique file number */
5301 u_int64_t d_seekoff
; /* seek offset (optional, used by servers) */
5302 u_int16_t d_reclen
; /* length of this structure */
5303 u_int16_t d_namlen
; /* len of filename */
5304 u_int8_t d_type
; /* dirent file type */
5305 u_char d_name
[3]; /* "." or ".." */
5309 struct hfs_stddotentry std
;
5310 struct hfs_extdotentry ext
;
5314 * hfs_vnop_readdir reads directory entries into the buffer pointed
5315 * to by uio, in a filesystem independent format. Up to uio_resid
5316 * bytes of data can be transferred. The data in the buffer is a
5317 * series of packed dirent structures where each one contains the
5318 * following entries:
5320 * u_int32_t d_fileno; // file number of entry
5321 * u_int16_t d_reclen; // length of this record
5322 * u_int8_t d_type; // file type
5323 * u_int8_t d_namlen; // length of string in d_name
5324 * char d_name[MAXNAMELEN+1]; // null terminated file name
5326 * The current position (uio_offset) refers to the next block of
5327 * entries. The offset can only be set to a value previously
5328 * returned by hfs_vnop_readdir or zero. This offset does not have
5329 * to match the number of bytes returned (in uio_resid).
5331 * In fact, the offset used by HFS is essentially an index (26 bits)
5332 * with a tag (6 bits). The tag is for associating the next request
5333 * with the current request. This enables us to have multiple threads
5334 * reading the directory while the directory is also being modified.
5336 * Each tag/index pair is tied to a unique directory hint. The hint
5337 * contains information (filename) needed to build the catalog b-tree
5338 * key for finding the next set of entries.
5340 * If the directory is marked as deleted-but-in-use (cp->c_flag & C_DELETED),
5341 * do NOT synthesize entries for "." and "..".
5344 hfs_vnop_readdir(struct vnop_readdir_args
*ap
)
5346 struct vnode
*vp
= ap
->a_vp
;
5347 uio_t uio
= ap
->a_uio
;
5348 struct cnode
*cp
= VTOC(vp
);
5349 struct hfsmount
*hfsmp
= VTOHFS(vp
);
5350 directoryhint_t
*dirhint
= NULL
;
5351 directoryhint_t localhint
;
5356 user_addr_t user_start
= 0;
5357 user_size_t user_len
= 0;
5364 cnid_t cnid_hint
= 0;
5365 int bump_valence
= 0;
5368 startoffset
= offset
= uio_offset(uio
);
5369 extended
= (ap
->a_flags
& VNODE_READDIR_EXTENDED
);
5370 nfs_cookies
= extended
&& (ap
->a_flags
& VNODE_READDIR_REQSEEKOFF
);
5372 /* Sanity check the uio data. */
5373 if (uio_iovcnt(uio
) > 1)
5376 if (VTOC(vp
)->c_bsdflags
& UF_COMPRESSED
) {
5377 int compressed
= hfs_file_is_compressed(VTOC(vp
), 0); /* 0 == take the cnode lock */
5378 if (VTOCMP(vp
) != NULL
&& !compressed
) {
5379 error
= check_for_dataless_file(vp
, NAMESPACE_HANDLER_READ_OP
);
5387 // We have to lock the user's buffer here so that we won't
5388 // fault on it after we've acquired a shared lock on the
5389 // catalog file. The issue is that you can get a 3-way
5390 // deadlock if someone else starts a transaction and then
5391 // tries to lock the catalog file but can't because we're
5392 // here and we can't service our page fault because VM is
5393 // blocked trying to start a transaction as a result of
5394 // trying to free up pages for our page fault. It's messy
5395 // but it does happen on dual-processors that are paging
5396 // heavily (see radar 3082639 for more info). By locking
5397 // the buffer up-front we prevent ourselves from faulting
5398 // while holding the shared catalog file lock.
5400 // Fortunately this and hfs_search() are the only two places
5401 // currently (10/30/02) that can fault on user data with a
5402 // shared lock on the catalog file.
5404 if (hfsmp
->jnl
&& uio_isuserspace(uio
)) {
5405 user_start
= uio_curriovbase(uio
);
5406 user_len
= uio_curriovlen(uio
);
5408 /* Bounds check the user buffer */
5409 if (user_len
> (256 * 1024)) {
5410 /* only allow the user to wire down at most 256k */
5411 user_len
= (256 * 1024);
5412 uio_setresid (uio
, (user_ssize_t
)(256 * 1024));
5415 if ((error
= vslock(user_start
, user_len
)) != 0) {
5420 /* Note that the dirhint calls require an exclusive lock. */
5421 if ((error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
))) {
5423 vsunlock(user_start
, user_len
, TRUE
);
5428 /* Pick up cnid hint (if any). */
5430 cnid_hint
= (cnid_t
)(uio_offset(uio
) >> 32);
5431 uio_setoffset(uio
, uio_offset(uio
) & 0x00000000ffffffffLL
);
5432 if (cnid_hint
== INT_MAX
) { /* searching pass the last item */
5438 * Synthesize entries for "." and "..", unless the directory has
5439 * been deleted, but not closed yet (lazy delete in progress).
5441 if (offset
== 0 && !(cp
->c_flag
& C_DELETED
)) {
5446 * We could use a union of the two types of dot entries (HFS / HFS+)
5447 * but it makes static analysis of this code difficult. The problem is that
5448 * the HFS standard dot entry is smaller than the HFS+ one, and we also ideally
5449 * want the uiomove to operate on a two-element adjacent array. If we used the
5450 * array of unions, we would have to do two separate uiomoves because the memory
5451 * for the hfs standard dot entries would not be adjacent to one another.
5452 * So just allocate the entries on the stack in separate cases.
5456 hfs_dotentry_t dotentry
[2];
5459 struct hfs_extdotentry
*entry
= &dotentry
[0].ext
;
5461 entry
->d_fileno
= cp
->c_cnid
;
5462 entry
->d_reclen
= sizeof(struct hfs_extdotentry
);
5463 entry
->d_type
= DT_DIR
;
5464 entry
->d_namlen
= 1;
5465 entry
->d_name
[0] = '.';
5466 entry
->d_name
[1] = '\0';
5467 entry
->d_name
[2] = '\0';
5468 entry
->d_seekoff
= 1;
5471 entry
->d_fileno
= cp
->c_parentcnid
;
5472 entry
->d_reclen
= sizeof(struct hfs_extdotentry
);
5473 entry
->d_type
= DT_DIR
;
5474 entry
->d_namlen
= 2;
5475 entry
->d_name
[0] = '.';
5476 entry
->d_name
[1] = '.';
5477 entry
->d_name
[2] = '\0';
5478 entry
->d_seekoff
= 2;
5479 uiosize
= 2 * sizeof(struct hfs_extdotentry
);
5481 if ((error
= uiomove((caddr_t
)dotentry
, uiosize
, uio
))) {
5486 struct hfs_stddotentry hfs_std_dotentries
[2];
5489 struct hfs_stddotentry
*entry
= &hfs_std_dotentries
[0];
5491 entry
->d_fileno
= cp
->c_cnid
;
5492 entry
->d_reclen
= sizeof(struct hfs_stddotentry
);
5493 entry
->d_type
= DT_DIR
;
5494 entry
->d_namlen
= 1;
5495 *(int *)&entry
->d_name
[0] = 0;
5496 entry
->d_name
[0] = '.';
5499 entry
->d_fileno
= cp
->c_parentcnid
;
5500 entry
->d_reclen
= sizeof(struct hfs_stddotentry
);
5501 entry
->d_type
= DT_DIR
;
5502 entry
->d_namlen
= 2;
5503 *(int *)&entry
->d_name
[0] = 0;
5504 entry
->d_name
[0] = '.';
5505 entry
->d_name
[1] = '.';
5506 uiosize
= 2 * sizeof(struct hfs_stddotentry
);
5508 if ((error
= uiomove((caddr_t
)hfs_std_dotentries
, uiosize
, uio
))) {
5517 * Intentionally avoid checking the valence here. If we
5518 * have FS corruption that reports the valence is 0, even though it
5519 * has contents, we might artificially skip over iterating
5523 /* Convert offset into a catalog directory index. */
5524 index
= (offset
& HFS_INDEX_MASK
) - 2;
5525 tag
= offset
& ~HFS_INDEX_MASK
;
5527 /* Lock catalog during cat_findname and cat_getdirentries. */
5528 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
5530 /* When called from NFS, try and resolve a cnid hint. */
5531 if (nfs_cookies
&& cnid_hint
!= 0) {
5532 if (cat_findname(hfsmp
, cnid_hint
, &localhint
.dh_desc
) == 0) {
5533 if ( localhint
.dh_desc
.cd_parentcnid
== cp
->c_fileid
) {
5534 localhint
.dh_index
= index
- 1;
5535 localhint
.dh_time
= 0;
5536 bzero(&localhint
.dh_link
, sizeof(localhint
.dh_link
));
5537 dirhint
= &localhint
; /* don't forget to release the descriptor */
5539 cat_releasedesc(&localhint
.dh_desc
);
5544 /* Get a directory hint (cnode must be locked exclusive) */
5545 if (dirhint
== NULL
) {
5546 dirhint
= hfs_getdirhint(cp
, ((index
- 1) & HFS_INDEX_MASK
) | tag
, 0);
5548 /* Hide tag from catalog layer. */
5549 dirhint
->dh_index
&= HFS_INDEX_MASK
;
5550 if (dirhint
->dh_index
== HFS_INDEX_MASK
) {
5551 dirhint
->dh_index
= -1;
5556 dirhint
->dh_threadhint
= cp
->c_dirthreadhint
;
5560 * If we have a non-zero index, there is a possibility that during the last
5561 * call to hfs_vnop_readdir we hit EOF for this directory. If that is the case
5562 * then we don't want to return any new entries for the caller. Just return 0
5563 * items, mark the eofflag, and bail out. Because we won't have done any work, the
5564 * code at the end of the function will release the dirhint for us.
5566 * Don't forget to unlock the catalog lock on the way out, too.
5568 if (dirhint
->dh_desc
.cd_flags
& CD_EOF
) {
5571 uio_setoffset(uio
, startoffset
);
5572 hfs_systemfile_unlock (hfsmp
, lockflags
);
5578 /* Pack the buffer with dirent entries. */
5579 error
= cat_getdirentries(hfsmp
, cp
->c_entries
, dirhint
, uio
, ap
->a_flags
, &items
, &eofflag
);
5581 if (index
== 0 && error
== 0) {
5582 cp
->c_dirthreadhint
= dirhint
->dh_threadhint
;
5585 hfs_systemfile_unlock(hfsmp
, lockflags
);
5591 /* Get index to the next item */
5594 if (items
>= (int)cp
->c_entries
) {
5599 * Detect valence FS corruption.
5601 * We are holding the cnode lock exclusive, so there should not be
5602 * anybody modifying the valence field of this cnode. If we enter
5603 * this block, that means we observed filesystem corruption, because
5604 * this directory reported a valence of 0, yet we found at least one
5605 * item. In this case, we need to minimally self-heal this
5606 * directory to prevent userland from tripping over a directory
5607 * that appears empty (getattr of valence reports 0), but actually
5610 * We'll force the cnode update at the end of the function after
5611 * completing all of the normal getdirentries steps.
5613 if ((cp
->c_entries
== 0) && (items
> 0)) {
5614 /* disk corruption */
5616 /* Mark the cnode as dirty. */
5617 cp
->c_flag
|= C_MODIFIED
;
5618 printf("hfs_vnop_readdir: repairing valence to non-zero! \n");
5623 /* Convert catalog directory index back into an offset. */
5625 tag
= (++cp
->c_dirhinttag
) << HFS_INDEX_BITS
;
5626 uio_setoffset(uio
, (index
+ 2) | tag
);
5627 dirhint
->dh_index
|= tag
;
5630 cp
->c_touch_acctime
= TRUE
;
5632 if (ap
->a_numdirent
) {
5633 if (startoffset
== 0)
5635 *ap
->a_numdirent
= items
;
5640 vsunlock(user_start
, user_len
, TRUE
);
5642 /* If we didn't do anything then go ahead and dump the hint. */
5643 if ((dirhint
!= NULL
) &&
5644 (dirhint
!= &localhint
) &&
5645 (uio_offset(uio
) == startoffset
)) {
5646 hfs_reldirhint(cp
, dirhint
);
5649 if (ap
->a_eofflag
) {
5650 *ap
->a_eofflag
= eofflag
;
5652 if (dirhint
== &localhint
) {
5653 cat_releasedesc(&localhint
.dh_desc
);
5657 /* force the update before dropping the cnode lock*/
5668 * Read contents of a symbolic link.
5671 hfs_vnop_readlink(struct vnop_readlink_args
*ap
)
5673 struct vnode
*vp
= ap
->a_vp
;
5675 struct filefork
*fp
;
5678 if (!vnode_islnk(vp
))
5681 if ((error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
)))
5686 /* Zero length sym links are not allowed */
5687 if (fp
->ff_size
== 0 || fp
->ff_size
> MAXPATHLEN
) {
5692 /* Cache the path so we don't waste buffer cache resources */
5693 if (fp
->ff_symlinkptr
== NULL
) {
5694 struct buf
*bp
= NULL
;
5696 fp
->ff_symlinkptr
= hfs_malloc(fp
->ff_size
);
5697 error
= (int)buf_meta_bread(vp
, (daddr64_t
)0,
5698 roundup((int)fp
->ff_size
, VTOHFS(vp
)->hfs_physical_block_size
),
5699 vfs_context_ucred(ap
->a_context
), &bp
);
5703 if (fp
->ff_symlinkptr
) {
5704 hfs_free(fp
->ff_symlinkptr
, fp
->ff_size
);
5705 fp
->ff_symlinkptr
= NULL
;
5709 bcopy((char *)buf_dataptr(bp
), fp
->ff_symlinkptr
, (size_t)fp
->ff_size
);
5711 if (VTOHFS(vp
)->jnl
&& (buf_flags(bp
) & B_LOCKED
) == 0) {
5712 buf_markinvalid(bp
); /* data no longer needed */
5716 error
= uiomove((caddr_t
)fp
->ff_symlinkptr
, (int)fp
->ff_size
, ap
->a_uio
);
5719 * Keep track blocks read
5721 if ((VTOHFS(vp
)->hfc_stage
== HFC_RECORDING
) && (error
== 0)) {
5724 * If this file hasn't been seen since the start of
5725 * the current sampling period then start over.
5727 if (cp
->c_atime
< VTOHFS(vp
)->hfc_timebase
)
5728 VTOF(vp
)->ff_bytesread
= fp
->ff_size
;
5730 VTOF(vp
)->ff_bytesread
+= fp
->ff_size
;
5732 // if (VTOF(vp)->ff_bytesread > fp->ff_size)
5733 // cp->c_touch_acctime = TRUE;
5743 * Get configurable pathname variables.
5746 hfs_vnop_pathconf(struct vnop_pathconf_args
*ap
)
5750 int std_hfs
= (VTOHFS(ap
->a_vp
)->hfs_flags
& HFS_STANDARD
);
5753 switch (ap
->a_name
) {
5761 *ap
->a_retval
= HFS_LINK_MAX
;
5767 *ap
->a_retval
= kHFSMaxFileNameChars
; /* 31 */
5771 *ap
->a_retval
= kHFSPlusMaxFileNameChars
; /* 255 */
5775 *ap
->a_retval
= PATH_MAX
; /* 1024 */
5778 *ap
->a_retval
= PIPE_BUF
;
5780 case _PC_CHOWN_RESTRICTED
:
5781 *ap
->a_retval
= 200112; /* _POSIX_CHOWN_RESTRICTED */
5784 *ap
->a_retval
= 200112; /* _POSIX_NO_TRUNC */
5786 case _PC_NAME_CHARS_MAX
:
5789 *ap
->a_retval
= kHFSMaxFileNameChars
; /* 31 */
5793 *ap
->a_retval
= kHFSPlusMaxFileNameChars
; /* 255 */
5796 case _PC_CASE_SENSITIVE
:
5797 if (VTOHFS(ap
->a_vp
)->hfs_flags
& HFS_CASE_SENSITIVE
)
5802 case _PC_CASE_PRESERVING
:
5805 case _PC_FILESIZEBITS
:
5806 /* number of bits to store max file size */
5816 case _PC_XATTR_SIZE_BITS
:
5817 /* Number of bits to store maximum extended attribute size */
5818 *ap
->a_retval
= HFS_XATTR_SIZE_BITS
;
5828 * Prepares a fork for cat_update by making sure ff_size and ff_blocks
5829 * are no bigger than the valid data on disk thus reducing the chance
5830 * of exposing uninitialised data in the event of a non clean unmount.
5831 * fork_buf is where to put the temporary copy if required. (It can
5834 const struct cat_fork
*
5835 hfs_prepare_fork_for_update(filefork_t
*ff
,
5836 const struct cat_fork
*cf
,
5837 struct cat_fork
*cf_buf
,
5838 uint32_t block_size
)
5846 cf_buf
= &ff
->ff_data
;
5848 off_t max_size
= ff
->ff_size
;
5850 // Check first invalid range
5851 if (!TAILQ_EMPTY(&ff
->ff_invalidranges
))
5852 max_size
= TAILQ_FIRST(&ff
->ff_invalidranges
)->rl_start
;
5854 if (!ff
->ff_unallocblocks
&& ff
->ff_size
<= max_size
)
5855 return cf
; // Nothing to do
5857 if (ff
->ff_blocks
< ff
->ff_unallocblocks
) {
5858 panic("hfs: ff_blocks %d is less than unalloc blocks %d\n",
5859 ff
->ff_blocks
, ff
->ff_unallocblocks
);
5862 struct cat_fork
*out
= cf_buf
;
5865 bcopy(cf
, out
, sizeof(*cf
));
5867 // Adjust cf_blocks for cf_vblocks
5868 out
->cf_blocks
-= out
->cf_vblocks
;
5871 * Here we trim the size with the updated cf_blocks. This is
5872 * probably unnecessary now because the invalid ranges should
5873 * catch this (but that wasn't always the case).
5875 off_t alloc_bytes
= hfs_blk_to_bytes(out
->cf_blocks
, block_size
);
5876 if (out
->cf_size
> alloc_bytes
)
5877 out
->cf_size
= alloc_bytes
;
5879 // Trim cf_size to first invalid range
5880 if (out
->cf_size
> max_size
)
5881 out
->cf_size
= max_size
;
5887 * Update a cnode's on-disk metadata.
5889 * The cnode must be locked exclusive. See declaration for possible
5893 hfs_update(struct vnode
*vp
, int options
)
5895 struct cnode
*cp
= VTOC(vp
);
5897 const struct cat_fork
*dataforkp
= NULL
;
5898 const struct cat_fork
*rsrcforkp
= NULL
;
5899 struct cat_fork datafork
;
5900 struct cat_fork rsrcfork
;
5901 struct hfsmount
*hfsmp
;
5904 uint32_t tstate
= 0;
5906 if (ISSET(cp
->c_flag
, C_NOEXISTS
))
5912 if (((vnode_issystem(vp
) && (cp
->c_cnid
< kHFSFirstUserCatalogNodeID
))) ||
5913 hfsmp
->hfs_catalog_vp
== NULL
){
5916 if ((hfsmp
->hfs_flags
& HFS_READ_ONLY
) || (cp
->c_mode
== 0)) {
5917 CLR(cp
->c_flag
, C_MODIFIED
| C_MINOR_MOD
| C_NEEDS_DATEADDED
);
5918 cp
->c_touch_acctime
= 0;
5919 cp
->c_touch_chgtime
= 0;
5920 cp
->c_touch_modtime
= 0;
5923 if (kdebug_enable
) {
5924 if (cp
->c_touch_acctime
|| cp
->c_atime
!= cp
->c_attr
.ca_atimeondisk
)
5925 tstate
|= DBG_HFS_UPDATE_ACCTIME
;
5926 if (cp
->c_touch_modtime
)
5927 tstate
|= DBG_HFS_UPDATE_MODTIME
;
5928 if (cp
->c_touch_chgtime
)
5929 tstate
|= DBG_HFS_UPDATE_CHGTIME
;
5931 if (cp
->c_flag
& C_MODIFIED
)
5932 tstate
|= DBG_HFS_UPDATE_MODIFIED
;
5933 if (ISSET(options
, HFS_UPDATE_FORCE
))
5934 tstate
|= DBG_HFS_UPDATE_FORCE
;
5935 if (cp
->c_flag
& C_NEEDS_DATEADDED
)
5936 tstate
|= DBG_HFS_UPDATE_DATEADDED
;
5937 if (cp
->c_flag
& C_MINOR_MOD
)
5938 tstate
|= DBG_HFS_UPDATE_MINOR
;
5940 hfs_touchtimes(hfsmp
, cp
);
5942 if (!ISSET(cp
->c_flag
, C_MODIFIED
| C_MINOR_MOD
)
5943 && !hfs_should_save_atime(cp
)) {
5944 // Nothing to update
5948 KDBG(HFSDBG_UPDATE
| DBG_FUNC_START
, kdebug_vnode(vp
), tstate
);
5950 bool check_txn
= false;
5952 if (!ISSET(options
, HFS_UPDATE_FORCE
) && !ISSET(cp
->c_flag
, C_MODIFIED
)) {
5954 * This must be a minor modification. If the current
5955 * transaction already has an update for this node, then we
5956 * bundle in the modification.
5959 && journal_current_txn(hfsmp
->jnl
) == cp
->c_update_txn
) {
5962 tstate
|= DBG_HFS_UPDATE_SKIPPED
;
5968 if ((error
= hfs_start_transaction(hfsmp
)) != 0)
5972 && journal_current_txn(hfsmp
->jnl
) != cp
->c_update_txn
) {
5973 hfs_end_transaction(hfsmp
);
5974 tstate
|= DBG_HFS_UPDATE_SKIPPED
;
5980 dataforkp
= &cp
->c_datafork
->ff_data
;
5982 rsrcforkp
= &cp
->c_rsrcfork
->ff_data
;
5985 * Modify the values passed to cat_update based on whether or not
5986 * the file has invalid ranges or borrowed blocks.
5988 dataforkp
= hfs_prepare_fork_for_update(cp
->c_datafork
, NULL
, &datafork
, hfsmp
->blockSize
);
5989 rsrcforkp
= hfs_prepare_fork_for_update(cp
->c_rsrcfork
, NULL
, &rsrcfork
, hfsmp
->blockSize
);
5991 if (__builtin_expect(kdebug_enable
& KDEBUG_TRACE
, 0)) {
5992 long dbg_parms
[NUMPARMS
];
5995 dbg_namelen
= NUMPARMS
* sizeof(long);
5996 vn_getpath(vp
, (char *)dbg_parms
, &dbg_namelen
);
5998 if (dbg_namelen
< (int)sizeof(dbg_parms
))
5999 memset((char *)dbg_parms
+ dbg_namelen
, 0, sizeof(dbg_parms
) - dbg_namelen
);
6001 kdebug_lookup_gen_events(dbg_parms
, dbg_namelen
, (void *)vp
, TRUE
);
6005 * Lock the Catalog b-tree file.
6007 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
6009 error
= cat_update(hfsmp
, &cp
->c_desc
, &cp
->c_attr
, dataforkp
, rsrcforkp
);
6012 cp
->c_update_txn
= journal_current_txn(hfsmp
->jnl
);
6014 hfs_systemfile_unlock(hfsmp
, lockflags
);
6016 CLR(cp
->c_flag
, C_MODIFIED
| C_MINOR_MOD
);
6018 hfs_end_transaction(hfsmp
);
6022 KDBG(HFSDBG_UPDATE
| DBG_FUNC_END
, kdebug_vnode(vp
), tstate
, error
);
6028 * Allocate a new node
6031 hfs_makenode(struct vnode
*dvp
, struct vnode
**vpp
, struct componentname
*cnp
,
6032 struct vnode_attr
*vap
, vfs_context_t ctx
)
6034 struct cnode
*cp
= NULL
;
6035 struct cnode
*dcp
= NULL
;
6037 struct hfsmount
*hfsmp
;
6038 struct cat_desc in_desc
, out_desc
;
6039 struct cat_attr attr
;
6042 int error
, started_tr
= 0;
6043 enum vtype vnodetype
;
6045 int newvnode_flags
= 0;
6046 u_int32_t gnv_flags
= 0;
6047 int protectable_target
= 0;
6049 vnode_t old_doc_vp
= NULL
;
6052 struct cprotect
*entry
= NULL
;
6053 int32_t cp_class
= -1;
6056 * By default, it's OK for AKS to overrride our target class preferences.
6058 uint32_t keywrap_flags
= CP_KEYWRAP_DIFFCLASS
;
6060 if (VATTR_IS_ACTIVE(vap
, va_dataprotect_class
)) {
6061 cp_class
= (int32_t)vap
->va_dataprotect_class
;
6063 * Since the user specifically requested this target class be used,
6064 * we want to fail this creation operation if we cannot wrap to their
6065 * target class. The CP_KEYWRAP_DIFFCLASS bit says that it is OK to
6066 * use a different class than the one specified, so we turn that off
6069 keywrap_flags
&= ~CP_KEYWRAP_DIFFCLASS
;
6071 int protected_mount
= 0;
6075 if ((error
= hfs_lock(VTOC(dvp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
)))
6078 /* set the cnode pointer only after successfully acquiring lock */
6081 /* Don't allow creation of new entries in open-unlinked directories */
6082 if ((error
= hfs_checkdeleted(dcp
))) {
6087 dcp
->c_flag
|= C_DIR_MODIFICATION
;
6089 hfsmp
= VTOHFS(dvp
);
6093 out_desc
.cd_flags
= 0;
6094 out_desc
.cd_nameptr
= NULL
;
6096 vnodetype
= vap
->va_type
;
6097 if (vnodetype
== VNON
)
6099 mode
= MAKEIMODE(vnodetype
, vap
->va_mode
);
6101 if (S_ISDIR (mode
) || S_ISREG (mode
)) {
6102 protectable_target
= 1;
6106 /* Check if were out of usable disk space. */
6107 if ((hfs_freeblks(hfsmp
, 1) == 0) && (vfs_context_suser(ctx
) != 0)) {
6114 /* Setup the default attributes */
6115 bzero(&attr
, sizeof(attr
));
6116 attr
.ca_mode
= mode
;
6117 attr
.ca_linkcount
= 1;
6118 if (VATTR_IS_ACTIVE(vap
, va_rdev
)) {
6119 attr
.ca_rdev
= vap
->va_rdev
;
6121 if (VATTR_IS_ACTIVE(vap
, va_create_time
)) {
6122 VATTR_SET_SUPPORTED(vap
, va_create_time
);
6123 attr
.ca_itime
= vap
->va_create_time
.tv_sec
;
6125 attr
.ca_itime
= tv
.tv_sec
;
6128 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) && gTimeZone
.tz_dsttime
) {
6129 attr
.ca_itime
+= 3600; /* Same as what hfs_update does */
6132 attr
.ca_atime
= attr
.ca_ctime
= attr
.ca_mtime
= attr
.ca_itime
;
6133 attr
.ca_atimeondisk
= attr
.ca_atime
;
6134 if (VATTR_IS_ACTIVE(vap
, va_flags
)) {
6135 VATTR_SET_SUPPORTED(vap
, va_flags
);
6136 attr
.ca_flags
= vap
->va_flags
;
6140 * HFS+ only: all files get ThreadExists
6141 * HFSX only: dirs get HasFolderCount
6144 if (!(hfsmp
->hfs_flags
& HFS_STANDARD
))
6147 if (vnodetype
== VDIR
) {
6148 if (hfsmp
->hfs_flags
& HFS_FOLDERCOUNT
)
6149 attr
.ca_recflags
= kHFSHasFolderCountMask
;
6151 attr
.ca_recflags
= kHFSThreadExistsMask
;
6156 if (cp_fs_protected(hfsmp
->hfs_mp
)) {
6157 protected_mount
= 1;
6160 * On a content-protected HFS+/HFSX filesystem, files and directories
6161 * cannot be created without atomically setting/creating the EA that
6162 * contains the protection class metadata and keys at the same time, in
6163 * the same transaction. As a result, pre-set the "EAs exist" flag
6164 * on the cat_attr for protectable catalog record creations. This will
6165 * cause the cnode creation routine in hfs_getnewvnode to mark the cnode
6168 if ((protected_mount
) && (protectable_target
)) {
6169 attr
.ca_recflags
|= kHFSHasAttributesMask
;
6170 /* delay entering in the namecache */
6177 * Add the date added to the item. See above, as
6178 * all of the dates are set to the itime.
6180 hfs_write_dateadded (&attr
, attr
.ca_atime
);
6182 /* Initialize the gen counter to 1 */
6183 hfs_write_gencount(&attr
, (uint32_t)1);
6185 attr
.ca_uid
= vap
->va_uid
;
6186 attr
.ca_gid
= vap
->va_gid
;
6187 VATTR_SET_SUPPORTED(vap
, va_mode
);
6188 VATTR_SET_SUPPORTED(vap
, va_uid
);
6189 VATTR_SET_SUPPORTED(vap
, va_gid
);
6192 /* check to see if this node's creation would cause us to go over
6193 * quota. If so, abort this operation.
6195 if (hfsmp
->hfs_flags
& HFS_QUOTAS
) {
6196 if ((error
= hfs_quotacheck(hfsmp
, 1, attr
.ca_uid
, attr
.ca_gid
,
6197 vfs_context_ucred(ctx
)))) {
6204 /* Tag symlinks with a type and creator. */
6205 if (vnodetype
== VLNK
) {
6206 struct FndrFileInfo
*fip
;
6208 fip
= (struct FndrFileInfo
*)&attr
.ca_finderinfo
;
6209 fip
->fdType
= SWAP_BE32(kSymLinkFileType
);
6210 fip
->fdCreator
= SWAP_BE32(kSymLinkCreator
);
6213 /* Setup the descriptor */
6214 in_desc
.cd_nameptr
= (const u_int8_t
*)cnp
->cn_nameptr
;
6215 in_desc
.cd_namelen
= cnp
->cn_namelen
;
6216 in_desc
.cd_parentcnid
= dcp
->c_fileid
;
6217 in_desc
.cd_flags
= S_ISDIR(mode
) ? CD_ISDIR
: 0;
6218 in_desc
.cd_hint
= dcp
->c_childhint
;
6219 in_desc
.cd_encoding
= 0;
6223 * To preserve file creation atomicity with regards to the content protection EA,
6224 * we must create the file in the catalog and then write out its EA in the same
6227 * We only denote the target class in this EA; key generation is not completed
6228 * until the file has been inserted into the catalog and will be done
6229 * in a separate transaction.
6231 if ((protected_mount
) && (protectable_target
)) {
6232 error
= cp_setup_newentry(hfsmp
, dcp
, cp_class
, attr
.ca_mode
, &entry
);
6239 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
6244 // have to also lock the attribute file because cat_create() needs
6245 // to check that any fileID it wants to use does not have orphaned
6246 // attributes in it.
6247 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_ATTRIBUTE
, HFS_EXCLUSIVE_LOCK
);
6250 /* Reserve some space in the Catalog file. */
6251 if ((error
= cat_preflight(hfsmp
, CAT_CREATE
, NULL
, 0))) {
6252 hfs_systemfile_unlock(hfsmp
, lockflags
);
6256 if ((error
= cat_acquire_cnid(hfsmp
, &new_id
))) {
6257 hfs_systemfile_unlock (hfsmp
, lockflags
);
6261 error
= cat_create(hfsmp
, new_id
, &in_desc
, &attr
, &out_desc
);
6263 /* Update the parent directory */
6264 dcp
->c_childhint
= out_desc
.cd_hint
; /* Cache directory's location */
6267 if (vnodetype
== VDIR
) {
6268 INC_FOLDERCOUNT(hfsmp
, dcp
->c_attr
);
6270 dcp
->c_dirchangecnt
++;
6271 hfs_incr_gencount(dcp
);
6273 dcp
->c_touch_chgtime
= dcp
->c_touch_modtime
= true;
6274 dcp
->c_flag
|= C_MODIFIED
;
6276 hfs_update(dcp
->c_vp
, 0);
6280 * If we are creating a content protected file, now is when
6281 * we create the EA. We must create it in the same transaction
6282 * that creates the file. We can also guarantee that the file
6283 * MUST exist because we are still holding the catalog lock
6286 if ((attr
.ca_fileid
!= 0) && (protected_mount
) && (protectable_target
)) {
6287 error
= cp_setxattr (NULL
, entry
, hfsmp
, attr
.ca_fileid
, XATTR_CREATE
);
6292 * If we fail the EA creation, then we need to delete the file.
6293 * Luckily, we are still holding all of the right locks.
6295 delete_err
= cat_delete (hfsmp
, &out_desc
, &attr
);
6296 if (delete_err
== 0) {
6297 /* Update the parent directory */
6298 if (dcp
->c_entries
> 0)
6300 dcp
->c_dirchangecnt
++;
6301 dcp
->c_ctime
= tv
.tv_sec
;
6302 dcp
->c_mtime
= tv
.tv_sec
;
6303 (void) cat_update(hfsmp
, &dcp
->c_desc
, &dcp
->c_attr
, NULL
, NULL
);
6306 /* Emit EINVAL if we fail to create EA*/
6312 hfs_systemfile_unlock(hfsmp
, lockflags
);
6316 uint32_t txn
= hfsmp
->jnl
? journal_current_txn(hfsmp
->jnl
) : 0;
6318 /* Invalidate negative cache entries in the directory */
6319 if (dcp
->c_flag
& C_NEG_ENTRIES
) {
6320 cache_purge_negatives(dvp
);
6321 dcp
->c_flag
&= ~C_NEG_ENTRIES
;
6324 hfs_volupdate(hfsmp
, vnodetype
== VDIR
? VOL_MKDIR
: VOL_MKFILE
,
6325 (dcp
->c_cnid
== kHFSRootFolderID
));
6328 // have to end the transaction here before we call hfs_getnewvnode()
6329 // because that can cause us to try and reclaim a vnode on a different
6330 // file system which could cause us to start a transaction which can
6331 // deadlock with someone on that other file system (since we could be
6332 // holding two transaction locks as well as various vnodes and we did
6333 // not obtain the locks on them in the proper order).
6335 // NOTE: this means that if the quota check fails or we have to update
6336 // the change time on a block-special device that those changes
6337 // will happen as part of independent transactions.
6340 hfs_end_transaction(hfsmp
);
6346 * At this point, we must have encountered success with writing the EA.
6347 * Destroy our temporary cprotect (which had no keys).
6350 if ((attr
.ca_fileid
!= 0) && (protected_mount
) && (protectable_target
)) {
6351 cp_entry_destroy (hfsmp
, entry
);
6355 gnv_flags
|= GNV_CREATE
;
6357 gnv_flags
|= GNV_NOCACHE
;
6361 * Create a vnode for the object just created.
6363 * NOTE: Maintaining the cnode lock on the parent directory is important,
6364 * as it prevents race conditions where other threads want to look up entries
6365 * in the directory and/or add things as we are in the process of creating
6366 * the vnode below. However, this has the potential for causing a
6367 * double lock panic when dealing with shadow files on a HFS boot partition.
6368 * The panic could occur if we are not cleaning up after ourselves properly
6369 * when done with a shadow file or in the error cases. The error would occur if we
6370 * try to create a new vnode, and then end up reclaiming another shadow vnode to
6371 * create the new one. However, if everything is working properly, this should
6372 * be a non-issue as we would never enter that reclaim codepath.
6374 * The cnode is locked on successful return.
6376 error
= hfs_getnewvnode(hfsmp
, dvp
, cnp
, &out_desc
, gnv_flags
, &attr
,
6377 NULL
, &tvp
, &newvnode_flags
);
6383 cp
->c_update_txn
= txn
;
6385 struct doc_tombstone
*ut
;
6386 ut
= doc_tombstone_get();
6387 if ( ut
->t_lastop_document_id
!= 0
6388 && ut
->t_lastop_parent
== dvp
6389 && ut
->t_lastop_parent_vid
== vnode_vid(dvp
)
6390 && strcmp((char *)ut
->t_lastop_filename
, (const char *)cp
->c_desc
.cd_nameptr
) == 0) {
6391 struct FndrExtendedDirInfo
*fip
= (struct FndrExtendedDirInfo
*)((char *)&cp
->c_attr
.ca_finderinfo
+ 16);
6393 //printf("CREATE: preserving doc-id %lld on %s\n", ut->t_lastop_document_id, ut->t_lastop_filename);
6394 fip
->document_id
= (uint32_t)(ut
->t_lastop_document_id
& 0xffffffff);
6396 cp
->c_bsdflags
|= UF_TRACKED
;
6397 cp
->c_flag
|= C_MODIFIED
;
6399 if ((error
= hfs_start_transaction(hfsmp
)) == 0) {
6400 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
6402 (void) cat_update(hfsmp
, &cp
->c_desc
, &cp
->c_attr
, NULL
, NULL
);
6404 hfs_systemfile_unlock (hfsmp
, lockflags
);
6405 (void) hfs_end_transaction(hfsmp
);
6408 doc_tombstone_clear(ut
, &old_doc_vp
);
6409 } else if (ut
->t_lastop_document_id
!= 0) {
6410 int len
= cnp
->cn_namelen
;
6412 len
= strlen(cnp
->cn_nameptr
);
6415 if (doc_tombstone_should_ignore_name(cnp
->cn_nameptr
, cnp
->cn_namelen
)) {
6416 // printf("CREATE: not clearing tombstone because %s is a temp name.\n", cnp->cn_nameptr);
6418 // Clear the tombstone because the thread is not recreating the same path
6419 // printf("CREATE: clearing tombstone because %s is NOT a temp name.\n", cnp->cn_nameptr);
6420 doc_tombstone_clear(ut
, NULL
);
6424 if ((hfsmp
->hfs_flags
& HFS_CS_HOTFILE_PIN
) && (vnode_isfastdevicecandidate(dvp
) && !vnode_isautocandidate(dvp
))) {
6426 //printf("hfs: flagging %s (fileid: %d) as VFASTDEVCANDIDATE (dvp name: %s)\n",
6427 // cnp->cn_nameptr ? cnp->cn_nameptr : "<NONAME>",
6429 // dvp->v_name ? dvp->v_name : "no-dir-name");
6432 // On new files we set the FastDevCandidate flag so that
6433 // any new blocks allocated to it will be pinned.
6435 cp
->c_attr
.ca_recflags
|= kHFSFastDevCandidateMask
;
6436 vnode_setfastdevicecandidate(tvp
);
6439 // properly inherit auto-cached flags
6441 if (vnode_isautocandidate(dvp
)) {
6442 cp
->c_attr
.ca_recflags
|= kHFSAutoCandidateMask
;
6443 vnode_setautocandidate(tvp
);
6448 // We also want to add it to the hotfile adoption list so
6449 // that it will eventually land in the hotfile btree
6451 (void) hfs_addhotfile(tvp
);
6458 * Now that we have a vnode-in-hand, generate keys for this namespace item.
6459 * If we fail to create the keys, then attempt to delete the item from the
6460 * namespace. If we can't delete the item, that's not desirable but also not fatal..
6461 * All of the places which deal with restoring/unwrapping keys must also be
6462 * prepared to encounter an entry that does not have keys.
6464 if ((protectable_target
) && (protected_mount
)) {
6465 struct cprotect
*keyed_entry
= NULL
;
6467 if (cp
->c_cpentry
== NULL
) {
6468 panic ("hfs_makenode: no cpentry for cnode (%p)", cp
);
6471 error
= cp_generate_keys (hfsmp
, cp
, CP_CLASS(cp
->c_cpentry
->cp_pclass
), keywrap_flags
, &keyed_entry
);
6474 * Upon success, the keys were generated and written out.
6475 * Update the cp pointer in the cnode.
6477 cp_replace_entry (hfsmp
, cp
, keyed_entry
);
6479 cache_enter (dvp
, tvp
, cnp
);
6483 /* If key creation OR the setxattr failed, emit EPERM to userland */
6487 * Beware! This slightly violates the lock ordering for the
6488 * cnode/vnode 'tvp'. Ordinarily, you must acquire the truncate lock
6489 * which guards file size changes before acquiring the normal cnode lock
6490 * and calling hfs_removefile on an item.
6492 * However, in this case, we are still holding the directory lock so
6493 * 'tvp' is not lookup-able and it was a newly created vnode so it
6494 * cannot have any content yet. The only reason we are initiating
6495 * the removefile is because we could not generate content protection keys
6496 * for this namespace item. Note also that we pass a '1' in the allow_dirs
6497 * argument for hfs_removefile because we may be creating a directory here.
6499 * All this to say that while it is technically a violation it is
6500 * impossible to race with another thread for this cnode so it is safe.
6502 int err
= hfs_removefile (dvp
, tvp
, cnp
, 0, 0, 1, NULL
, 0);
6504 printf("hfs_makenode: removefile failed (%d) for CP entry %p\n", err
, tvp
);
6507 /* Release the cnode lock and mark the vnode for termination */
6509 err
= vnode_recycle (tvp
);
6511 printf("hfs_makenode: vnode_recycle failed (%d) for CP entry %p\n", err
, tvp
);
6514 /* Drop the iocount on the new vnode to force reclamation/recycling */
6524 * Once we create this vnode, we need to initialize its quota data
6525 * structures, if necessary. We know that it is OK to just go ahead and
6526 * initialize because we've already validated earlier (through the hfs_quotacheck
6527 * function) to see if creating this cnode/vnode would cause us to go over quota.
6529 if (hfsmp
->hfs_flags
& HFS_QUOTAS
) {
6531 /* cp could have been zeroed earlier */
6532 (void) hfs_getinoquota(cp
);
6538 cat_releasedesc(&out_desc
);
6542 * We may have jumped here in error-handling various situations above.
6543 * If we haven't already dumped the temporary CP used to initialize
6544 * the file atomically, then free it now. cp_entry_destroy should null
6545 * out the pointer if it was called already.
6548 cp_entry_destroy (hfsmp
, entry
);
6554 * Make sure we release cnode lock on dcp.
6557 dcp
->c_flag
&= ~C_DIR_MODIFICATION
;
6558 wakeup((caddr_t
)&dcp
->c_flag
);
6562 ino64_t file_id
= 0;
6563 if (error
== 0 && cp
!= NULL
) {
6564 file_id
= cp
->c_fileid
;
6568 hfs_end_transaction(hfsmp
);
6573 cnode_t
*ocp
= VTOC(old_doc_vp
);
6574 hfs_lock_always(ocp
, HFS_EXCLUSIVE_LOCK
);
6575 struct FndrExtendedFileInfo
*ofip
= (struct FndrExtendedFileInfo
*)((char *)&ocp
->c_attr
.ca_finderinfo
+ 16);
6577 const uint32_t doc_id
= ofip
->document_id
;
6578 const ino64_t old_file_id
= ocp
->c_fileid
;
6580 // printf("clearing doc-id from ino %d\n", ocp->c_desc.cd_cnid);
6581 ofip
->document_id
= 0;
6582 ocp
->c_bsdflags
&= ~UF_TRACKED
;
6583 ocp
->c_flag
|= C_MODIFIED
;
6586 vnode_put(old_doc_vp
);
6588 add_fsevent(FSE_DOCID_CHANGED
, vfs_context_current(),
6589 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
6590 FSE_ARG_INO
, old_file_id
, // src inode #
6591 FSE_ARG_INO
, file_id
, // dst inode #
6592 FSE_ARG_INT32
, doc_id
,
6601 * hfs_vgetrsrc acquires a resource fork vnode corresponding to the
6602 * cnode that is found in 'vp'. The cnode should be locked upon entry
6603 * and will be returned locked, but it may be dropped temporarily.
6605 * If the resource fork vnode does not exist, HFS will attempt to acquire an
6606 * empty (uninitialized) vnode from VFS so as to avoid deadlocks with
6607 * jetsam. If we let the normal getnewvnode code produce the vnode for us
6608 * we would be doing so while holding the cnode lock of our cnode.
6610 * On success, *rvpp wlll hold the resource fork vnode with an
6611 * iocount. *Don't* forget the vnode_put.
6614 hfs_vgetrsrc(struct hfsmount
*hfsmp
, struct vnode
*vp
, struct vnode
**rvpp
)
6616 struct vnode
*rvp
= NULLVP
;
6617 struct vnode
*empty_rvp
= NULLVP
;
6618 struct vnode
*dvp
= NULLVP
;
6619 struct cnode
*cp
= VTOC(vp
);
6623 if (vnode_vtype(vp
) == VDIR
) {
6628 /* Attempt to use existing vnode */
6629 if ((rvp
= cp
->c_rsrc_vp
)) {
6630 vid
= vnode_vid(rvp
);
6632 // vnode_getwithvid can block so we need to drop the cnode lock
6635 error
= vnode_getwithvid(rvp
, vid
);
6637 hfs_lock_always(cp
, HFS_EXCLUSIVE_LOCK
);
6640 * When our lock was relinquished, the resource fork
6641 * could have been recycled. Check for this and try
6644 if (error
== ENOENT
)
6648 const char * name
= (const char *)VTOC(vp
)->c_desc
.cd_nameptr
;
6651 printf("hfs_vgetrsrc: couldn't get resource"
6652 " fork for %s, vol=%s, err=%d\n", name
, hfsmp
->vcbVN
, error
);
6656 struct cat_fork rsrcfork
;
6657 struct componentname cn
;
6658 struct cat_desc
*descptr
= NULL
;
6659 struct cat_desc to_desc
;
6662 int newvnode_flags
= 0;
6665 * In this case, we don't currently see a resource fork vnode attached
6666 * to this cnode. In most cases, we were called from a read-only VNOP
6667 * like getattr, so it should be safe to drop the cnode lock and then
6670 * Here, we drop the lock so that we can acquire an empty/husk
6671 * vnode so that we don't deadlock against jetsam.
6673 * It does not currently appear possible to hold the truncate lock via
6674 * FS re-entrancy when we get to this point. (8/2014)
6678 error
= vnode_create_empty (&empty_rvp
);
6680 hfs_lock_always (cp
, HFS_EXCLUSIVE_LOCK
);
6683 /* If acquiring the 'empty' vnode failed, then nothing to clean up */
6688 * We could have raced with another thread here while we dropped our cnode
6689 * lock. See if the cnode now has a resource fork vnode and restart if appropriate.
6691 * Note: We just released the cnode lock, so there is a possibility that the
6692 * cnode that we just acquired has been deleted or even removed from disk
6693 * completely, though this is unlikely. If the file is open-unlinked, the
6694 * check below will resolve it for us. If it has been completely
6695 * removed (even from the catalog!), then when we examine the catalog
6696 * directly, below, while holding the catalog lock, we will not find the
6697 * item and we can fail out properly.
6699 if (cp
->c_rsrc_vp
) {
6700 /* Drop the empty vnode before restarting */
6701 vnode_put (empty_rvp
);
6708 * hfs_vgetsrc may be invoked for a cnode that has already been marked
6709 * C_DELETED. This is because we need to continue to provide rsrc
6710 * fork access to open-unlinked files. In this case, build a fake descriptor
6711 * like in hfs_removefile. If we don't do this, buildkey will fail in
6712 * cat_lookup because this cnode has no name in its descriptor.
6714 if ((cp
->c_flag
& C_DELETED
) && (cp
->c_desc
.cd_namelen
== 0)) {
6715 bzero (&to_desc
, sizeof(to_desc
));
6716 bzero (delname
, 32);
6717 MAKE_DELETED_NAME(delname
, sizeof(delname
), cp
->c_fileid
);
6718 to_desc
.cd_nameptr
= (const u_int8_t
*) delname
;
6719 to_desc
.cd_namelen
= strlen(delname
);
6720 to_desc
.cd_parentcnid
= hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
;
6721 to_desc
.cd_flags
= 0;
6722 to_desc
.cd_cnid
= cp
->c_cnid
;
6727 descptr
= &cp
->c_desc
;
6731 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
6734 * We call cat_idlookup (instead of cat_lookup) below because we can't
6735 * trust the descriptor in the provided cnode for lookups at this point.
6736 * Between the time of the original lookup of this vnode and now, the
6737 * descriptor could have gotten swapped or replaced. If this occurred,
6738 * the parent/name combo originally desired may not necessarily be provided
6739 * if we use the descriptor. Even worse, if the vnode represents
6740 * a hardlink, we could have removed one of the links from the namespace
6741 * but left the descriptor alone, since hfs_unlink does not invalidate
6742 * the descriptor in the cnode if other links still point to the inode.
6744 * Consider the following (slightly contrived) scenario:
6745 * /tmp/a <--> /tmp/b (hardlinks).
6746 * 1. Thread A: open rsrc fork on /tmp/b.
6747 * 1a. Thread A: does lookup, goes out to lunch right before calling getnamedstream.
6748 * 2. Thread B does 'mv /foo/b /tmp/b'
6749 * 2. Thread B succeeds.
6750 * 3. Thread A comes back and wants rsrc fork info for /tmp/b.
6752 * Even though the hardlink backing /tmp/b is now eliminated, the descriptor
6753 * is not removed/updated during the unlink process. So, if you were to
6754 * do a lookup on /tmp/b, you'd acquire an entirely different record's resource
6757 * As a result, we use the fileid, which should be invariant for the lifetime
6758 * of the cnode (possibly barring calls to exchangedata).
6760 * Addendum: We can't do the above for HFS standard since we aren't guaranteed to
6761 * have thread records for files. They were only required for directories. So
6762 * we need to do the lookup with the catalog name. This is OK since hardlinks were
6763 * never allowed on HFS standard.
6766 /* Get resource fork data */
6768 if (ISSET(hfsmp
->hfs_flags
, HFS_STANDARD
)) {
6770 * HFS standard only:
6772 * Get the resource fork for this item with a cat_lookup call, but do not
6773 * force a case lookup since HFS standard is case-insensitive only. We
6774 * don't want the descriptor; just the fork data here. If we tried to
6775 * do a ID lookup (via thread record -> catalog record), then we might fail
6776 * prematurely since, as noted above, thread records were not strictly required
6779 error
= cat_lookup (hfsmp
, descptr
, 1, 0, (struct cat_desc
*)NULL
,
6780 (struct cat_attr
*)NULL
, &rsrcfork
, NULL
);
6784 error
= cat_idlookup (hfsmp
, cp
->c_fileid
, 0, 1, NULL
, NULL
, &rsrcfork
);
6787 hfs_systemfile_unlock(hfsmp
, lockflags
);
6789 /* Drop our 'empty' vnode ! */
6790 vnode_put (empty_rvp
);
6794 * Supply hfs_getnewvnode with a component name.
6797 if (descptr
->cd_nameptr
) {
6798 void *buf
= hfs_malloc(MAXPATHLEN
);
6800 cn
= (struct componentname
){
6801 .cn_nameiop
= LOOKUP
,
6802 .cn_flags
= ISLASTCN
,
6803 .cn_pnlen
= MAXPATHLEN
,
6806 .cn_namelen
= snprintf(buf
, MAXPATHLEN
,
6807 "%s%s", descptr
->cd_nameptr
,
6811 // Should never happen because cn.cn_nameptr won't ever be long...
6812 if (cn
.cn_namelen
>= MAXPATHLEN
) {
6813 hfs_free(buf
, MAXPATHLEN
);
6814 /* Drop our 'empty' vnode ! */
6815 vnode_put (empty_rvp
);
6816 return ENAMETOOLONG
;
6820 dvp
= vnode_getparent(vp
);
6823 * We are about to call hfs_getnewvnode and pass in the vnode that we acquired
6824 * earlier when we were not holding any locks. The semantics of GNV_USE_VP require that
6825 * either hfs_getnewvnode consume the vnode and vend it back to us, properly initialized,
6826 * or it will consume/dispose of it properly if it errors out.
6830 error
= hfs_getnewvnode(hfsmp
, dvp
, cn
.cn_pnbuf
? &cn
: NULL
,
6831 descptr
, (GNV_WANTRSRC
| GNV_SKIPLOCK
| GNV_USE_VP
),
6832 &cp
->c_attr
, &rsrcfork
, &rvp
, &newvnode_flags
);
6836 hfs_free(cn
.cn_pnbuf
, MAXPATHLEN
);
6839 } /* End 'else' for rsrc fork not existing */
6846 * Wrapper for special device reads
6849 hfsspec_read(struct vnop_read_args
*ap
)
6854 cnode_t
*cp
= VTOC(ap
->a_vp
);
6857 cp
->c_touch_acctime
= TRUE
;
6859 return spec_read(ap
);
6863 * Wrapper for special device writes
6866 hfsspec_write(struct vnop_write_args
*ap
)
6869 * Set update and change flags.
6871 cnode_t
*cp
= VTOC(ap
->a_vp
);
6874 cp
->c_touch_chgtime
= TRUE
;
6875 cp
->c_touch_modtime
= TRUE
;
6878 return spec_write(ap
);
6882 * Wrapper for special device close
6884 * Update the times on the cnode then do device close.
6887 hfsspec_close(struct vnop_close_args
*ap
)
6889 struct vnode
*vp
= ap
->a_vp
;
6890 cnode_t
*cp
= VTOC(vp
);
6892 if (cp
&& vnode_isinuse(ap
->a_vp
, 0)) {
6893 if (hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
) == 0) {
6894 hfs_touchtimes(VTOHFS(vp
), cp
);
6898 return spec_close(ap
);
6903 * Wrapper for fifo reads
6906 hfsfifo_read(struct vnop_read_args
*ap
)
6911 VTOC(ap
->a_vp
)->c_touch_acctime
= TRUE
;
6912 return fifo_read(ap
);
6916 * Wrapper for fifo writes
6919 hfsfifo_write(struct vnop_write_args
*ap
)
6922 * Set update and change flags.
6924 VTOC(ap
->a_vp
)->c_touch_chgtime
= TRUE
;
6925 VTOC(ap
->a_vp
)->c_touch_modtime
= TRUE
;
6926 return fifo_write(ap
);
6930 * Wrapper for fifo close
6932 * Update the times on the cnode then do device close.
6935 hfsfifo_close(struct vnop_close_args
*ap
)
6937 struct vnode
*vp
= ap
->a_vp
;
6940 if (vnode_isinuse(ap
->a_vp
, 1)) {
6941 if (hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
) == 0) {
6943 hfs_touchtimes(VTOHFS(vp
), cp
);
6947 return fifo_close(ap
);
6954 * Getter for the document_id
6955 * the document_id is stored in FndrExtendedFileInfo/FndrExtendedDirInfo
6958 hfs_get_document_id_internal(const uint8_t *finderinfo
, mode_t mode
)
6960 const uint8_t *finfo
= NULL
;
6961 u_int32_t doc_id
= 0;
6963 /* overlay the FinderInfo to the correct pointer, and advance */
6964 finfo
= finderinfo
+ 16;
6966 if (S_ISDIR(mode
) || S_ISREG(mode
)) {
6967 const struct FndrExtendedFileInfo
*extinfo
= (const struct FndrExtendedFileInfo
*)finfo
;
6968 doc_id
= extinfo
->document_id
;
6975 /* getter(s) for document id */
6977 hfs_get_document_id(struct cnode
*cp
)
6979 return (hfs_get_document_id_internal((u_int8_t
*)cp
->c_finderinfo
,
6980 cp
->c_attr
.ca_mode
));
6983 /* If you have finderinfo and mode, you can use this */
6985 hfs_get_document_id_from_blob(const uint8_t *finderinfo
, mode_t mode
)
6987 return (hfs_get_document_id_internal(finderinfo
, mode
));
6991 * Synchronize a file's in-core state with that on disk.
6994 hfs_vnop_fsync(struct vnop_fsync_args
*ap
)
6996 struct vnode
* vp
= ap
->a_vp
;
6999 /* Note: We check hfs flags instead of vfs mount flag because during
7000 * read-write update, hfs marks itself read-write much earlier than
7001 * the vfs, and hence won't result in skipping of certain writes like
7002 * zero'ing out of unused nodes, creation of hotfiles btree, etc.
7004 if (VTOHFS(vp
)->hfs_flags
& HFS_READ_ONLY
) {
7009 * No need to call cp_handle_vnop to resolve fsync(). Any dirty data
7010 * should have caused the keys to be unwrapped at the time the data was
7011 * put into the UBC, either at mmap/pagein/read-write. If we did manage
7012 * to let this by, then strategy will auto-resolve for us.
7014 * We also need to allow ENOENT lock errors since unlink
7015 * system call can call VNOP_FSYNC during vclean.
7017 error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
7021 error
= hfs_fsync(vp
, ap
->a_waitfor
, 0, vfs_context_proc(ap
->a_context
));
7023 hfs_unlock(VTOC(vp
));
7027 int (**hfs_vnodeop_p
)(void *);
7029 #define VOPFUNC int (*)(void *)
7033 int (**hfs_std_vnodeop_p
) (void *);
7034 static int hfs_readonly_op (__unused
void* ap
) { return (EROFS
); }
7037 * In 10.6 and forward, HFS Standard is read-only and deprecated. The vnop table below
7038 * is for use with HFS standard to block out operations that would modify the file system
7041 struct vnodeopv_entry_desc hfs_standard_vnodeop_entries
[] = {
7042 { &vnop_default_desc
, (VOPFUNC
)vn_default_error
},
7043 { &vnop_lookup_desc
, (VOPFUNC
)hfs_vnop_lookup
}, /* lookup */
7044 { &vnop_create_desc
, (VOPFUNC
)hfs_readonly_op
}, /* create (READONLY) */
7045 { &vnop_mknod_desc
, (VOPFUNC
)hfs_readonly_op
}, /* mknod (READONLY) */
7046 { &vnop_open_desc
, (VOPFUNC
)hfs_vnop_open
}, /* open */
7047 { &vnop_close_desc
, (VOPFUNC
)hfs_vnop_close
}, /* close */
7048 { &vnop_getattr_desc
, (VOPFUNC
)hfs_vnop_getattr
}, /* getattr */
7049 { &vnop_setattr_desc
, (VOPFUNC
)hfs_readonly_op
}, /* setattr */
7050 { &vnop_read_desc
, (VOPFUNC
)hfs_vnop_read
}, /* read */
7051 { &vnop_write_desc
, (VOPFUNC
)hfs_readonly_op
}, /* write (READONLY) */
7052 { &vnop_ioctl_desc
, (VOPFUNC
)hfs_vnop_ioctl
}, /* ioctl */
7053 { &vnop_select_desc
, (VOPFUNC
)hfs_vnop_select
}, /* select */
7054 { &vnop_revoke_desc
, (VOPFUNC
)nop_revoke
}, /* revoke */
7055 { &vnop_exchange_desc
, (VOPFUNC
)hfs_readonly_op
}, /* exchange (READONLY)*/
7056 { &vnop_mmap_desc
, (VOPFUNC
)err_mmap
}, /* mmap */
7057 { &vnop_fsync_desc
, (VOPFUNC
)hfs_readonly_op
}, /* fsync (READONLY) */
7058 { &vnop_remove_desc
, (VOPFUNC
)hfs_readonly_op
}, /* remove (READONLY) */
7059 { &vnop_link_desc
, (VOPFUNC
)hfs_readonly_op
}, /* link ( READONLLY) */
7060 { &vnop_rename_desc
, (VOPFUNC
)hfs_readonly_op
}, /* rename (READONLY)*/
7061 { &vnop_mkdir_desc
, (VOPFUNC
)hfs_readonly_op
}, /* mkdir (READONLY) */
7062 { &vnop_rmdir_desc
, (VOPFUNC
)hfs_readonly_op
}, /* rmdir (READONLY) */
7063 { &vnop_symlink_desc
, (VOPFUNC
)hfs_readonly_op
}, /* symlink (READONLY) */
7064 { &vnop_readdir_desc
, (VOPFUNC
)hfs_vnop_readdir
}, /* readdir */
7065 { &vnop_readdirattr_desc
, (VOPFUNC
)hfs_vnop_readdirattr
}, /* readdirattr */
7066 { &vnop_readlink_desc
, (VOPFUNC
)hfs_vnop_readlink
}, /* readlink */
7067 { &vnop_inactive_desc
, (VOPFUNC
)hfs_vnop_inactive
}, /* inactive */
7068 { &vnop_reclaim_desc
, (VOPFUNC
)hfs_vnop_reclaim
}, /* reclaim */
7069 { &vnop_strategy_desc
, (VOPFUNC
)hfs_vnop_strategy
}, /* strategy */
7070 { &vnop_pathconf_desc
, (VOPFUNC
)hfs_vnop_pathconf
}, /* pathconf */
7071 { &vnop_advlock_desc
, (VOPFUNC
)err_advlock
}, /* advlock */
7072 { &vnop_allocate_desc
, (VOPFUNC
)hfs_readonly_op
}, /* allocate (READONLY) */
7074 { &vnop_searchfs_desc
, (VOPFUNC
)hfs_vnop_search
}, /* search fs */
7076 { &vnop_searchfs_desc
, (VOPFUNC
)err_searchfs
}, /* search fs */
7078 { &vnop_bwrite_desc
, (VOPFUNC
)hfs_readonly_op
}, /* bwrite (READONLY) */
7079 { &vnop_pagein_desc
, (VOPFUNC
)hfs_vnop_pagein
}, /* pagein */
7080 { &vnop_pageout_desc
,(VOPFUNC
) hfs_readonly_op
}, /* pageout (READONLY) */
7081 { &vnop_copyfile_desc
, (VOPFUNC
)hfs_readonly_op
}, /* copyfile (READONLY)*/
7082 { &vnop_blktooff_desc
, (VOPFUNC
)hfs_vnop_blktooff
}, /* blktooff */
7083 { &vnop_offtoblk_desc
, (VOPFUNC
)hfs_vnop_offtoblk
}, /* offtoblk */
7084 { &vnop_blockmap_desc
, (VOPFUNC
)hfs_vnop_blockmap
}, /* blockmap */
7085 { &vnop_getxattr_desc
, (VOPFUNC
)hfs_vnop_getxattr
},
7086 { &vnop_setxattr_desc
, (VOPFUNC
)hfs_readonly_op
}, /* set xattr (READONLY) */
7087 { &vnop_removexattr_desc
, (VOPFUNC
)hfs_readonly_op
}, /* remove xattr (READONLY) */
7088 { &vnop_listxattr_desc
, (VOPFUNC
)hfs_vnop_listxattr
},
7090 { &vnop_getnamedstream_desc
, (VOPFUNC
)hfs_vnop_getnamedstream
},
7091 { &vnop_makenamedstream_desc
, (VOPFUNC
)hfs_readonly_op
},
7092 { &vnop_removenamedstream_desc
, (VOPFUNC
)hfs_readonly_op
},
7094 { &vnop_getattrlistbulk_desc
, (VOPFUNC
)hfs_vnop_getattrlistbulk
}, /* getattrlistbulk */
7095 { NULL
, (VOPFUNC
)NULL
}
7098 struct vnodeopv_desc hfs_std_vnodeop_opv_desc
=
7099 { &hfs_std_vnodeop_p
, hfs_standard_vnodeop_entries
};
7102 /* VNOP table for HFS+ */
7103 struct vnodeopv_entry_desc hfs_vnodeop_entries
[] = {
7104 { &vnop_default_desc
, (VOPFUNC
)vn_default_error
},
7105 { &vnop_lookup_desc
, (VOPFUNC
)hfs_vnop_lookup
}, /* lookup */
7106 { &vnop_create_desc
, (VOPFUNC
)hfs_vnop_create
}, /* create */
7107 { &vnop_mknod_desc
, (VOPFUNC
)hfs_vnop_mknod
}, /* mknod */
7108 { &vnop_open_desc
, (VOPFUNC
)hfs_vnop_open
}, /* open */
7109 { &vnop_close_desc
, (VOPFUNC
)hfs_vnop_close
}, /* close */
7110 { &vnop_getattr_desc
, (VOPFUNC
)hfs_vnop_getattr
}, /* getattr */
7111 { &vnop_setattr_desc
, (VOPFUNC
)hfs_vnop_setattr
}, /* setattr */
7112 { &vnop_read_desc
, (VOPFUNC
)hfs_vnop_read
}, /* read */
7113 { &vnop_write_desc
, (VOPFUNC
)hfs_vnop_write
}, /* write */
7114 { &vnop_ioctl_desc
, (VOPFUNC
)hfs_vnop_ioctl
}, /* ioctl */
7115 { &vnop_select_desc
, (VOPFUNC
)hfs_vnop_select
}, /* select */
7116 { &vnop_revoke_desc
, (VOPFUNC
)nop_revoke
}, /* revoke */
7117 { &vnop_exchange_desc
, (VOPFUNC
)hfs_vnop_exchange
}, /* exchange */
7118 { &vnop_mmap_desc
, (VOPFUNC
)hfs_vnop_mmap
}, /* mmap */
7119 { &vnop_fsync_desc
, (VOPFUNC
)hfs_vnop_fsync
}, /* fsync */
7120 { &vnop_remove_desc
, (VOPFUNC
)hfs_vnop_remove
}, /* remove */
7121 { &vnop_link_desc
, (VOPFUNC
)hfs_vnop_link
}, /* link */
7122 { &vnop_rename_desc
, (VOPFUNC
)hfs_vnop_rename
}, /* rename */
7123 { &vnop_renamex_desc
, (VOPFUNC
)hfs_vnop_renamex
}, /* renamex (with flags) */
7124 { &vnop_mkdir_desc
, (VOPFUNC
)hfs_vnop_mkdir
}, /* mkdir */
7125 { &vnop_rmdir_desc
, (VOPFUNC
)hfs_vnop_rmdir
}, /* rmdir */
7126 { &vnop_symlink_desc
, (VOPFUNC
)hfs_vnop_symlink
}, /* symlink */
7127 { &vnop_readdir_desc
, (VOPFUNC
)hfs_vnop_readdir
}, /* readdir */
7128 { &vnop_readdirattr_desc
, (VOPFUNC
)hfs_vnop_readdirattr
}, /* readdirattr */
7129 { &vnop_readlink_desc
, (VOPFUNC
)hfs_vnop_readlink
}, /* readlink */
7130 { &vnop_inactive_desc
, (VOPFUNC
)hfs_vnop_inactive
}, /* inactive */
7131 { &vnop_reclaim_desc
, (VOPFUNC
)hfs_vnop_reclaim
}, /* reclaim */
7132 { &vnop_strategy_desc
, (VOPFUNC
)hfs_vnop_strategy
}, /* strategy */
7133 { &vnop_pathconf_desc
, (VOPFUNC
)hfs_vnop_pathconf
}, /* pathconf */
7134 { &vnop_advlock_desc
, (VOPFUNC
)err_advlock
}, /* advlock */
7135 { &vnop_allocate_desc
, (VOPFUNC
)hfs_vnop_allocate
}, /* allocate */
7137 { &vnop_searchfs_desc
, (VOPFUNC
)hfs_vnop_search
}, /* search fs */
7139 { &vnop_searchfs_desc
, (VOPFUNC
)err_searchfs
}, /* search fs */
7141 { &vnop_bwrite_desc
, (VOPFUNC
)hfs_vnop_bwrite
}, /* bwrite */
7142 { &vnop_pagein_desc
, (VOPFUNC
)hfs_vnop_pagein
}, /* pagein */
7143 { &vnop_pageout_desc
,(VOPFUNC
) hfs_vnop_pageout
}, /* pageout */
7144 { &vnop_copyfile_desc
, (VOPFUNC
)err_copyfile
}, /* copyfile */
7145 { &vnop_blktooff_desc
, (VOPFUNC
)hfs_vnop_blktooff
}, /* blktooff */
7146 { &vnop_offtoblk_desc
, (VOPFUNC
)hfs_vnop_offtoblk
}, /* offtoblk */
7147 { &vnop_blockmap_desc
, (VOPFUNC
)hfs_vnop_blockmap
}, /* blockmap */
7148 { &vnop_getxattr_desc
, (VOPFUNC
)hfs_vnop_getxattr
},
7149 { &vnop_setxattr_desc
, (VOPFUNC
)hfs_vnop_setxattr
},
7150 { &vnop_removexattr_desc
, (VOPFUNC
)hfs_vnop_removexattr
},
7151 { &vnop_listxattr_desc
, (VOPFUNC
)hfs_vnop_listxattr
},
7153 { &vnop_getnamedstream_desc
, (VOPFUNC
)hfs_vnop_getnamedstream
},
7154 { &vnop_makenamedstream_desc
, (VOPFUNC
)hfs_vnop_makenamedstream
},
7155 { &vnop_removenamedstream_desc
, (VOPFUNC
)hfs_vnop_removenamedstream
},
7157 { &vnop_getattrlistbulk_desc
, (VOPFUNC
)hfs_vnop_getattrlistbulk
}, /* getattrlistbulk */
7158 { &vnop_mnomap_desc
, (VOPFUNC
)hfs_vnop_mnomap
},
7159 { NULL
, (VOPFUNC
)NULL
}
7162 struct vnodeopv_desc hfs_vnodeop_opv_desc
=
7163 { &hfs_vnodeop_p
, hfs_vnodeop_entries
};
7166 /* Spec Op vnop table for HFS+ */
7167 int (**hfs_specop_p
)(void *);
7168 struct vnodeopv_entry_desc hfs_specop_entries
[] = {
7169 { &vnop_default_desc
, (VOPFUNC
)vn_default_error
},
7170 { &vnop_lookup_desc
, (VOPFUNC
)spec_lookup
}, /* lookup */
7171 { &vnop_create_desc
, (VOPFUNC
)spec_create
}, /* create */
7172 { &vnop_mknod_desc
, (VOPFUNC
)spec_mknod
}, /* mknod */
7173 { &vnop_open_desc
, (VOPFUNC
)spec_open
}, /* open */
7174 { &vnop_close_desc
, (VOPFUNC
)hfsspec_close
}, /* close */
7175 { &vnop_getattr_desc
, (VOPFUNC
)hfs_vnop_getattr
}, /* getattr */
7176 { &vnop_setattr_desc
, (VOPFUNC
)hfs_vnop_setattr
}, /* setattr */
7177 { &vnop_read_desc
, (VOPFUNC
)hfsspec_read
}, /* read */
7178 { &vnop_write_desc
, (VOPFUNC
)hfsspec_write
}, /* write */
7179 { &vnop_ioctl_desc
, (VOPFUNC
)spec_ioctl
}, /* ioctl */
7180 { &vnop_select_desc
, (VOPFUNC
)spec_select
}, /* select */
7181 { &vnop_revoke_desc
, (VOPFUNC
)spec_revoke
}, /* revoke */
7182 { &vnop_mmap_desc
, (VOPFUNC
)spec_mmap
}, /* mmap */
7183 { &vnop_fsync_desc
, (VOPFUNC
)hfs_vnop_fsync
}, /* fsync */
7184 { &vnop_remove_desc
, (VOPFUNC
)spec_remove
}, /* remove */
7185 { &vnop_link_desc
, (VOPFUNC
)spec_link
}, /* link */
7186 { &vnop_rename_desc
, (VOPFUNC
)spec_rename
}, /* rename */
7187 { &vnop_mkdir_desc
, (VOPFUNC
)spec_mkdir
}, /* mkdir */
7188 { &vnop_rmdir_desc
, (VOPFUNC
)spec_rmdir
}, /* rmdir */
7189 { &vnop_symlink_desc
, (VOPFUNC
)spec_symlink
}, /* symlink */
7190 { &vnop_readdir_desc
, (VOPFUNC
)spec_readdir
}, /* readdir */
7191 { &vnop_readlink_desc
, (VOPFUNC
)spec_readlink
}, /* readlink */
7192 { &vnop_inactive_desc
, (VOPFUNC
)hfs_vnop_inactive
}, /* inactive */
7193 { &vnop_reclaim_desc
, (VOPFUNC
)hfs_vnop_reclaim
}, /* reclaim */
7194 { &vnop_strategy_desc
, (VOPFUNC
)spec_strategy
}, /* strategy */
7195 { &vnop_pathconf_desc
, (VOPFUNC
)spec_pathconf
}, /* pathconf */
7196 { &vnop_advlock_desc
, (VOPFUNC
)err_advlock
}, /* advlock */
7197 { &vnop_bwrite_desc
, (VOPFUNC
)hfs_vnop_bwrite
},
7198 { &vnop_pagein_desc
, (VOPFUNC
)hfs_vnop_pagein
}, /* Pagein */
7199 { &vnop_pageout_desc
, (VOPFUNC
)hfs_vnop_pageout
}, /* Pageout */
7200 { &vnop_copyfile_desc
, (VOPFUNC
)err_copyfile
}, /* copyfile */
7201 { &vnop_blktooff_desc
, (VOPFUNC
)hfs_vnop_blktooff
}, /* blktooff */
7202 { &vnop_offtoblk_desc
, (VOPFUNC
)hfs_vnop_offtoblk
}, /* offtoblk */
7203 { &vnop_getxattr_desc
, (VOPFUNC
)hfs_vnop_getxattr
},
7204 { &vnop_setxattr_desc
, (VOPFUNC
)hfs_vnop_setxattr
},
7205 { &vnop_removexattr_desc
, (VOPFUNC
)hfs_vnop_removexattr
},
7206 { &vnop_listxattr_desc
, (VOPFUNC
)hfs_vnop_listxattr
},
7207 { (struct vnodeop_desc
*)NULL
, (VOPFUNC
)NULL
}
7209 struct vnodeopv_desc hfs_specop_opv_desc
=
7210 { &hfs_specop_p
, hfs_specop_entries
};
7213 /* HFS+ FIFO VNOP table */
7214 int (**hfs_fifoop_p
)(void *);
7215 struct vnodeopv_entry_desc hfs_fifoop_entries
[] = {
7216 { &vnop_default_desc
, (VOPFUNC
)vn_default_error
},
7217 { &vnop_lookup_desc
, (VOPFUNC
)fifo_lookup
}, /* lookup */
7218 { &vnop_create_desc
, (VOPFUNC
)fifo_create
}, /* create */
7219 { &vnop_mknod_desc
, (VOPFUNC
)fifo_mknod
}, /* mknod */
7220 { &vnop_open_desc
, (VOPFUNC
)fifo_open
}, /* open */
7221 { &vnop_close_desc
, (VOPFUNC
)hfsfifo_close
}, /* close */
7222 { &vnop_getattr_desc
, (VOPFUNC
)hfs_vnop_getattr
}, /* getattr */
7223 { &vnop_setattr_desc
, (VOPFUNC
)hfs_vnop_setattr
}, /* setattr */
7224 { &vnop_read_desc
, (VOPFUNC
)hfsfifo_read
}, /* read */
7225 { &vnop_write_desc
, (VOPFUNC
)hfsfifo_write
}, /* write */
7226 { &vnop_ioctl_desc
, (VOPFUNC
)fifo_ioctl
}, /* ioctl */
7227 { &vnop_select_desc
, (VOPFUNC
)fifo_select
}, /* select */
7228 { &vnop_revoke_desc
, (VOPFUNC
)fifo_revoke
}, /* revoke */
7229 { &vnop_mmap_desc
, (VOPFUNC
)fifo_mmap
}, /* mmap */
7230 { &vnop_fsync_desc
, (VOPFUNC
)hfs_vnop_fsync
}, /* fsync */
7231 { &vnop_remove_desc
, (VOPFUNC
)fifo_remove
}, /* remove */
7232 { &vnop_link_desc
, (VOPFUNC
)fifo_link
}, /* link */
7233 { &vnop_rename_desc
, (VOPFUNC
)fifo_rename
}, /* rename */
7234 { &vnop_mkdir_desc
, (VOPFUNC
)fifo_mkdir
}, /* mkdir */
7235 { &vnop_rmdir_desc
, (VOPFUNC
)fifo_rmdir
}, /* rmdir */
7236 { &vnop_symlink_desc
, (VOPFUNC
)fifo_symlink
}, /* symlink */
7237 { &vnop_readdir_desc
, (VOPFUNC
)fifo_readdir
}, /* readdir */
7238 { &vnop_readlink_desc
, (VOPFUNC
)fifo_readlink
}, /* readlink */
7239 { &vnop_inactive_desc
, (VOPFUNC
)hfs_vnop_inactive
}, /* inactive */
7240 { &vnop_reclaim_desc
, (VOPFUNC
)hfs_vnop_reclaim
}, /* reclaim */
7241 { &vnop_strategy_desc
, (VOPFUNC
)fifo_strategy
}, /* strategy */
7242 { &vnop_pathconf_desc
, (VOPFUNC
)fifo_pathconf
}, /* pathconf */
7243 { &vnop_advlock_desc
, (VOPFUNC
)err_advlock
}, /* advlock */
7244 { &vnop_bwrite_desc
, (VOPFUNC
)hfs_vnop_bwrite
},
7245 { &vnop_pagein_desc
, (VOPFUNC
)hfs_vnop_pagein
}, /* Pagein */
7246 { &vnop_pageout_desc
, (VOPFUNC
)hfs_vnop_pageout
}, /* Pageout */
7247 { &vnop_copyfile_desc
, (VOPFUNC
)err_copyfile
}, /* copyfile */
7248 { &vnop_blktooff_desc
, (VOPFUNC
)hfs_vnop_blktooff
}, /* blktooff */
7249 { &vnop_offtoblk_desc
, (VOPFUNC
)hfs_vnop_offtoblk
}, /* offtoblk */
7250 { &vnop_blockmap_desc
, (VOPFUNC
)hfs_vnop_blockmap
}, /* blockmap */
7251 { &vnop_getxattr_desc
, (VOPFUNC
)hfs_vnop_getxattr
},
7252 { &vnop_setxattr_desc
, (VOPFUNC
)hfs_vnop_setxattr
},
7253 { &vnop_removexattr_desc
, (VOPFUNC
)hfs_vnop_removexattr
},
7254 { &vnop_listxattr_desc
, (VOPFUNC
)hfs_vnop_listxattr
},
7255 { (struct vnodeop_desc
*)NULL
, (VOPFUNC
)NULL
}
7257 struct vnodeopv_desc hfs_fifoop_opv_desc
=
7258 { &hfs_fifoop_p
, hfs_fifoop_entries
};