2 * Copyright (c) 1999-2015 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1991, 1993, 1994
30 * The Regents of the University of California. All rights reserved.
31 * (c) UNIX System Laboratories, Inc.
32 * All or some portions of this file are derived from material licensed
33 * to the University of California by American Telephone and Telegraph
34 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
35 * the permission of UNIX System Laboratories, Inc.
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * derived from @(#)ufs_vfsops.c 8.8 (Berkeley) 5/20/95
68 * (c) Copyright 1997-2002 Apple Inc. All rights reserved.
70 * hfs_vfsops.c -- VFS layer for loadable HFS file system.
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/kauth.h>
78 #include <sys/sysctl.h>
79 #include <sys/malloc.h>
81 #include <sys/quota.h>
83 #include <sys/paths.h>
84 #include <sys/utfconv.h>
85 #include <sys/kdebug.h>
86 #include <sys/fslog.h>
89 /* for parsing boot-args */
90 #include <pexpert/pexpert.h>
93 #include <kern/locks.h>
95 #include "hfs_journal.h"
97 #include <miscfs/specfs/specdev.h>
98 #include "hfs_mount.h"
100 #include <libkern/crypto/md5.h>
101 #include <uuid/uuid.h>
103 #include "hfs_iokit.h"
105 #include "hfs_catalog.h"
106 #include "hfs_cnode.h"
108 #include "hfs_endian.h"
109 #include "hfs_hotfiles.h"
110 #include "hfs_quota.h"
111 #include "hfs_btreeio.h"
112 #include "hfs_kdebug.h"
113 #include "hfs_cprotect.h"
115 #include "FileMgrInternal.h"
116 #include "BTreesInternal.h"
118 #define HFS_MOUNT_DEBUG 1
120 /* Enable/disable debugging code for live volume resizing, defined in hfs_resize.c */
121 extern int hfs_resize_debug
;
123 lck_grp_attr_t
* hfs_group_attr
;
124 lck_attr_t
* hfs_lock_attr
;
125 lck_grp_t
* hfs_mutex_group
;
126 lck_grp_t
* hfs_rwlock_group
;
127 lck_grp_t
* hfs_spinlock_group
;
129 extern struct vnodeopv_desc hfs_vnodeop_opv_desc
;
132 extern struct vnodeopv_desc hfs_std_vnodeop_opv_desc
;
133 static int hfs_flushMDB(struct hfsmount
*hfsmp
, int waitfor
, int altflush
);
136 /* not static so we can re-use in hfs_readwrite.c for build_path calls */
137 int hfs_vfs_vget(struct mount
*mp
, ino64_t ino
, struct vnode
**vpp
, vfs_context_t context
);
139 static int hfs_changefs(struct mount
*mp
, struct hfs_mount_args
*args
);
140 static int hfs_fhtovp(struct mount
*mp
, int fhlen
, unsigned char *fhp
, struct vnode
**vpp
, vfs_context_t context
);
141 static int hfs_flushfiles(struct mount
*, int, struct proc
*);
142 static int hfs_init(struct vfsconf
*vfsp
);
143 static void hfs_locks_destroy(struct hfsmount
*hfsmp
);
144 static int hfs_quotactl(struct mount
*, int, uid_t
, caddr_t
, vfs_context_t context
);
145 static int hfs_start(struct mount
*mp
, int flags
, vfs_context_t context
);
146 static int hfs_vptofh(struct vnode
*vp
, int *fhlenp
, unsigned char *fhp
, vfs_context_t context
);
147 static void hfs_syncer_free(struct hfsmount
*hfsmp
);
149 void hfs_initialize_allocator (struct hfsmount
*hfsmp
);
150 int hfs_teardown_allocator (struct hfsmount
*hfsmp
);
152 int hfs_mount(struct mount
*mp
, vnode_t devvp
, user_addr_t data
, vfs_context_t context
);
153 int hfs_mountfs(struct vnode
*devvp
, struct mount
*mp
, struct hfs_mount_args
*args
, int journal_replay_only
, vfs_context_t context
);
154 int hfs_reload(struct mount
*mp
);
155 int hfs_statfs(struct mount
*mp
, register struct vfsstatfs
*sbp
, vfs_context_t context
);
156 int hfs_sync(struct mount
*mp
, int waitfor
, vfs_context_t context
);
157 int hfs_sysctl(int *name
, u_int namelen
, user_addr_t oldp
, size_t *oldlenp
,
158 user_addr_t newp
, size_t newlen
, vfs_context_t context
);
159 int hfs_unmount(struct mount
*mp
, int mntflags
, vfs_context_t context
);
161 static int hfs_journal_replay(vnode_t devvp
, vfs_context_t context
);
165 #include <libkern/OSAtomic.h>
166 #include <IOKit/IOLib.h>
168 int hfs_active_mounts
;
179 hfs_mount(struct mount
*mp
, vnode_t devvp
, user_addr_t data
, vfs_context_t context
)
184 #warning HFS_LEAK_DEBUG is on
186 hfs_alloc_trace_enable();
190 struct proc
*p
= vfs_context_proc(context
);
191 struct hfsmount
*hfsmp
= NULL
;
192 struct hfs_mount_args args
;
196 if (data
&& (retval
= copyin(data
, (caddr_t
)&args
, sizeof(args
)))) {
197 if (HFS_MOUNT_DEBUG
) {
198 printf("hfs_mount: copyin returned %d for fs\n", retval
);
202 cmdflags
= (u_int32_t
)vfs_flags(mp
) & MNT_CMDFLAGS
;
203 if (cmdflags
& MNT_UPDATE
) {
206 hfsmp
= VFSTOHFS(mp
);
208 /* Reload incore data after an fsck. */
209 if (cmdflags
& MNT_RELOAD
) {
210 if (vfs_isrdonly(mp
)) {
211 int error
= hfs_reload(mp
);
212 if (error
&& HFS_MOUNT_DEBUG
) {
213 printf("hfs_mount: hfs_reload returned %d on %s \n", error
, hfsmp
->vcbVN
);
218 if (HFS_MOUNT_DEBUG
) {
219 printf("hfs_mount: MNT_RELOAD not supported on rdwr filesystem %s\n", hfsmp
->vcbVN
);
225 /* Change to a read-only file system. */
226 if (((hfsmp
->hfs_flags
& HFS_READ_ONLY
) == 0) &&
230 /* Set flag to indicate that a downgrade to read-only
231 * is in progress and therefore block any further
232 * modifications to the file system.
234 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
235 hfsmp
->hfs_flags
|= HFS_RDONLY_DOWNGRADE
;
236 hfsmp
->hfs_downgrading_thread
= current_thread();
237 hfs_unlock_global (hfsmp
);
238 hfs_syncer_free(hfsmp
);
240 /* use hfs_sync to push out System (btree) files */
241 retval
= hfs_sync(mp
, MNT_WAIT
, context
);
242 if (retval
&& ((cmdflags
& MNT_FORCE
) == 0)) {
243 hfsmp
->hfs_flags
&= ~HFS_RDONLY_DOWNGRADE
;
244 hfsmp
->hfs_downgrading_thread
= NULL
;
245 if (HFS_MOUNT_DEBUG
) {
246 printf("hfs_mount: VFS_SYNC returned %d during b-tree sync of %s \n", retval
, hfsmp
->vcbVN
);
252 if (cmdflags
& MNT_FORCE
)
255 if ((retval
= hfs_flushfiles(mp
, flags
, p
))) {
256 hfsmp
->hfs_flags
&= ~HFS_RDONLY_DOWNGRADE
;
257 hfsmp
->hfs_downgrading_thread
= NULL
;
258 if (HFS_MOUNT_DEBUG
) {
259 printf("hfs_mount: hfs_flushfiles returned %d on %s \n", retval
, hfsmp
->vcbVN
);
264 /* mark the volume cleanly unmounted */
265 hfsmp
->vcbAtrb
|= kHFSVolumeUnmountedMask
;
266 retval
= hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
);
267 hfsmp
->hfs_flags
|= HFS_READ_ONLY
;
270 * Close down the journal.
272 * NOTE: It is critically important to close down the journal
273 * and have it issue all pending I/O prior to calling VNOP_FSYNC below.
274 * In a journaled environment it is expected that the journal be
275 * the only actor permitted to issue I/O for metadata blocks in HFS.
276 * If we were to call VNOP_FSYNC prior to closing down the journal,
277 * we would inadvertantly issue (and wait for) the I/O we just
278 * initiated above as part of the flushvolumeheader call.
280 * To avoid this, we follow the same order of operations as in
281 * unmount and issue the journal_close prior to calling VNOP_FSYNC.
285 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
287 journal_close(hfsmp
->jnl
);
290 // Note: we explicitly don't want to shutdown
291 // access to the jvp because we may need
292 // it later if we go back to being read-write.
294 hfs_unlock_global (hfsmp
);
296 vfs_clearflags(hfsmp
->hfs_mp
, MNT_JOURNALED
);
300 * Write out any pending I/O still outstanding against the device node
301 * now that the journal has been closed.
304 vnode_get(hfsmp
->hfs_devvp
);
305 retval
= VNOP_FSYNC(hfsmp
->hfs_devvp
, MNT_WAIT
, context
);
306 vnode_put(hfsmp
->hfs_devvp
);
310 if (HFS_MOUNT_DEBUG
) {
311 printf("hfs_mount: FSYNC on devvp returned %d for fs %s\n", retval
, hfsmp
->vcbVN
);
313 hfsmp
->hfs_flags
&= ~HFS_RDONLY_DOWNGRADE
;
314 hfsmp
->hfs_downgrading_thread
= NULL
;
315 hfsmp
->hfs_flags
&= ~HFS_READ_ONLY
;
319 if (hfsmp
->hfs_flags
& HFS_SUMMARY_TABLE
) {
320 if (hfsmp
->hfs_summary_table
) {
323 * Take the bitmap lock to serialize against a concurrent bitmap scan still in progress
325 if (hfsmp
->hfs_allocation_vp
) {
326 err
= hfs_lock (VTOC(hfsmp
->hfs_allocation_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
328 hfs_free(hfsmp
->hfs_summary_table
, hfsmp
->hfs_summary_bytes
);
329 hfsmp
->hfs_summary_table
= NULL
;
330 hfsmp
->hfs_flags
&= ~HFS_SUMMARY_TABLE
;
331 if (err
== 0 && hfsmp
->hfs_allocation_vp
){
332 hfs_unlock (VTOC(hfsmp
->hfs_allocation_vp
));
337 hfsmp
->hfs_downgrading_thread
= NULL
;
340 /* Change to a writable file system. */
341 if (vfs_iswriteupgrade(mp
)) {
343 * On inconsistent disks, do not allow read-write mount
344 * unless it is the boot volume being mounted.
346 if (!(vfs_flags(mp
) & MNT_ROOTFS
) &&
347 (hfsmp
->vcbAtrb
& kHFSVolumeInconsistentMask
)) {
348 if (HFS_MOUNT_DEBUG
) {
349 printf("hfs_mount: attempting to mount inconsistent non-root volume %s\n", (hfsmp
->vcbVN
));
355 // If the journal was shut-down previously because we were
356 // asked to be read-only, let's start it back up again now
358 if ( (HFSTOVCB(hfsmp
)->vcbAtrb
& kHFSVolumeJournaledMask
)
359 && hfsmp
->jnl
== NULL
360 && hfsmp
->jvp
!= NULL
) {
363 if (hfsmp
->hfs_flags
& HFS_NEED_JNL_RESET
) {
364 jflags
= JOURNAL_RESET
;
369 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
371 /* We provide the mount point twice here: The first is used as
372 * an opaque argument to be passed back when hfs_sync_metadata
373 * is called. The second is provided to the throttling code to
374 * indicate which mount's device should be used when accounting
375 * for metadata writes.
377 hfsmp
->jnl
= journal_open(hfsmp
->jvp
,
378 hfs_blk_to_bytes(hfsmp
->jnl_start
, HFSTOVCB(hfsmp
)->blockSize
) + (off_t
)HFSTOVCB(hfsmp
)->hfsPlusIOPosOffset
,
381 hfsmp
->hfs_logical_block_size
,
384 hfs_sync_metadata
, hfsmp
->hfs_mp
,
388 * Set up the trim callback function so that we can add
389 * recently freed extents to the free extent cache once
390 * the transaction that freed them is written to the
394 journal_trim_set_callback(hfsmp
->jnl
, hfs_trim_callback
, hfsmp
);
396 hfs_unlock_global (hfsmp
);
398 if (hfsmp
->jnl
== NULL
) {
399 if (HFS_MOUNT_DEBUG
) {
400 printf("hfs_mount: journal_open == NULL; couldn't be opened on %s \n", (hfsmp
->vcbVN
));
405 hfsmp
->hfs_flags
&= ~HFS_NEED_JNL_RESET
;
406 vfs_setflags(hfsmp
->hfs_mp
, MNT_JOURNALED
);
410 /* See if we need to erase unused Catalog nodes due to <rdar://problem/6947811>. */
411 retval
= hfs_erase_unused_nodes(hfsmp
);
412 if (retval
!= E_NONE
) {
413 if (HFS_MOUNT_DEBUG
) {
414 printf("hfs_mount: hfs_erase_unused_nodes returned %d for fs %s\n", retval
, hfsmp
->vcbVN
);
419 /* If this mount point was downgraded from read-write
420 * to read-only, clear that information as we are now
421 * moving back to read-write.
423 hfsmp
->hfs_flags
&= ~HFS_RDONLY_DOWNGRADE
;
424 hfsmp
->hfs_downgrading_thread
= NULL
;
426 /* mark the volume dirty (clear clean unmount bit) */
427 hfsmp
->vcbAtrb
&= ~kHFSVolumeUnmountedMask
;
429 retval
= hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
);
430 if (retval
!= E_NONE
) {
431 if (HFS_MOUNT_DEBUG
) {
432 printf("hfs_mount: hfs_flushvolumeheader returned %d for fs %s\n", retval
, hfsmp
->vcbVN
);
437 /* Only clear HFS_READ_ONLY after a successful write */
438 hfsmp
->hfs_flags
&= ~HFS_READ_ONLY
;
441 if (!(hfsmp
->hfs_flags
& (HFS_READ_ONLY
| HFS_STANDARD
))) {
442 /* Setup private/hidden directories for hardlinks. */
443 hfs_privatedir_init(hfsmp
, FILE_HARDLINKS
);
444 hfs_privatedir_init(hfsmp
, DIR_HARDLINKS
);
446 hfs_remove_orphans(hfsmp
);
449 * Since we're upgrading to a read-write mount, allow
450 * hot file clustering if conditions allow.
452 * Note: this normally only would happen if you booted
453 * single-user and upgraded the mount to read-write
455 * Note: at this point we are not allowed to fail the
456 * mount operation because the HotFile init code
457 * in hfs_recording_init() will lookup vnodes with
458 * VNOP_LOOKUP() which hangs vnodes off the mount
459 * (and if we were to fail, VFS is not prepared to
460 * clean that up at this point. Since HotFiles are
461 * optional, this is not a big deal.
463 if (ISSET(hfsmp
->hfs_flags
, HFS_METADATA_ZONE
)
464 && (!ISSET(hfsmp
->hfs_flags
, HFS_SSD
)
465 || ISSET(hfsmp
->hfs_flags
, HFS_CS_HOTFILE_PIN
))) {
466 hfs_recording_init(hfsmp
);
468 /* Force ACLs on HFS+ file systems. */
469 if (vfs_extendedsecurity(HFSTOVFS(hfsmp
)) == 0) {
470 vfs_setextendedsecurity(HFSTOVFS(hfsmp
));
475 /* Update file system parameters. */
476 retval
= hfs_changefs(mp
, &args
);
477 if (retval
&& HFS_MOUNT_DEBUG
) {
478 printf("hfs_mount: hfs_changefs returned %d for %s\n", retval
, hfsmp
->vcbVN
);
481 } else /* not an update request */ {
486 /* Set the mount flag to indicate that we support volfs */
487 vfs_setflags(mp
, (u_int64_t
)((unsigned int)MNT_DOVOLFS
));
489 retval
= hfs_mountfs(devvp
, mp
, data
? &args
: NULL
, 0, context
);
491 const char *name
= vnode_getname(devvp
);
492 printf("hfs_mount: hfs_mountfs returned error=%d for device %s\n", retval
, (name
? name
: "unknown-dev"));
499 /* After hfs_mountfs succeeds, we should have valid hfsmp */
500 hfsmp
= VFSTOHFS(mp
);
502 /* Set up the maximum defrag file size */
503 hfsmp
->hfs_defrag_max
= HFS_INITIAL_DEFRAG_SIZE
;
509 hfsmp
->hfs_uid
= UNKNOWNUID
;
510 hfsmp
->hfs_gid
= UNKNOWNGID
;
511 hfsmp
->hfs_dir_mask
= (S_IRWXU
| S_IRGRP
|S_IXGRP
| S_IROTH
|S_IXOTH
); /* 0755 */
512 hfsmp
->hfs_file_mask
= (S_IRWXU
| S_IRGRP
|S_IXGRP
| S_IROTH
|S_IXOTH
); /* 0755 */
514 /* Establish the free block reserve. */
515 hfsmp
->reserveBlocks
= ((u_int64_t
)hfsmp
->totalBlocks
* HFS_MINFREE
) / 100;
516 hfsmp
->reserveBlocks
= MIN(hfsmp
->reserveBlocks
, HFS_MAXRESERVE
/ hfsmp
->blockSize
);
520 OSIncrementAtomic(&hfs_active_mounts
);
526 (void)hfs_statfs(mp
, vfs_statfs(mp
), context
);
532 struct hfs_changefs_cargs
{
533 struct hfsmount
*hfsmp
;
540 hfs_changefs_callback(struct vnode
*vp
, void *cargs
)
544 struct cat_desc cndesc
;
545 struct cat_attr cnattr
;
546 struct hfs_changefs_cargs
*args
;
550 args
= (struct hfs_changefs_cargs
*)cargs
;
553 vcb
= HFSTOVCB(args
->hfsmp
);
555 lockflags
= hfs_systemfile_lock(args
->hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
556 error
= cat_lookup(args
->hfsmp
, &cp
->c_desc
, 0, 0, &cndesc
, &cnattr
, NULL
, NULL
);
557 hfs_systemfile_unlock(args
->hfsmp
, lockflags
);
560 * If we couldn't find this guy skip to the next one
565 return (VNODE_RETURNED
);
568 * Get the real uid/gid and perm mask from disk.
570 if (args
->permswitch
|| args
->permfix
) {
571 cp
->c_uid
= cnattr
.ca_uid
;
572 cp
->c_gid
= cnattr
.ca_gid
;
573 cp
->c_mode
= cnattr
.ca_mode
;
576 * If we're switching name converters then...
577 * Remove the existing entry from the namei cache.
578 * Update name to one based on new encoder.
582 replace_desc(cp
, &cndesc
);
584 if (cndesc
.cd_cnid
== kHFSRootFolderID
) {
585 strlcpy((char *)vcb
->vcbVN
, (const char *)cp
->c_desc
.cd_nameptr
, NAME_MAX
+1);
586 cp
->c_desc
.cd_encoding
= args
->hfsmp
->hfs_encoding
;
589 cat_releasedesc(&cndesc
);
591 return (VNODE_RETURNED
);
594 /* Change fs mount parameters */
596 hfs_changefs(struct mount
*mp
, struct hfs_mount_args
*args
)
599 int namefix
, permfix
, permswitch
;
600 struct hfsmount
*hfsmp
;
602 struct hfs_changefs_cargs cargs
;
603 u_int32_t mount_flags
;
606 u_int32_t old_encoding
= 0;
607 hfs_to_unicode_func_t get_unicode_func
;
608 unicode_to_hfs_func_t get_hfsname_func
= NULL
;
611 hfsmp
= VFSTOHFS(mp
);
612 vcb
= HFSTOVCB(hfsmp
);
613 mount_flags
= (unsigned int)vfs_flags(mp
);
615 hfsmp
->hfs_flags
|= HFS_IN_CHANGEFS
;
617 permswitch
= (((hfsmp
->hfs_flags
& HFS_UNKNOWN_PERMS
) &&
618 ((mount_flags
& MNT_UNKNOWNPERMISSIONS
) == 0)) ||
619 (((hfsmp
->hfs_flags
& HFS_UNKNOWN_PERMS
) == 0) &&
620 (mount_flags
& MNT_UNKNOWNPERMISSIONS
)));
622 /* The root filesystem must operate with actual permissions: */
623 if (permswitch
&& (mount_flags
& MNT_ROOTFS
) && (mount_flags
& MNT_UNKNOWNPERMISSIONS
)) {
624 vfs_clearflags(mp
, (u_int64_t
)((unsigned int)MNT_UNKNOWNPERMISSIONS
)); /* Just say "No". */
628 if (mount_flags
& MNT_UNKNOWNPERMISSIONS
)
629 hfsmp
->hfs_flags
|= HFS_UNKNOWN_PERMS
;
631 hfsmp
->hfs_flags
&= ~HFS_UNKNOWN_PERMS
;
633 namefix
= permfix
= 0;
636 * Tracking of hot files requires up-to-date access times. So if
637 * access time updates are disabled, we must also disable hot files.
639 if (mount_flags
& MNT_NOATIME
) {
640 (void) hfs_recording_suspend(hfsmp
);
643 /* Change the timezone (Note: this affects all hfs volumes and hfs+ volume create dates) */
644 if (args
->hfs_timezone
.tz_minuteswest
!= VNOVAL
) {
645 gTimeZone
= args
->hfs_timezone
;
648 /* Change the default uid, gid and/or mask */
649 if ((args
->hfs_uid
!= (uid_t
)VNOVAL
) && (hfsmp
->hfs_uid
!= args
->hfs_uid
)) {
650 hfsmp
->hfs_uid
= args
->hfs_uid
;
651 if (vcb
->vcbSigWord
== kHFSPlusSigWord
)
654 if ((args
->hfs_gid
!= (gid_t
)VNOVAL
) && (hfsmp
->hfs_gid
!= args
->hfs_gid
)) {
655 hfsmp
->hfs_gid
= args
->hfs_gid
;
656 if (vcb
->vcbSigWord
== kHFSPlusSigWord
)
659 if (args
->hfs_mask
!= (mode_t
)VNOVAL
) {
660 if (hfsmp
->hfs_dir_mask
!= (args
->hfs_mask
& ALLPERMS
)) {
661 hfsmp
->hfs_dir_mask
= args
->hfs_mask
& ALLPERMS
;
662 hfsmp
->hfs_file_mask
= args
->hfs_mask
& ALLPERMS
;
663 if ((args
->flags
!= VNOVAL
) && (args
->flags
& HFSFSMNT_NOXONFILES
))
664 hfsmp
->hfs_file_mask
= (args
->hfs_mask
& DEFFILEMODE
);
665 if (vcb
->vcbSigWord
== kHFSPlusSigWord
)
671 /* Change the hfs encoding value (hfs only) */
672 if ((vcb
->vcbSigWord
== kHFSSigWord
) &&
673 (args
->hfs_encoding
!= (u_int32_t
)VNOVAL
) &&
674 (hfsmp
->hfs_encoding
!= args
->hfs_encoding
)) {
676 retval
= hfs_getconverter(args
->hfs_encoding
, &get_unicode_func
, &get_hfsname_func
);
681 * Connect the new hfs_get_unicode converter but leave
682 * the old hfs_get_hfsname converter in place so that
683 * we can lookup existing vnodes to get their correctly
686 * When we're all finished, we can then connect the new
687 * hfs_get_hfsname converter and release our interest
688 * in the old converters.
690 hfsmp
->hfs_get_unicode
= get_unicode_func
;
691 old_encoding
= hfsmp
->hfs_encoding
;
692 hfsmp
->hfs_encoding
= args
->hfs_encoding
;
697 if (!(namefix
|| permfix
|| permswitch
))
700 /* XXX 3762912 hack to support HFS filesystem 'owner' */
703 hfsmp
->hfs_uid
== UNKNOWNUID
? KAUTH_UID_NONE
: hfsmp
->hfs_uid
,
704 hfsmp
->hfs_gid
== UNKNOWNGID
? KAUTH_GID_NONE
: hfsmp
->hfs_gid
);
708 * For each active vnode fix things that changed
710 * Note that we can visit a vnode more than once
711 * and we can race with fsync.
713 * hfs_changefs_callback will be called for each vnode
714 * hung off of this mount point
716 * The vnode will be properly referenced and unreferenced
717 * around the callback
720 cargs
.namefix
= namefix
;
721 cargs
.permfix
= permfix
;
722 cargs
.permswitch
= permswitch
;
724 vnode_iterate(mp
, 0, hfs_changefs_callback
, (void *)&cargs
);
728 * If we're switching name converters we can now
729 * connect the new hfs_get_hfsname converter and
730 * release our interest in the old converters.
733 /* HFS standard only */
734 hfsmp
->hfs_get_hfsname
= get_hfsname_func
;
735 vcb
->volumeNameEncodingHint
= args
->hfs_encoding
;
736 (void) hfs_relconverter(old_encoding
);
741 hfsmp
->hfs_flags
&= ~HFS_IN_CHANGEFS
;
746 struct hfs_reload_cargs
{
747 struct hfsmount
*hfsmp
;
752 hfs_reload_callback(struct vnode
*vp
, void *cargs
)
755 struct hfs_reload_cargs
*args
;
758 args
= (struct hfs_reload_cargs
*)cargs
;
760 * flush all the buffers associated with this node
762 (void) buf_invalidateblks(vp
, 0, 0, 0);
766 * Remove any directory hints
769 hfs_reldirhints(cp
, 0);
772 * Re-read cnode data for all active vnodes (non-metadata files).
774 if (!vnode_issystem(vp
) && !VNODE_IS_RSRC(vp
) && (cp
->c_fileid
>= kHFSFirstUserCatalogNodeID
)) {
775 struct cat_fork
*datafork
;
776 struct cat_desc desc
;
778 datafork
= cp
->c_datafork
? &cp
->c_datafork
->ff_data
: NULL
;
780 /* lookup by fileID since name could have changed */
781 lockflags
= hfs_systemfile_lock(args
->hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
782 args
->error
= cat_idlookup(args
->hfsmp
, cp
->c_fileid
, 0, 0, &desc
, &cp
->c_attr
, datafork
);
783 hfs_systemfile_unlock(args
->hfsmp
, lockflags
);
785 return (VNODE_RETURNED_DONE
);
788 /* update cnode's catalog descriptor */
789 (void) replace_desc(cp
, &desc
);
791 return (VNODE_RETURNED
);
795 * Reload all incore data for a filesystem (used after running fsck on
796 * the root filesystem and finding things to fix). The filesystem must
797 * be mounted read-only.
799 * Things to do to update the mount:
800 * invalidate all cached meta-data.
801 * invalidate all inactive vnodes.
802 * invalidate all cached file data.
803 * re-read volume header from disk.
804 * re-load meta-file info (extents, file size).
805 * re-load B-tree header data.
806 * re-read cnode data for all active vnodes.
809 hfs_reload(struct mount
*mountp
)
811 register struct vnode
*devvp
;
814 struct hfsmount
*hfsmp
;
815 struct HFSPlusVolumeHeader
*vhp
;
817 struct filefork
*forkp
;
818 struct cat_desc cndesc
;
819 struct hfs_reload_cargs args
;
820 daddr64_t priIDSector
;
822 hfsmp
= VFSTOHFS(mountp
);
823 vcb
= HFSTOVCB(hfsmp
);
825 if (vcb
->vcbSigWord
== kHFSSigWord
)
826 return (EINVAL
); /* rooting from HFS is not supported! */
829 * Invalidate all cached meta-data.
831 devvp
= hfsmp
->hfs_devvp
;
832 if (buf_invalidateblks(devvp
, 0, 0, 0))
833 panic("hfs_reload: dirty1");
838 * hfs_reload_callback will be called for each vnode
839 * hung off of this mount point that can't be recycled...
840 * vnode_iterate will recycle those that it can (the VNODE_RELOAD option)
841 * the vnode will be in an 'unbusy' state (VNODE_WAIT) and
842 * properly referenced and unreferenced around the callback
844 vnode_iterate(mountp
, VNODE_RELOAD
| VNODE_WAIT
, hfs_reload_callback
, (void *)&args
);
850 * Re-read VolumeHeader from disk.
852 priIDSector
= (daddr64_t
)((vcb
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
853 HFS_PRI_SECTOR(hfsmp
->hfs_logical_block_size
));
855 error
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
856 HFS_PHYSBLK_ROUNDDOWN(priIDSector
, hfsmp
->hfs_log_per_phys
),
857 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
864 vhp
= (HFSPlusVolumeHeader
*) (buf_dataptr(bp
) + HFS_PRI_OFFSET(hfsmp
->hfs_physical_block_size
));
866 /* Do a quick sanity check */
867 if ((SWAP_BE16(vhp
->signature
) != kHFSPlusSigWord
&&
868 SWAP_BE16(vhp
->signature
) != kHFSXSigWord
) ||
869 (SWAP_BE16(vhp
->version
) != kHFSPlusVersion
&&
870 SWAP_BE16(vhp
->version
) != kHFSXVersion
) ||
871 SWAP_BE32(vhp
->blockSize
) != vcb
->blockSize
) {
876 vcb
->vcbLsMod
= to_bsd_time(SWAP_BE32(vhp
->modifyDate
));
877 vcb
->vcbAtrb
= SWAP_BE32 (vhp
->attributes
);
878 vcb
->vcbJinfoBlock
= SWAP_BE32(vhp
->journalInfoBlock
);
879 vcb
->vcbClpSiz
= SWAP_BE32 (vhp
->rsrcClumpSize
);
880 vcb
->vcbNxtCNID
= SWAP_BE32 (vhp
->nextCatalogID
);
881 vcb
->vcbVolBkUp
= to_bsd_time(SWAP_BE32(vhp
->backupDate
));
882 vcb
->vcbWrCnt
= SWAP_BE32 (vhp
->writeCount
);
883 vcb
->vcbFilCnt
= SWAP_BE32 (vhp
->fileCount
);
884 vcb
->vcbDirCnt
= SWAP_BE32 (vhp
->folderCount
);
885 HFS_UPDATE_NEXT_ALLOCATION(vcb
, SWAP_BE32 (vhp
->nextAllocation
));
886 vcb
->totalBlocks
= SWAP_BE32 (vhp
->totalBlocks
);
887 vcb
->freeBlocks
= SWAP_BE32 (vhp
->freeBlocks
);
888 vcb
->encodingsBitmap
= SWAP_BE64 (vhp
->encodingsBitmap
);
889 bcopy(vhp
->finderInfo
, vcb
->vcbFndrInfo
, sizeof(vhp
->finderInfo
));
890 vcb
->localCreateDate
= SWAP_BE32 (vhp
->createDate
); /* hfs+ create date is in local time */
893 * Re-load meta-file vnode data (extent info, file size, etc).
895 forkp
= VTOF((struct vnode
*)vcb
->extentsRefNum
);
896 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
897 forkp
->ff_extents
[i
].startBlock
=
898 SWAP_BE32 (vhp
->extentsFile
.extents
[i
].startBlock
);
899 forkp
->ff_extents
[i
].blockCount
=
900 SWAP_BE32 (vhp
->extentsFile
.extents
[i
].blockCount
);
902 forkp
->ff_size
= SWAP_BE64 (vhp
->extentsFile
.logicalSize
);
903 forkp
->ff_blocks
= SWAP_BE32 (vhp
->extentsFile
.totalBlocks
);
904 forkp
->ff_clumpsize
= SWAP_BE32 (vhp
->extentsFile
.clumpSize
);
907 forkp
= VTOF((struct vnode
*)vcb
->catalogRefNum
);
908 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
909 forkp
->ff_extents
[i
].startBlock
=
910 SWAP_BE32 (vhp
->catalogFile
.extents
[i
].startBlock
);
911 forkp
->ff_extents
[i
].blockCount
=
912 SWAP_BE32 (vhp
->catalogFile
.extents
[i
].blockCount
);
914 forkp
->ff_size
= SWAP_BE64 (vhp
->catalogFile
.logicalSize
);
915 forkp
->ff_blocks
= SWAP_BE32 (vhp
->catalogFile
.totalBlocks
);
916 forkp
->ff_clumpsize
= SWAP_BE32 (vhp
->catalogFile
.clumpSize
);
918 if (hfsmp
->hfs_attribute_vp
) {
919 forkp
= VTOF(hfsmp
->hfs_attribute_vp
);
920 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
921 forkp
->ff_extents
[i
].startBlock
=
922 SWAP_BE32 (vhp
->attributesFile
.extents
[i
].startBlock
);
923 forkp
->ff_extents
[i
].blockCount
=
924 SWAP_BE32 (vhp
->attributesFile
.extents
[i
].blockCount
);
926 forkp
->ff_size
= SWAP_BE64 (vhp
->attributesFile
.logicalSize
);
927 forkp
->ff_blocks
= SWAP_BE32 (vhp
->attributesFile
.totalBlocks
);
928 forkp
->ff_clumpsize
= SWAP_BE32 (vhp
->attributesFile
.clumpSize
);
931 forkp
= VTOF((struct vnode
*)vcb
->allocationsRefNum
);
932 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
933 forkp
->ff_extents
[i
].startBlock
=
934 SWAP_BE32 (vhp
->allocationFile
.extents
[i
].startBlock
);
935 forkp
->ff_extents
[i
].blockCount
=
936 SWAP_BE32 (vhp
->allocationFile
.extents
[i
].blockCount
);
938 forkp
->ff_size
= SWAP_BE64 (vhp
->allocationFile
.logicalSize
);
939 forkp
->ff_blocks
= SWAP_BE32 (vhp
->allocationFile
.totalBlocks
);
940 forkp
->ff_clumpsize
= SWAP_BE32 (vhp
->allocationFile
.clumpSize
);
946 * Re-load B-tree header data
948 forkp
= VTOF((struct vnode
*)vcb
->extentsRefNum
);
949 if ( (error
= MacToVFSError( BTReloadData((FCB
*)forkp
) )) )
952 forkp
= VTOF((struct vnode
*)vcb
->catalogRefNum
);
953 if ( (error
= MacToVFSError( BTReloadData((FCB
*)forkp
) )) )
956 if (hfsmp
->hfs_attribute_vp
) {
957 forkp
= VTOF(hfsmp
->hfs_attribute_vp
);
958 if ( (error
= MacToVFSError( BTReloadData((FCB
*)forkp
) )) )
962 /* Reload the volume name */
963 if ((error
= cat_idlookup(hfsmp
, kHFSRootFolderID
, 0, 0, &cndesc
, NULL
, NULL
)))
965 vcb
->volumeNameEncodingHint
= cndesc
.cd_encoding
;
966 bcopy(cndesc
.cd_nameptr
, vcb
->vcbVN
, min(255, cndesc
.cd_namelen
));
967 cat_releasedesc(&cndesc
);
969 /* Re-establish private/hidden directories. */
970 hfs_privatedir_init(hfsmp
, FILE_HARDLINKS
);
971 hfs_privatedir_init(hfsmp
, DIR_HARDLINKS
);
973 /* In case any volume information changed to trigger a notification */
974 hfs_generate_volume_notifications(hfsmp
);
980 static uint64_t tv_to_usecs(struct timeval
*tv
)
982 return tv
->tv_sec
* 1000000ULL + tv
->tv_usec
;
985 // Returns TRUE if b - a >= usecs
986 static bool hfs_has_elapsed (const struct timeval
*a
,
987 const struct timeval
*b
,
991 timersub(b
, a
, &diff
);
992 return diff
.tv_sec
* 1000000ULL + diff
.tv_usec
>= usecs
;
995 void hfs_syncer(void *arg
, __unused wait_result_t wr
)
997 struct hfsmount
*hfsmp
= arg
;
1000 KDBG(HFSDBG_SYNCER
| DBG_FUNC_START
, obfuscate_addr(hfsmp
));
1002 hfs_syncer_lock(hfsmp
);
1004 while (ISSET(hfsmp
->hfs_flags
, HFS_RUN_SYNCER
)
1005 && timerisset(&hfsmp
->hfs_sync_req_oldest
)) {
1007 hfs_syncer_wait(hfsmp
, &HFS_META_DELAY_TS
);
1009 if (!ISSET(hfsmp
->hfs_flags
, HFS_RUN_SYNCER
)
1010 || !timerisset(&hfsmp
->hfs_sync_req_oldest
)) {
1014 /* Check to see whether we should flush now: either the oldest
1015 is > HFS_MAX_META_DELAY or HFS_META_DELAY has elapsed since
1016 the request and there are no pending writes. */
1019 uint64_t idle_time
= vfs_idle_time(hfsmp
->hfs_mp
);
1021 if (!hfs_has_elapsed(&hfsmp
->hfs_sync_req_oldest
, &now
,
1023 && idle_time
< HFS_META_DELAY
) {
1027 timerclear(&hfsmp
->hfs_sync_req_oldest
);
1029 hfs_syncer_unlock(hfsmp
);
1031 KDBG(HFSDBG_SYNCER_TIMED
| DBG_FUNC_START
, obfuscate_addr(hfsmp
));
1034 * We intentionally do a synchronous flush (of the journal or entire volume) here.
1035 * For journaled volumes, this means we wait until the metadata blocks are written
1036 * to both the journal and their final locations (in the B-trees, etc.).
1038 * This tends to avoid interleaving the metadata writes with other writes (for
1039 * example, user data, or to the journal when a later transaction notices that
1040 * an earlier transaction has finished its async writes, and then updates the
1041 * journal start in the journal header). Avoiding interleaving of writes is
1042 * very good for performance on simple flash devices like SD cards, thumb drives;
1043 * and on devices like floppies. Since removable devices tend to be this kind of
1044 * simple device, doing a synchronous flush actually improves performance in
1047 * NOTE: For non-journaled volumes, the call to hfs_sync will also cause dirty
1048 * user data to be written.
1051 hfs_flush(hfsmp
, HFS_FLUSH_JOURNAL_META
);
1053 hfs_sync(hfsmp
->hfs_mp
, MNT_WAIT
, vfs_context_current());
1056 KDBG(HFSDBG_SYNCER_TIMED
| DBG_FUNC_END
);
1058 hfs_syncer_lock(hfsmp
);
1061 hfsmp
->hfs_syncer_thread
= NULL
;
1062 hfs_syncer_unlock(hfsmp
);
1063 hfs_syncer_wakeup(hfsmp
);
1065 /* BE CAREFUL WHAT YOU ADD HERE: at this point hfs_unmount is free
1066 to continue and therefore hfsmp might be invalid. */
1068 KDBG(HFSDBG_SYNCER
| DBG_FUNC_END
);
1072 * Call into the allocator code and perform a full scan of the bitmap file.
1074 * This allows us to TRIM unallocated ranges if needed, and also to build up
1075 * an in-memory summary table of the state of the allocated blocks.
1077 void hfs_scan_blocks (struct hfsmount
*hfsmp
) {
1079 * Take the allocation file lock. Journal transactions will block until
1083 int flags
= hfs_systemfile_lock(hfsmp
, SFL_BITMAP
, HFS_EXCLUSIVE_LOCK
);
1086 * We serialize here with the HFS mount lock as we're mounting.
1088 * The mount can only proceed once this thread has acquired the bitmap
1089 * lock, since we absolutely do not want someone else racing in and
1090 * getting the bitmap lock, doing a read/write of the bitmap file,
1091 * then us getting the bitmap lock.
1093 * To prevent this, the mount thread takes the HFS mount mutex, starts us
1094 * up, then immediately msleeps on the scan_var variable in the mount
1095 * point as a condition variable. This serialization is safe since
1096 * if we race in and try to proceed while they're still holding the lock,
1097 * we'll block trying to acquire the global lock. Since the mount thread
1098 * acquires the HFS mutex before starting this function in a new thread,
1099 * any lock acquisition on our part must be linearizably AFTER the mount thread's.
1101 * Note that the HFS mount mutex is always taken last, and always for only
1102 * a short time. In this case, we just take it long enough to mark the
1103 * scan-in-flight bit.
1105 (void) hfs_lock_mount (hfsmp
);
1106 hfsmp
->scan_var
|= HFS_ALLOCATOR_SCAN_INFLIGHT
;
1107 wakeup((caddr_t
) &hfsmp
->scan_var
);
1108 hfs_unlock_mount (hfsmp
);
1110 /* Initialize the summary table */
1111 if (hfs_init_summary (hfsmp
)) {
1112 printf("hfs: could not initialize summary table for %s\n", hfsmp
->vcbVN
);
1116 * ScanUnmapBlocks assumes that the bitmap lock is held when you
1117 * call the function. We don't care if there were any errors issuing unmaps.
1119 * It will also attempt to build up the summary table for subsequent
1120 * allocator use, as configured.
1122 (void) ScanUnmapBlocks(hfsmp
);
1124 (void) hfs_lock_mount (hfsmp
);
1125 hfsmp
->scan_var
&= ~HFS_ALLOCATOR_SCAN_INFLIGHT
;
1126 hfsmp
->scan_var
|= HFS_ALLOCATOR_SCAN_COMPLETED
;
1127 wakeup((caddr_t
) &hfsmp
->scan_var
);
1128 hfs_unlock_mount (hfsmp
);
1130 buf_invalidateblks(hfsmp
->hfs_allocation_vp
, 0, 0, 0);
1132 hfs_systemfile_unlock(hfsmp
, flags
);
1136 static int hfs_root_unmounted_cleanly
= 0;
1138 SYSCTL_DECL(_vfs_generic
);
1139 HFS_SYSCTL(INT
, _vfs_generic
, OID_AUTO
, root_unmounted_cleanly
, CTLFLAG_RD
, &hfs_root_unmounted_cleanly
, 0, "Root filesystem was unmounted cleanly");
1142 * Common code for mount and mountroot
1145 hfs_mountfs(struct vnode
*devvp
, struct mount
*mp
, struct hfs_mount_args
*args
,
1146 int journal_replay_only
, vfs_context_t context
)
1148 struct proc
*p
= vfs_context_proc(context
);
1149 int retval
= E_NONE
;
1150 struct hfsmount
*hfsmp
= NULL
;
1153 HFSMasterDirectoryBlock
*mdbp
= NULL
;
1161 daddr64_t log_blkcnt
;
1162 u_int32_t log_blksize
;
1163 u_int32_t phys_blksize
;
1164 u_int32_t minblksize
;
1165 u_int32_t iswritable
;
1166 daddr64_t mdb_offset
;
1168 int isroot
= !journal_replay_only
&& args
== NULL
;
1169 u_int32_t device_features
= 0;
1172 ronly
= mp
&& vfs_isrdonly(mp
);
1173 dev
= vnode_specrdev(devvp
);
1174 cred
= p
? vfs_context_ucred(context
) : NOCRED
;
1180 minblksize
= kHFSBlockSize
;
1182 /* Advisory locking should be handled at the VFS layer */
1184 vfs_setlocklocal(mp
);
1186 /* Get the logical block size (treated as physical block size everywhere) */
1187 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKSIZE
, (caddr_t
)&log_blksize
, 0, context
)) {
1188 if (HFS_MOUNT_DEBUG
) {
1189 printf("hfs_mountfs: DKIOCGETBLOCKSIZE failed\n");
1194 if (log_blksize
== 0 || log_blksize
> 1024*1024*1024) {
1195 printf("hfs: logical block size 0x%x looks bad. Not mounting.\n", log_blksize
);
1200 /* Get the physical block size. */
1201 retval
= VNOP_IOCTL(devvp
, DKIOCGETPHYSICALBLOCKSIZE
, (caddr_t
)&phys_blksize
, 0, context
);
1203 if ((retval
!= ENOTSUP
) && (retval
!= ENOTTY
)) {
1204 if (HFS_MOUNT_DEBUG
) {
1205 printf("hfs_mountfs: DKIOCGETPHYSICALBLOCKSIZE failed\n");
1210 /* If device does not support this ioctl, assume that physical
1211 * block size is same as logical block size
1213 phys_blksize
= log_blksize
;
1215 if (phys_blksize
== 0 || phys_blksize
> MAXBSIZE
) {
1216 printf("hfs: physical block size 0x%x looks bad. Not mounting.\n", phys_blksize
);
1221 /* Switch to 512 byte sectors (temporarily) */
1222 if (log_blksize
> 512) {
1223 u_int32_t size512
= 512;
1225 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&size512
, FWRITE
, context
)) {
1226 if (HFS_MOUNT_DEBUG
) {
1227 printf("hfs_mountfs: DKIOCSETBLOCKSIZE failed \n");
1233 /* Get the number of 512 byte physical blocks. */
1234 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
, (caddr_t
)&log_blkcnt
, 0, context
)) {
1235 /* resetting block size may fail if getting block count did */
1236 (void)VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&log_blksize
, FWRITE
, context
);
1237 if (HFS_MOUNT_DEBUG
) {
1238 printf("hfs_mountfs: DKIOCGETBLOCKCOUNT failed\n");
1243 /* Compute an accurate disk size (i.e. within 512 bytes) */
1244 disksize
= (u_int64_t
)log_blkcnt
* (u_int64_t
)512;
1247 * On Tiger it is not necessary to switch the device
1248 * block size to be 4k if there are more than 31-bits
1249 * worth of blocks but to insure compatibility with
1250 * pre-Tiger systems we have to do it.
1252 * If the device size is not a multiple of 4K (8 * 512), then
1253 * switching the logical block size isn't going to help because
1254 * we will be unable to write the alternate volume header.
1255 * In this case, just leave the logical block size unchanged.
1257 if (log_blkcnt
> 0x000000007fffffff && (log_blkcnt
& 7) == 0) {
1258 minblksize
= log_blksize
= 4096;
1259 if (phys_blksize
< log_blksize
)
1260 phys_blksize
= log_blksize
;
1264 * The cluster layer is not currently prepared to deal with a logical
1265 * block size larger than the system's page size. (It can handle
1266 * blocks per page, but not multiple pages per block.) So limit the
1267 * logical block size to the page size.
1269 if (log_blksize
> PAGE_SIZE
) {
1270 log_blksize
= PAGE_SIZE
;
1273 /* Now switch to our preferred physical block size. */
1274 if (log_blksize
> 512) {
1275 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&log_blksize
, FWRITE
, context
)) {
1276 if (HFS_MOUNT_DEBUG
) {
1277 printf("hfs_mountfs: DKIOCSETBLOCKSIZE (2) failed\n");
1282 /* Get the count of physical blocks. */
1283 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
, (caddr_t
)&log_blkcnt
, 0, context
)) {
1284 if (HFS_MOUNT_DEBUG
) {
1285 printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (2) failed\n");
1293 * minblksize is the minimum physical block size
1294 * log_blksize has our preferred physical block size
1295 * log_blkcnt has the total number of physical blocks
1298 mdb_offset
= (daddr64_t
)HFS_PRI_SECTOR(log_blksize
);
1299 if ((retval
= (int)buf_meta_bread(devvp
,
1300 HFS_PHYSBLK_ROUNDDOWN(mdb_offset
, (phys_blksize
/log_blksize
)),
1301 phys_blksize
, cred
, &bp
))) {
1302 if (HFS_MOUNT_DEBUG
) {
1303 printf("hfs_mountfs: buf_meta_bread failed with %d\n", retval
);
1307 mdbp
= hfs_malloc(kMDBSize
);
1308 bcopy((char *)buf_dataptr(bp
) + HFS_PRI_OFFSET(phys_blksize
), mdbp
, kMDBSize
);
1312 hfsmp
= hfs_mallocz(sizeof(struct hfsmount
));
1314 hfs_chashinit_finish(hfsmp
);
1316 /* Init the ID lookup hashtable */
1317 hfs_idhash_init (hfsmp
);
1320 * See if the disk supports unmap (trim).
1322 * NOTE: vfs_init_io_attributes has not been called yet, so we can't use the io_flags field
1323 * returned by vfs_ioattr. We need to call VNOP_IOCTL ourselves.
1325 if (VNOP_IOCTL(devvp
, DKIOCGETFEATURES
, (caddr_t
)&device_features
, 0, context
) == 0) {
1326 if (device_features
& DK_FEATURE_UNMAP
) {
1327 hfsmp
->hfs_flags
|= HFS_UNMAP
;
1330 if(device_features
& DK_FEATURE_BARRIER
)
1331 hfsmp
->hfs_flags
|= HFS_FEATURE_BARRIER
;
1335 * See if the disk is a solid state device, too. We need this to decide what to do about
1338 if (VNOP_IOCTL(devvp
, DKIOCISSOLIDSTATE
, (caddr_t
)&isssd
, 0, context
) == 0) {
1340 hfsmp
->hfs_flags
|= HFS_SSD
;
1344 /* See if the underlying device is Core Storage or not */
1345 dk_corestorage_info_t cs_info
;
1346 memset(&cs_info
, 0, sizeof(dk_corestorage_info_t
));
1347 if (VNOP_IOCTL(devvp
, DKIOCCORESTORAGE
, (caddr_t
)&cs_info
, 0, context
) == 0) {
1348 hfsmp
->hfs_flags
|= HFS_CS
;
1349 if (isroot
&& (cs_info
.flags
& DK_CORESTORAGE_PIN_YOUR_METADATA
)) {
1350 hfsmp
->hfs_flags
|= HFS_CS_METADATA_PIN
;
1352 if (isroot
&& (cs_info
.flags
& DK_CORESTORAGE_ENABLE_HOTFILES
)) {
1353 hfsmp
->hfs_flags
|= HFS_CS_HOTFILE_PIN
;
1354 hfsmp
->hfs_cs_hotfile_size
= cs_info
.hotfile_size
;
1356 if ((cs_info
.flags
& DK_CORESTORAGE_PIN_YOUR_SWAPFILE
)) {
1357 hfsmp
->hfs_flags
|= HFS_CS_SWAPFILE_PIN
;
1359 struct vfsioattr ioattr
;
1360 vfs_ioattr(mp
, &ioattr
);
1361 ioattr
.io_flags
|= VFS_IOATTR_FLAGS_SWAPPIN_SUPPORTED
;
1362 ioattr
.io_max_swappin_available
= cs_info
.swapfile_pinning
;
1363 vfs_setioattr(mp
, &ioattr
);
1368 * Init the volume information structure
1371 lck_mtx_init(&hfsmp
->hfs_mutex
, hfs_mutex_group
, hfs_lock_attr
);
1372 lck_mtx_init(&hfsmp
->hfc_mutex
, hfs_mutex_group
, hfs_lock_attr
);
1373 lck_rw_init(&hfsmp
->hfs_global_lock
, hfs_rwlock_group
, hfs_lock_attr
);
1374 lck_spin_init(&hfsmp
->vcbFreeExtLock
, hfs_spinlock_group
, hfs_lock_attr
);
1377 vfs_setfsprivate(mp
, hfsmp
);
1378 hfsmp
->hfs_mp
= mp
; /* Make VFSTOHFS work */
1379 hfsmp
->hfs_raw_dev
= vnode_specrdev(devvp
);
1380 hfsmp
->hfs_devvp
= devvp
;
1381 vnode_ref(devvp
); /* Hold a ref on the device, dropped when hfsmp is freed. */
1382 hfsmp
->hfs_logical_block_size
= log_blksize
;
1383 hfsmp
->hfs_logical_block_count
= log_blkcnt
;
1384 hfsmp
->hfs_logical_bytes
= (uint64_t) log_blksize
* (uint64_t) log_blkcnt
;
1385 hfsmp
->hfs_physical_block_size
= phys_blksize
;
1386 hfsmp
->hfs_log_per_phys
= (phys_blksize
/ log_blksize
);
1387 hfsmp
->hfs_flags
|= HFS_WRITEABLE_MEDIA
;
1389 hfsmp
->hfs_flags
|= HFS_READ_ONLY
;
1390 if (mp
&& ((unsigned int)vfs_flags(mp
)) & MNT_UNKNOWNPERMISSIONS
)
1391 hfsmp
->hfs_flags
|= HFS_UNKNOWN_PERMS
;
1394 for (i
= 0; i
< MAXQUOTAS
; i
++)
1395 dqfileinit(&hfsmp
->hfs_qfiles
[i
]);
1399 hfsmp
->hfs_uid
= (args
->hfs_uid
== (uid_t
)VNOVAL
) ? UNKNOWNUID
: args
->hfs_uid
;
1400 if (hfsmp
->hfs_uid
== 0xfffffffd) hfsmp
->hfs_uid
= UNKNOWNUID
;
1401 hfsmp
->hfs_gid
= (args
->hfs_gid
== (gid_t
)VNOVAL
) ? UNKNOWNGID
: args
->hfs_gid
;
1402 if (hfsmp
->hfs_gid
== 0xfffffffd) hfsmp
->hfs_gid
= UNKNOWNGID
;
1403 vfs_setowner(mp
, hfsmp
->hfs_uid
, hfsmp
->hfs_gid
); /* tell the VFS */
1404 if (args
->hfs_mask
!= (mode_t
)VNOVAL
) {
1405 hfsmp
->hfs_dir_mask
= args
->hfs_mask
& ALLPERMS
;
1406 if (args
->flags
& HFSFSMNT_NOXONFILES
) {
1407 hfsmp
->hfs_file_mask
= (args
->hfs_mask
& DEFFILEMODE
);
1409 hfsmp
->hfs_file_mask
= args
->hfs_mask
& ALLPERMS
;
1412 hfsmp
->hfs_dir_mask
= UNKNOWNPERMISSIONS
& ALLPERMS
; /* 0777: rwx---rwx */
1413 hfsmp
->hfs_file_mask
= UNKNOWNPERMISSIONS
& DEFFILEMODE
; /* 0666: no --x by default? */
1415 if ((args
->flags
!= (int)VNOVAL
) && (args
->flags
& HFSFSMNT_WRAPPER
))
1418 /* Even w/o explicit mount arguments, MNT_UNKNOWNPERMISSIONS requires setting up uid, gid, and mask: */
1419 if (mp
&& ((unsigned int)vfs_flags(mp
)) & MNT_UNKNOWNPERMISSIONS
) {
1420 hfsmp
->hfs_uid
= UNKNOWNUID
;
1421 hfsmp
->hfs_gid
= UNKNOWNGID
;
1422 vfs_setowner(mp
, hfsmp
->hfs_uid
, hfsmp
->hfs_gid
); /* tell the VFS */
1423 hfsmp
->hfs_dir_mask
= UNKNOWNPERMISSIONS
& ALLPERMS
; /* 0777: rwx---rwx */
1424 hfsmp
->hfs_file_mask
= UNKNOWNPERMISSIONS
& DEFFILEMODE
; /* 0666: no --x by default? */
1428 /* Find out if disk media is writable. */
1429 if (VNOP_IOCTL(devvp
, DKIOCISWRITABLE
, (caddr_t
)&iswritable
, 0, context
) == 0) {
1431 hfsmp
->hfs_flags
|= HFS_WRITEABLE_MEDIA
;
1433 hfsmp
->hfs_flags
&= ~HFS_WRITEABLE_MEDIA
;
1437 rl_init(&hfsmp
->hfs_reserved_ranges
[0]);
1438 rl_init(&hfsmp
->hfs_reserved_ranges
[1]);
1440 // record the current time at which we're mounting this volume
1443 hfsmp
->hfs_mount_time
= tv
.tv_sec
;
1445 /* Mount a standard HFS disk */
1446 if ((SWAP_BE16(mdbp
->drSigWord
) == kHFSSigWord
) &&
1447 (mntwrapper
|| (SWAP_BE16(mdbp
->drEmbedSigWord
) != kHFSPlusSigWord
))) {
1449 /* If only journal replay is requested, exit immediately */
1450 if (journal_replay_only
) {
1455 /* On 10.6 and beyond, non read-only mounts for HFS standard vols get rejected */
1456 if (vfs_isrdwr(mp
)) {
1461 printf("hfs_mountfs: Mounting HFS Standard volumes was deprecated in Mac OS 10.7 \n");
1463 /* Treat it as if it's read-only and not writeable */
1464 hfsmp
->hfs_flags
|= HFS_READ_ONLY
;
1465 hfsmp
->hfs_flags
&= ~HFS_WRITEABLE_MEDIA
;
1467 if ((vfs_flags(mp
) & MNT_ROOTFS
)) {
1468 retval
= EINVAL
; /* Cannot root from HFS standard disks */
1471 /* HFS disks can only use 512 byte physical blocks */
1472 if (log_blksize
> kHFSBlockSize
) {
1473 log_blksize
= kHFSBlockSize
;
1474 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&log_blksize
, FWRITE
, context
)) {
1478 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
, (caddr_t
)&log_blkcnt
, 0, context
)) {
1482 hfsmp
->hfs_logical_block_size
= log_blksize
;
1483 hfsmp
->hfs_logical_block_count
= log_blkcnt
;
1484 hfsmp
->hfs_logical_bytes
= (uint64_t) log_blksize
* (uint64_t) log_blkcnt
;
1485 hfsmp
->hfs_physical_block_size
= log_blksize
;
1486 hfsmp
->hfs_log_per_phys
= 1;
1489 hfsmp
->hfs_encoding
= args
->hfs_encoding
;
1490 HFSTOVCB(hfsmp
)->volumeNameEncodingHint
= args
->hfs_encoding
;
1492 /* establish the timezone */
1493 gTimeZone
= args
->hfs_timezone
;
1496 retval
= hfs_getconverter(hfsmp
->hfs_encoding
, &hfsmp
->hfs_get_unicode
,
1497 &hfsmp
->hfs_get_hfsname
);
1501 retval
= hfs_MountHFSVolume(hfsmp
, mdbp
, p
);
1503 (void) hfs_relconverter(hfsmp
->hfs_encoding
);
1505 /* On platforms where HFS Standard is not supported, deny the mount altogether */
1511 else { /* Mount an HFS Plus disk */
1512 HFSPlusVolumeHeader
*vhp
;
1513 off_t embeddedOffset
;
1514 int jnl_disable
= 0;
1516 /* Get the embedded Volume Header */
1517 if (SWAP_BE16(mdbp
->drEmbedSigWord
) == kHFSPlusSigWord
) {
1518 embeddedOffset
= SWAP_BE16(mdbp
->drAlBlSt
) * kHFSBlockSize
;
1519 embeddedOffset
+= (u_int64_t
)SWAP_BE16(mdbp
->drEmbedExtent
.startBlock
) *
1520 (u_int64_t
)SWAP_BE32(mdbp
->drAlBlkSiz
);
1523 * Cooperative Fusion is not allowed on embedded HFS+
1524 * filesystems (HFS+ inside HFS standard wrapper)
1526 hfsmp
->hfs_flags
&= ~HFS_CS_METADATA_PIN
;
1529 * If the embedded volume doesn't start on a block
1530 * boundary, then switch the device to a 512-byte
1531 * block size so everything will line up on a block
1534 if ((embeddedOffset
% log_blksize
) != 0) {
1535 printf("hfs_mountfs: embedded volume offset not"
1536 " a multiple of physical block size (%d);"
1537 " switching to 512\n", log_blksize
);
1539 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
,
1540 (caddr_t
)&log_blksize
, FWRITE
, context
)) {
1542 if (HFS_MOUNT_DEBUG
) {
1543 printf("hfs_mountfs: DKIOCSETBLOCKSIZE (3) failed\n");
1548 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
,
1549 (caddr_t
)&log_blkcnt
, 0, context
)) {
1550 if (HFS_MOUNT_DEBUG
) {
1551 printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (3) failed\n");
1556 /* Note: relative block count adjustment */
1557 hfsmp
->hfs_logical_block_count
*=
1558 hfsmp
->hfs_logical_block_size
/ log_blksize
;
1560 /* Update logical /physical block size */
1561 hfsmp
->hfs_logical_block_size
= log_blksize
;
1562 hfsmp
->hfs_physical_block_size
= log_blksize
;
1564 phys_blksize
= log_blksize
;
1565 hfsmp
->hfs_log_per_phys
= 1;
1568 disksize
= (u_int64_t
)SWAP_BE16(mdbp
->drEmbedExtent
.blockCount
) *
1569 (u_int64_t
)SWAP_BE32(mdbp
->drAlBlkSiz
);
1571 hfsmp
->hfs_logical_block_count
= disksize
/ log_blksize
;
1573 hfsmp
->hfs_logical_bytes
= (uint64_t) hfsmp
->hfs_logical_block_count
* (uint64_t) hfsmp
->hfs_logical_block_size
;
1575 mdb_offset
= (daddr64_t
)((embeddedOffset
/ log_blksize
) + HFS_PRI_SECTOR(log_blksize
));
1578 buf_markinvalid(bp
);
1582 retval
= (int)buf_meta_bread(devvp
, HFS_PHYSBLK_ROUNDDOWN(mdb_offset
, hfsmp
->hfs_log_per_phys
),
1583 phys_blksize
, cred
, &bp
);
1585 if (HFS_MOUNT_DEBUG
) {
1586 printf("hfs_mountfs: buf_meta_bread (2) failed with %d\n", retval
);
1590 bcopy((char *)buf_dataptr(bp
) + HFS_PRI_OFFSET(phys_blksize
), mdbp
, 512);
1593 vhp
= (HFSPlusVolumeHeader
*) mdbp
;
1596 else { /* pure HFS+ */
1598 vhp
= (HFSPlusVolumeHeader
*) mdbp
;
1601 retval
= hfs_ValidateHFSPlusVolumeHeader(hfsmp
, vhp
);
1606 * If allocation block size is less than the physical block size,
1607 * invalidate the buffer read in using native physical block size
1608 * to ensure data consistency.
1610 * HFS Plus reserves one allocation block for the Volume Header.
1611 * If the physical size is larger, then when we read the volume header,
1612 * we will also end up reading in the next allocation block(s).
1613 * If those other allocation block(s) is/are modified, and then the volume
1614 * header is modified, the write of the volume header's buffer will write
1615 * out the old contents of the other allocation blocks.
1617 * We assume that the physical block size is same as logical block size.
1618 * The physical block size value is used to round down the offsets for
1619 * reading and writing the primary and alternate volume headers.
1621 * The same logic is also in hfs_MountHFSPlusVolume to ensure that
1622 * hfs_mountfs, hfs_MountHFSPlusVolume and later are doing the I/Os
1623 * using same block size.
1625 if (SWAP_BE32(vhp
->blockSize
) < hfsmp
->hfs_physical_block_size
) {
1626 phys_blksize
= hfsmp
->hfs_logical_block_size
;
1627 hfsmp
->hfs_physical_block_size
= hfsmp
->hfs_logical_block_size
;
1628 hfsmp
->hfs_log_per_phys
= 1;
1629 // There should be one bp associated with devvp in buffer cache.
1630 retval
= buf_invalidateblks(devvp
, 0, 0, 0);
1636 hfs_root_unmounted_cleanly
= ((SWAP_BE32(vhp
->attributes
) & kHFSVolumeUnmountedMask
) != 0);
1640 * On inconsistent disks, do not allow read-write mount
1641 * unless it is the boot volume being mounted. We also
1642 * always want to replay the journal if the journal_replay_only
1643 * flag is set because that will (most likely) get the
1644 * disk into a consistent state before fsck_hfs starts
1647 if (!journal_replay_only
1648 && !(vfs_flags(mp
) & MNT_ROOTFS
)
1649 && (SWAP_BE32(vhp
->attributes
) & kHFSVolumeInconsistentMask
)
1650 && !(hfsmp
->hfs_flags
& HFS_READ_ONLY
)) {
1652 if (HFS_MOUNT_DEBUG
) {
1653 printf("hfs_mountfs: failed to mount non-root inconsistent disk\n");
1664 if (args
!= NULL
&& (args
->flags
& HFSFSMNT_EXTENDED_ARGS
) &&
1665 args
->journal_disable
) {
1670 // We only initialize the journal here if the last person
1671 // to mount this volume was journaling aware. Otherwise
1672 // we delay journal initialization until later at the end
1673 // of hfs_MountHFSPlusVolume() because the last person who
1674 // mounted it could have messed things up behind our back
1675 // (so we need to go find the .journal file, make sure it's
1676 // the right size, re-sync up if it was moved, etc).
1678 if ( (SWAP_BE32(vhp
->lastMountedVersion
) == kHFSJMountVersion
)
1679 && (SWAP_BE32(vhp
->attributes
) & kHFSVolumeJournaledMask
)
1682 // if we're able to init the journal, mark the mount
1683 // point as journaled.
1685 if ((retval
= hfs_early_journal_init(hfsmp
, vhp
, args
, embeddedOffset
, mdb_offset
, mdbp
, cred
)) == 0) {
1687 vfs_setflags(mp
, (u_int64_t
)((unsigned int)MNT_JOURNALED
));
1689 if (retval
== EROFS
) {
1690 // EROFS is a special error code that means the volume has an external
1691 // journal which we couldn't find. in that case we do not want to
1692 // rewrite the volume header - we'll just refuse to mount the volume.
1693 if (HFS_MOUNT_DEBUG
) {
1694 printf("hfs_mountfs: hfs_early_journal_init indicated external jnl \n");
1700 // if the journal failed to open, then set the lastMountedVersion
1701 // to be "FSK!" which fsck_hfs will see and force the fsck instead
1702 // of just bailing out because the volume is journaled.
1704 if (HFS_MOUNT_DEBUG
) {
1705 printf("hfs_mountfs: hfs_early_journal_init failed, setting to FSK \n");
1708 HFSPlusVolumeHeader
*jvhp
;
1710 hfsmp
->hfs_flags
|= HFS_NEED_JNL_RESET
;
1712 if (mdb_offset
== 0) {
1713 mdb_offset
= (daddr64_t
)((embeddedOffset
/ log_blksize
) + HFS_PRI_SECTOR(log_blksize
));
1717 retval
= (int)buf_meta_bread(devvp
,
1718 HFS_PHYSBLK_ROUNDDOWN(mdb_offset
, hfsmp
->hfs_log_per_phys
),
1719 phys_blksize
, cred
, &bp
);
1721 jvhp
= (HFSPlusVolumeHeader
*)(buf_dataptr(bp
) + HFS_PRI_OFFSET(phys_blksize
));
1723 if (SWAP_BE16(jvhp
->signature
) == kHFSPlusSigWord
|| SWAP_BE16(jvhp
->signature
) == kHFSXSigWord
) {
1724 printf ("hfs(1): Journal replay fail. Writing lastMountVersion as FSK!\n");
1725 jvhp
->lastMountedVersion
= SWAP_BE32(kFSKMountVersion
);
1733 // clear this so the error exit path won't try to use it
1738 // if this isn't the root device just bail out.
1739 // If it is the root device we just continue on
1740 // in the hopes that fsck_hfs will be able to
1741 // fix any damage that exists on the volume.
1742 if (mp
&& !(vfs_flags(mp
) & MNT_ROOTFS
)) {
1743 if (HFS_MOUNT_DEBUG
) {
1744 printf("hfs_mountfs: hfs_early_journal_init failed, erroring out \n");
1752 /* Either the journal is replayed successfully, or there
1753 * was nothing to replay, or no journal exists. In any case,
1756 if (journal_replay_only
) {
1762 (void) hfs_getconverter(0, &hfsmp
->hfs_get_unicode
, &hfsmp
->hfs_get_hfsname
);
1765 retval
= hfs_MountHFSPlusVolume(hfsmp
, vhp
, embeddedOffset
, disksize
, p
, args
, cred
);
1767 * If the backend didn't like our physical blocksize
1768 * then retry with physical blocksize of 512.
1770 if ((retval
== ENXIO
) && (log_blksize
> 512) && (log_blksize
!= minblksize
)) {
1771 printf("hfs_mountfs: could not use physical block size "
1772 "(%d) switching to 512\n", log_blksize
);
1774 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&log_blksize
, FWRITE
, context
)) {
1775 if (HFS_MOUNT_DEBUG
) {
1776 printf("hfs_mountfs: DKIOCSETBLOCKSIZE (4) failed \n");
1781 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
, (caddr_t
)&log_blkcnt
, 0, context
)) {
1782 if (HFS_MOUNT_DEBUG
) {
1783 printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (4) failed \n");
1788 set_fsblocksize(devvp
);
1789 /* Note: relative block count adjustment (in case this is an embedded volume). */
1790 hfsmp
->hfs_logical_block_count
*= hfsmp
->hfs_logical_block_size
/ log_blksize
;
1791 hfsmp
->hfs_logical_block_size
= log_blksize
;
1792 hfsmp
->hfs_log_per_phys
= hfsmp
->hfs_physical_block_size
/ log_blksize
;
1794 hfsmp
->hfs_logical_bytes
= (uint64_t) hfsmp
->hfs_logical_block_count
* (uint64_t) hfsmp
->hfs_logical_block_size
;
1796 if (hfsmp
->jnl
&& hfsmp
->jvp
== devvp
) {
1797 // close and re-open this with the new block size
1798 journal_close(hfsmp
->jnl
);
1800 if (hfs_early_journal_init(hfsmp
, vhp
, args
, embeddedOffset
, mdb_offset
, mdbp
, cred
) == 0) {
1801 vfs_setflags(mp
, (u_int64_t
)((unsigned int)MNT_JOURNALED
));
1803 // if the journal failed to open, then set the lastMountedVersion
1804 // to be "FSK!" which fsck_hfs will see and force the fsck instead
1805 // of just bailing out because the volume is journaled.
1807 if (HFS_MOUNT_DEBUG
) {
1808 printf("hfs_mountfs: hfs_early_journal_init (2) resetting.. \n");
1810 HFSPlusVolumeHeader
*jvhp
;
1812 hfsmp
->hfs_flags
|= HFS_NEED_JNL_RESET
;
1814 if (mdb_offset
== 0) {
1815 mdb_offset
= (daddr64_t
)((embeddedOffset
/ log_blksize
) + HFS_PRI_SECTOR(log_blksize
));
1819 retval
= (int)buf_meta_bread(devvp
, HFS_PHYSBLK_ROUNDDOWN(mdb_offset
, hfsmp
->hfs_log_per_phys
),
1820 phys_blksize
, cred
, &bp
);
1822 jvhp
= (HFSPlusVolumeHeader
*)(buf_dataptr(bp
) + HFS_PRI_OFFSET(phys_blksize
));
1824 if (SWAP_BE16(jvhp
->signature
) == kHFSPlusSigWord
|| SWAP_BE16(jvhp
->signature
) == kHFSXSigWord
) {
1825 printf ("hfs(2): Journal replay fail. Writing lastMountVersion as FSK!\n");
1826 jvhp
->lastMountedVersion
= SWAP_BE32(kFSKMountVersion
);
1834 // clear this so the error exit path won't try to use it
1839 // if this isn't the root device just bail out.
1840 // If it is the root device we just continue on
1841 // in the hopes that fsck_hfs will be able to
1842 // fix any damage that exists on the volume.
1843 if ( !(vfs_flags(mp
) & MNT_ROOTFS
)) {
1844 if (HFS_MOUNT_DEBUG
) {
1845 printf("hfs_mountfs: hfs_early_journal_init (2) failed \n");
1853 /* Try again with a smaller block size... */
1854 retval
= hfs_MountHFSPlusVolume(hfsmp
, vhp
, embeddedOffset
, disksize
, p
, args
, cred
);
1855 if (retval
&& HFS_MOUNT_DEBUG
) {
1856 printf("hfs_MountHFSPlusVolume (late) returned %d\n",retval
);
1861 (void) hfs_relconverter(0);
1865 // save off a snapshot of the mtime from the previous mount
1867 hfsmp
->hfs_last_mounted_mtime
= hfsmp
->hfs_mtime
;
1870 if (HFS_MOUNT_DEBUG
) {
1871 printf("hfs_mountfs: encountered failure %d \n", retval
);
1876 struct vfsstatfs
*vsfs
= vfs_statfs(mp
);
1877 vsfs
->f_fsid
.val
[0] = dev
;
1878 vsfs
->f_fsid
.val
[1] = vfs_typenum(mp
);
1880 vfs_setmaxsymlen(mp
, 0);
1883 if (ISSET(hfsmp
->hfs_flags
, HFS_STANDARD
)) {
1884 /* HFS standard doesn't support extended readdir! */
1885 mount_set_noreaddirext (mp
);
1891 * Set the free space warning levels for a non-root volume:
1893 * Set the "danger" limit to 1% of the volume size or 100MB, whichever
1894 * is less. Set the "warning" limit to 2% of the volume size or 150MB,
1895 * whichever is less. And last, set the "desired" freespace level to
1896 * to 3% of the volume size or 200MB, whichever is less.
1898 hfsmp
->hfs_freespace_notify_dangerlimit
=
1899 MIN(HFS_VERYLOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1900 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_VERYLOWDISKTRIGGERFRACTION
);
1901 hfsmp
->hfs_freespace_notify_warninglimit
=
1902 MIN(HFS_LOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1903 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_LOWDISKTRIGGERFRACTION
);
1904 hfsmp
->hfs_freespace_notify_desiredlevel
=
1905 MIN(HFS_LOWDISKSHUTOFFLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1906 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_LOWDISKSHUTOFFFRACTION
);
1909 * Set the free space warning levels for the root volume:
1911 * Set the "danger" limit to 5% of the volume size or 512MB, whichever
1912 * is less. Set the "warning" limit to 10% of the volume size or 1GB,
1913 * whichever is less. And last, set the "desired" freespace level to
1914 * to 11% of the volume size or 1.25GB, whichever is less.
1916 * NOTE: While those are the default limits, KernelEventAgent (as of 3/2016)
1917 * will unilaterally override these to the following on OSX only:
1919 * Warning: Min (2% of root volume, 10GB), with a floor of 10GB
1920 * Desired: Warning Threshold + 1.5GB
1922 hfsmp
->hfs_freespace_notify_dangerlimit
=
1923 MIN(HFS_ROOTVERYLOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1924 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_ROOTVERYLOWDISKTRIGGERFRACTION
);
1925 hfsmp
->hfs_freespace_notify_warninglimit
=
1926 MIN(HFS_ROOTLOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1927 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_ROOTLOWDISKTRIGGERFRACTION
);
1928 hfsmp
->hfs_freespace_notify_desiredlevel
=
1929 MIN(HFS_ROOTLOWDISKSHUTOFFLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1930 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_ROOTLOWDISKSHUTOFFFRACTION
);
1933 /* Check if the file system exists on virtual device, like disk image */
1934 if (VNOP_IOCTL(devvp
, DKIOCISVIRTUAL
, (caddr_t
)&isvirtual
, 0, context
) == 0) {
1936 hfsmp
->hfs_flags
|= HFS_VIRTUAL_DEVICE
;
1941 && !ISSET(hfsmp
->hfs_flags
, HFS_VIRTUAL_DEVICE
)
1942 && hfs_is_ejectable(vfs_statfs(mp
)->f_mntfromname
)) {
1943 SET(hfsmp
->hfs_flags
, HFS_RUN_SYNCER
);
1946 const char *dev_name
= (hfsmp
->hfs_devvp
1947 ? vnode_getname_printable(hfsmp
->hfs_devvp
) : NULL
);
1949 printf("hfs: mounted %s on device %s\n",
1950 (hfsmp
->vcbVN
[0] ? (const char*) hfsmp
->vcbVN
: "unknown"),
1951 dev_name
?: "unknown device");
1954 vnode_putname_printable(dev_name
);
1957 * Start looking for free space to drop below this level and generate a
1958 * warning immediately if needed:
1960 hfsmp
->hfs_notification_conditions
= 0;
1961 hfs_generate_volume_notifications(hfsmp
);
1964 (void) hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
);
1966 hfs_free(mdbp
, kMDBSize
);
1973 hfs_free(mdbp
, kMDBSize
);
1975 hfs_close_jvp(hfsmp
);
1978 if (hfsmp
->hfs_devvp
) {
1979 vnode_rele(hfsmp
->hfs_devvp
);
1981 hfs_locks_destroy(hfsmp
);
1982 hfs_delete_chash(hfsmp
);
1983 hfs_idhash_destroy (hfsmp
);
1985 hfs_free(hfsmp
, sizeof(*hfsmp
));
1987 vfs_setfsprivate(mp
, NULL
);
1994 * Make a filesystem operational.
1995 * Nothing to do at the moment.
1999 hfs_start(__unused
struct mount
*mp
, __unused
int flags
, __unused vfs_context_t context
)
2006 * unmount system call
2009 hfs_unmount(struct mount
*mp
, int mntflags
, vfs_context_t context
)
2011 struct proc
*p
= vfs_context_proc(context
);
2012 struct hfsmount
*hfsmp
= VFSTOHFS(mp
);
2013 int retval
= E_NONE
;
2020 if (mntflags
& MNT_FORCE
) {
2021 flags
|= FORCECLOSE
;
2025 const char *dev_name
= (hfsmp
->hfs_devvp
2026 ? vnode_getname_printable(hfsmp
->hfs_devvp
) : NULL
);
2028 printf("hfs: unmount initiated on %s on device %s\n",
2029 (hfsmp
->vcbVN
[0] ? (const char*) hfsmp
->vcbVN
: "unknown"),
2030 dev_name
?: "unknown device");
2033 vnode_putname_printable(dev_name
);
2035 if ((retval
= hfs_flushfiles(mp
, flags
, p
)) && !force
)
2038 if (hfsmp
->hfs_flags
& HFS_METADATA_ZONE
)
2039 (void) hfs_recording_suspend(hfsmp
);
2041 hfs_syncer_free(hfsmp
);
2043 if (hfsmp
->hfs_flags
& HFS_SUMMARY_TABLE
) {
2044 if (hfsmp
->hfs_summary_table
) {
2047 * Take the bitmap lock to serialize against a concurrent bitmap scan still in progress
2049 if (hfsmp
->hfs_allocation_vp
) {
2050 err
= hfs_lock (VTOC(hfsmp
->hfs_allocation_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2052 hfs_free(hfsmp
->hfs_summary_table
, hfsmp
->hfs_summary_bytes
);
2053 hfsmp
->hfs_summary_table
= NULL
;
2054 hfsmp
->hfs_flags
&= ~HFS_SUMMARY_TABLE
;
2056 if (err
== 0 && hfsmp
->hfs_allocation_vp
){
2057 hfs_unlock (VTOC(hfsmp
->hfs_allocation_vp
));
2064 * Flush out the b-trees, volume bitmap and Volume Header
2066 if ((hfsmp
->hfs_flags
& HFS_READ_ONLY
) == 0) {
2067 retval
= hfs_start_transaction(hfsmp
);
2070 } else if (!force
) {
2074 if (hfsmp
->hfs_startup_vp
) {
2075 (void) hfs_lock(VTOC(hfsmp
->hfs_startup_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2076 retval
= hfs_fsync(hfsmp
->hfs_startup_vp
, MNT_WAIT
, 0, p
);
2077 hfs_unlock(VTOC(hfsmp
->hfs_startup_vp
));
2078 if (retval
&& !force
)
2082 if (hfsmp
->hfs_attribute_vp
) {
2083 (void) hfs_lock(VTOC(hfsmp
->hfs_attribute_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2084 retval
= hfs_fsync(hfsmp
->hfs_attribute_vp
, MNT_WAIT
, 0, p
);
2085 hfs_unlock(VTOC(hfsmp
->hfs_attribute_vp
));
2086 if (retval
&& !force
)
2090 (void) hfs_lock(VTOC(hfsmp
->hfs_catalog_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2091 retval
= hfs_fsync(hfsmp
->hfs_catalog_vp
, MNT_WAIT
, 0, p
);
2092 hfs_unlock(VTOC(hfsmp
->hfs_catalog_vp
));
2093 if (retval
&& !force
)
2096 (void) hfs_lock(VTOC(hfsmp
->hfs_extents_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2097 retval
= hfs_fsync(hfsmp
->hfs_extents_vp
, MNT_WAIT
, 0, p
);
2098 hfs_unlock(VTOC(hfsmp
->hfs_extents_vp
));
2099 if (retval
&& !force
)
2102 if (hfsmp
->hfs_allocation_vp
) {
2103 (void) hfs_lock(VTOC(hfsmp
->hfs_allocation_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2104 retval
= hfs_fsync(hfsmp
->hfs_allocation_vp
, MNT_WAIT
, 0, p
);
2105 hfs_unlock(VTOC(hfsmp
->hfs_allocation_vp
));
2106 if (retval
&& !force
)
2110 if (hfsmp
->hfc_filevp
&& vnode_issystem(hfsmp
->hfc_filevp
)) {
2111 retval
= hfs_fsync(hfsmp
->hfc_filevp
, MNT_WAIT
, 0, p
);
2112 if (retval
&& !force
)
2116 /* If runtime corruption was detected, indicate that the volume
2117 * was not unmounted cleanly.
2119 if (hfsmp
->vcbAtrb
& kHFSVolumeInconsistentMask
) {
2120 HFSTOVCB(hfsmp
)->vcbAtrb
&= ~kHFSVolumeUnmountedMask
;
2122 HFSTOVCB(hfsmp
)->vcbAtrb
|= kHFSVolumeUnmountedMask
;
2125 if (hfsmp
->hfs_flags
& HFS_HAS_SPARSE_DEVICE
) {
2127 u_int32_t min_start
= hfsmp
->totalBlocks
;
2129 // set the nextAllocation pointer to the smallest free block number
2130 // we've seen so on the next mount we won't rescan unnecessarily
2131 lck_spin_lock(&hfsmp
->vcbFreeExtLock
);
2132 for(i
=0; i
< (int)hfsmp
->vcbFreeExtCnt
; i
++) {
2133 if (hfsmp
->vcbFreeExt
[i
].startBlock
< min_start
) {
2134 min_start
= hfsmp
->vcbFreeExt
[i
].startBlock
;
2137 lck_spin_unlock(&hfsmp
->vcbFreeExtLock
);
2138 if (min_start
< hfsmp
->nextAllocation
) {
2139 hfsmp
->nextAllocation
= min_start
;
2143 retval
= hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
);
2145 HFSTOVCB(hfsmp
)->vcbAtrb
&= ~kHFSVolumeUnmountedMask
;
2147 goto err_exit
; /* could not flush everything */
2151 hfs_end_transaction(hfsmp
);
2157 hfs_flush(hfsmp
, HFS_FLUSH_FULL
);
2161 * Invalidate our caches and release metadata vnodes
2163 (void) hfsUnmount(hfsmp
, p
);
2166 if (HFSTOVCB(hfsmp
)->vcbSigWord
== kHFSSigWord
) {
2167 (void) hfs_relconverter(hfsmp
->hfs_encoding
);
2173 journal_close(hfsmp
->jnl
);
2177 VNOP_FSYNC(hfsmp
->hfs_devvp
, MNT_WAIT
, context
);
2179 hfs_close_jvp(hfsmp
);
2182 * Last chance to dump unreferenced system files.
2184 (void) vflush(mp
, NULLVP
, FORCECLOSE
);
2187 /* Drop our reference on the backing fs (if any). */
2188 if ((hfsmp
->hfs_flags
& HFS_HAS_SPARSE_DEVICE
) && hfsmp
->hfs_backingvp
) {
2189 struct vnode
* tmpvp
;
2191 hfsmp
->hfs_flags
&= ~HFS_HAS_SPARSE_DEVICE
;
2192 tmpvp
= hfsmp
->hfs_backingvp
;
2193 hfsmp
->hfs_backingvp
= NULLVP
;
2196 #endif /* HFS_SPARSE_DEV */
2198 vnode_rele(hfsmp
->hfs_devvp
);
2200 hfs_locks_destroy(hfsmp
);
2201 hfs_delete_chash(hfsmp
);
2202 hfs_idhash_destroy(hfsmp
);
2204 hfs_assert(TAILQ_EMPTY(&hfsmp
->hfs_reserved_ranges
[HFS_TENTATIVE_BLOCKS
])
2205 && TAILQ_EMPTY(&hfsmp
->hfs_reserved_ranges
[HFS_LOCKED_BLOCKS
]));
2206 hfs_assert(!hfsmp
->lockedBlocks
);
2208 hfs_free(hfsmp
, sizeof(*hfsmp
));
2211 if (OSDecrementAtomic(&hfs_active_mounts
) == 1) {
2212 if (hfs_dump_allocations())
2215 printf("hfs: last unmount and nothing was leaked!\n");
2216 msleep(hfs_unmount
, NULL
, PINOD
, "hfs_unmount",
2217 &(struct timespec
){ 5, 0 });
2226 hfs_end_transaction(hfsmp
);
2233 * Return the root of a filesystem.
2235 int hfs_vfs_root(struct mount
*mp
, struct vnode
**vpp
, __unused vfs_context_t context
)
2237 return hfs_vget(VFSTOHFS(mp
), (cnid_t
)kHFSRootFolderID
, vpp
, 1, 0);
2242 * Do operations associated with quotas
2246 hfs_quotactl(__unused
struct mount
*mp
, __unused
int cmds
, __unused uid_t uid
, __unused caddr_t datap
, __unused vfs_context_t context
)
2252 hfs_quotactl(struct mount
*mp
, int cmds
, uid_t uid
, caddr_t datap
, vfs_context_t context
)
2254 struct proc
*p
= vfs_context_proc(context
);
2255 int cmd
, type
, error
;
2258 uid
= kauth_cred_getuid(vfs_context_ucred(context
));
2259 cmd
= cmds
>> SUBCMDSHIFT
;
2266 if (uid
== kauth_cred_getuid(vfs_context_ucred(context
)))
2270 if ( (error
= vfs_context_suser(context
)) )
2274 type
= cmds
& SUBCMDMASK
;
2275 if ((u_int
)type
>= MAXQUOTAS
)
2277 if (vfs_busy(mp
, LK_NOWAIT
))
2283 error
= hfs_quotaon(p
, mp
, type
, datap
);
2287 error
= hfs_quotaoff(p
, mp
, type
);
2291 error
= hfs_setquota(mp
, uid
, type
, datap
);
2295 error
= hfs_setuse(mp
, uid
, type
, datap
);
2299 error
= hfs_getquota(mp
, uid
, type
, datap
);
2303 error
= hfs_qsync(mp
);
2307 error
= hfs_quotastat(mp
, type
, datap
);
2320 /* Subtype is composite of bits */
2321 #define HFS_SUBTYPE_JOURNALED 0x01
2322 #define HFS_SUBTYPE_CASESENSITIVE 0x02
2323 /* bits 2 - 6 reserved */
2324 #define HFS_SUBTYPE_STANDARDHFS 0x80
2327 * Get file system statistics.
2330 hfs_statfs(struct mount
*mp
, register struct vfsstatfs
*sbp
, __unused vfs_context_t context
)
2332 ExtendedVCB
*vcb
= VFSTOVCB(mp
);
2333 struct hfsmount
*hfsmp
= VFSTOHFS(mp
);
2334 u_int16_t subtype
= 0;
2336 sbp
->f_bsize
= (u_int32_t
)vcb
->blockSize
;
2337 sbp
->f_iosize
= (size_t)cluster_max_io_size(mp
, 0);
2338 sbp
->f_blocks
= (u_int64_t
)((u_int32_t
)vcb
->totalBlocks
);
2339 sbp
->f_bfree
= (u_int64_t
)((u_int32_t
)hfs_freeblks(hfsmp
, 0));
2340 sbp
->f_bavail
= (u_int64_t
)((u_int32_t
)hfs_freeblks(hfsmp
, 1));
2341 sbp
->f_files
= (u_int64_t
)HFS_MAX_FILES
;
2342 sbp
->f_ffree
= (u_int64_t
)hfs_free_cnids(hfsmp
);
2345 * Subtypes (flavors) for HFS
2346 * 0: Mac OS Extended
2347 * 1: Mac OS Extended (Journaled)
2348 * 2: Mac OS Extended (Case Sensitive)
2349 * 3: Mac OS Extended (Case Sensitive, Journaled)
2351 * 128: Mac OS Standard
2354 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) == 0) {
2355 /* HFS+ & variants */
2357 subtype
|= HFS_SUBTYPE_JOURNALED
;
2359 if (hfsmp
->hfs_flags
& HFS_CASE_SENSITIVE
) {
2360 subtype
|= HFS_SUBTYPE_CASESENSITIVE
;
2366 subtype
= HFS_SUBTYPE_STANDARDHFS
;
2369 sbp
->f_fssubtype
= subtype
;
2376 // XXXdbg -- this is a callback to be used by the journal to
2377 // get meta data blocks flushed out to disk.
2379 // XXXdbg -- be smarter and don't flush *every* block on each
2380 // call. try to only flush some so we don't wind up
2381 // being too synchronous.
2384 hfs_sync_metadata(void *arg
)
2386 struct mount
*mp
= (struct mount
*)arg
;
2387 struct hfsmount
*hfsmp
;
2391 daddr64_t priIDSector
;
2392 hfsmp
= VFSTOHFS(mp
);
2393 vcb
= HFSTOVCB(hfsmp
);
2395 // now make sure the super block is flushed
2396 priIDSector
= (daddr64_t
)((vcb
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
2397 HFS_PRI_SECTOR(hfsmp
->hfs_logical_block_size
));
2399 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
2400 HFS_PHYSBLK_ROUNDDOWN(priIDSector
, hfsmp
->hfs_log_per_phys
),
2401 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
2402 if ((retval
!= 0 ) && (retval
!= ENXIO
)) {
2403 printf("hfs_sync_metadata: can't read volume header at %d! (retval 0x%x)\n",
2404 (int)priIDSector
, retval
);
2407 if (retval
== 0 && ((buf_flags(bp
) & (B_DELWRI
| B_LOCKED
)) == B_DELWRI
)) {
2413 /* Note that these I/Os bypass the journal (no calls to journal_start_modify_block) */
2415 // the alternate super block...
2416 // XXXdbg - we probably don't need to do this each and every time.
2417 // hfs_btreeio.c:FlushAlternate() should flag when it was
2419 if (hfsmp
->hfs_partition_avh_sector
) {
2420 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
2421 HFS_PHYSBLK_ROUNDDOWN(hfsmp
->hfs_partition_avh_sector
, hfsmp
->hfs_log_per_phys
),
2422 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
2423 if (retval
== 0 && ((buf_flags(bp
) & (B_DELWRI
| B_LOCKED
)) == B_DELWRI
)) {
2425 * note this I/O can fail if the partition shrank behind our backs!
2426 * So failure should be OK here.
2434 /* Is the FS's idea of the AVH different than the partition ? */
2435 if ((hfsmp
->hfs_fs_avh_sector
) && (hfsmp
->hfs_partition_avh_sector
!= hfsmp
->hfs_fs_avh_sector
)) {
2436 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
2437 HFS_PHYSBLK_ROUNDDOWN(hfsmp
->hfs_fs_avh_sector
, hfsmp
->hfs_log_per_phys
),
2438 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
2439 if (retval
== 0 && ((buf_flags(bp
) & (B_DELWRI
| B_LOCKED
)) == B_DELWRI
)) {
2449 struct hfs_sync_cargs
{
2454 int atime_only_syncs
;
2455 time_t sync_start_time
;
2460 hfs_sync_callback(struct vnode
*vp
, void *cargs
)
2462 struct cnode
*cp
= VTOC(vp
);
2463 struct hfs_sync_cargs
*args
;
2466 args
= (struct hfs_sync_cargs
*)cargs
;
2468 if (hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
) != 0) {
2469 return (VNODE_RETURNED
);
2472 hfs_dirty_t dirty_state
= hfs_is_dirty(cp
);
2474 bool sync
= dirty_state
== HFS_DIRTY
|| vnode_hasdirtyblks(vp
);
2476 if (!sync
&& dirty_state
== HFS_DIRTY_ATIME
2477 && args
->atime_only_syncs
< 256) {
2478 // We only update if the atime changed more than 60s ago
2479 if (args
->sync_start_time
- cp
->c_attr
.ca_atime
> 60) {
2481 ++args
->atime_only_syncs
;
2486 error
= hfs_fsync(vp
, args
->waitfor
, 0, args
->p
);
2489 args
->error
= error
;
2490 } else if (cp
->c_touch_acctime
)
2491 hfs_touchtimes(VTOHFS(vp
), cp
);
2494 return (VNODE_RETURNED
);
2500 * Go through the disk queues to initiate sandbagged IO;
2501 * go through the inodes to write those that have been modified;
2502 * initiate the writing of the super block if it has been modified.
2504 * Note: we are always called with the filesystem marked `MPBUSY'.
2507 hfs_sync(struct mount
*mp
, int waitfor
, vfs_context_t context
)
2509 struct proc
*p
= vfs_context_proc(context
);
2511 struct hfsmount
*hfsmp
;
2513 struct vnode
*meta_vp
[4];
2515 int error
, allerror
= 0;
2516 struct hfs_sync_cargs args
;
2518 hfsmp
= VFSTOHFS(mp
);
2520 // Back off if hfs_changefs or a freeze is underway
2521 hfs_lock_mount(hfsmp
);
2522 if ((hfsmp
->hfs_flags
& HFS_IN_CHANGEFS
)
2523 || hfsmp
->hfs_freeze_state
!= HFS_THAWED
) {
2524 hfs_unlock_mount(hfsmp
);
2528 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2529 hfs_unlock_mount(hfsmp
);
2533 ++hfsmp
->hfs_syncers
;
2534 hfs_unlock_mount(hfsmp
);
2536 args
.cred
= kauth_cred_get();
2537 args
.waitfor
= waitfor
;
2540 args
.atime_only_syncs
= 0;
2545 args
.sync_start_time
= tv
.tv_sec
;
2548 * hfs_sync_callback will be called for each vnode
2549 * hung off of this mount point... the vnode will be
2550 * properly referenced and unreferenced around the callback
2552 vnode_iterate(mp
, 0, hfs_sync_callback
, (void *)&args
);
2555 allerror
= args
.error
;
2557 vcb
= HFSTOVCB(hfsmp
);
2559 meta_vp
[0] = vcb
->extentsRefNum
;
2560 meta_vp
[1] = vcb
->catalogRefNum
;
2561 meta_vp
[2] = vcb
->allocationsRefNum
; /* This is NULL for standard HFS */
2562 meta_vp
[3] = hfsmp
->hfs_attribute_vp
; /* Optional file */
2564 /* Now sync our three metadata files */
2565 for (i
= 0; i
< 4; ++i
) {
2569 if ((btvp
==0) || (vnode_mount(btvp
) != mp
))
2572 /* XXX use hfs_systemfile_lock instead ? */
2573 (void) hfs_lock(VTOC(btvp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2576 if (!hfs_is_dirty(cp
) && !vnode_hasdirtyblks(btvp
)) {
2577 hfs_unlock(VTOC(btvp
));
2580 error
= vnode_get(btvp
);
2582 hfs_unlock(VTOC(btvp
));
2585 if ((error
= hfs_fsync(btvp
, waitfor
, 0, p
)))
2595 * Force stale file system control information to be flushed.
2597 if (vcb
->vcbSigWord
== kHFSSigWord
) {
2598 if ((error
= VNOP_FSYNC(hfsmp
->hfs_devvp
, waitfor
, context
))) {
2608 hfs_hotfilesync(hfsmp
, vfs_context_kernel());
2611 * Write back modified superblock.
2613 if (IsVCBDirty(vcb
)) {
2614 error
= hfs_flushvolumeheader(hfsmp
, waitfor
== MNT_WAIT
? HFS_FVH_WAIT
: 0);
2620 hfs_flush(hfsmp
, HFS_FLUSH_JOURNAL
);
2623 hfs_lock_mount(hfsmp
);
2624 boolean_t wake
= (!--hfsmp
->hfs_syncers
2625 && hfsmp
->hfs_freeze_state
== HFS_WANT_TO_FREEZE
);
2626 hfs_unlock_mount(hfsmp
);
2628 wakeup(&hfsmp
->hfs_freeze_state
);
2635 * File handle to vnode
2637 * Have to be really careful about stale file handles:
2638 * - check that the cnode id is valid
2639 * - call hfs_vget() to get the locked cnode
2640 * - check for an unallocated cnode (i_mode == 0)
2641 * - check that the given client host has export rights and return
2642 * those rights via. exflagsp and credanonp
2645 hfs_fhtovp(struct mount
*mp
, int fhlen
, unsigned char *fhp
, struct vnode
**vpp
, __unused vfs_context_t context
)
2647 struct hfsfid
*hfsfhp
;
2652 hfsfhp
= (struct hfsfid
*)fhp
;
2654 if (fhlen
< (int)sizeof(struct hfsfid
))
2657 result
= hfs_vget(VFSTOHFS(mp
), ntohl(hfsfhp
->hfsfid_cnid
), &nvp
, 0, 0);
2659 if (result
== ENOENT
)
2665 * We used to use the create time as the gen id of the file handle,
2666 * but it is not static enough because it can change at any point
2667 * via system calls. We still don't have another volume ID or other
2668 * unique identifier to use for a generation ID across reboots that
2669 * persists until the file is removed. Using only the CNID exposes
2670 * us to the potential wrap-around case, but as of 2/2008, it would take
2671 * over 2 months to wrap around if the machine did nothing but allocate
2672 * CNIDs. Using some kind of wrap counter would only be effective if
2673 * each file had the wrap counter associated with it. For now,
2674 * we use only the CNID to identify the file as it's good enough.
2679 hfs_unlock(VTOC(nvp
));
2685 * Vnode pointer to File handle
2689 hfs_vptofh(struct vnode
*vp
, int *fhlenp
, unsigned char *fhp
, __unused vfs_context_t context
)
2692 struct hfsfid
*hfsfhp
;
2694 if (ISHFS(VTOVCB(vp
)))
2695 return (ENOTSUP
); /* hfs standard is not exportable */
2697 if (*fhlenp
< (int)sizeof(struct hfsfid
))
2701 hfsfhp
= (struct hfsfid
*)fhp
;
2702 /* only the CNID is used to identify the file now */
2703 hfsfhp
->hfsfid_cnid
= htonl(cp
->c_fileid
);
2704 hfsfhp
->hfsfid_gen
= htonl(cp
->c_fileid
);
2705 *fhlenp
= sizeof(struct hfsfid
);
2712 * Initialize HFS filesystems, done only once per boot.
2714 * HFS is not a kext-based file system. This makes it difficult to find
2715 * out when the last HFS file system was unmounted and call hfs_uninit()
2716 * to deallocate data structures allocated in hfs_init(). Therefore we
2717 * never deallocate memory allocated by lock attribute and group initializations
2721 hfs_init(__unused
struct vfsconf
*vfsp
)
2723 static int done
= 0;
2732 hfs_lock_attr
= lck_attr_alloc_init();
2733 hfs_group_attr
= lck_grp_attr_alloc_init();
2734 hfs_mutex_group
= lck_grp_alloc_init("hfs-mutex", hfs_group_attr
);
2735 hfs_rwlock_group
= lck_grp_alloc_init("hfs-rwlock", hfs_group_attr
);
2736 hfs_spinlock_group
= lck_grp_alloc_init("hfs-spinlock", hfs_group_attr
);
2749 * Destroy all locks, mutexes and spinlocks in hfsmp on unmount or failed mount
2752 hfs_locks_destroy(struct hfsmount
*hfsmp
)
2755 lck_mtx_destroy(&hfsmp
->hfs_mutex
, hfs_mutex_group
);
2756 lck_mtx_destroy(&hfsmp
->hfc_mutex
, hfs_mutex_group
);
2757 lck_rw_destroy(&hfsmp
->hfs_global_lock
, hfs_rwlock_group
);
2758 lck_spin_destroy(&hfsmp
->vcbFreeExtLock
, hfs_spinlock_group
);
2765 hfs_getmountpoint(struct vnode
*vp
, struct hfsmount
**hfsmpp
)
2767 struct hfsmount
* hfsmp
;
2768 char fstypename
[MFSNAMELEN
];
2773 if (!vnode_isvroot(vp
))
2776 vnode_vfsname(vp
, fstypename
);
2777 if (strncmp(fstypename
, "hfs", sizeof(fstypename
)) != 0)
2782 if (HFSTOVCB(hfsmp
)->vcbSigWord
== kHFSSigWord
)
2790 // Replace user-space value
2791 static errno_t
ureplace(user_addr_t oldp
, size_t *oldlenp
,
2792 user_addr_t newp
, size_t newlen
,
2793 void *data
, size_t len
)
2798 if (oldp
&& *oldlenp
< len
)
2800 if (newp
&& newlen
!= len
)
2804 error
= copyout(data
, oldp
, len
);
2808 return newp
? copyin(newp
, data
, len
) : 0;
2811 #define UREPLACE(oldp, oldlenp, newp, newlenp, v) \
2812 ureplace(oldp, oldlenp, newp, newlenp, &v, sizeof(v))
2814 static hfsmount_t
*hfs_mount_from_cwd(vfs_context_t ctx
)
2816 vnode_t vp
= vfs_context_cwd(ctx
);
2822 * We could use vnode_tag, but it is probably more future proof to
2823 * compare fstypename.
2825 char fstypename
[MFSNAMELEN
];
2826 vnode_vfsname(vp
, fstypename
);
2828 if (strcmp(fstypename
, "hfs"))
2835 * HFS filesystem related variables.
2838 hfs_sysctl(int *name
, u_int namelen
, user_addr_t oldp
, size_t *oldlenp
,
2839 user_addr_t newp
, size_t newlen
, vfs_context_t context
)
2841 #if !TARGET_OS_EMBEDDED
2842 struct proc
*p
= vfs_context_proc(context
);
2845 struct hfsmount
*hfsmp
;
2847 /* all sysctl names at this level are terminal */
2849 #if !TARGET_OS_EMBEDDED
2850 if (name
[0] == HFS_ENCODINGBIAS
) {
2853 bias
= hfs_getencodingbias();
2855 error
= UREPLACE(oldp
, oldlenp
, newp
, newlen
, bias
);
2859 hfs_setencodingbias(bias
);
2864 if (name
[0] == HFS_EXTEND_FS
) {
2865 u_int64_t newsize
= 0;
2866 vnode_t vp
= vfs_context_cwd(context
);
2868 if (newp
== USER_ADDR_NULL
|| vp
== NULLVP
2869 || newlen
!= sizeof(quad_t
) || !oldlenp
)
2871 if ((error
= hfs_getmountpoint(vp
, &hfsmp
)))
2874 /* Start with the 'size' set to the current number of bytes in the filesystem */
2875 newsize
= ((uint64_t)hfsmp
->totalBlocks
) * ((uint64_t)hfsmp
->blockSize
);
2877 error
= UREPLACE(oldp
, oldlenp
, newp
, newlen
, newsize
);
2881 return hfs_extendfs(hfsmp
, newsize
, context
);
2882 } else if (name
[0] == HFS_ENABLE_JOURNALING
) {
2883 // make the file system journaled...
2886 struct cat_attr jnl_attr
;
2887 struct cat_attr jinfo_attr
;
2888 struct cat_fork jnl_fork
;
2889 struct cat_fork jinfo_fork
;
2893 uint64_t journal_byte_offset
;
2894 uint64_t journal_size
;
2895 vnode_t jib_vp
= NULLVP
;
2896 struct JournalInfoBlock local_jib
;
2901 /* Only root can enable journaling */
2902 if (!kauth_cred_issuser(kauth_cred_get())) {
2907 hfsmp
= hfs_mount_from_cwd(context
);
2911 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2914 if (HFSTOVCB(hfsmp
)->vcbSigWord
== kHFSSigWord
) {
2915 printf("hfs: can't make a plain hfs volume journaled.\n");
2920 printf("hfs: volume %s is already journaled!\n", hfsmp
->vcbVN
);
2923 vcb
= HFSTOVCB(hfsmp
);
2925 /* Set up local copies of the initialization info */
2926 tmpblkno
= (uint32_t) name
[1];
2927 jib_blkno
= (uint64_t) tmpblkno
;
2928 journal_byte_offset
= (uint64_t) name
[2];
2929 journal_byte_offset
*= hfsmp
->blockSize
;
2930 journal_byte_offset
+= hfsmp
->hfsPlusIOPosOffset
;
2931 journal_size
= (uint64_t)((unsigned)name
[3]);
2933 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_EXTENTS
, HFS_EXCLUSIVE_LOCK
);
2934 if (BTHasContiguousNodes(VTOF(vcb
->catalogRefNum
)) == 0 ||
2935 BTHasContiguousNodes(VTOF(vcb
->extentsRefNum
)) == 0) {
2937 printf("hfs: volume has a btree w/non-contiguous nodes. can not enable journaling.\n");
2938 hfs_systemfile_unlock(hfsmp
, lockflags
);
2941 hfs_systemfile_unlock(hfsmp
, lockflags
);
2943 // make sure these both exist!
2944 if ( GetFileInfo(vcb
, kHFSRootFolderID
, ".journal_info_block", &jinfo_attr
, &jinfo_fork
) == 0
2945 || GetFileInfo(vcb
, kHFSRootFolderID
, ".journal", &jnl_attr
, &jnl_fork
) == 0) {
2951 * At this point, we have a copy of the metadata that lives in the catalog for the
2952 * journal info block. Compare that the journal info block's single extent matches
2953 * that which was passed into this sysctl.
2955 * If it is different, deny the journal enable call.
2957 if (jinfo_fork
.cf_blocks
> 1) {
2958 /* too many blocks */
2962 if (jinfo_fork
.cf_extents
[0].startBlock
!= jib_blkno
) {
2968 * We want to immediately purge the vnode for the JIB.
2970 * Because it was written to from userland, there's probably
2971 * a vnode somewhere in the vnode cache (possibly with UBC backed blocks).
2972 * So we bring the vnode into core, then immediately do whatever
2973 * we can to flush/vclean it out. This is because those blocks will be
2974 * interpreted as user data, which may be treated separately on some platforms
2975 * than metadata. If the vnode is gone, then there cannot be backing blocks
2978 if (hfs_vget (hfsmp
, jinfo_attr
.ca_fileid
, &jib_vp
, 1, 0)) {
2982 * Now we have a vnode for the JIB. recycle it. Because we hold an iocount
2983 * on the vnode, we'll just mark it for termination when the last iocount
2984 * (hopefully ours), is dropped.
2986 vnode_recycle (jib_vp
);
2987 err
= vnode_put (jib_vp
);
2992 /* Initialize the local copy of the JIB (just like hfs.util) */
2993 memset (&local_jib
, 'Z', sizeof(struct JournalInfoBlock
));
2994 local_jib
.flags
= SWAP_BE32(kJIJournalInFSMask
);
2995 /* Note that the JIB's offset is in bytes */
2996 local_jib
.offset
= SWAP_BE64(journal_byte_offset
);
2997 local_jib
.size
= SWAP_BE64(journal_size
);
3000 * Now write out the local JIB. This essentially overwrites the userland
3001 * copy of the JIB. Read it as BLK_META to treat it as a metadata read/write.
3003 jib_buf
= buf_getblk (hfsmp
->hfs_devvp
,
3004 jib_blkno
* (hfsmp
->blockSize
/ hfsmp
->hfs_logical_block_size
),
3005 hfsmp
->blockSize
, 0, 0, BLK_META
);
3006 char* buf_ptr
= (char*) buf_dataptr (jib_buf
);
3008 /* Zero out the portion of the block that won't contain JIB data */
3009 memset (buf_ptr
, 0, hfsmp
->blockSize
);
3011 bcopy(&local_jib
, buf_ptr
, sizeof(local_jib
));
3012 if (buf_bwrite (jib_buf
)) {
3016 /* Force a flush track cache */
3017 hfs_flush(hfsmp
, HFS_FLUSH_CACHE
);
3019 /* Now proceed with full volume sync */
3020 hfs_sync(hfsmp
->hfs_mp
, MNT_WAIT
, context
);
3022 printf("hfs: Initializing the journal (joffset 0x%llx sz 0x%llx)...\n",
3023 (off_t
)name
[2], (off_t
)name
[3]);
3026 // XXXdbg - note that currently (Sept, 08) hfs_util does not support
3027 // enabling the journal on a separate device so it is safe
3028 // to just copy hfs_devvp here. If hfs_util gets the ability
3029 // to dynamically enable the journal on a separate device then
3030 // we will have to do the same thing as hfs_early_journal_init()
3031 // to locate and open the journal device.
3033 jvp
= hfsmp
->hfs_devvp
;
3034 jnl
= journal_create(jvp
, journal_byte_offset
, journal_size
,
3036 hfsmp
->hfs_logical_block_size
,
3039 hfs_sync_metadata
, hfsmp
->hfs_mp
,
3043 * Set up the trim callback function so that we can add
3044 * recently freed extents to the free extent cache once
3045 * the transaction that freed them is written to the
3049 journal_trim_set_callback(jnl
, hfs_trim_callback
, hfsmp
);
3052 printf("hfs: FAILED to create the journal!\n");
3056 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
3059 * Flush all dirty metadata buffers.
3061 buf_flushdirtyblks(hfsmp
->hfs_devvp
, TRUE
, 0, "hfs_sysctl");
3062 buf_flushdirtyblks(hfsmp
->hfs_extents_vp
, TRUE
, 0, "hfs_sysctl");
3063 buf_flushdirtyblks(hfsmp
->hfs_catalog_vp
, TRUE
, 0, "hfs_sysctl");
3064 buf_flushdirtyblks(hfsmp
->hfs_allocation_vp
, TRUE
, 0, "hfs_sysctl");
3065 if (hfsmp
->hfs_attribute_vp
)
3066 buf_flushdirtyblks(hfsmp
->hfs_attribute_vp
, TRUE
, 0, "hfs_sysctl");
3068 HFSTOVCB(hfsmp
)->vcbJinfoBlock
= name
[1];
3069 HFSTOVCB(hfsmp
)->vcbAtrb
|= kHFSVolumeJournaledMask
;
3073 // save this off for the hack-y check in hfs_remove()
3074 hfsmp
->jnl_start
= (u_int32_t
)name
[2];
3075 hfsmp
->jnl_size
= (off_t
)((unsigned)name
[3]);
3076 hfsmp
->hfs_jnlinfoblkid
= jinfo_attr
.ca_fileid
;
3077 hfsmp
->hfs_jnlfileid
= jnl_attr
.ca_fileid
;
3079 vfs_setflags(hfsmp
->hfs_mp
, (u_int64_t
)((unsigned int)MNT_JOURNALED
));
3081 hfs_unlock_global (hfsmp
);
3082 hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
| HFS_FVH_WRITE_ALT
);
3087 fsid
.val
[0] = (int32_t)hfsmp
->hfs_raw_dev
;
3088 fsid
.val
[1] = (int32_t)vfs_typenum(HFSTOVFS(hfsmp
));
3089 vfs_event_signal(&fsid
, VQ_UPDATE
, (intptr_t)NULL
);
3092 } else if (name
[0] == HFS_DISABLE_JOURNALING
) {
3093 // clear the journaling bit
3095 /* Only root can disable journaling */
3096 if (!kauth_cred_issuser(kauth_cred_get())) {
3100 hfsmp
= hfs_mount_from_cwd(context
);
3105 * Disabling journaling is disallowed on volumes with directory hard links
3106 * because we have not tested the relevant code path.
3108 if (hfsmp
->hfs_private_attr
[DIR_HARDLINKS
].ca_entries
!= 0){
3109 printf("hfs: cannot disable journaling on volumes with directory hardlinks\n");
3113 printf("hfs: disabling journaling for %s\n", hfsmp
->vcbVN
);
3115 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
3117 // Lights out for you buddy!
3118 journal_close(hfsmp
->jnl
);
3121 hfs_close_jvp(hfsmp
);
3122 vfs_clearflags(hfsmp
->hfs_mp
, (u_int64_t
)((unsigned int)MNT_JOURNALED
));
3123 hfsmp
->jnl_start
= 0;
3124 hfsmp
->hfs_jnlinfoblkid
= 0;
3125 hfsmp
->hfs_jnlfileid
= 0;
3127 HFSTOVCB(hfsmp
)->vcbAtrb
&= ~kHFSVolumeJournaledMask
;
3129 hfs_unlock_global (hfsmp
);
3131 hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
| HFS_FVH_WRITE_ALT
);
3136 fsid
.val
[0] = (int32_t)hfsmp
->hfs_raw_dev
;
3137 fsid
.val
[1] = (int32_t)vfs_typenum(HFSTOVFS(hfsmp
));
3138 vfs_event_signal(&fsid
, VQ_UPDATE
, (intptr_t)NULL
);
3141 } else if (name
[0] == VFS_CTL_QUERY
) {
3142 #if TARGET_OS_EMBEDDED
3145 struct sysctl_req
*req
;
3146 union union_vfsidctl vc
;
3150 req
= CAST_DOWN(struct sysctl_req
*, oldp
); /* we're new style vfs sysctl. */
3155 error
= SYSCTL_IN(req
, &vc
, proc_is64bit(p
)? sizeof(vc
.vc64
):sizeof(vc
.vc32
));
3156 if (error
) return (error
);
3158 mp
= vfs_getvfs(&vc
.vc32
.vc_fsid
); /* works for 32 and 64 */
3159 if (mp
== NULL
) return (ENOENT
);
3161 hfsmp
= VFSTOHFS(mp
);
3162 bzero(&vq
, sizeof(vq
));
3163 vq
.vq_flags
= hfsmp
->hfs_notification_conditions
;
3164 return SYSCTL_OUT(req
, &vq
, sizeof(vq
));;
3166 } else if (name
[0] == HFS_REPLAY_JOURNAL
) {
3167 vnode_t devvp
= NULL
;
3172 device_fd
= name
[1];
3173 error
= file_vnode(device_fd
, &devvp
);
3177 error
= vnode_getwithref(devvp
);
3179 file_drop(device_fd
);
3182 error
= hfs_journal_replay(devvp
, context
);
3183 file_drop(device_fd
);
3187 #if DEBUG || !TARGET_OS_EMBEDDED
3188 else if (name
[0] == HFS_ENABLE_RESIZE_DEBUG
) {
3189 if (!kauth_cred_issuser(kauth_cred_get())) {
3193 int old
= hfs_resize_debug
;
3195 int res
= UREPLACE(oldp
, oldlenp
, newp
, newlen
, hfs_resize_debug
);
3197 if (old
!= hfs_resize_debug
) {
3198 printf("hfs: %s resize debug\n",
3199 hfs_resize_debug
? "enabled" : "disabled");
3210 * hfs_vfs_vget is not static since it is used in hfs_readwrite.c to support
3211 * the build_path ioctl. We use it to leverage the code below that updates
3212 * the origin list cache if necessary
3216 hfs_vfs_vget(struct mount
*mp
, ino64_t ino
, struct vnode
**vpp
, __unused vfs_context_t context
)
3220 struct hfsmount
*hfsmp
;
3222 hfsmp
= VFSTOHFS(mp
);
3224 error
= hfs_vget(hfsmp
, (cnid_t
)ino
, vpp
, 1, 0);
3229 * If the look-up was via the object ID (rather than the link ID),
3230 * then we make sure there's a parent here. We can't leave this
3231 * until hfs_vnop_getattr because if there's a problem getting the
3232 * parent at that point, all the caller will do is call
3233 * hfs_vfs_vget again and we'll end up in an infinite loop.
3236 cnode_t
*cp
= VTOC(*vpp
);
3238 if (ISSET(cp
->c_flag
, C_HARDLINK
) && ino
== cp
->c_fileid
) {
3239 hfs_lock_always(cp
, HFS_SHARED_LOCK
);
3241 if (!hfs_haslinkorigin(cp
)) {
3242 if (!hfs_lock_upgrade(cp
))
3243 hfs_lock_always(cp
, HFS_EXCLUSIVE_LOCK
);
3245 if (cp
->c_cnid
== cp
->c_fileid
) {
3247 * Descriptor is stale, so we need to refresh it. We
3248 * pick the first link.
3252 error
= hfs_first_link(hfsmp
, cp
, &link_id
);
3255 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
3256 error
= cat_findname(hfsmp
, link_id
, &cp
->c_desc
);
3257 hfs_systemfile_unlock(hfsmp
, lockflags
);
3260 // We'll use whatever link the descriptor happens to have
3264 hfs_savelinkorigin(cp
, cp
->c_parentcnid
);
3280 * Look up an HFS object by ID.
3282 * The object is returned with an iocount reference and the cnode locked.
3284 * If the object is a file then it will represent the data fork.
3287 hfs_vget(struct hfsmount
*hfsmp
, cnid_t cnid
, struct vnode
**vpp
, int skiplock
, int allow_deleted
)
3289 struct vnode
*vp
= NULLVP
;
3290 struct cat_desc cndesc
;
3291 struct cat_attr cnattr
;
3292 struct cat_fork cnfork
;
3293 u_int32_t linkref
= 0;
3296 /* Check for cnids that should't be exported. */
3297 if ((cnid
< kHFSFirstUserCatalogNodeID
) &&
3298 (cnid
!= kHFSRootFolderID
&& cnid
!= kHFSRootParentID
)) {
3301 /* Don't export our private directories. */
3302 if (cnid
== hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
||
3303 cnid
== hfsmp
->hfs_private_desc
[DIR_HARDLINKS
].cd_cnid
) {
3307 * Check the hash first
3309 vp
= hfs_chash_getvnode(hfsmp
, cnid
, 0, skiplock
, allow_deleted
);
3315 bzero(&cndesc
, sizeof(cndesc
));
3316 bzero(&cnattr
, sizeof(cnattr
));
3317 bzero(&cnfork
, sizeof(cnfork
));
3320 * Not in hash, lookup in catalog
3322 if (cnid
== kHFSRootParentID
) {
3323 static char hfs_rootname
[] = "/";
3325 cndesc
.cd_nameptr
= (const u_int8_t
*)&hfs_rootname
[0];
3326 cndesc
.cd_namelen
= 1;
3327 cndesc
.cd_parentcnid
= kHFSRootParentID
;
3328 cndesc
.cd_cnid
= kHFSRootFolderID
;
3329 cndesc
.cd_flags
= CD_ISDIR
;
3331 cnattr
.ca_fileid
= kHFSRootFolderID
;
3332 cnattr
.ca_linkcount
= 1;
3333 cnattr
.ca_entries
= 1;
3334 cnattr
.ca_dircount
= 1;
3335 cnattr
.ca_mode
= (S_IFDIR
| S_IRWXU
| S_IRWXG
| S_IRWXO
);
3339 const char *nameptr
;
3341 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
3342 error
= cat_idlookup(hfsmp
, cnid
, 0, 0, &cndesc
, &cnattr
, &cnfork
);
3343 hfs_systemfile_unlock(hfsmp
, lockflags
);
3351 * Check for a raw hardlink inode and save its linkref.
3353 pid
= cndesc
.cd_parentcnid
;
3354 nameptr
= (const char *)cndesc
.cd_nameptr
;
3356 if ((pid
== hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
) &&
3357 cndesc
.cd_namelen
> HFS_INODE_PREFIX_LEN
&&
3358 (bcmp(nameptr
, HFS_INODE_PREFIX
, HFS_INODE_PREFIX_LEN
) == 0)) {
3359 linkref
= strtoul(&nameptr
[HFS_INODE_PREFIX_LEN
], NULL
, 10);
3361 } else if ((pid
== hfsmp
->hfs_private_desc
[DIR_HARDLINKS
].cd_cnid
) &&
3362 cndesc
.cd_namelen
> HFS_DIRINODE_PREFIX_LEN
&&
3363 (bcmp(nameptr
, HFS_DIRINODE_PREFIX
, HFS_DIRINODE_PREFIX_LEN
) == 0)) {
3364 linkref
= strtoul(&nameptr
[HFS_DIRINODE_PREFIX_LEN
], NULL
, 10);
3366 } else if ((pid
== hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
) &&
3367 cndesc
.cd_namelen
> HFS_DELETE_PREFIX_LEN
&&
3368 (bcmp(nameptr
, HFS_DELETE_PREFIX
, HFS_DELETE_PREFIX_LEN
) == 0)) {
3370 cat_releasedesc(&cndesc
);
3371 return (ENOENT
); /* open unlinked file */
3376 * Finish initializing cnode descriptor for hardlinks.
3378 * We need a valid name and parent for reverse lookups.
3382 struct cat_desc linkdesc
;
3385 cnattr
.ca_linkref
= linkref
;
3386 bzero (&linkdesc
, sizeof (linkdesc
));
3389 * If the caller supplied the raw inode value, then we don't know exactly
3390 * which hardlink they wanted. It's likely that they acquired the raw inode
3391 * value BEFORE the item became a hardlink, in which case, they probably
3392 * want the oldest link. So request the oldest link from the catalog.
3394 * Unfortunately, this requires that we iterate through all N hardlinks. On the plus
3395 * side, since we know that we want the last linkID, we can also have this one
3396 * call give us back the name of the last ID, since it's going to have it in-hand...
3398 linkerr
= hfs_lookup_lastlink (hfsmp
, linkref
, &lastid
, &linkdesc
);
3399 if ((linkerr
== 0) && (lastid
!= 0)) {
3401 * Release any lingering buffers attached to our local descriptor.
3402 * Then copy the name and other business into the cndesc
3404 cat_releasedesc (&cndesc
);
3405 bcopy (&linkdesc
, &cndesc
, sizeof(linkdesc
));
3407 /* If it failed, the linkref code will just use whatever it had in-hand below. */
3411 int newvnode_flags
= 0;
3413 error
= hfs_getnewvnode(hfsmp
, NULL
, NULL
, &cndesc
, 0, &cnattr
,
3414 &cnfork
, &vp
, &newvnode_flags
);
3416 VTOC(vp
)->c_flag
|= C_HARDLINK
;
3417 vnode_setmultipath(vp
);
3420 int newvnode_flags
= 0;
3422 void *buf
= hfs_malloc(MAXPATHLEN
);
3424 /* Supply hfs_getnewvnode with a component name. */
3425 struct componentname cn
= {
3426 .cn_nameiop
= LOOKUP
,
3427 .cn_flags
= ISLASTCN
,
3428 .cn_pnlen
= MAXPATHLEN
,
3429 .cn_namelen
= cndesc
.cd_namelen
,
3434 bcopy(cndesc
.cd_nameptr
, cn
.cn_nameptr
, cndesc
.cd_namelen
+ 1);
3436 error
= hfs_getnewvnode(hfsmp
, NULLVP
, &cn
, &cndesc
, 0, &cnattr
,
3437 &cnfork
, &vp
, &newvnode_flags
);
3439 if (error
== 0 && (VTOC(vp
)->c_flag
& C_HARDLINK
)) {
3440 hfs_savelinkorigin(VTOC(vp
), cndesc
.cd_parentcnid
);
3443 hfs_free(buf
, MAXPATHLEN
);
3445 cat_releasedesc(&cndesc
);
3448 if (vp
&& skiplock
) {
3449 hfs_unlock(VTOC(vp
));
3456 * Flush out all the files in a filesystem.
3460 hfs_flushfiles(struct mount
*mp
, int flags
, struct proc
*p
)
3462 hfs_flushfiles(struct mount
*mp
, int flags
, __unused
struct proc
*p
)
3465 struct hfsmount
*hfsmp
;
3466 struct vnode
*skipvp
= NULLVP
;
3468 int accounted_root_usecounts
;
3473 hfsmp
= VFSTOHFS(mp
);
3475 accounted_root_usecounts
= 0;
3478 * The open quota files have an indirect reference on
3479 * the root directory vnode. We must account for this
3480 * extra reference when doing the intial vflush.
3482 if (((unsigned int)vfs_flags(mp
)) & MNT_QUOTA
) {
3483 /* Find out how many quota files we have open. */
3484 for (i
= 0; i
< MAXQUOTAS
; i
++) {
3485 if (hfsmp
->hfs_qfiles
[i
].qf_vp
!= NULLVP
)
3486 ++accounted_root_usecounts
;
3491 if (accounted_root_usecounts
> 0) {
3492 /* Obtain the root vnode so we can skip over it. */
3493 skipvp
= hfs_chash_getvnode(hfsmp
, kHFSRootFolderID
, 0, 0, 0);
3496 error
= vflush(mp
, skipvp
, SKIPSYSTEM
| SKIPSWAP
| flags
);
3500 error
= vflush(mp
, skipvp
, SKIPSYSTEM
| flags
);
3504 * See if there are additional references on the
3505 * root vp besides the ones obtained from the open
3506 * quota files and CoreStorage.
3509 (vnode_isinuse(skipvp
, accounted_root_usecounts
))) {
3510 error
= EBUSY
; /* root directory is still open */
3512 hfs_unlock(VTOC(skipvp
));
3513 /* release the iocount from the hfs_chash_getvnode call above. */
3516 if (error
&& (flags
& FORCECLOSE
) == 0)
3520 if (((unsigned int)vfs_flags(mp
)) & MNT_QUOTA
) {
3521 for (i
= 0; i
< MAXQUOTAS
; i
++) {
3522 if (hfsmp
->hfs_qfiles
[i
].qf_vp
== NULLVP
)
3524 hfs_quotaoff(p
, mp
, i
);
3530 error
= vflush(mp
, NULLVP
, SKIPSYSTEM
| flags
);
3537 * Update volume encoding bitmap (HFS Plus only)
3539 * Mark a legacy text encoding as in-use (as needed)
3540 * in the volume header of this HFS+ filesystem.
3543 hfs_setencodingbits(struct hfsmount
*hfsmp
, u_int32_t encoding
)
3545 #define kIndexMacUkrainian 48 /* MacUkrainian encoding is 152 */
3546 #define kIndexMacFarsi 49 /* MacFarsi encoding is 140 */
3551 case kTextEncodingMacUkrainian
:
3552 index
= kIndexMacUkrainian
;
3554 case kTextEncodingMacFarsi
:
3555 index
= kIndexMacFarsi
;
3562 /* Only mark the encoding as in-use if it wasn't already set */
3563 if (index
< 64 && (hfsmp
->encodingsBitmap
& (u_int64_t
)(1ULL << index
)) == 0) {
3564 hfs_lock_mount (hfsmp
);
3565 hfsmp
->encodingsBitmap
|= (u_int64_t
)(1ULL << index
);
3566 MarkVCBDirty(hfsmp
);
3567 hfs_unlock_mount(hfsmp
);
3572 * Update volume stats
3574 * On journal volumes this will cause a volume header flush
3577 hfs_volupdate(struct hfsmount
*hfsmp
, enum volop op
, int inroot
)
3583 hfs_lock_mount (hfsmp
);
3585 MarkVCBDirty(hfsmp
);
3586 hfsmp
->hfs_mtime
= tv
.tv_sec
;
3592 if (hfsmp
->hfs_dircount
!= 0xFFFFFFFF)
3593 ++hfsmp
->hfs_dircount
;
3594 if (inroot
&& hfsmp
->vcbNmRtDirs
!= 0xFFFF)
3595 ++hfsmp
->vcbNmRtDirs
;
3598 if (hfsmp
->hfs_dircount
!= 0)
3599 --hfsmp
->hfs_dircount
;
3600 if (inroot
&& hfsmp
->vcbNmRtDirs
!= 0xFFFF)
3601 --hfsmp
->vcbNmRtDirs
;
3604 if (hfsmp
->hfs_filecount
!= 0xFFFFFFFF)
3605 ++hfsmp
->hfs_filecount
;
3606 if (inroot
&& hfsmp
->vcbNmFls
!= 0xFFFF)
3610 if (hfsmp
->hfs_filecount
!= 0)
3611 --hfsmp
->hfs_filecount
;
3612 if (inroot
&& hfsmp
->vcbNmFls
!= 0xFFFF)
3617 hfs_unlock_mount (hfsmp
);
3620 hfs_flushvolumeheader(hfsmp
, 0);
3628 /* HFS Standard MDB flush */
3630 hfs_flushMDB(struct hfsmount
*hfsmp
, int waitfor
, int altflush
)
3632 ExtendedVCB
*vcb
= HFSTOVCB(hfsmp
);
3633 struct filefork
*fp
;
3634 HFSMasterDirectoryBlock
*mdb
;
3635 struct buf
*bp
= NULL
;
3640 sector_size
= hfsmp
->hfs_logical_block_size
;
3641 retval
= (int)buf_bread(hfsmp
->hfs_devvp
, (daddr64_t
)HFS_PRI_SECTOR(sector_size
), sector_size
, NOCRED
, &bp
);
3648 hfs_lock_mount (hfsmp
);
3650 mdb
= (HFSMasterDirectoryBlock
*)(buf_dataptr(bp
) + HFS_PRI_OFFSET(sector_size
));
3652 mdb
->drCrDate
= SWAP_BE32 (UTCToLocal(to_hfs_time(vcb
->hfs_itime
)));
3653 mdb
->drLsMod
= SWAP_BE32 (UTCToLocal(to_hfs_time(vcb
->vcbLsMod
)));
3654 mdb
->drAtrb
= SWAP_BE16 (vcb
->vcbAtrb
);
3655 mdb
->drNmFls
= SWAP_BE16 (vcb
->vcbNmFls
);
3656 mdb
->drAllocPtr
= SWAP_BE16 (vcb
->nextAllocation
);
3657 mdb
->drClpSiz
= SWAP_BE32 (vcb
->vcbClpSiz
);
3658 mdb
->drNxtCNID
= SWAP_BE32 (vcb
->vcbNxtCNID
);
3659 mdb
->drFreeBks
= SWAP_BE16 (vcb
->freeBlocks
);
3661 namelen
= strlen((char *)vcb
->vcbVN
);
3662 retval
= utf8_to_hfs(vcb
, namelen
, vcb
->vcbVN
, mdb
->drVN
);
3663 /* Retry with MacRoman in case that's how it was exported. */
3665 retval
= utf8_to_mac_roman(namelen
, vcb
->vcbVN
, mdb
->drVN
);
3667 mdb
->drVolBkUp
= SWAP_BE32 (UTCToLocal(to_hfs_time(vcb
->vcbVolBkUp
)));
3668 mdb
->drWrCnt
= SWAP_BE32 (vcb
->vcbWrCnt
);
3669 mdb
->drNmRtDirs
= SWAP_BE16 (vcb
->vcbNmRtDirs
);
3670 mdb
->drFilCnt
= SWAP_BE32 (vcb
->vcbFilCnt
);
3671 mdb
->drDirCnt
= SWAP_BE32 (vcb
->vcbDirCnt
);
3673 bcopy(vcb
->vcbFndrInfo
, mdb
->drFndrInfo
, sizeof(mdb
->drFndrInfo
));
3675 fp
= VTOF(vcb
->extentsRefNum
);
3676 mdb
->drXTExtRec
[0].startBlock
= SWAP_BE16 (fp
->ff_extents
[0].startBlock
);
3677 mdb
->drXTExtRec
[0].blockCount
= SWAP_BE16 (fp
->ff_extents
[0].blockCount
);
3678 mdb
->drXTExtRec
[1].startBlock
= SWAP_BE16 (fp
->ff_extents
[1].startBlock
);
3679 mdb
->drXTExtRec
[1].blockCount
= SWAP_BE16 (fp
->ff_extents
[1].blockCount
);
3680 mdb
->drXTExtRec
[2].startBlock
= SWAP_BE16 (fp
->ff_extents
[2].startBlock
);
3681 mdb
->drXTExtRec
[2].blockCount
= SWAP_BE16 (fp
->ff_extents
[2].blockCount
);
3682 mdb
->drXTFlSize
= SWAP_BE32 (fp
->ff_blocks
* vcb
->blockSize
);
3683 mdb
->drXTClpSiz
= SWAP_BE32 (fp
->ff_clumpsize
);
3684 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
3686 fp
= VTOF(vcb
->catalogRefNum
);
3687 mdb
->drCTExtRec
[0].startBlock
= SWAP_BE16 (fp
->ff_extents
[0].startBlock
);
3688 mdb
->drCTExtRec
[0].blockCount
= SWAP_BE16 (fp
->ff_extents
[0].blockCount
);
3689 mdb
->drCTExtRec
[1].startBlock
= SWAP_BE16 (fp
->ff_extents
[1].startBlock
);
3690 mdb
->drCTExtRec
[1].blockCount
= SWAP_BE16 (fp
->ff_extents
[1].blockCount
);
3691 mdb
->drCTExtRec
[2].startBlock
= SWAP_BE16 (fp
->ff_extents
[2].startBlock
);
3692 mdb
->drCTExtRec
[2].blockCount
= SWAP_BE16 (fp
->ff_extents
[2].blockCount
);
3693 mdb
->drCTFlSize
= SWAP_BE32 (fp
->ff_blocks
* vcb
->blockSize
);
3694 mdb
->drCTClpSiz
= SWAP_BE32 (fp
->ff_clumpsize
);
3695 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
3697 MarkVCBClean( vcb
);
3699 hfs_unlock_mount (hfsmp
);
3701 /* If requested, flush out the alternate MDB */
3703 struct buf
*alt_bp
= NULL
;
3705 if (buf_meta_bread(hfsmp
->hfs_devvp
, hfsmp
->hfs_partition_avh_sector
, sector_size
, NOCRED
, &alt_bp
) == 0) {
3706 bcopy(mdb
, (char *)buf_dataptr(alt_bp
) + HFS_ALT_OFFSET(sector_size
), kMDBSize
);
3708 (void) VNOP_BWRITE(alt_bp
);
3713 if (waitfor
!= MNT_WAIT
)
3716 retval
= VNOP_BWRITE(bp
);
3723 * Flush any dirty in-memory mount data to the on-disk
3726 * Note: the on-disk volume signature is intentionally
3727 * not flushed since the on-disk "H+" and "HX" signatures
3728 * are always stored in-memory as "H+".
3731 hfs_flushvolumeheader(struct hfsmount
*hfsmp
,
3732 hfs_flush_volume_header_options_t options
)
3734 ExtendedVCB
*vcb
= HFSTOVCB(hfsmp
);
3735 struct filefork
*fp
;
3736 HFSPlusVolumeHeader
*volumeHeader
, *altVH
;
3738 struct buf
*bp
, *alt_bp
;
3740 daddr64_t priIDSector
;
3741 bool critical
= false;
3742 u_int16_t signature
;
3743 u_int16_t hfsversion
;
3744 daddr64_t avh_sector
;
3745 bool altflush
= ISSET(options
, HFS_FVH_WRITE_ALT
);
3747 if (ISSET(options
, HFS_FVH_FLUSH_IF_DIRTY
)
3748 && !hfs_header_needs_flushing(hfsmp
)) {
3752 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
3756 if (hfsmp
->hfs_flags
& HFS_STANDARD
) {
3757 return hfs_flushMDB(hfsmp
, ISSET(options
, HFS_FVH_WAIT
) ? MNT_WAIT
: 0, altflush
);
3760 priIDSector
= (daddr64_t
)((vcb
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
3761 HFS_PRI_SECTOR(hfsmp
->hfs_logical_block_size
));
3763 if (hfs_start_transaction(hfsmp
) != 0) {
3770 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
3771 HFS_PHYSBLK_ROUNDDOWN(priIDSector
, hfsmp
->hfs_log_per_phys
),
3772 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
3774 printf("hfs: err %d reading VH blk (vol=%s)\n", retval
, vcb
->vcbVN
);
3778 volumeHeader
= (HFSPlusVolumeHeader
*)((char *)buf_dataptr(bp
) +
3779 HFS_PRI_OFFSET(hfsmp
->hfs_physical_block_size
));
3782 * Sanity check what we just read. If it's bad, try the alternate
3785 signature
= SWAP_BE16 (volumeHeader
->signature
);
3786 hfsversion
= SWAP_BE16 (volumeHeader
->version
);
3787 if ((signature
!= kHFSPlusSigWord
&& signature
!= kHFSXSigWord
) ||
3788 (hfsversion
< kHFSPlusVersion
) || (hfsversion
> 100) ||
3789 (SWAP_BE32 (volumeHeader
->blockSize
) != vcb
->blockSize
)) {
3790 printf("hfs: corrupt VH on %s, sig 0x%04x, ver %d, blksize %d\n",
3791 vcb
->vcbVN
, signature
, hfsversion
,
3792 SWAP_BE32 (volumeHeader
->blockSize
));
3793 hfs_mark_inconsistent(hfsmp
, HFS_INCONSISTENCY_DETECTED
);
3795 /* Almost always we read AVH relative to the partition size */
3796 avh_sector
= hfsmp
->hfs_partition_avh_sector
;
3798 if (hfsmp
->hfs_partition_avh_sector
!= hfsmp
->hfs_fs_avh_sector
) {
3800 * The two altVH offsets do not match --- which means that a smaller file
3801 * system exists in a larger partition. Verify that we have the correct
3802 * alternate volume header sector as per the current parititon size.
3803 * The GPT device that we are mounted on top could have changed sizes
3804 * without us knowing.
3806 * We're in a transaction, so it's safe to modify the partition_avh_sector
3807 * field if necessary.
3810 uint64_t sector_count
;
3812 /* Get underlying device block count */
3813 if ((retval
= VNOP_IOCTL(hfsmp
->hfs_devvp
, DKIOCGETBLOCKCOUNT
,
3814 (caddr_t
)§or_count
, 0, vfs_context_current()))) {
3815 printf("hfs_flushVH: err %d getting block count (%s) \n", retval
, vcb
->vcbVN
);
3820 /* Partition size was changed without our knowledge */
3821 if (sector_count
!= (uint64_t)hfsmp
->hfs_logical_block_count
) {
3822 hfsmp
->hfs_partition_avh_sector
= (hfsmp
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
3823 HFS_ALT_SECTOR(hfsmp
->hfs_logical_block_size
, sector_count
);
3824 /* Note: hfs_fs_avh_sector will remain unchanged */
3825 printf ("hfs_flushVH: partition size changed, partition_avh_sector=%qu, fs_avh_sector=%qu\n",
3826 hfsmp
->hfs_partition_avh_sector
, hfsmp
->hfs_fs_avh_sector
);
3829 * We just updated the offset for AVH relative to
3830 * the partition size, so the content of that AVH
3831 * will be invalid. But since we are also maintaining
3832 * a valid AVH relative to the file system size, we
3833 * can read it since primary VH and partition AVH
3836 avh_sector
= hfsmp
->hfs_fs_avh_sector
;
3840 printf ("hfs: trying alternate (for %s) avh_sector=%qu\n",
3841 (avh_sector
== hfsmp
->hfs_fs_avh_sector
) ? "file system" : "partition", avh_sector
);
3844 retval
= buf_meta_bread(hfsmp
->hfs_devvp
,
3845 HFS_PHYSBLK_ROUNDDOWN(avh_sector
, hfsmp
->hfs_log_per_phys
),
3846 hfsmp
->hfs_physical_block_size
, NOCRED
, &alt_bp
);
3848 printf("hfs: err %d reading alternate VH (%s)\n", retval
, vcb
->vcbVN
);
3852 altVH
= (HFSPlusVolumeHeader
*)((char *)buf_dataptr(alt_bp
) +
3853 HFS_ALT_OFFSET(hfsmp
->hfs_physical_block_size
));
3854 signature
= SWAP_BE16(altVH
->signature
);
3855 hfsversion
= SWAP_BE16(altVH
->version
);
3857 if ((signature
!= kHFSPlusSigWord
&& signature
!= kHFSXSigWord
) ||
3858 (hfsversion
< kHFSPlusVersion
) || (kHFSPlusVersion
> 100) ||
3859 (SWAP_BE32(altVH
->blockSize
) != vcb
->blockSize
)) {
3860 printf("hfs: corrupt alternate VH on %s, sig 0x%04x, ver %d, blksize %d\n",
3861 vcb
->vcbVN
, signature
, hfsversion
,
3862 SWAP_BE32(altVH
->blockSize
));
3867 /* The alternate is plausible, so use it. */
3868 bcopy(altVH
, volumeHeader
, kMDBSize
);
3872 /* No alternate VH, nothing more we can do. */
3879 journal_modify_block_start(hfsmp
->jnl
, bp
);
3883 * For embedded HFS+ volumes, update create date if it changed
3884 * (ie from a setattrlist call)
3886 if ((vcb
->hfsPlusIOPosOffset
!= 0) &&
3887 (SWAP_BE32 (volumeHeader
->createDate
) != vcb
->localCreateDate
)) {
3889 HFSMasterDirectoryBlock
*mdb
;
3891 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
3892 HFS_PHYSBLK_ROUNDDOWN(HFS_PRI_SECTOR(hfsmp
->hfs_logical_block_size
), hfsmp
->hfs_log_per_phys
),
3893 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp2
);
3899 mdb
= (HFSMasterDirectoryBlock
*)(buf_dataptr(bp2
) +
3900 HFS_PRI_OFFSET(hfsmp
->hfs_physical_block_size
));
3902 if ( SWAP_BE32 (mdb
->drCrDate
) != vcb
->localCreateDate
)
3905 journal_modify_block_start(hfsmp
->jnl
, bp2
);
3908 mdb
->drCrDate
= SWAP_BE32 (vcb
->localCreateDate
); /* pick up the new create date */
3911 journal_modify_block_end(hfsmp
->jnl
, bp2
, NULL
, NULL
);
3913 (void) VNOP_BWRITE(bp2
); /* write out the changes */
3918 buf_brelse(bp2
); /* just release it */
3923 hfs_lock_mount (hfsmp
);
3925 /* Note: only update the lower 16 bits worth of attributes */
3926 volumeHeader
->attributes
= SWAP_BE32 (vcb
->vcbAtrb
);
3927 volumeHeader
->journalInfoBlock
= SWAP_BE32 (vcb
->vcbJinfoBlock
);
3929 volumeHeader
->lastMountedVersion
= SWAP_BE32 (kHFSJMountVersion
);
3931 volumeHeader
->lastMountedVersion
= SWAP_BE32 (kHFSPlusMountVersion
);
3933 volumeHeader
->createDate
= SWAP_BE32 (vcb
->localCreateDate
); /* volume create date is in local time */
3934 volumeHeader
->modifyDate
= SWAP_BE32 (to_hfs_time(vcb
->vcbLsMod
));
3935 volumeHeader
->backupDate
= SWAP_BE32 (to_hfs_time(vcb
->vcbVolBkUp
));
3936 volumeHeader
->fileCount
= SWAP_BE32 (vcb
->vcbFilCnt
);
3937 volumeHeader
->folderCount
= SWAP_BE32 (vcb
->vcbDirCnt
);
3938 volumeHeader
->totalBlocks
= SWAP_BE32 (vcb
->totalBlocks
);
3939 volumeHeader
->freeBlocks
= SWAP_BE32 (vcb
->freeBlocks
+ vcb
->reclaimBlocks
);
3940 volumeHeader
->nextAllocation
= SWAP_BE32 (vcb
->nextAllocation
);
3941 volumeHeader
->rsrcClumpSize
= SWAP_BE32 (vcb
->vcbClpSiz
);
3942 volumeHeader
->dataClumpSize
= SWAP_BE32 (vcb
->vcbClpSiz
);
3943 volumeHeader
->nextCatalogID
= SWAP_BE32 (vcb
->vcbNxtCNID
);
3944 volumeHeader
->writeCount
= SWAP_BE32 (vcb
->vcbWrCnt
);
3945 volumeHeader
->encodingsBitmap
= SWAP_BE64 (vcb
->encodingsBitmap
);
3947 if (bcmp(vcb
->vcbFndrInfo
, volumeHeader
->finderInfo
, sizeof(volumeHeader
->finderInfo
)) != 0) {
3948 bcopy(vcb
->vcbFndrInfo
, volumeHeader
->finderInfo
, sizeof(volumeHeader
->finderInfo
));
3952 if (!altflush
&& !ISSET(options
, HFS_FVH_FLUSH_IF_DIRTY
)) {
3956 /* Sync Extents over-flow file meta data */
3957 fp
= VTOF(vcb
->extentsRefNum
);
3958 if (FTOC(fp
)->c_flag
& C_MODIFIED
) {
3959 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
3960 volumeHeader
->extentsFile
.extents
[i
].startBlock
=
3961 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
3962 volumeHeader
->extentsFile
.extents
[i
].blockCount
=
3963 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
3965 volumeHeader
->extentsFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
3966 volumeHeader
->extentsFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
3967 volumeHeader
->extentsFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
3968 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
3972 /* Sync Catalog file meta data */
3973 fp
= VTOF(vcb
->catalogRefNum
);
3974 if (FTOC(fp
)->c_flag
& C_MODIFIED
) {
3975 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
3976 volumeHeader
->catalogFile
.extents
[i
].startBlock
=
3977 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
3978 volumeHeader
->catalogFile
.extents
[i
].blockCount
=
3979 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
3981 volumeHeader
->catalogFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
3982 volumeHeader
->catalogFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
3983 volumeHeader
->catalogFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
3984 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
3988 /* Sync Allocation file meta data */
3989 fp
= VTOF(vcb
->allocationsRefNum
);
3990 if (FTOC(fp
)->c_flag
& C_MODIFIED
) {
3991 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
3992 volumeHeader
->allocationFile
.extents
[i
].startBlock
=
3993 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
3994 volumeHeader
->allocationFile
.extents
[i
].blockCount
=
3995 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
3997 volumeHeader
->allocationFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
3998 volumeHeader
->allocationFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
3999 volumeHeader
->allocationFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
4000 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
4004 /* Sync Attribute file meta data */
4005 if (hfsmp
->hfs_attribute_vp
) {
4006 fp
= VTOF(hfsmp
->hfs_attribute_vp
);
4007 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
4008 volumeHeader
->attributesFile
.extents
[i
].startBlock
=
4009 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
4010 volumeHeader
->attributesFile
.extents
[i
].blockCount
=
4011 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
4013 if (ISSET(FTOC(fp
)->c_flag
, C_MODIFIED
)) {
4014 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
4017 volumeHeader
->attributesFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
4018 volumeHeader
->attributesFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
4019 volumeHeader
->attributesFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
4022 /* Sync Startup file meta data */
4023 if (hfsmp
->hfs_startup_vp
) {
4024 fp
= VTOF(hfsmp
->hfs_startup_vp
);
4025 if (FTOC(fp
)->c_flag
& C_MODIFIED
) {
4026 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
4027 volumeHeader
->startupFile
.extents
[i
].startBlock
=
4028 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
4029 volumeHeader
->startupFile
.extents
[i
].blockCount
=
4030 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
4032 volumeHeader
->startupFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
4033 volumeHeader
->startupFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
4034 volumeHeader
->startupFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
4035 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
4044 MarkVCBClean(hfsmp
);
4045 hfs_unlock_mount (hfsmp
);
4047 /* If requested, flush out the alternate volume header */
4050 * The two altVH offsets do not match --- which means that a smaller file
4051 * system exists in a larger partition. Verify that we have the correct
4052 * alternate volume header sector as per the current parititon size.
4053 * The GPT device that we are mounted on top could have changed sizes
4054 * without us knowning.
4056 * We're in a transaction, so it's safe to modify the partition_avh_sector
4057 * field if necessary.
4059 if (hfsmp
->hfs_partition_avh_sector
!= hfsmp
->hfs_fs_avh_sector
) {
4060 uint64_t sector_count
;
4062 /* Get underlying device block count */
4063 if ((retval
= VNOP_IOCTL(hfsmp
->hfs_devvp
, DKIOCGETBLOCKCOUNT
,
4064 (caddr_t
)§or_count
, 0, vfs_context_current()))) {
4065 printf("hfs_flushVH: err %d getting block count (%s) \n", retval
, vcb
->vcbVN
);
4070 /* Partition size was changed without our knowledge */
4071 if (sector_count
!= (uint64_t)hfsmp
->hfs_logical_block_count
) {
4072 hfsmp
->hfs_partition_avh_sector
= (hfsmp
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
4073 HFS_ALT_SECTOR(hfsmp
->hfs_logical_block_size
, sector_count
);
4074 /* Note: hfs_fs_avh_sector will remain unchanged */
4075 printf ("hfs_flushVH: altflush: partition size changed, partition_avh_sector=%qu, fs_avh_sector=%qu\n",
4076 hfsmp
->hfs_partition_avh_sector
, hfsmp
->hfs_fs_avh_sector
);
4081 * First see if we need to write I/O to the "secondary" AVH
4082 * located at FS Size - 1024 bytes, because this one will
4083 * always go into the journal. We put this AVH into the journal
4084 * because even if the filesystem size has shrunk, this LBA should be
4085 * reachable after the partition-size modification has occurred.
4086 * The one where we need to be careful is partitionsize-1024, since the
4087 * partition size should hopefully shrink.
4089 * Most of the time this block will not execute.
4091 if ((hfsmp
->hfs_fs_avh_sector
) &&
4092 (hfsmp
->hfs_partition_avh_sector
!= hfsmp
->hfs_fs_avh_sector
)) {
4093 if (buf_meta_bread(hfsmp
->hfs_devvp
,
4094 HFS_PHYSBLK_ROUNDDOWN(hfsmp
->hfs_fs_avh_sector
, hfsmp
->hfs_log_per_phys
),
4095 hfsmp
->hfs_physical_block_size
, NOCRED
, &alt_bp
) == 0) {
4097 journal_modify_block_start(hfsmp
->jnl
, alt_bp
);
4100 bcopy(volumeHeader
, (char *)buf_dataptr(alt_bp
) +
4101 HFS_ALT_OFFSET(hfsmp
->hfs_physical_block_size
),
4105 journal_modify_block_end(hfsmp
->jnl
, alt_bp
, NULL
, NULL
);
4107 (void) VNOP_BWRITE(alt_bp
);
4109 } else if (alt_bp
) {
4115 * Flush out alternate volume header located at 1024 bytes before
4116 * end of the partition as part of journal transaction. In
4117 * most cases, this will be the only alternate volume header
4118 * that we need to worry about because the file system size is
4119 * same as the partition size, therefore hfs_fs_avh_sector is
4120 * same as hfs_partition_avh_sector. This is the "priority" AVH.
4122 * However, do not always put this I/O into the journal. If we skipped the
4123 * FS-Size AVH write above, then we will put this I/O into the journal as
4124 * that indicates the two were in sync. However, if the FS size is
4125 * not the same as the partition size, we are tracking two. We don't
4126 * put it in the journal in that case, since if the partition
4127 * size changes between uptimes, and we need to replay the journal,
4128 * this I/O could generate an EIO if during replay it is now trying
4129 * to access blocks beyond the device EOF.
4131 if (hfsmp
->hfs_partition_avh_sector
) {
4132 if (buf_meta_bread(hfsmp
->hfs_devvp
,
4133 HFS_PHYSBLK_ROUNDDOWN(hfsmp
->hfs_partition_avh_sector
, hfsmp
->hfs_log_per_phys
),
4134 hfsmp
->hfs_physical_block_size
, NOCRED
, &alt_bp
) == 0) {
4136 /* only one AVH, put this I/O in the journal. */
4137 if ((hfsmp
->jnl
) && (hfsmp
->hfs_partition_avh_sector
== hfsmp
->hfs_fs_avh_sector
)) {
4138 journal_modify_block_start(hfsmp
->jnl
, alt_bp
);
4141 bcopy(volumeHeader
, (char *)buf_dataptr(alt_bp
) +
4142 HFS_ALT_OFFSET(hfsmp
->hfs_physical_block_size
),
4145 /* If journaled and we only have one AVH to track */
4146 if ((hfsmp
->jnl
) && (hfsmp
->hfs_partition_avh_sector
== hfsmp
->hfs_fs_avh_sector
)) {
4147 journal_modify_block_end (hfsmp
->jnl
, alt_bp
, NULL
, NULL
);
4150 * If we don't have a journal or there are two AVH's at the
4151 * moment, then this one doesn't go in the journal. Note that
4152 * this one may generate I/O errors, since the partition
4153 * can be resized behind our backs at any moment and this I/O
4154 * may now appear to be beyond the device EOF.
4156 (void) VNOP_BWRITE(alt_bp
);
4157 hfs_flush(hfsmp
, HFS_FLUSH_CACHE
);
4159 } else if (alt_bp
) {
4165 /* Finish modifying the block for the primary VH */
4167 journal_modify_block_end(hfsmp
->jnl
, bp
, NULL
, NULL
);
4169 if (!ISSET(options
, HFS_FVH_WAIT
)) {
4172 retval
= VNOP_BWRITE(bp
);
4173 /* When critical data changes, flush the device cache */
4174 if (critical
&& (retval
== 0)) {
4175 hfs_flush(hfsmp
, HFS_FLUSH_CACHE
);
4179 hfs_end_transaction(hfsmp
);
4188 hfs_end_transaction(hfsmp
);
4194 * Creates a UUID from a unique "name" in the HFS UUID Name space.
4195 * See version 3 UUID.
4198 hfs_getvoluuid(struct hfsmount
*hfsmp
, uuid_t result_uuid
)
4201 if (uuid_is_null(hfsmp
->hfs_full_uuid
)) {
4207 ((uint32_t *)rawUUID
)[0] = hfsmp
->vcbFndrInfo
[6];
4208 ((uint32_t *)rawUUID
)[1] = hfsmp
->vcbFndrInfo
[7];
4211 MD5Update( &md5c
, HFS_UUID_NAMESPACE_ID
, sizeof( uuid_t
) );
4212 MD5Update( &md5c
, rawUUID
, sizeof (rawUUID
) );
4213 MD5Final( result
, &md5c
);
4215 result
[6] = 0x30 | ( result
[6] & 0x0F );
4216 result
[8] = 0x80 | ( result
[8] & 0x3F );
4218 uuid_copy(hfsmp
->hfs_full_uuid
, result
);
4220 uuid_copy (result_uuid
, hfsmp
->hfs_full_uuid
);
4225 * Get file system attributes.
4228 hfs_vfs_getattr(struct mount
*mp
, struct vfs_attr
*fsap
, __unused vfs_context_t context
)
4230 #define HFS_ATTR_FILE_VALIDMASK (ATTR_FILE_VALIDMASK & ~(ATTR_FILE_FILETYPE | ATTR_FILE_FORKCOUNT | ATTR_FILE_FORKLIST))
4231 #define HFS_ATTR_CMN_VOL_VALIDMASK (ATTR_CMN_VALIDMASK & ~(ATTR_CMN_ACCTIME))
4233 ExtendedVCB
*vcb
= VFSTOVCB(mp
);
4234 struct hfsmount
*hfsmp
= VFSTOHFS(mp
);
4236 int searchfs_on
= 0;
4237 int exchangedata_on
= 1;
4244 if (cp_fs_protected(mp
)) {
4245 exchangedata_on
= 0;
4249 VFSATTR_RETURN(fsap
, f_objcount
, (u_int64_t
)hfsmp
->vcbFilCnt
+ (u_int64_t
)hfsmp
->vcbDirCnt
);
4250 VFSATTR_RETURN(fsap
, f_filecount
, (u_int64_t
)hfsmp
->vcbFilCnt
);
4251 VFSATTR_RETURN(fsap
, f_dircount
, (u_int64_t
)hfsmp
->vcbDirCnt
);
4252 VFSATTR_RETURN(fsap
, f_maxobjcount
, (u_int64_t
)0xFFFFFFFF);
4253 VFSATTR_RETURN(fsap
, f_iosize
, (size_t)cluster_max_io_size(mp
, 0));
4254 VFSATTR_RETURN(fsap
, f_blocks
, (u_int64_t
)hfsmp
->totalBlocks
);
4255 VFSATTR_RETURN(fsap
, f_bfree
, (u_int64_t
)hfs_freeblks(hfsmp
, 0));
4256 VFSATTR_RETURN(fsap
, f_bavail
, (u_int64_t
)hfs_freeblks(hfsmp
, 1));
4257 VFSATTR_RETURN(fsap
, f_bsize
, (u_int32_t
)vcb
->blockSize
);
4258 /* XXX needs clarification */
4259 VFSATTR_RETURN(fsap
, f_bused
, hfsmp
->totalBlocks
- hfs_freeblks(hfsmp
, 1));
4260 VFSATTR_RETURN(fsap
, f_files
, (u_int64_t
)HFS_MAX_FILES
);
4261 VFSATTR_RETURN(fsap
, f_ffree
, (u_int64_t
)hfs_free_cnids(hfsmp
));
4263 fsap
->f_fsid
.val
[0] = hfsmp
->hfs_raw_dev
;
4264 fsap
->f_fsid
.val
[1] = vfs_typenum(mp
);
4265 VFSATTR_SET_SUPPORTED(fsap
, f_fsid
);
4267 VFSATTR_RETURN(fsap
, f_signature
, vcb
->vcbSigWord
);
4268 VFSATTR_RETURN(fsap
, f_carbon_fsid
, 0);
4270 if (VFSATTR_IS_ACTIVE(fsap
, f_capabilities
)) {
4271 vol_capabilities_attr_t
*cap
;
4273 cap
= &fsap
->f_capabilities
;
4275 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) == 0) {
4276 /* HFS+ & variants */
4277 cap
->capabilities
[VOL_CAPABILITIES_FORMAT
] =
4278 VOL_CAP_FMT_PERSISTENTOBJECTIDS
|
4279 VOL_CAP_FMT_SYMBOLICLINKS
|
4280 VOL_CAP_FMT_HARDLINKS
|
4281 VOL_CAP_FMT_JOURNAL
|
4282 VOL_CAP_FMT_ZERO_RUNS
|
4283 (hfsmp
->jnl
? VOL_CAP_FMT_JOURNAL_ACTIVE
: 0) |
4284 (hfsmp
->hfs_flags
& HFS_CASE_SENSITIVE
? VOL_CAP_FMT_CASE_SENSITIVE
: 0) |
4285 VOL_CAP_FMT_CASE_PRESERVING
|
4286 VOL_CAP_FMT_FAST_STATFS
|
4287 VOL_CAP_FMT_2TB_FILESIZE
|
4288 VOL_CAP_FMT_HIDDEN_FILES
|
4290 VOL_CAP_FMT_DECMPFS_COMPRESSION
|
4292 #if CONFIG_HFS_DIRLINK
4293 VOL_CAP_FMT_DIR_HARDLINKS
|
4295 VOL_CAP_FMT_PATH_FROM_ID
;
4300 cap
->capabilities
[VOL_CAPABILITIES_FORMAT
] =
4301 VOL_CAP_FMT_PERSISTENTOBJECTIDS
|
4302 VOL_CAP_FMT_CASE_PRESERVING
|
4303 VOL_CAP_FMT_FAST_STATFS
|
4304 VOL_CAP_FMT_HIDDEN_FILES
|
4305 VOL_CAP_FMT_PATH_FROM_ID
;
4310 * The capabilities word in 'cap' tell you whether or not
4311 * this particular filesystem instance has feature X enabled.
4314 cap
->capabilities
[VOL_CAPABILITIES_INTERFACES
] =
4315 VOL_CAP_INT_ATTRLIST
|
4316 VOL_CAP_INT_NFSEXPORT
|
4317 VOL_CAP_INT_READDIRATTR
|
4318 VOL_CAP_INT_ALLOCATE
|
4319 VOL_CAP_INT_VOL_RENAME
|
4320 VOL_CAP_INT_ADVLOCK
|
4322 #if VOL_CAP_INT_RENAME_EXCL
4323 VOL_CAP_INT_RENAME_EXCL
|
4326 VOL_CAP_INT_EXTENDED_ATTR
|
4327 VOL_CAP_INT_NAMEDSTREAMS
;
4329 VOL_CAP_INT_EXTENDED_ATTR
;
4332 /* HFS may conditionally support searchfs and exchangedata depending on the runtime */
4335 cap
->capabilities
[VOL_CAPABILITIES_INTERFACES
] |= VOL_CAP_INT_SEARCHFS
;
4337 if (exchangedata_on
) {
4338 cap
->capabilities
[VOL_CAPABILITIES_INTERFACES
] |= VOL_CAP_INT_EXCHANGEDATA
;
4341 cap
->capabilities
[VOL_CAPABILITIES_RESERVED1
] = 0;
4342 cap
->capabilities
[VOL_CAPABILITIES_RESERVED2
] = 0;
4344 cap
->valid
[VOL_CAPABILITIES_FORMAT
] =
4345 VOL_CAP_FMT_PERSISTENTOBJECTIDS
|
4346 VOL_CAP_FMT_SYMBOLICLINKS
|
4347 VOL_CAP_FMT_HARDLINKS
|
4348 VOL_CAP_FMT_JOURNAL
|
4349 VOL_CAP_FMT_JOURNAL_ACTIVE
|
4350 VOL_CAP_FMT_NO_ROOT_TIMES
|
4351 VOL_CAP_FMT_SPARSE_FILES
|
4352 VOL_CAP_FMT_ZERO_RUNS
|
4353 VOL_CAP_FMT_CASE_SENSITIVE
|
4354 VOL_CAP_FMT_CASE_PRESERVING
|
4355 VOL_CAP_FMT_FAST_STATFS
|
4356 VOL_CAP_FMT_2TB_FILESIZE
|
4357 VOL_CAP_FMT_OPENDENYMODES
|
4358 VOL_CAP_FMT_HIDDEN_FILES
|
4359 VOL_CAP_FMT_PATH_FROM_ID
|
4360 VOL_CAP_FMT_DECMPFS_COMPRESSION
|
4361 VOL_CAP_FMT_DIR_HARDLINKS
;
4364 * Bits in the "valid" field tell you whether or not the on-disk
4365 * format supports feature X.
4368 cap
->valid
[VOL_CAPABILITIES_INTERFACES
] =
4369 VOL_CAP_INT_ATTRLIST
|
4370 VOL_CAP_INT_NFSEXPORT
|
4371 VOL_CAP_INT_READDIRATTR
|
4372 VOL_CAP_INT_COPYFILE
|
4373 VOL_CAP_INT_ALLOCATE
|
4374 VOL_CAP_INT_VOL_RENAME
|
4375 VOL_CAP_INT_ADVLOCK
|
4377 VOL_CAP_INT_MANLOCK
|
4378 #if VOL_CAP_INT_RENAME_EXCL
4379 VOL_CAP_INT_RENAME_EXCL
|
4383 VOL_CAP_INT_EXTENDED_ATTR
|
4384 VOL_CAP_INT_NAMEDSTREAMS
;
4386 VOL_CAP_INT_EXTENDED_ATTR
;
4389 /* HFS always supports exchangedata and searchfs in the on-disk format natively */
4390 cap
->valid
[VOL_CAPABILITIES_INTERFACES
] |= (VOL_CAP_INT_SEARCHFS
| VOL_CAP_INT_EXCHANGEDATA
);
4393 cap
->valid
[VOL_CAPABILITIES_RESERVED1
] = 0;
4394 cap
->valid
[VOL_CAPABILITIES_RESERVED2
] = 0;
4395 VFSATTR_SET_SUPPORTED(fsap
, f_capabilities
);
4397 if (VFSATTR_IS_ACTIVE(fsap
, f_attributes
)) {
4398 vol_attributes_attr_t
*attrp
= &fsap
->f_attributes
;
4400 attrp
->validattr
.commonattr
= HFS_ATTR_CMN_VOL_VALIDMASK
;
4401 attrp
->validattr
.volattr
= ATTR_VOL_VALIDMASK
& ~ATTR_VOL_INFO
;
4402 attrp
->validattr
.dirattr
= ATTR_DIR_VALIDMASK
;
4403 attrp
->validattr
.fileattr
= HFS_ATTR_FILE_VALIDMASK
;
4404 attrp
->validattr
.forkattr
= 0;
4406 attrp
->nativeattr
.commonattr
= HFS_ATTR_CMN_VOL_VALIDMASK
;
4407 attrp
->nativeattr
.volattr
= ATTR_VOL_VALIDMASK
& ~ATTR_VOL_INFO
;
4408 attrp
->nativeattr
.dirattr
= ATTR_DIR_VALIDMASK
;
4409 attrp
->nativeattr
.fileattr
= HFS_ATTR_FILE_VALIDMASK
;
4410 attrp
->nativeattr
.forkattr
= 0;
4411 VFSATTR_SET_SUPPORTED(fsap
, f_attributes
);
4413 fsap
->f_create_time
.tv_sec
= hfsmp
->hfs_itime
;
4414 fsap
->f_create_time
.tv_nsec
= 0;
4415 VFSATTR_SET_SUPPORTED(fsap
, f_create_time
);
4416 fsap
->f_modify_time
.tv_sec
= hfsmp
->vcbLsMod
;
4417 fsap
->f_modify_time
.tv_nsec
= 0;
4418 VFSATTR_SET_SUPPORTED(fsap
, f_modify_time
);
4420 fsap
->f_backup_time
.tv_sec
= hfsmp
->vcbVolBkUp
;
4421 fsap
->f_backup_time
.tv_nsec
= 0;
4422 VFSATTR_SET_SUPPORTED(fsap
, f_backup_time
);
4423 if (VFSATTR_IS_ACTIVE(fsap
, f_fssubtype
)) {
4424 u_int16_t subtype
= 0;
4427 * Subtypes (flavors) for HFS
4428 * 0: Mac OS Extended
4429 * 1: Mac OS Extended (Journaled)
4430 * 2: Mac OS Extended (Case Sensitive)
4431 * 3: Mac OS Extended (Case Sensitive, Journaled)
4433 * 128: Mac OS Standard
4436 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) == 0) {
4438 subtype
|= HFS_SUBTYPE_JOURNALED
;
4440 if (hfsmp
->hfs_flags
& HFS_CASE_SENSITIVE
) {
4441 subtype
|= HFS_SUBTYPE_CASESENSITIVE
;
4446 subtype
= HFS_SUBTYPE_STANDARDHFS
;
4449 fsap
->f_fssubtype
= subtype
;
4450 VFSATTR_SET_SUPPORTED(fsap
, f_fssubtype
);
4453 if (VFSATTR_IS_ACTIVE(fsap
, f_vol_name
)) {
4454 strlcpy(fsap
->f_vol_name
, (char *) hfsmp
->vcbVN
, MAXPATHLEN
);
4455 VFSATTR_SET_SUPPORTED(fsap
, f_vol_name
);
4457 if (VFSATTR_IS_ACTIVE(fsap
, f_uuid
)) {
4458 hfs_getvoluuid(hfsmp
, fsap
->f_uuid
);
4459 VFSATTR_SET_SUPPORTED(fsap
, f_uuid
);
4465 * Perform a volume rename. Requires the FS' root vp.
4468 hfs_rename_volume(struct vnode
*vp
, const char *name
, proc_t p
)
4470 ExtendedVCB
*vcb
= VTOVCB(vp
);
4471 struct cnode
*cp
= VTOC(vp
);
4472 struct hfsmount
*hfsmp
= VTOHFS(vp
);
4473 struct cat_desc to_desc
;
4474 struct cat_desc todir_desc
;
4475 struct cat_desc new_desc
;
4476 cat_cookie_t cookie
;
4479 char converted_volname
[256];
4480 size_t volname_length
= 0;
4481 size_t conv_volname_length
= 0;
4485 * Ignore attempts to rename a volume to a zero-length name.
4490 bzero(&to_desc
, sizeof(to_desc
));
4491 bzero(&todir_desc
, sizeof(todir_desc
));
4492 bzero(&new_desc
, sizeof(new_desc
));
4493 bzero(&cookie
, sizeof(cookie
));
4495 todir_desc
.cd_parentcnid
= kHFSRootParentID
;
4496 todir_desc
.cd_cnid
= kHFSRootFolderID
;
4497 todir_desc
.cd_flags
= CD_ISDIR
;
4499 to_desc
.cd_nameptr
= (const u_int8_t
*)name
;
4500 to_desc
.cd_namelen
= strlen(name
);
4501 to_desc
.cd_parentcnid
= kHFSRootParentID
;
4502 to_desc
.cd_cnid
= cp
->c_cnid
;
4503 to_desc
.cd_flags
= CD_ISDIR
;
4505 if ((error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
)) == 0) {
4506 if ((error
= hfs_start_transaction(hfsmp
)) == 0) {
4507 if ((error
= cat_preflight(hfsmp
, CAT_RENAME
, &cookie
, p
)) == 0) {
4508 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
4510 error
= cat_rename(hfsmp
, &cp
->c_desc
, &todir_desc
, &to_desc
, &new_desc
);
4513 * If successful, update the name in the VCB, ensure it's terminated.
4516 strlcpy((char *)vcb
->vcbVN
, name
, sizeof(vcb
->vcbVN
));
4518 volname_length
= strlen ((const char*)vcb
->vcbVN
);
4519 /* Send the volume name down to CoreStorage if necessary */
4520 error
= utf8_normalizestr(vcb
->vcbVN
, volname_length
, (u_int8_t
*)converted_volname
, &conv_volname_length
, 256, UTF_PRECOMPOSED
);
4522 (void) VNOP_IOCTL (hfsmp
->hfs_devvp
, _DKIOCCSSETLVNAME
, converted_volname
, 0, vfs_context_current());
4527 hfs_systemfile_unlock(hfsmp
, lockflags
);
4528 cat_postflight(hfsmp
, &cookie
, p
);
4532 (void) hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
);
4534 hfs_end_transaction(hfsmp
);
4537 /* Release old allocated name buffer */
4538 if (cp
->c_desc
.cd_flags
& CD_HASBUF
) {
4539 const char *tmp_name
= (const char *)cp
->c_desc
.cd_nameptr
;
4541 cp
->c_desc
.cd_nameptr
= 0;
4542 cp
->c_desc
.cd_namelen
= 0;
4543 cp
->c_desc
.cd_flags
&= ~CD_HASBUF
;
4544 vfs_removename(tmp_name
);
4546 /* Update cnode's catalog descriptor */
4547 replace_desc(cp
, &new_desc
);
4548 vcb
->volumeNameEncodingHint
= new_desc
.cd_encoding
;
4549 cp
->c_touch_chgtime
= TRUE
;
4559 * Get file system attributes.
4562 hfs_vfs_setattr(struct mount
*mp
, struct vfs_attr
*fsap
, vfs_context_t context
)
4564 kauth_cred_t cred
= vfs_context_ucred(context
);
4568 * Must be superuser or owner of filesystem to change volume attributes
4570 if (!kauth_cred_issuser(cred
) && (kauth_cred_getuid(cred
) != vfs_statfs(mp
)->f_owner
))
4573 if (VFSATTR_IS_ACTIVE(fsap
, f_vol_name
)) {
4576 error
= hfs_vfs_root(mp
, &root_vp
, context
);
4580 error
= hfs_rename_volume(root_vp
, fsap
->f_vol_name
, vfs_context_proc(context
));
4581 (void) vnode_put(root_vp
);
4585 VFSATTR_SET_SUPPORTED(fsap
, f_vol_name
);
4592 /* If a runtime corruption is detected, set the volume inconsistent
4593 * bit in the volume attributes. The volume inconsistent bit is a persistent
4594 * bit which represents that the volume is corrupt and needs repair.
4595 * The volume inconsistent bit can be set from the kernel when it detects
4596 * runtime corruption or from file system repair utilities like fsck_hfs when
4597 * a repair operation fails. The bit should be cleared only from file system
4598 * verify/repair utility like fsck_hfs when a verify/repair succeeds.
4600 void hfs_mark_inconsistent(struct hfsmount
*hfsmp
,
4601 hfs_inconsistency_reason_t reason
)
4603 hfs_lock_mount (hfsmp
);
4604 if ((hfsmp
->vcbAtrb
& kHFSVolumeInconsistentMask
) == 0) {
4605 hfsmp
->vcbAtrb
|= kHFSVolumeInconsistentMask
;
4606 MarkVCBDirty(hfsmp
);
4608 if ((hfsmp
->hfs_flags
& HFS_READ_ONLY
)==0) {
4610 case HFS_INCONSISTENCY_DETECTED
:
4611 printf("hfs_mark_inconsistent: Runtime corruption detected on %s, fsck will be forced on next mount.\n",
4614 case HFS_ROLLBACK_FAILED
:
4615 printf("hfs_mark_inconsistent: Failed to roll back; volume `%s' might be inconsistent; fsck will be forced on next mount.\n",
4618 case HFS_OP_INCOMPLETE
:
4619 printf("hfs_mark_inconsistent: Failed to complete operation; volume `%s' might be inconsistent; fsck will be forced on next mount.\n",
4622 case HFS_FSCK_FORCED
:
4623 printf("hfs_mark_inconsistent: fsck requested for `%s'; fsck will be forced on next mount.\n",
4628 hfs_unlock_mount (hfsmp
);
4631 /* Replay the journal on the device node provided. Returns zero if
4632 * journal replay succeeded or no journal was supposed to be replayed.
4634 static int hfs_journal_replay(vnode_t devvp
, vfs_context_t context
)
4639 /* Replay allowed only on raw devices */
4640 if (!vnode_ischr(devvp
) && !vnode_isblk(devvp
))
4643 retval
= hfs_mountfs(devvp
, NULL
, NULL
, /* journal_replay_only: */ 1, context
);
4644 buf_flushdirtyblks(devvp
, TRUE
, 0, "hfs_journal_replay");
4646 /* FSYNC the devnode to be sure all data has been flushed */
4647 error
= VNOP_FSYNC(devvp
, MNT_WAIT
, context
);
4660 hfs_syncer_free(struct hfsmount
*hfsmp
)
4662 if (hfsmp
&& ISSET(hfsmp
->hfs_flags
, HFS_RUN_SYNCER
)) {
4663 hfs_syncer_lock(hfsmp
);
4664 CLR(hfsmp
->hfs_flags
, HFS_RUN_SYNCER
);
4665 hfs_syncer_unlock(hfsmp
);
4667 // Wait for the syncer thread to finish
4668 if (hfsmp
->hfs_syncer_thread
) {
4669 hfs_syncer_wakeup(hfsmp
);
4670 hfs_syncer_lock(hfsmp
);
4671 while (hfsmp
->hfs_syncer_thread
)
4672 hfs_syncer_wait(hfsmp
, NULL
);
4673 hfs_syncer_unlock(hfsmp
);
4678 static int hfs_vfs_ioctl(struct mount
*mp
, u_long command
, caddr_t data
,
4679 __unused
int flags
, __unused vfs_context_t context
)
4683 case FIODEVICELOCKED
:
4684 cp_device_locked_callback(mp
, (cp_lock_state_t
)data
);
4692 * hfs vfs operations.
4694 struct vfsops hfs_vfsops
= {
4695 .vfs_mount
= hfs_mount
,
4696 .vfs_start
= hfs_start
,
4697 .vfs_unmount
= hfs_unmount
,
4698 .vfs_root
= hfs_vfs_root
,
4699 .vfs_quotactl
= hfs_quotactl
,
4700 .vfs_getattr
= hfs_vfs_getattr
,
4701 .vfs_sync
= hfs_sync
,
4702 .vfs_vget
= hfs_vfs_vget
,
4703 .vfs_fhtovp
= hfs_fhtovp
,
4704 .vfs_vptofh
= hfs_vptofh
,
4705 .vfs_init
= hfs_init
,
4706 .vfs_sysctl
= hfs_sysctl
,
4707 .vfs_setattr
= hfs_vfs_setattr
,
4708 .vfs_ioctl
= hfs_vfs_ioctl
,