2 * Copyright (c) 1999-2017 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1991, 1993, 1994
30 * The Regents of the University of California. All rights reserved.
31 * (c) UNIX System Laboratories, Inc.
32 * All or some portions of this file are derived from material licensed
33 * to the University of California by American Telephone and Telegraph
34 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
35 * the permission of UNIX System Laboratories, Inc.
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66 * derived from @(#)ufs_vfsops.c 8.8 (Berkeley) 5/20/95
68 * (c) Copyright 1997-2002 Apple Inc. All rights reserved.
70 * hfs_vfsops.c -- VFS layer for loadable HFS file system.
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/kauth.h>
78 #include <sys/sysctl.h>
79 #include <sys/malloc.h>
81 #include <sys/quota.h>
83 #include <sys/paths.h>
84 #include <sys/utfconv.h>
85 #include <sys/kdebug.h>
86 #include <sys/fslog.h>
88 #include <libkern/OSKextLib.h>
89 #include <libkern/OSAtomic.h>
91 /* for parsing boot-args */
92 #include <pexpert/pexpert.h>
95 #include <kern/locks.h>
97 #include "hfs_journal.h"
99 #include <miscfs/specfs/specdev.h>
100 #include "hfs_mount.h"
102 #include <libkern/crypto/md5.h>
103 #include <uuid/uuid.h>
105 #include "hfs_iokit.h"
107 #include "hfs_catalog.h"
108 #include "hfs_cnode.h"
110 #include "hfs_endian.h"
111 #include "hfs_hotfiles.h"
112 #include "hfs_quota.h"
113 #include "hfs_btreeio.h"
114 #include "hfs_kdebug.h"
115 #include "hfs_cprotect.h"
117 #include "FileMgrInternal.h"
118 #include "BTreesInternal.h"
120 #define HFS_MOUNT_DEBUG 1
122 /* Enable/disable debugging code for live volume resizing, defined in hfs_resize.c */
123 extern int hfs_resize_debug
;
125 lck_grp_attr_t
* hfs_group_attr
;
126 lck_attr_t
* hfs_lock_attr
;
127 lck_grp_t
* hfs_mutex_group
;
128 lck_grp_t
* hfs_rwlock_group
;
129 lck_grp_t
* hfs_spinlock_group
;
131 // variables to manage HFS kext retain count -- only supported on Macs
133 int hfs_active_mounts
= 0;
136 extern struct vnodeopv_desc hfs_vnodeop_opv_desc
;
139 extern struct vnodeopv_desc hfs_std_vnodeop_opv_desc
;
140 static int hfs_flushMDB(struct hfsmount
*hfsmp
, int waitfor
, int altflush
);
143 /* not static so we can re-use in hfs_readwrite.c for build_path calls */
144 int hfs_vfs_vget(struct mount
*mp
, ino64_t ino
, struct vnode
**vpp
, vfs_context_t context
);
146 static int hfs_changefs(struct mount
*mp
, struct hfs_mount_args
*args
);
147 static int hfs_fhtovp(struct mount
*mp
, int fhlen
, unsigned char *fhp
, struct vnode
**vpp
, vfs_context_t context
);
148 static int hfs_flushfiles(struct mount
*, int, struct proc
*);
149 static int hfs_init(struct vfsconf
*vfsp
);
150 static void hfs_locks_destroy(struct hfsmount
*hfsmp
);
151 static int hfs_quotactl(struct mount
*, int, uid_t
, caddr_t
, vfs_context_t context
);
152 static int hfs_start(struct mount
*mp
, int flags
, vfs_context_t context
);
153 static int hfs_vptofh(struct vnode
*vp
, int *fhlenp
, unsigned char *fhp
, vfs_context_t context
);
154 static void hfs_syncer_free(struct hfsmount
*hfsmp
);
156 void hfs_initialize_allocator (struct hfsmount
*hfsmp
);
157 int hfs_teardown_allocator (struct hfsmount
*hfsmp
);
159 int hfs_mount(struct mount
*mp
, vnode_t devvp
, user_addr_t data
, vfs_context_t context
);
160 int hfs_mountfs(struct vnode
*devvp
, struct mount
*mp
, struct hfs_mount_args
*args
, int journal_replay_only
, vfs_context_t context
);
161 int hfs_reload(struct mount
*mp
);
162 int hfs_statfs(struct mount
*mp
, register struct vfsstatfs
*sbp
, vfs_context_t context
);
163 int hfs_sync(struct mount
*mp
, int waitfor
, vfs_context_t context
);
164 int hfs_sysctl(int *name
, u_int namelen
, user_addr_t oldp
, size_t *oldlenp
,
165 user_addr_t newp
, size_t newlen
, vfs_context_t context
);
166 int hfs_unmount(struct mount
*mp
, int mntflags
, vfs_context_t context
);
168 static int hfs_journal_replay(vnode_t devvp
, vfs_context_t context
);
171 #include <IOKit/IOLib.h>
181 hfs_mount(struct mount
*mp
, vnode_t devvp
, user_addr_t data
, vfs_context_t context
)
186 #warning HFS_LEAK_DEBUG is on
188 hfs_alloc_trace_enable();
192 struct proc
*p
= vfs_context_proc(context
);
193 struct hfsmount
*hfsmp
= NULL
;
194 struct hfs_mount_args args
;
198 if (data
&& (retval
= copyin(data
, (caddr_t
)&args
, sizeof(args
)))) {
199 if (HFS_MOUNT_DEBUG
) {
200 printf("hfs_mount: copyin returned %d for fs\n", retval
);
204 cmdflags
= (u_int32_t
)vfs_flags(mp
) & MNT_CMDFLAGS
;
205 if (cmdflags
& MNT_UPDATE
) {
208 hfsmp
= VFSTOHFS(mp
);
210 /* Reload incore data after an fsck. */
211 if (cmdflags
& MNT_RELOAD
) {
212 if (vfs_isrdonly(mp
)) {
213 int error
= hfs_reload(mp
);
214 if (error
&& HFS_MOUNT_DEBUG
) {
215 printf("hfs_mount: hfs_reload returned %d on %s \n", error
, hfsmp
->vcbVN
);
220 if (HFS_MOUNT_DEBUG
) {
221 printf("hfs_mount: MNT_RELOAD not supported on rdwr filesystem %s\n", hfsmp
->vcbVN
);
227 /* Change to a read-only file system. */
228 if (((hfsmp
->hfs_flags
& HFS_READ_ONLY
) == 0) &&
232 /* Set flag to indicate that a downgrade to read-only
233 * is in progress and therefore block any further
234 * modifications to the file system.
236 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
237 hfsmp
->hfs_flags
|= HFS_RDONLY_DOWNGRADE
;
238 hfsmp
->hfs_downgrading_thread
= current_thread();
239 hfs_unlock_global (hfsmp
);
240 hfs_syncer_free(hfsmp
);
242 /* use hfs_sync to push out System (btree) files */
243 retval
= hfs_sync(mp
, MNT_WAIT
, context
);
244 if (retval
&& ((cmdflags
& MNT_FORCE
) == 0)) {
245 hfsmp
->hfs_flags
&= ~HFS_RDONLY_DOWNGRADE
;
246 hfsmp
->hfs_downgrading_thread
= NULL
;
247 if (HFS_MOUNT_DEBUG
) {
248 printf("hfs_mount: VFS_SYNC returned %d during b-tree sync of %s \n", retval
, hfsmp
->vcbVN
);
254 if (cmdflags
& MNT_FORCE
)
257 if ((retval
= hfs_flushfiles(mp
, flags
, p
))) {
258 hfsmp
->hfs_flags
&= ~HFS_RDONLY_DOWNGRADE
;
259 hfsmp
->hfs_downgrading_thread
= NULL
;
260 if (HFS_MOUNT_DEBUG
) {
261 printf("hfs_mount: hfs_flushfiles returned %d on %s \n", retval
, hfsmp
->vcbVN
);
266 /* mark the volume cleanly unmounted */
267 hfsmp
->vcbAtrb
|= kHFSVolumeUnmountedMask
;
268 retval
= hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
);
269 hfsmp
->hfs_flags
|= HFS_READ_ONLY
;
272 * Close down the journal.
274 * NOTE: It is critically important to close down the journal
275 * and have it issue all pending I/O prior to calling VNOP_FSYNC below.
276 * In a journaled environment it is expected that the journal be
277 * the only actor permitted to issue I/O for metadata blocks in HFS.
278 * If we were to call VNOP_FSYNC prior to closing down the journal,
279 * we would inadvertantly issue (and wait for) the I/O we just
280 * initiated above as part of the flushvolumeheader call.
282 * To avoid this, we follow the same order of operations as in
283 * unmount and issue the journal_close prior to calling VNOP_FSYNC.
287 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
289 journal_close(hfsmp
->jnl
);
292 // Note: we explicitly don't want to shutdown
293 // access to the jvp because we may need
294 // it later if we go back to being read-write.
296 hfs_unlock_global (hfsmp
);
298 vfs_clearflags(hfsmp
->hfs_mp
, MNT_JOURNALED
);
302 * Write out any pending I/O still outstanding against the device node
303 * now that the journal has been closed.
306 vnode_get(hfsmp
->hfs_devvp
);
307 retval
= VNOP_FSYNC(hfsmp
->hfs_devvp
, MNT_WAIT
, context
);
308 vnode_put(hfsmp
->hfs_devvp
);
312 if (HFS_MOUNT_DEBUG
) {
313 printf("hfs_mount: FSYNC on devvp returned %d for fs %s\n", retval
, hfsmp
->vcbVN
);
315 hfsmp
->hfs_flags
&= ~HFS_RDONLY_DOWNGRADE
;
316 hfsmp
->hfs_downgrading_thread
= NULL
;
317 hfsmp
->hfs_flags
&= ~HFS_READ_ONLY
;
321 if (hfsmp
->hfs_flags
& HFS_SUMMARY_TABLE
) {
322 if (hfsmp
->hfs_summary_table
) {
325 * Take the bitmap lock to serialize against a concurrent bitmap scan still in progress
327 if (hfsmp
->hfs_allocation_vp
) {
328 err
= hfs_lock (VTOC(hfsmp
->hfs_allocation_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
330 hfs_free(hfsmp
->hfs_summary_table
, hfsmp
->hfs_summary_bytes
);
331 hfsmp
->hfs_summary_table
= NULL
;
332 hfsmp
->hfs_flags
&= ~HFS_SUMMARY_TABLE
;
333 if (err
== 0 && hfsmp
->hfs_allocation_vp
){
334 hfs_unlock (VTOC(hfsmp
->hfs_allocation_vp
));
339 hfsmp
->hfs_downgrading_thread
= NULL
;
342 /* Change to a writable file system. */
343 if (vfs_iswriteupgrade(mp
)) {
345 * On inconsistent disks, do not allow read-write mount
346 * unless it is the boot volume being mounted.
348 if (!(vfs_flags(mp
) & MNT_ROOTFS
) &&
349 (hfsmp
->vcbAtrb
& kHFSVolumeInconsistentMask
)) {
350 if (HFS_MOUNT_DEBUG
) {
351 printf("hfs_mount: attempting to mount inconsistent non-root volume %s\n", (hfsmp
->vcbVN
));
357 // If the journal was shut-down previously because we were
358 // asked to be read-only, let's start it back up again now
360 if ( (HFSTOVCB(hfsmp
)->vcbAtrb
& kHFSVolumeJournaledMask
)
361 && hfsmp
->jnl
== NULL
362 && hfsmp
->jvp
!= NULL
) {
365 if (hfsmp
->hfs_flags
& HFS_NEED_JNL_RESET
) {
366 jflags
= JOURNAL_RESET
;
371 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
373 /* We provide the mount point twice here: The first is used as
374 * an opaque argument to be passed back when hfs_sync_metadata
375 * is called. The second is provided to the throttling code to
376 * indicate which mount's device should be used when accounting
377 * for metadata writes.
379 hfsmp
->jnl
= journal_open(hfsmp
->jvp
,
380 hfs_blk_to_bytes(hfsmp
->jnl_start
, HFSTOVCB(hfsmp
)->blockSize
) + (off_t
)HFSTOVCB(hfsmp
)->hfsPlusIOPosOffset
,
383 hfsmp
->hfs_logical_block_size
,
386 hfs_sync_metadata
, hfsmp
->hfs_mp
,
390 * Set up the trim callback function so that we can add
391 * recently freed extents to the free extent cache once
392 * the transaction that freed them is written to the
396 journal_trim_set_callback(hfsmp
->jnl
, hfs_trim_callback
, hfsmp
);
398 hfs_unlock_global (hfsmp
);
400 if (hfsmp
->jnl
== NULL
) {
401 if (HFS_MOUNT_DEBUG
) {
402 printf("hfs_mount: journal_open == NULL; couldn't be opened on %s \n", (hfsmp
->vcbVN
));
407 hfsmp
->hfs_flags
&= ~HFS_NEED_JNL_RESET
;
408 vfs_setflags(hfsmp
->hfs_mp
, MNT_JOURNALED
);
412 /* See if we need to erase unused Catalog nodes due to <rdar://problem/6947811>. */
413 retval
= hfs_erase_unused_nodes(hfsmp
);
414 if (retval
!= E_NONE
) {
415 if (HFS_MOUNT_DEBUG
) {
416 printf("hfs_mount: hfs_erase_unused_nodes returned %d for fs %s\n", retval
, hfsmp
->vcbVN
);
421 /* If this mount point was downgraded from read-write
422 * to read-only, clear that information as we are now
423 * moving back to read-write.
425 hfsmp
->hfs_flags
&= ~HFS_RDONLY_DOWNGRADE
;
426 hfsmp
->hfs_downgrading_thread
= NULL
;
428 /* mark the volume dirty (clear clean unmount bit) */
429 hfsmp
->vcbAtrb
&= ~kHFSVolumeUnmountedMask
;
431 retval
= hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
);
432 if (retval
!= E_NONE
) {
433 if (HFS_MOUNT_DEBUG
) {
434 printf("hfs_mount: hfs_flushvolumeheader returned %d for fs %s\n", retval
, hfsmp
->vcbVN
);
439 /* Only clear HFS_READ_ONLY after a successful write */
440 hfsmp
->hfs_flags
&= ~HFS_READ_ONLY
;
443 if (!(hfsmp
->hfs_flags
& (HFS_READ_ONLY
| HFS_STANDARD
))) {
444 /* Setup private/hidden directories for hardlinks. */
445 hfs_privatedir_init(hfsmp
, FILE_HARDLINKS
);
446 hfs_privatedir_init(hfsmp
, DIR_HARDLINKS
);
448 hfs_remove_orphans(hfsmp
);
451 * Since we're upgrading to a read-write mount, allow
452 * hot file clustering if conditions allow.
454 * Note: this normally only would happen if you booted
455 * single-user and upgraded the mount to read-write
457 * Note: at this point we are not allowed to fail the
458 * mount operation because the HotFile init code
459 * in hfs_recording_init() will lookup vnodes with
460 * VNOP_LOOKUP() which hangs vnodes off the mount
461 * (and if we were to fail, VFS is not prepared to
462 * clean that up at this point. Since HotFiles are
463 * optional, this is not a big deal.
465 if (ISSET(hfsmp
->hfs_flags
, HFS_METADATA_ZONE
)
466 && (!ISSET(hfsmp
->hfs_flags
, HFS_SSD
)
467 || ISSET(hfsmp
->hfs_flags
, HFS_CS_HOTFILE_PIN
))) {
468 hfs_recording_init(hfsmp
);
470 /* Force ACLs on HFS+ file systems. */
471 if (vfs_extendedsecurity(HFSTOVFS(hfsmp
)) == 0) {
472 vfs_setextendedsecurity(HFSTOVFS(hfsmp
));
477 /* Update file system parameters. */
478 retval
= hfs_changefs(mp
, &args
);
479 if (retval
&& HFS_MOUNT_DEBUG
) {
480 printf("hfs_mount: hfs_changefs returned %d for %s\n", retval
, hfsmp
->vcbVN
);
483 } else /* not an update request */ {
488 /* Set the mount flag to indicate that we support volfs */
489 vfs_setflags(mp
, (u_int64_t
)((unsigned int)MNT_DOVOLFS
));
491 retval
= hfs_mountfs(devvp
, mp
, data
? &args
: NULL
, 0, context
);
493 const char *name
= vnode_getname(devvp
);
494 printf("hfs_mount: hfs_mountfs returned error=%d for device %s\n", retval
, (name
? name
: "unknown-dev"));
501 /* After hfs_mountfs succeeds, we should have valid hfsmp */
502 hfsmp
= VFSTOHFS(mp
);
504 /* Set up the maximum defrag file size */
505 hfsmp
->hfs_defrag_max
= HFS_INITIAL_DEFRAG_SIZE
;
511 hfsmp
->hfs_uid
= UNKNOWNUID
;
512 hfsmp
->hfs_gid
= UNKNOWNGID
;
513 hfsmp
->hfs_dir_mask
= (S_IRWXU
| S_IRGRP
|S_IXGRP
| S_IROTH
|S_IXOTH
); /* 0755 */
514 hfsmp
->hfs_file_mask
= (S_IRWXU
| S_IRGRP
|S_IXGRP
| S_IROTH
|S_IXOTH
); /* 0755 */
516 /* Establish the free block reserve. */
517 hfsmp
->reserveBlocks
= ((u_int64_t
)hfsmp
->totalBlocks
* HFS_MINFREE
) / 100;
518 hfsmp
->reserveBlocks
= MIN(hfsmp
->reserveBlocks
, HFS_MAXRESERVE
/ hfsmp
->blockSize
);
521 // increment kext retain count
522 OSIncrementAtomic(&hfs_active_mounts
);
523 OSKextRetainKextWithLoadTag(OSKextGetCurrentLoadTag());
524 if (hfs_active_mounts
<= 0 && panic_on_assert
)
525 panic("hfs_mount: error - kext resource count is non-positive: %d but at least one active mount\n", hfs_active_mounts
);
531 (void)hfs_statfs(mp
, vfs_statfs(mp
), context
);
537 struct hfs_changefs_cargs
{
538 struct hfsmount
*hfsmp
;
545 hfs_changefs_callback(struct vnode
*vp
, void *cargs
)
549 struct cat_desc cndesc
;
550 struct cat_attr cnattr
;
551 struct hfs_changefs_cargs
*args
;
555 args
= (struct hfs_changefs_cargs
*)cargs
;
558 vcb
= HFSTOVCB(args
->hfsmp
);
560 lockflags
= hfs_systemfile_lock(args
->hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
561 error
= cat_lookup(args
->hfsmp
, &cp
->c_desc
, 0, 0, &cndesc
, &cnattr
, NULL
, NULL
);
562 hfs_systemfile_unlock(args
->hfsmp
, lockflags
);
565 * If we couldn't find this guy skip to the next one
570 return (VNODE_RETURNED
);
573 * Get the real uid/gid and perm mask from disk.
575 if (args
->permswitch
|| args
->permfix
) {
576 cp
->c_uid
= cnattr
.ca_uid
;
577 cp
->c_gid
= cnattr
.ca_gid
;
578 cp
->c_mode
= cnattr
.ca_mode
;
581 * If we're switching name converters then...
582 * Remove the existing entry from the namei cache.
583 * Update name to one based on new encoder.
587 replace_desc(cp
, &cndesc
);
589 if (cndesc
.cd_cnid
== kHFSRootFolderID
) {
590 strlcpy((char *)vcb
->vcbVN
, (const char *)cp
->c_desc
.cd_nameptr
, NAME_MAX
+1);
591 cp
->c_desc
.cd_encoding
= args
->hfsmp
->hfs_encoding
;
594 cat_releasedesc(&cndesc
);
596 return (VNODE_RETURNED
);
599 /* Change fs mount parameters */
601 hfs_changefs(struct mount
*mp
, struct hfs_mount_args
*args
)
604 int namefix
, permfix
, permswitch
;
605 struct hfsmount
*hfsmp
;
607 struct hfs_changefs_cargs cargs
;
608 u_int32_t mount_flags
;
611 u_int32_t old_encoding
= 0;
612 hfs_to_unicode_func_t get_unicode_func
;
613 unicode_to_hfs_func_t get_hfsname_func
= NULL
;
616 hfsmp
= VFSTOHFS(mp
);
617 vcb
= HFSTOVCB(hfsmp
);
618 mount_flags
= (unsigned int)vfs_flags(mp
);
620 hfsmp
->hfs_flags
|= HFS_IN_CHANGEFS
;
622 permswitch
= (((hfsmp
->hfs_flags
& HFS_UNKNOWN_PERMS
) &&
623 ((mount_flags
& MNT_UNKNOWNPERMISSIONS
) == 0)) ||
624 (((hfsmp
->hfs_flags
& HFS_UNKNOWN_PERMS
) == 0) &&
625 (mount_flags
& MNT_UNKNOWNPERMISSIONS
)));
627 /* The root filesystem must operate with actual permissions: */
628 if (permswitch
&& (mount_flags
& MNT_ROOTFS
) && (mount_flags
& MNT_UNKNOWNPERMISSIONS
)) {
629 vfs_clearflags(mp
, (u_int64_t
)((unsigned int)MNT_UNKNOWNPERMISSIONS
)); /* Just say "No". */
633 if (mount_flags
& MNT_UNKNOWNPERMISSIONS
)
634 hfsmp
->hfs_flags
|= HFS_UNKNOWN_PERMS
;
636 hfsmp
->hfs_flags
&= ~HFS_UNKNOWN_PERMS
;
638 namefix
= permfix
= 0;
641 * Tracking of hot files requires up-to-date access times. So if
642 * access time updates are disabled, we must also disable hot files.
644 if (mount_flags
& MNT_NOATIME
) {
645 (void) hfs_recording_suspend(hfsmp
);
648 /* Change the timezone (Note: this affects all hfs volumes and hfs+ volume create dates) */
649 if (args
->hfs_timezone
.tz_minuteswest
!= VNOVAL
) {
650 gTimeZone
= args
->hfs_timezone
;
653 /* Change the default uid, gid and/or mask */
654 if ((args
->hfs_uid
!= (uid_t
)VNOVAL
) && (hfsmp
->hfs_uid
!= args
->hfs_uid
)) {
655 hfsmp
->hfs_uid
= args
->hfs_uid
;
656 if (vcb
->vcbSigWord
== kHFSPlusSigWord
)
659 if ((args
->hfs_gid
!= (gid_t
)VNOVAL
) && (hfsmp
->hfs_gid
!= args
->hfs_gid
)) {
660 hfsmp
->hfs_gid
= args
->hfs_gid
;
661 if (vcb
->vcbSigWord
== kHFSPlusSigWord
)
664 if (args
->hfs_mask
!= (mode_t
)VNOVAL
) {
665 if (hfsmp
->hfs_dir_mask
!= (args
->hfs_mask
& ALLPERMS
)) {
666 hfsmp
->hfs_dir_mask
= args
->hfs_mask
& ALLPERMS
;
667 hfsmp
->hfs_file_mask
= args
->hfs_mask
& ALLPERMS
;
668 if ((args
->flags
!= VNOVAL
) && (args
->flags
& HFSFSMNT_NOXONFILES
))
669 hfsmp
->hfs_file_mask
= (args
->hfs_mask
& DEFFILEMODE
);
670 if (vcb
->vcbSigWord
== kHFSPlusSigWord
)
676 /* Change the hfs encoding value (hfs only) */
677 if ((vcb
->vcbSigWord
== kHFSSigWord
) &&
678 (args
->hfs_encoding
!= (u_int32_t
)VNOVAL
) &&
679 (hfsmp
->hfs_encoding
!= args
->hfs_encoding
)) {
681 retval
= hfs_getconverter(args
->hfs_encoding
, &get_unicode_func
, &get_hfsname_func
);
686 * Connect the new hfs_get_unicode converter but leave
687 * the old hfs_get_hfsname converter in place so that
688 * we can lookup existing vnodes to get their correctly
691 * When we're all finished, we can then connect the new
692 * hfs_get_hfsname converter and release our interest
693 * in the old converters.
695 hfsmp
->hfs_get_unicode
= get_unicode_func
;
696 old_encoding
= hfsmp
->hfs_encoding
;
697 hfsmp
->hfs_encoding
= args
->hfs_encoding
;
702 if (!(namefix
|| permfix
|| permswitch
))
705 /* XXX 3762912 hack to support HFS filesystem 'owner' */
708 hfsmp
->hfs_uid
== UNKNOWNUID
? KAUTH_UID_NONE
: hfsmp
->hfs_uid
,
709 hfsmp
->hfs_gid
== UNKNOWNGID
? KAUTH_GID_NONE
: hfsmp
->hfs_gid
);
713 * For each active vnode fix things that changed
715 * Note that we can visit a vnode more than once
716 * and we can race with fsync.
718 * hfs_changefs_callback will be called for each vnode
719 * hung off of this mount point
721 * The vnode will be properly referenced and unreferenced
722 * around the callback
725 cargs
.namefix
= namefix
;
726 cargs
.permfix
= permfix
;
727 cargs
.permswitch
= permswitch
;
729 vnode_iterate(mp
, 0, hfs_changefs_callback
, (void *)&cargs
);
733 * If we're switching name converters we can now
734 * connect the new hfs_get_hfsname converter and
735 * release our interest in the old converters.
738 /* HFS standard only */
739 hfsmp
->hfs_get_hfsname
= get_hfsname_func
;
740 vcb
->volumeNameEncodingHint
= args
->hfs_encoding
;
741 (void) hfs_relconverter(old_encoding
);
746 hfsmp
->hfs_flags
&= ~HFS_IN_CHANGEFS
;
751 struct hfs_reload_cargs
{
752 struct hfsmount
*hfsmp
;
757 hfs_reload_callback(struct vnode
*vp
, void *cargs
)
760 struct hfs_reload_cargs
*args
;
763 args
= (struct hfs_reload_cargs
*)cargs
;
765 * flush all the buffers associated with this node
767 (void) buf_invalidateblks(vp
, 0, 0, 0);
771 * Remove any directory hints
774 hfs_reldirhints(cp
, 0);
777 * Re-read cnode data for all active vnodes (non-metadata files).
779 if (!vnode_issystem(vp
) && !VNODE_IS_RSRC(vp
) && (cp
->c_fileid
>= kHFSFirstUserCatalogNodeID
)) {
780 struct cat_fork
*datafork
;
781 struct cat_desc desc
;
783 datafork
= cp
->c_datafork
? &cp
->c_datafork
->ff_data
: NULL
;
785 /* lookup by fileID since name could have changed */
786 lockflags
= hfs_systemfile_lock(args
->hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
787 args
->error
= cat_idlookup(args
->hfsmp
, cp
->c_fileid
, 0, 0, &desc
, &cp
->c_attr
, datafork
);
788 hfs_systemfile_unlock(args
->hfsmp
, lockflags
);
790 return (VNODE_RETURNED_DONE
);
793 /* update cnode's catalog descriptor */
794 (void) replace_desc(cp
, &desc
);
796 return (VNODE_RETURNED
);
800 * Reload all incore data for a filesystem (used after running fsck on
801 * the root filesystem and finding things to fix). The filesystem must
802 * be mounted read-only.
804 * Things to do to update the mount:
805 * invalidate all cached meta-data.
806 * invalidate all inactive vnodes.
807 * invalidate all cached file data.
808 * re-read volume header from disk.
809 * re-load meta-file info (extents, file size).
810 * re-load B-tree header data.
811 * re-read cnode data for all active vnodes.
814 hfs_reload(struct mount
*mountp
)
816 register struct vnode
*devvp
;
819 struct hfsmount
*hfsmp
;
820 struct HFSPlusVolumeHeader
*vhp
;
822 struct filefork
*forkp
;
823 struct cat_desc cndesc
;
824 struct hfs_reload_cargs args
;
825 daddr64_t priIDSector
;
827 hfsmp
= VFSTOHFS(mountp
);
828 vcb
= HFSTOVCB(hfsmp
);
830 if (vcb
->vcbSigWord
== kHFSSigWord
)
831 return (EINVAL
); /* rooting from HFS is not supported! */
834 * Invalidate all cached meta-data.
836 devvp
= hfsmp
->hfs_devvp
;
837 if (buf_invalidateblks(devvp
, 0, 0, 0))
838 panic("hfs_reload: dirty1");
843 * hfs_reload_callback will be called for each vnode
844 * hung off of this mount point that can't be recycled...
845 * vnode_iterate will recycle those that it can (the VNODE_RELOAD option)
846 * the vnode will be in an 'unbusy' state (VNODE_WAIT) and
847 * properly referenced and unreferenced around the callback
849 vnode_iterate(mountp
, VNODE_RELOAD
| VNODE_WAIT
, hfs_reload_callback
, (void *)&args
);
855 * Re-read VolumeHeader from disk.
857 priIDSector
= (daddr64_t
)((vcb
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
858 HFS_PRI_SECTOR(hfsmp
->hfs_logical_block_size
));
860 error
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
861 HFS_PHYSBLK_ROUNDDOWN(priIDSector
, hfsmp
->hfs_log_per_phys
),
862 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
869 vhp
= (HFSPlusVolumeHeader
*) (buf_dataptr(bp
) + HFS_PRI_OFFSET(hfsmp
->hfs_physical_block_size
));
871 /* Do a quick sanity check */
872 if ((SWAP_BE16(vhp
->signature
) != kHFSPlusSigWord
&&
873 SWAP_BE16(vhp
->signature
) != kHFSXSigWord
) ||
874 (SWAP_BE16(vhp
->version
) != kHFSPlusVersion
&&
875 SWAP_BE16(vhp
->version
) != kHFSXVersion
) ||
876 SWAP_BE32(vhp
->blockSize
) != vcb
->blockSize
) {
881 vcb
->vcbLsMod
= to_bsd_time(SWAP_BE32(vhp
->modifyDate
));
882 vcb
->vcbAtrb
= SWAP_BE32 (vhp
->attributes
);
883 vcb
->vcbJinfoBlock
= SWAP_BE32(vhp
->journalInfoBlock
);
884 vcb
->vcbClpSiz
= SWAP_BE32 (vhp
->rsrcClumpSize
);
885 vcb
->vcbNxtCNID
= SWAP_BE32 (vhp
->nextCatalogID
);
886 vcb
->vcbVolBkUp
= to_bsd_time(SWAP_BE32(vhp
->backupDate
));
887 vcb
->vcbWrCnt
= SWAP_BE32 (vhp
->writeCount
);
888 vcb
->vcbFilCnt
= SWAP_BE32 (vhp
->fileCount
);
889 vcb
->vcbDirCnt
= SWAP_BE32 (vhp
->folderCount
);
890 HFS_UPDATE_NEXT_ALLOCATION(vcb
, SWAP_BE32 (vhp
->nextAllocation
));
891 vcb
->totalBlocks
= SWAP_BE32 (vhp
->totalBlocks
);
892 vcb
->freeBlocks
= SWAP_BE32 (vhp
->freeBlocks
);
893 vcb
->encodingsBitmap
= SWAP_BE64 (vhp
->encodingsBitmap
);
894 bcopy(vhp
->finderInfo
, vcb
->vcbFndrInfo
, sizeof(vhp
->finderInfo
));
895 vcb
->localCreateDate
= SWAP_BE32 (vhp
->createDate
); /* hfs+ create date is in local time */
898 * Re-load meta-file vnode data (extent info, file size, etc).
900 forkp
= VTOF((struct vnode
*)vcb
->extentsRefNum
);
901 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
902 forkp
->ff_extents
[i
].startBlock
=
903 SWAP_BE32 (vhp
->extentsFile
.extents
[i
].startBlock
);
904 forkp
->ff_extents
[i
].blockCount
=
905 SWAP_BE32 (vhp
->extentsFile
.extents
[i
].blockCount
);
907 forkp
->ff_size
= SWAP_BE64 (vhp
->extentsFile
.logicalSize
);
908 forkp
->ff_blocks
= SWAP_BE32 (vhp
->extentsFile
.totalBlocks
);
909 forkp
->ff_clumpsize
= SWAP_BE32 (vhp
->extentsFile
.clumpSize
);
912 forkp
= VTOF((struct vnode
*)vcb
->catalogRefNum
);
913 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
914 forkp
->ff_extents
[i
].startBlock
=
915 SWAP_BE32 (vhp
->catalogFile
.extents
[i
].startBlock
);
916 forkp
->ff_extents
[i
].blockCount
=
917 SWAP_BE32 (vhp
->catalogFile
.extents
[i
].blockCount
);
919 forkp
->ff_size
= SWAP_BE64 (vhp
->catalogFile
.logicalSize
);
920 forkp
->ff_blocks
= SWAP_BE32 (vhp
->catalogFile
.totalBlocks
);
921 forkp
->ff_clumpsize
= SWAP_BE32 (vhp
->catalogFile
.clumpSize
);
923 if (hfsmp
->hfs_attribute_vp
) {
924 forkp
= VTOF(hfsmp
->hfs_attribute_vp
);
925 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
926 forkp
->ff_extents
[i
].startBlock
=
927 SWAP_BE32 (vhp
->attributesFile
.extents
[i
].startBlock
);
928 forkp
->ff_extents
[i
].blockCount
=
929 SWAP_BE32 (vhp
->attributesFile
.extents
[i
].blockCount
);
931 forkp
->ff_size
= SWAP_BE64 (vhp
->attributesFile
.logicalSize
);
932 forkp
->ff_blocks
= SWAP_BE32 (vhp
->attributesFile
.totalBlocks
);
933 forkp
->ff_clumpsize
= SWAP_BE32 (vhp
->attributesFile
.clumpSize
);
936 forkp
= VTOF((struct vnode
*)vcb
->allocationsRefNum
);
937 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
938 forkp
->ff_extents
[i
].startBlock
=
939 SWAP_BE32 (vhp
->allocationFile
.extents
[i
].startBlock
);
940 forkp
->ff_extents
[i
].blockCount
=
941 SWAP_BE32 (vhp
->allocationFile
.extents
[i
].blockCount
);
943 forkp
->ff_size
= SWAP_BE64 (vhp
->allocationFile
.logicalSize
);
944 forkp
->ff_blocks
= SWAP_BE32 (vhp
->allocationFile
.totalBlocks
);
945 forkp
->ff_clumpsize
= SWAP_BE32 (vhp
->allocationFile
.clumpSize
);
951 * Re-load B-tree header data
953 forkp
= VTOF((struct vnode
*)vcb
->extentsRefNum
);
954 if ( (error
= MacToVFSError( BTReloadData((FCB
*)forkp
) )) )
957 forkp
= VTOF((struct vnode
*)vcb
->catalogRefNum
);
958 if ( (error
= MacToVFSError( BTReloadData((FCB
*)forkp
) )) )
961 if (hfsmp
->hfs_attribute_vp
) {
962 forkp
= VTOF(hfsmp
->hfs_attribute_vp
);
963 if ( (error
= MacToVFSError( BTReloadData((FCB
*)forkp
) )) )
967 /* Reload the volume name */
968 if ((error
= cat_idlookup(hfsmp
, kHFSRootFolderID
, 0, 0, &cndesc
, NULL
, NULL
)))
970 vcb
->volumeNameEncodingHint
= cndesc
.cd_encoding
;
971 bcopy(cndesc
.cd_nameptr
, vcb
->vcbVN
, min(255, cndesc
.cd_namelen
));
972 cat_releasedesc(&cndesc
);
974 /* Re-establish private/hidden directories. */
975 hfs_privatedir_init(hfsmp
, FILE_HARDLINKS
);
976 hfs_privatedir_init(hfsmp
, DIR_HARDLINKS
);
978 /* In case any volume information changed to trigger a notification */
979 hfs_generate_volume_notifications(hfsmp
);
985 static uint64_t tv_to_usecs(struct timeval
*tv
)
987 return tv
->tv_sec
* 1000000ULL + tv
->tv_usec
;
990 // Returns TRUE if b - a >= usecs
991 static bool hfs_has_elapsed (const struct timeval
*a
,
992 const struct timeval
*b
,
996 timersub(b
, a
, &diff
);
997 return diff
.tv_sec
* 1000000ULL + diff
.tv_usec
>= usecs
;
1000 void hfs_syncer(void *arg
, __unused wait_result_t wr
)
1002 struct hfsmount
*hfsmp
= arg
;
1005 KDBG(HFSDBG_SYNCER
| DBG_FUNC_START
, obfuscate_addr(hfsmp
));
1007 hfs_syncer_lock(hfsmp
);
1009 while (ISSET(hfsmp
->hfs_flags
, HFS_RUN_SYNCER
)
1010 && timerisset(&hfsmp
->hfs_sync_req_oldest
)) {
1012 hfs_syncer_wait(hfsmp
, &HFS_META_DELAY_TS
);
1014 if (!ISSET(hfsmp
->hfs_flags
, HFS_RUN_SYNCER
)
1015 || !timerisset(&hfsmp
->hfs_sync_req_oldest
)) {
1019 /* Check to see whether we should flush now: either the oldest
1020 is > HFS_MAX_META_DELAY or HFS_META_DELAY has elapsed since
1021 the request and there are no pending writes. */
1024 uint64_t idle_time
= vfs_idle_time(hfsmp
->hfs_mp
);
1026 if (!hfs_has_elapsed(&hfsmp
->hfs_sync_req_oldest
, &now
,
1028 && idle_time
< HFS_META_DELAY
) {
1032 timerclear(&hfsmp
->hfs_sync_req_oldest
);
1034 hfs_syncer_unlock(hfsmp
);
1036 KDBG(HFSDBG_SYNCER_TIMED
| DBG_FUNC_START
, obfuscate_addr(hfsmp
));
1039 * We intentionally do a synchronous flush (of the journal or entire volume) here.
1040 * For journaled volumes, this means we wait until the metadata blocks are written
1041 * to both the journal and their final locations (in the B-trees, etc.).
1043 * This tends to avoid interleaving the metadata writes with other writes (for
1044 * example, user data, or to the journal when a later transaction notices that
1045 * an earlier transaction has finished its async writes, and then updates the
1046 * journal start in the journal header). Avoiding interleaving of writes is
1047 * very good for performance on simple flash devices like SD cards, thumb drives;
1048 * and on devices like floppies. Since removable devices tend to be this kind of
1049 * simple device, doing a synchronous flush actually improves performance in
1052 * NOTE: For non-journaled volumes, the call to hfs_sync will also cause dirty
1053 * user data to be written.
1056 hfs_flush(hfsmp
, HFS_FLUSH_JOURNAL_META
);
1058 hfs_sync(hfsmp
->hfs_mp
, MNT_WAIT
, vfs_context_current());
1061 KDBG(HFSDBG_SYNCER_TIMED
| DBG_FUNC_END
);
1063 hfs_syncer_lock(hfsmp
);
1066 hfsmp
->hfs_syncer_thread
= NULL
;
1067 hfs_syncer_unlock(hfsmp
);
1068 hfs_syncer_wakeup(hfsmp
);
1070 /* BE CAREFUL WHAT YOU ADD HERE: at this point hfs_unmount is free
1071 to continue and therefore hfsmp might be invalid. */
1073 KDBG(HFSDBG_SYNCER
| DBG_FUNC_END
);
1077 * Call into the allocator code and perform a full scan of the bitmap file.
1079 * This allows us to TRIM unallocated ranges if needed, and also to build up
1080 * an in-memory summary table of the state of the allocated blocks.
1082 void hfs_scan_blocks (struct hfsmount
*hfsmp
) {
1084 * Take the allocation file lock. Journal transactions will block until
1088 int flags
= hfs_systemfile_lock(hfsmp
, SFL_BITMAP
, HFS_EXCLUSIVE_LOCK
);
1091 * We serialize here with the HFS mount lock as we're mounting.
1093 * The mount can only proceed once this thread has acquired the bitmap
1094 * lock, since we absolutely do not want someone else racing in and
1095 * getting the bitmap lock, doing a read/write of the bitmap file,
1096 * then us getting the bitmap lock.
1098 * To prevent this, the mount thread takes the HFS mount mutex, starts us
1099 * up, then immediately msleeps on the scan_var variable in the mount
1100 * point as a condition variable. This serialization is safe since
1101 * if we race in and try to proceed while they're still holding the lock,
1102 * we'll block trying to acquire the global lock. Since the mount thread
1103 * acquires the HFS mutex before starting this function in a new thread,
1104 * any lock acquisition on our part must be linearizably AFTER the mount thread's.
1106 * Note that the HFS mount mutex is always taken last, and always for only
1107 * a short time. In this case, we just take it long enough to mark the
1108 * scan-in-flight bit.
1110 (void) hfs_lock_mount (hfsmp
);
1111 hfsmp
->scan_var
|= HFS_ALLOCATOR_SCAN_INFLIGHT
;
1112 wakeup((caddr_t
) &hfsmp
->scan_var
);
1113 hfs_unlock_mount (hfsmp
);
1115 /* Initialize the summary table */
1116 if (hfs_init_summary (hfsmp
)) {
1117 printf("hfs: could not initialize summary table for %s\n", hfsmp
->vcbVN
);
1121 * ScanUnmapBlocks assumes that the bitmap lock is held when you
1122 * call the function. We don't care if there were any errors issuing unmaps.
1124 * It will also attempt to build up the summary table for subsequent
1125 * allocator use, as configured.
1127 (void) ScanUnmapBlocks(hfsmp
);
1129 (void) hfs_lock_mount (hfsmp
);
1130 hfsmp
->scan_var
&= ~HFS_ALLOCATOR_SCAN_INFLIGHT
;
1131 hfsmp
->scan_var
|= HFS_ALLOCATOR_SCAN_COMPLETED
;
1132 wakeup((caddr_t
) &hfsmp
->scan_var
);
1133 hfs_unlock_mount (hfsmp
);
1135 buf_invalidateblks(hfsmp
->hfs_allocation_vp
, 0, 0, 0);
1137 hfs_systemfile_unlock(hfsmp
, flags
);
1142 * Common code for mount and mountroot
1145 hfs_mountfs(struct vnode
*devvp
, struct mount
*mp
, struct hfs_mount_args
*args
,
1146 int journal_replay_only
, vfs_context_t context
)
1148 struct proc
*p
= vfs_context_proc(context
);
1149 int retval
= E_NONE
;
1150 struct hfsmount
*hfsmp
= NULL
;
1153 HFSMasterDirectoryBlock
*mdbp
= NULL
;
1161 daddr64_t log_blkcnt
;
1162 u_int32_t log_blksize
;
1163 u_int32_t phys_blksize
;
1164 u_int32_t minblksize
;
1165 u_int32_t iswritable
;
1166 daddr64_t mdb_offset
;
1168 int isroot
= !journal_replay_only
&& args
== NULL
;
1169 u_int32_t device_features
= 0;
1172 ronly
= mp
&& vfs_isrdonly(mp
);
1173 dev
= vnode_specrdev(devvp
);
1174 cred
= p
? vfs_context_ucred(context
) : NOCRED
;
1180 minblksize
= kHFSBlockSize
;
1182 /* Advisory locking should be handled at the VFS layer */
1184 vfs_setlocklocal(mp
);
1186 /* Get the logical block size (treated as physical block size everywhere) */
1187 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKSIZE
, (caddr_t
)&log_blksize
, 0, context
)) {
1188 if (HFS_MOUNT_DEBUG
) {
1189 printf("hfs_mountfs: DKIOCGETBLOCKSIZE failed\n");
1194 if (log_blksize
== 0 || log_blksize
> 1024*1024*1024) {
1195 printf("hfs: logical block size 0x%x looks bad. Not mounting.\n", log_blksize
);
1200 /* Get the physical block size. */
1201 retval
= VNOP_IOCTL(devvp
, DKIOCGETPHYSICALBLOCKSIZE
, (caddr_t
)&phys_blksize
, 0, context
);
1203 if ((retval
!= ENOTSUP
) && (retval
!= ENOTTY
)) {
1204 if (HFS_MOUNT_DEBUG
) {
1205 printf("hfs_mountfs: DKIOCGETPHYSICALBLOCKSIZE failed\n");
1210 /* If device does not support this ioctl, assume that physical
1211 * block size is same as logical block size
1213 phys_blksize
= log_blksize
;
1215 if (phys_blksize
== 0 || phys_blksize
> MAXBSIZE
) {
1216 printf("hfs: physical block size 0x%x looks bad. Not mounting.\n", phys_blksize
);
1221 /* Switch to 512 byte sectors (temporarily) */
1222 if (log_blksize
> 512) {
1223 u_int32_t size512
= 512;
1225 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&size512
, FWRITE
, context
)) {
1226 if (HFS_MOUNT_DEBUG
) {
1227 printf("hfs_mountfs: DKIOCSETBLOCKSIZE failed \n");
1233 /* Get the number of 512 byte physical blocks. */
1234 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
, (caddr_t
)&log_blkcnt
, 0, context
)) {
1235 /* resetting block size may fail if getting block count did */
1236 (void)VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&log_blksize
, FWRITE
, context
);
1237 if (HFS_MOUNT_DEBUG
) {
1238 printf("hfs_mountfs: DKIOCGETBLOCKCOUNT failed\n");
1243 /* Compute an accurate disk size (i.e. within 512 bytes) */
1244 disksize
= (u_int64_t
)log_blkcnt
* (u_int64_t
)512;
1247 * On Tiger it is not necessary to switch the device
1248 * block size to be 4k if there are more than 31-bits
1249 * worth of blocks but to insure compatibility with
1250 * pre-Tiger systems we have to do it.
1252 * If the device size is not a multiple of 4K (8 * 512), then
1253 * switching the logical block size isn't going to help because
1254 * we will be unable to write the alternate volume header.
1255 * In this case, just leave the logical block size unchanged.
1257 if (log_blkcnt
> 0x000000007fffffff && (log_blkcnt
& 7) == 0) {
1258 minblksize
= log_blksize
= 4096;
1259 if (phys_blksize
< log_blksize
)
1260 phys_blksize
= log_blksize
;
1264 * The cluster layer is not currently prepared to deal with a logical
1265 * block size larger than the system's page size. (It can handle
1266 * blocks per page, but not multiple pages per block.) So limit the
1267 * logical block size to the page size.
1269 if (log_blksize
> PAGE_SIZE
) {
1270 log_blksize
= PAGE_SIZE
;
1273 /* Now switch to our preferred physical block size. */
1274 if (log_blksize
> 512) {
1275 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&log_blksize
, FWRITE
, context
)) {
1276 if (HFS_MOUNT_DEBUG
) {
1277 printf("hfs_mountfs: DKIOCSETBLOCKSIZE (2) failed\n");
1282 /* Get the count of physical blocks. */
1283 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
, (caddr_t
)&log_blkcnt
, 0, context
)) {
1284 if (HFS_MOUNT_DEBUG
) {
1285 printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (2) failed\n");
1293 * minblksize is the minimum physical block size
1294 * log_blksize has our preferred physical block size
1295 * log_blkcnt has the total number of physical blocks
1298 mdb_offset
= (daddr64_t
)HFS_PRI_SECTOR(log_blksize
);
1299 if ((retval
= (int)buf_meta_bread(devvp
,
1300 HFS_PHYSBLK_ROUNDDOWN(mdb_offset
, (phys_blksize
/log_blksize
)),
1301 phys_blksize
, cred
, &bp
))) {
1302 if (HFS_MOUNT_DEBUG
) {
1303 printf("hfs_mountfs: buf_meta_bread failed with %d\n", retval
);
1307 mdbp
= hfs_malloc(kMDBSize
);
1308 bcopy((char *)buf_dataptr(bp
) + HFS_PRI_OFFSET(phys_blksize
), mdbp
, kMDBSize
);
1312 hfsmp
= hfs_mallocz(sizeof(struct hfsmount
));
1314 hfs_chashinit_finish(hfsmp
);
1316 /* Init the ID lookup hashtable */
1317 hfs_idhash_init (hfsmp
);
1320 * See if the disk supports unmap (trim).
1322 * NOTE: vfs_init_io_attributes has not been called yet, so we can't use the io_flags field
1323 * returned by vfs_ioattr. We need to call VNOP_IOCTL ourselves.
1325 if (VNOP_IOCTL(devvp
, DKIOCGETFEATURES
, (caddr_t
)&device_features
, 0, context
) == 0) {
1326 if (device_features
& DK_FEATURE_UNMAP
) {
1327 hfsmp
->hfs_flags
|= HFS_UNMAP
;
1330 if(device_features
& DK_FEATURE_BARRIER
)
1331 hfsmp
->hfs_flags
|= HFS_FEATURE_BARRIER
;
1335 * See if the disk is a solid state device, too. We need this to decide what to do about
1338 if (VNOP_IOCTL(devvp
, DKIOCISSOLIDSTATE
, (caddr_t
)&isssd
, 0, context
) == 0) {
1340 hfsmp
->hfs_flags
|= HFS_SSD
;
1344 /* See if the underlying device is Core Storage or not */
1345 dk_corestorage_info_t cs_info
;
1346 memset(&cs_info
, 0, sizeof(dk_corestorage_info_t
));
1347 if (VNOP_IOCTL(devvp
, DKIOCCORESTORAGE
, (caddr_t
)&cs_info
, 0, context
) == 0) {
1348 hfsmp
->hfs_flags
|= HFS_CS
;
1349 if (isroot
&& (cs_info
.flags
& DK_CORESTORAGE_PIN_YOUR_METADATA
)) {
1350 hfsmp
->hfs_flags
|= HFS_CS_METADATA_PIN
;
1352 if (isroot
&& (cs_info
.flags
& DK_CORESTORAGE_ENABLE_HOTFILES
)) {
1353 hfsmp
->hfs_flags
|= HFS_CS_HOTFILE_PIN
;
1354 hfsmp
->hfs_cs_hotfile_size
= cs_info
.hotfile_size
;
1356 if ((cs_info
.flags
& DK_CORESTORAGE_PIN_YOUR_SWAPFILE
)) {
1357 hfsmp
->hfs_flags
|= HFS_CS_SWAPFILE_PIN
;
1359 struct vfsioattr ioattr
;
1360 vfs_ioattr(mp
, &ioattr
);
1361 ioattr
.io_flags
|= VFS_IOATTR_FLAGS_SWAPPIN_SUPPORTED
;
1362 ioattr
.io_max_swappin_available
= cs_info
.swapfile_pinning
;
1363 vfs_setioattr(mp
, &ioattr
);
1368 * Init the volume information structure
1371 lck_mtx_init(&hfsmp
->hfs_mutex
, hfs_mutex_group
, hfs_lock_attr
);
1372 lck_mtx_init(&hfsmp
->hfc_mutex
, hfs_mutex_group
, hfs_lock_attr
);
1373 lck_rw_init(&hfsmp
->hfs_global_lock
, hfs_rwlock_group
, hfs_lock_attr
);
1374 lck_spin_init(&hfsmp
->vcbFreeExtLock
, hfs_spinlock_group
, hfs_lock_attr
);
1377 vfs_setfsprivate(mp
, hfsmp
);
1378 hfsmp
->hfs_mp
= mp
; /* Make VFSTOHFS work */
1379 hfsmp
->hfs_raw_dev
= vnode_specrdev(devvp
);
1380 hfsmp
->hfs_devvp
= devvp
;
1381 vnode_ref(devvp
); /* Hold a ref on the device, dropped when hfsmp is freed. */
1382 hfsmp
->hfs_logical_block_size
= log_blksize
;
1383 hfsmp
->hfs_logical_block_count
= log_blkcnt
;
1384 hfsmp
->hfs_logical_bytes
= (uint64_t) log_blksize
* (uint64_t) log_blkcnt
;
1385 hfsmp
->hfs_physical_block_size
= phys_blksize
;
1386 hfsmp
->hfs_log_per_phys
= (phys_blksize
/ log_blksize
);
1387 hfsmp
->hfs_flags
|= HFS_WRITEABLE_MEDIA
;
1389 hfsmp
->hfs_flags
|= HFS_READ_ONLY
;
1390 if (mp
&& ((unsigned int)vfs_flags(mp
)) & MNT_UNKNOWNPERMISSIONS
)
1391 hfsmp
->hfs_flags
|= HFS_UNKNOWN_PERMS
;
1394 for (i
= 0; i
< MAXQUOTAS
; i
++)
1395 dqfileinit(&hfsmp
->hfs_qfiles
[i
]);
1399 hfsmp
->hfs_uid
= (args
->hfs_uid
== (uid_t
)VNOVAL
) ? UNKNOWNUID
: args
->hfs_uid
;
1400 if (hfsmp
->hfs_uid
== 0xfffffffd) hfsmp
->hfs_uid
= UNKNOWNUID
;
1401 hfsmp
->hfs_gid
= (args
->hfs_gid
== (gid_t
)VNOVAL
) ? UNKNOWNGID
: args
->hfs_gid
;
1402 if (hfsmp
->hfs_gid
== 0xfffffffd) hfsmp
->hfs_gid
= UNKNOWNGID
;
1403 vfs_setowner(mp
, hfsmp
->hfs_uid
, hfsmp
->hfs_gid
); /* tell the VFS */
1404 if (args
->hfs_mask
!= (mode_t
)VNOVAL
) {
1405 hfsmp
->hfs_dir_mask
= args
->hfs_mask
& ALLPERMS
;
1406 if (args
->flags
& HFSFSMNT_NOXONFILES
) {
1407 hfsmp
->hfs_file_mask
= (args
->hfs_mask
& DEFFILEMODE
);
1409 hfsmp
->hfs_file_mask
= args
->hfs_mask
& ALLPERMS
;
1412 hfsmp
->hfs_dir_mask
= UNKNOWNPERMISSIONS
& ALLPERMS
; /* 0777: rwx---rwx */
1413 hfsmp
->hfs_file_mask
= UNKNOWNPERMISSIONS
& DEFFILEMODE
; /* 0666: no --x by default? */
1415 if ((args
->flags
!= (int)VNOVAL
) && (args
->flags
& HFSFSMNT_WRAPPER
))
1418 /* Even w/o explicit mount arguments, MNT_UNKNOWNPERMISSIONS requires setting up uid, gid, and mask: */
1419 if (mp
&& ((unsigned int)vfs_flags(mp
)) & MNT_UNKNOWNPERMISSIONS
) {
1420 hfsmp
->hfs_uid
= UNKNOWNUID
;
1421 hfsmp
->hfs_gid
= UNKNOWNGID
;
1422 vfs_setowner(mp
, hfsmp
->hfs_uid
, hfsmp
->hfs_gid
); /* tell the VFS */
1423 hfsmp
->hfs_dir_mask
= UNKNOWNPERMISSIONS
& ALLPERMS
; /* 0777: rwx---rwx */
1424 hfsmp
->hfs_file_mask
= UNKNOWNPERMISSIONS
& DEFFILEMODE
; /* 0666: no --x by default? */
1428 /* Find out if disk media is writable. */
1429 if (VNOP_IOCTL(devvp
, DKIOCISWRITABLE
, (caddr_t
)&iswritable
, 0, context
) == 0) {
1431 hfsmp
->hfs_flags
|= HFS_WRITEABLE_MEDIA
;
1433 hfsmp
->hfs_flags
&= ~HFS_WRITEABLE_MEDIA
;
1437 rl_init(&hfsmp
->hfs_reserved_ranges
[0]);
1438 rl_init(&hfsmp
->hfs_reserved_ranges
[1]);
1440 // record the current time at which we're mounting this volume
1443 hfsmp
->hfs_mount_time
= tv
.tv_sec
;
1445 /* Mount a standard HFS disk */
1446 if ((SWAP_BE16(mdbp
->drSigWord
) == kHFSSigWord
) &&
1447 (mntwrapper
|| (SWAP_BE16(mdbp
->drEmbedSigWord
) != kHFSPlusSigWord
))) {
1449 /* If only journal replay is requested, exit immediately */
1450 if (journal_replay_only
) {
1455 /* On 10.6 and beyond, non read-only mounts for HFS standard vols get rejected */
1456 if (vfs_isrdwr(mp
)) {
1461 printf("hfs_mountfs: Mounting HFS Standard volumes was deprecated in Mac OS 10.7 \n");
1463 /* Treat it as if it's read-only and not writeable */
1464 hfsmp
->hfs_flags
|= HFS_READ_ONLY
;
1465 hfsmp
->hfs_flags
&= ~HFS_WRITEABLE_MEDIA
;
1467 if ((vfs_flags(mp
) & MNT_ROOTFS
)) {
1468 retval
= EINVAL
; /* Cannot root from HFS standard disks */
1471 /* HFS disks can only use 512 byte physical blocks */
1472 if (log_blksize
> kHFSBlockSize
) {
1473 log_blksize
= kHFSBlockSize
;
1474 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&log_blksize
, FWRITE
, context
)) {
1478 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
, (caddr_t
)&log_blkcnt
, 0, context
)) {
1482 hfsmp
->hfs_logical_block_size
= log_blksize
;
1483 hfsmp
->hfs_logical_block_count
= log_blkcnt
;
1484 hfsmp
->hfs_logical_bytes
= (uint64_t) log_blksize
* (uint64_t) log_blkcnt
;
1485 hfsmp
->hfs_physical_block_size
= log_blksize
;
1486 hfsmp
->hfs_log_per_phys
= 1;
1489 hfsmp
->hfs_encoding
= args
->hfs_encoding
;
1490 HFSTOVCB(hfsmp
)->volumeNameEncodingHint
= args
->hfs_encoding
;
1492 /* establish the timezone */
1493 gTimeZone
= args
->hfs_timezone
;
1496 retval
= hfs_getconverter(hfsmp
->hfs_encoding
, &hfsmp
->hfs_get_unicode
,
1497 &hfsmp
->hfs_get_hfsname
);
1501 retval
= hfs_MountHFSVolume(hfsmp
, mdbp
, p
);
1503 (void) hfs_relconverter(hfsmp
->hfs_encoding
);
1505 /* On platforms where HFS Standard is not supported, deny the mount altogether */
1511 else { /* Mount an HFS Plus disk */
1512 HFSPlusVolumeHeader
*vhp
;
1513 off_t embeddedOffset
;
1514 int jnl_disable
= 0;
1516 /* Get the embedded Volume Header */
1517 if (SWAP_BE16(mdbp
->drEmbedSigWord
) == kHFSPlusSigWord
) {
1518 embeddedOffset
= SWAP_BE16(mdbp
->drAlBlSt
) * kHFSBlockSize
;
1519 embeddedOffset
+= (u_int64_t
)SWAP_BE16(mdbp
->drEmbedExtent
.startBlock
) *
1520 (u_int64_t
)SWAP_BE32(mdbp
->drAlBlkSiz
);
1523 * Cooperative Fusion is not allowed on embedded HFS+
1524 * filesystems (HFS+ inside HFS standard wrapper)
1526 hfsmp
->hfs_flags
&= ~HFS_CS_METADATA_PIN
;
1529 * If the embedded volume doesn't start on a block
1530 * boundary, then switch the device to a 512-byte
1531 * block size so everything will line up on a block
1534 if ((embeddedOffset
% log_blksize
) != 0) {
1535 printf("hfs_mountfs: embedded volume offset not"
1536 " a multiple of physical block size (%d);"
1537 " switching to 512\n", log_blksize
);
1539 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
,
1540 (caddr_t
)&log_blksize
, FWRITE
, context
)) {
1542 if (HFS_MOUNT_DEBUG
) {
1543 printf("hfs_mountfs: DKIOCSETBLOCKSIZE (3) failed\n");
1548 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
,
1549 (caddr_t
)&log_blkcnt
, 0, context
)) {
1550 if (HFS_MOUNT_DEBUG
) {
1551 printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (3) failed\n");
1556 /* Note: relative block count adjustment */
1557 hfsmp
->hfs_logical_block_count
*=
1558 hfsmp
->hfs_logical_block_size
/ log_blksize
;
1560 /* Update logical /physical block size */
1561 hfsmp
->hfs_logical_block_size
= log_blksize
;
1562 hfsmp
->hfs_physical_block_size
= log_blksize
;
1564 phys_blksize
= log_blksize
;
1565 hfsmp
->hfs_log_per_phys
= 1;
1568 disksize
= (u_int64_t
)SWAP_BE16(mdbp
->drEmbedExtent
.blockCount
) *
1569 (u_int64_t
)SWAP_BE32(mdbp
->drAlBlkSiz
);
1571 hfsmp
->hfs_logical_block_count
= disksize
/ log_blksize
;
1573 hfsmp
->hfs_logical_bytes
= (uint64_t) hfsmp
->hfs_logical_block_count
* (uint64_t) hfsmp
->hfs_logical_block_size
;
1575 mdb_offset
= (daddr64_t
)((embeddedOffset
/ log_blksize
) + HFS_PRI_SECTOR(log_blksize
));
1578 buf_markinvalid(bp
);
1582 retval
= (int)buf_meta_bread(devvp
, HFS_PHYSBLK_ROUNDDOWN(mdb_offset
, hfsmp
->hfs_log_per_phys
),
1583 phys_blksize
, cred
, &bp
);
1585 if (HFS_MOUNT_DEBUG
) {
1586 printf("hfs_mountfs: buf_meta_bread (2) failed with %d\n", retval
);
1590 bcopy((char *)buf_dataptr(bp
) + HFS_PRI_OFFSET(phys_blksize
), mdbp
, 512);
1593 vhp
= (HFSPlusVolumeHeader
*) mdbp
;
1596 else { /* pure HFS+ */
1598 vhp
= (HFSPlusVolumeHeader
*) mdbp
;
1601 retval
= hfs_ValidateHFSPlusVolumeHeader(hfsmp
, vhp
);
1606 * If allocation block size is less than the physical block size,
1607 * invalidate the buffer read in using native physical block size
1608 * to ensure data consistency.
1610 * HFS Plus reserves one allocation block for the Volume Header.
1611 * If the physical size is larger, then when we read the volume header,
1612 * we will also end up reading in the next allocation block(s).
1613 * If those other allocation block(s) is/are modified, and then the volume
1614 * header is modified, the write of the volume header's buffer will write
1615 * out the old contents of the other allocation blocks.
1617 * We assume that the physical block size is same as logical block size.
1618 * The physical block size value is used to round down the offsets for
1619 * reading and writing the primary and alternate volume headers.
1621 * The same logic is also in hfs_MountHFSPlusVolume to ensure that
1622 * hfs_mountfs, hfs_MountHFSPlusVolume and later are doing the I/Os
1623 * using same block size.
1625 if (SWAP_BE32(vhp
->blockSize
) < hfsmp
->hfs_physical_block_size
) {
1626 phys_blksize
= hfsmp
->hfs_logical_block_size
;
1627 hfsmp
->hfs_physical_block_size
= hfsmp
->hfs_logical_block_size
;
1628 hfsmp
->hfs_log_per_phys
= 1;
1629 // There should be one bp associated with devvp in buffer cache.
1630 retval
= buf_invalidateblks(devvp
, 0, 0, 0);
1635 if (isroot
&& ((SWAP_BE32(vhp
->attributes
) & kHFSVolumeUnmountedMask
) != 0)) {
1636 vfs_set_root_unmounted_cleanly();
1640 * On inconsistent disks, do not allow read-write mount
1641 * unless it is the boot volume being mounted. We also
1642 * always want to replay the journal if the journal_replay_only
1643 * flag is set because that will (most likely) get the
1644 * disk into a consistent state before fsck_hfs starts
1647 if (!journal_replay_only
1648 && !(vfs_flags(mp
) & MNT_ROOTFS
)
1649 && (SWAP_BE32(vhp
->attributes
) & kHFSVolumeInconsistentMask
)
1650 && !(hfsmp
->hfs_flags
& HFS_READ_ONLY
)) {
1652 if (HFS_MOUNT_DEBUG
) {
1653 printf("hfs_mountfs: failed to mount non-root inconsistent disk\n");
1664 if (args
!= NULL
&& (args
->flags
& HFSFSMNT_EXTENDED_ARGS
) &&
1665 args
->journal_disable
) {
1670 // We only initialize the journal here if the last person
1671 // to mount this volume was journaling aware. Otherwise
1672 // we delay journal initialization until later at the end
1673 // of hfs_MountHFSPlusVolume() because the last person who
1674 // mounted it could have messed things up behind our back
1675 // (so we need to go find the .journal file, make sure it's
1676 // the right size, re-sync up if it was moved, etc).
1678 if ( (SWAP_BE32(vhp
->lastMountedVersion
) == kHFSJMountVersion
)
1679 && (SWAP_BE32(vhp
->attributes
) & kHFSVolumeJournaledMask
)
1682 // if we're able to init the journal, mark the mount
1683 // point as journaled.
1685 if ((retval
= hfs_early_journal_init(hfsmp
, vhp
, args
, embeddedOffset
, mdb_offset
, mdbp
, cred
)) == 0) {
1687 vfs_setflags(mp
, (u_int64_t
)((unsigned int)MNT_JOURNALED
));
1689 if (retval
== EROFS
) {
1690 // EROFS is a special error code that means the volume has an external
1691 // journal which we couldn't find. in that case we do not want to
1692 // rewrite the volume header - we'll just refuse to mount the volume.
1693 if (HFS_MOUNT_DEBUG
) {
1694 printf("hfs_mountfs: hfs_early_journal_init indicated external jnl \n");
1700 // if the journal failed to open, then set the lastMountedVersion
1701 // to be "FSK!" which fsck_hfs will see and force the fsck instead
1702 // of just bailing out because the volume is journaled.
1704 if (HFS_MOUNT_DEBUG
) {
1705 printf("hfs_mountfs: hfs_early_journal_init failed, setting to FSK \n");
1708 HFSPlusVolumeHeader
*jvhp
;
1710 hfsmp
->hfs_flags
|= HFS_NEED_JNL_RESET
;
1712 if (mdb_offset
== 0) {
1713 mdb_offset
= (daddr64_t
)((embeddedOffset
/ log_blksize
) + HFS_PRI_SECTOR(log_blksize
));
1717 retval
= (int)buf_meta_bread(devvp
,
1718 HFS_PHYSBLK_ROUNDDOWN(mdb_offset
, hfsmp
->hfs_log_per_phys
),
1719 phys_blksize
, cred
, &bp
);
1721 jvhp
= (HFSPlusVolumeHeader
*)(buf_dataptr(bp
) + HFS_PRI_OFFSET(phys_blksize
));
1723 if (SWAP_BE16(jvhp
->signature
) == kHFSPlusSigWord
|| SWAP_BE16(jvhp
->signature
) == kHFSXSigWord
) {
1724 printf ("hfs(1): Journal replay fail. Writing lastMountVersion as FSK!\n");
1725 jvhp
->lastMountedVersion
= SWAP_BE32(kFSKMountVersion
);
1733 // clear this so the error exit path won't try to use it
1738 // if this isn't the root device just bail out.
1739 // If it is the root device we just continue on
1740 // in the hopes that fsck_hfs will be able to
1741 // fix any damage that exists on the volume.
1742 if (mp
&& !(vfs_flags(mp
) & MNT_ROOTFS
)) {
1743 if (HFS_MOUNT_DEBUG
) {
1744 printf("hfs_mountfs: hfs_early_journal_init failed, erroring out \n");
1752 /* Either the journal is replayed successfully, or there
1753 * was nothing to replay, or no journal exists. In any case,
1756 if (journal_replay_only
) {
1762 (void) hfs_getconverter(0, &hfsmp
->hfs_get_unicode
, &hfsmp
->hfs_get_hfsname
);
1765 retval
= hfs_MountHFSPlusVolume(hfsmp
, vhp
, embeddedOffset
, disksize
, p
, args
, cred
);
1767 * If the backend didn't like our physical blocksize
1768 * then retry with physical blocksize of 512.
1770 if ((retval
== ENXIO
) && (log_blksize
> 512) && (log_blksize
!= minblksize
)) {
1771 printf("hfs_mountfs: could not use physical block size "
1772 "(%d) switching to 512\n", log_blksize
);
1774 if (VNOP_IOCTL(devvp
, DKIOCSETBLOCKSIZE
, (caddr_t
)&log_blksize
, FWRITE
, context
)) {
1775 if (HFS_MOUNT_DEBUG
) {
1776 printf("hfs_mountfs: DKIOCSETBLOCKSIZE (4) failed \n");
1781 if (VNOP_IOCTL(devvp
, DKIOCGETBLOCKCOUNT
, (caddr_t
)&log_blkcnt
, 0, context
)) {
1782 if (HFS_MOUNT_DEBUG
) {
1783 printf("hfs_mountfs: DKIOCGETBLOCKCOUNT (4) failed \n");
1788 set_fsblocksize(devvp
);
1789 /* Note: relative block count adjustment (in case this is an embedded volume). */
1790 hfsmp
->hfs_logical_block_count
*= hfsmp
->hfs_logical_block_size
/ log_blksize
;
1791 hfsmp
->hfs_logical_block_size
= log_blksize
;
1792 hfsmp
->hfs_log_per_phys
= hfsmp
->hfs_physical_block_size
/ log_blksize
;
1794 hfsmp
->hfs_logical_bytes
= (uint64_t) hfsmp
->hfs_logical_block_count
* (uint64_t) hfsmp
->hfs_logical_block_size
;
1796 if (hfsmp
->jnl
&& hfsmp
->jvp
== devvp
) {
1797 // close and re-open this with the new block size
1798 journal_close(hfsmp
->jnl
);
1800 if (hfs_early_journal_init(hfsmp
, vhp
, args
, embeddedOffset
, mdb_offset
, mdbp
, cred
) == 0) {
1801 vfs_setflags(mp
, (u_int64_t
)((unsigned int)MNT_JOURNALED
));
1803 // if the journal failed to open, then set the lastMountedVersion
1804 // to be "FSK!" which fsck_hfs will see and force the fsck instead
1805 // of just bailing out because the volume is journaled.
1807 if (HFS_MOUNT_DEBUG
) {
1808 printf("hfs_mountfs: hfs_early_journal_init (2) resetting.. \n");
1810 HFSPlusVolumeHeader
*jvhp
;
1812 hfsmp
->hfs_flags
|= HFS_NEED_JNL_RESET
;
1814 if (mdb_offset
== 0) {
1815 mdb_offset
= (daddr64_t
)((embeddedOffset
/ log_blksize
) + HFS_PRI_SECTOR(log_blksize
));
1819 retval
= (int)buf_meta_bread(devvp
, HFS_PHYSBLK_ROUNDDOWN(mdb_offset
, hfsmp
->hfs_log_per_phys
),
1820 phys_blksize
, cred
, &bp
);
1822 jvhp
= (HFSPlusVolumeHeader
*)(buf_dataptr(bp
) + HFS_PRI_OFFSET(phys_blksize
));
1824 if (SWAP_BE16(jvhp
->signature
) == kHFSPlusSigWord
|| SWAP_BE16(jvhp
->signature
) == kHFSXSigWord
) {
1825 printf ("hfs(2): Journal replay fail. Writing lastMountVersion as FSK!\n");
1826 jvhp
->lastMountedVersion
= SWAP_BE32(kFSKMountVersion
);
1834 // clear this so the error exit path won't try to use it
1839 // if this isn't the root device just bail out.
1840 // If it is the root device we just continue on
1841 // in the hopes that fsck_hfs will be able to
1842 // fix any damage that exists on the volume.
1843 if ( !(vfs_flags(mp
) & MNT_ROOTFS
)) {
1844 if (HFS_MOUNT_DEBUG
) {
1845 printf("hfs_mountfs: hfs_early_journal_init (2) failed \n");
1853 /* Try again with a smaller block size... */
1854 retval
= hfs_MountHFSPlusVolume(hfsmp
, vhp
, embeddedOffset
, disksize
, p
, args
, cred
);
1855 if (retval
&& HFS_MOUNT_DEBUG
) {
1856 printf("hfs_MountHFSPlusVolume (late) returned %d\n",retval
);
1861 (void) hfs_relconverter(0);
1865 // save off a snapshot of the mtime from the previous mount
1867 hfsmp
->hfs_last_mounted_mtime
= hfsmp
->hfs_mtime
;
1870 if (HFS_MOUNT_DEBUG
) {
1871 printf("hfs_mountfs: encountered failure %d \n", retval
);
1876 struct vfsstatfs
*vsfs
= vfs_statfs(mp
);
1877 vsfs
->f_fsid
.val
[0] = dev
;
1878 vsfs
->f_fsid
.val
[1] = vfs_typenum(mp
);
1880 vfs_setmaxsymlen(mp
, 0);
1883 if (ISSET(hfsmp
->hfs_flags
, HFS_STANDARD
)) {
1884 /* HFS standard doesn't support extended readdir! */
1885 mount_set_noreaddirext (mp
);
1891 * Set the free space warning levels for a non-root volume:
1893 * Set the "danger" limit to 1% of the volume size or 150MB, whichever is less.
1894 * Set the "warning" limit to 2% of the volume size or 500MB, whichever is less.
1895 * Set the "near warning" limit to 10% of the volume size or 1GB, whichever is less.
1896 * And last, set the "desired" freespace level to to 12% of the volume size or 1.2GB,
1897 * whichever is less.
1899 hfsmp
->hfs_freespace_notify_dangerlimit
=
1900 MIN(HFS_VERYLOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1901 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_VERYLOWDISKTRIGGERFRACTION
);
1902 hfsmp
->hfs_freespace_notify_warninglimit
=
1903 MIN(HFS_LOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1904 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_LOWDISKTRIGGERFRACTION
);
1905 hfsmp
->hfs_freespace_notify_nearwarninglimit
=
1906 MIN(HFS_NEARLOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1907 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_NEARLOWDISKTRIGGERFRACTION
);
1908 hfsmp
->hfs_freespace_notify_desiredlevel
=
1909 MIN(HFS_LOWDISKSHUTOFFLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1910 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_LOWDISKSHUTOFFFRACTION
);
1913 * Set the free space warning levels for the root volume:
1915 * Set the "danger" limit to 5% of the volume size or 512MB, whichever is less.
1916 * Set the "warning" limit to 10% of the volume size or 1GB, whichever is less.
1917 * Set the "near warning" limit to 10.5% of the volume size or 1.1GB, whichever is less.
1918 * And last, set the "desired" freespace level to to 11% of the volume size or 1.25GB,
1919 * whichever is less.
1921 * NOTE: While those are the default limits, KernelEventAgent (as of 3/2016)
1922 * will unilaterally override these to the following on OSX only:
1924 * Warning: Min (2% of root volume, 10GB), with a floor of 10GB
1925 * Desired: Warning Threshold + 1.5GB
1927 hfsmp
->hfs_freespace_notify_dangerlimit
=
1928 MIN(HFS_ROOTVERYLOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1929 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_ROOTVERYLOWDISKTRIGGERFRACTION
);
1930 hfsmp
->hfs_freespace_notify_warninglimit
=
1931 MIN(HFS_ROOTLOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1932 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_ROOTLOWDISKTRIGGERFRACTION
);
1933 hfsmp
->hfs_freespace_notify_nearwarninglimit
=
1934 MIN(HFS_ROOTNEARLOWDISKTRIGGERLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1935 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_ROOTNEARLOWDISKTRIGGERFRACTION
);
1936 hfsmp
->hfs_freespace_notify_desiredlevel
=
1937 MIN(HFS_ROOTLOWDISKSHUTOFFLEVEL
/ HFSTOVCB(hfsmp
)->blockSize
,
1938 (HFSTOVCB(hfsmp
)->totalBlocks
/ 100) * HFS_ROOTLOWDISKSHUTOFFFRACTION
);
1941 /* Check if the file system exists on virtual device, like disk image */
1942 if (VNOP_IOCTL(devvp
, DKIOCISVIRTUAL
, (caddr_t
)&isvirtual
, 0, context
) == 0) {
1944 hfsmp
->hfs_flags
|= HFS_VIRTUAL_DEVICE
;
1949 && !ISSET(hfsmp
->hfs_flags
, HFS_VIRTUAL_DEVICE
)
1950 && hfs_is_ejectable(vfs_statfs(mp
)->f_mntfromname
)) {
1951 SET(hfsmp
->hfs_flags
, HFS_RUN_SYNCER
);
1954 const char *dev_name
= (hfsmp
->hfs_devvp
1955 ? vnode_getname_printable(hfsmp
->hfs_devvp
) : NULL
);
1957 printf("hfs: mounted %s on device %s\n",
1958 (hfsmp
->vcbVN
[0] ? (const char*) hfsmp
->vcbVN
: "unknown"),
1959 dev_name
?: "unknown device");
1962 vnode_putname_printable(dev_name
);
1965 * Start looking for free space to drop below this level and generate a
1966 * warning immediately if needed:
1968 hfsmp
->hfs_notification_conditions
= 0;
1969 hfs_generate_volume_notifications(hfsmp
);
1972 (void) hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
);
1974 hfs_free(mdbp
, kMDBSize
);
1981 hfs_free(mdbp
, kMDBSize
);
1983 hfs_close_jvp(hfsmp
);
1986 if (hfsmp
->hfs_devvp
) {
1987 vnode_rele(hfsmp
->hfs_devvp
);
1989 hfs_locks_destroy(hfsmp
);
1990 hfs_delete_chash(hfsmp
);
1991 hfs_idhash_destroy (hfsmp
);
1993 hfs_free(hfsmp
, sizeof(*hfsmp
));
1995 vfs_setfsprivate(mp
, NULL
);
2002 * Make a filesystem operational.
2003 * Nothing to do at the moment.
2007 hfs_start(__unused
struct mount
*mp
, __unused
int flags
, __unused vfs_context_t context
)
2014 * unmount system call
2017 hfs_unmount(struct mount
*mp
, int mntflags
, vfs_context_t context
)
2019 struct proc
*p
= vfs_context_proc(context
);
2020 struct hfsmount
*hfsmp
= VFSTOHFS(mp
);
2021 int retval
= E_NONE
;
2028 if (mntflags
& MNT_FORCE
) {
2029 flags
|= FORCECLOSE
;
2033 const char *dev_name
= (hfsmp
->hfs_devvp
2034 ? vnode_getname_printable(hfsmp
->hfs_devvp
) : NULL
);
2036 printf("hfs: unmount initiated on %s on device %s\n",
2037 (hfsmp
->vcbVN
[0] ? (const char*) hfsmp
->vcbVN
: "unknown"),
2038 dev_name
?: "unknown device");
2041 vnode_putname_printable(dev_name
);
2043 if ((retval
= hfs_flushfiles(mp
, flags
, p
)) && !force
)
2046 if (hfsmp
->hfs_flags
& HFS_METADATA_ZONE
)
2047 (void) hfs_recording_suspend(hfsmp
);
2049 hfs_syncer_free(hfsmp
);
2051 if (hfsmp
->hfs_flags
& HFS_SUMMARY_TABLE
) {
2052 if (hfsmp
->hfs_summary_table
) {
2055 * Take the bitmap lock to serialize against a concurrent bitmap scan still in progress
2057 if (hfsmp
->hfs_allocation_vp
) {
2058 err
= hfs_lock (VTOC(hfsmp
->hfs_allocation_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2060 hfs_free(hfsmp
->hfs_summary_table
, hfsmp
->hfs_summary_bytes
);
2061 hfsmp
->hfs_summary_table
= NULL
;
2062 hfsmp
->hfs_flags
&= ~HFS_SUMMARY_TABLE
;
2064 if (err
== 0 && hfsmp
->hfs_allocation_vp
){
2065 hfs_unlock (VTOC(hfsmp
->hfs_allocation_vp
));
2072 * Flush out the b-trees, volume bitmap and Volume Header
2074 if ((hfsmp
->hfs_flags
& HFS_READ_ONLY
) == 0) {
2075 retval
= hfs_start_transaction(hfsmp
);
2078 } else if (!force
) {
2082 if (hfsmp
->hfs_startup_vp
) {
2083 (void) hfs_lock(VTOC(hfsmp
->hfs_startup_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2084 retval
= hfs_fsync(hfsmp
->hfs_startup_vp
, MNT_WAIT
, 0, p
);
2085 hfs_unlock(VTOC(hfsmp
->hfs_startup_vp
));
2086 if (retval
&& !force
)
2090 if (hfsmp
->hfs_attribute_vp
) {
2091 (void) hfs_lock(VTOC(hfsmp
->hfs_attribute_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2092 retval
= hfs_fsync(hfsmp
->hfs_attribute_vp
, MNT_WAIT
, 0, p
);
2093 hfs_unlock(VTOC(hfsmp
->hfs_attribute_vp
));
2094 if (retval
&& !force
)
2098 (void) hfs_lock(VTOC(hfsmp
->hfs_catalog_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2099 retval
= hfs_fsync(hfsmp
->hfs_catalog_vp
, MNT_WAIT
, 0, p
);
2100 hfs_unlock(VTOC(hfsmp
->hfs_catalog_vp
));
2101 if (retval
&& !force
)
2104 (void) hfs_lock(VTOC(hfsmp
->hfs_extents_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2105 retval
= hfs_fsync(hfsmp
->hfs_extents_vp
, MNT_WAIT
, 0, p
);
2106 hfs_unlock(VTOC(hfsmp
->hfs_extents_vp
));
2107 if (retval
&& !force
)
2110 if (hfsmp
->hfs_allocation_vp
) {
2111 (void) hfs_lock(VTOC(hfsmp
->hfs_allocation_vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2112 retval
= hfs_fsync(hfsmp
->hfs_allocation_vp
, MNT_WAIT
, 0, p
);
2113 hfs_unlock(VTOC(hfsmp
->hfs_allocation_vp
));
2114 if (retval
&& !force
)
2118 if (hfsmp
->hfc_filevp
&& vnode_issystem(hfsmp
->hfc_filevp
)) {
2119 retval
= hfs_fsync(hfsmp
->hfc_filevp
, MNT_WAIT
, 0, p
);
2120 if (retval
&& !force
)
2124 /* If runtime corruption was detected, indicate that the volume
2125 * was not unmounted cleanly.
2127 if (hfsmp
->vcbAtrb
& kHFSVolumeInconsistentMask
) {
2128 HFSTOVCB(hfsmp
)->vcbAtrb
&= ~kHFSVolumeUnmountedMask
;
2130 HFSTOVCB(hfsmp
)->vcbAtrb
|= kHFSVolumeUnmountedMask
;
2133 if (hfsmp
->hfs_flags
& HFS_HAS_SPARSE_DEVICE
) {
2135 u_int32_t min_start
= hfsmp
->totalBlocks
;
2137 // set the nextAllocation pointer to the smallest free block number
2138 // we've seen so on the next mount we won't rescan unnecessarily
2139 lck_spin_lock(&hfsmp
->vcbFreeExtLock
);
2140 for(i
=0; i
< (int)hfsmp
->vcbFreeExtCnt
; i
++) {
2141 if (hfsmp
->vcbFreeExt
[i
].startBlock
< min_start
) {
2142 min_start
= hfsmp
->vcbFreeExt
[i
].startBlock
;
2145 lck_spin_unlock(&hfsmp
->vcbFreeExtLock
);
2146 if (min_start
< hfsmp
->nextAllocation
) {
2147 hfsmp
->nextAllocation
= min_start
;
2151 retval
= hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
);
2153 HFSTOVCB(hfsmp
)->vcbAtrb
&= ~kHFSVolumeUnmountedMask
;
2155 goto err_exit
; /* could not flush everything */
2159 hfs_end_transaction(hfsmp
);
2165 hfs_flush(hfsmp
, HFS_FLUSH_FULL
);
2169 * Invalidate our caches and release metadata vnodes
2171 (void) hfsUnmount(hfsmp
, p
);
2174 if (HFSTOVCB(hfsmp
)->vcbSigWord
== kHFSSigWord
) {
2175 (void) hfs_relconverter(hfsmp
->hfs_encoding
);
2181 journal_close(hfsmp
->jnl
);
2185 VNOP_FSYNC(hfsmp
->hfs_devvp
, MNT_WAIT
, context
);
2187 hfs_close_jvp(hfsmp
);
2190 * Last chance to dump unreferenced system files.
2192 (void) vflush(mp
, NULLVP
, FORCECLOSE
);
2195 /* Drop our reference on the backing fs (if any). */
2196 if ((hfsmp
->hfs_flags
& HFS_HAS_SPARSE_DEVICE
) && hfsmp
->hfs_backingvp
) {
2197 struct vnode
* tmpvp
;
2199 hfsmp
->hfs_flags
&= ~HFS_HAS_SPARSE_DEVICE
;
2200 tmpvp
= hfsmp
->hfs_backingvp
;
2201 hfsmp
->hfs_backingvp
= NULLVP
;
2204 #endif /* HFS_SPARSE_DEV */
2206 vnode_rele(hfsmp
->hfs_devvp
);
2208 hfs_locks_destroy(hfsmp
);
2209 hfs_delete_chash(hfsmp
);
2210 hfs_idhash_destroy(hfsmp
);
2212 hfs_assert(TAILQ_EMPTY(&hfsmp
->hfs_reserved_ranges
[HFS_TENTATIVE_BLOCKS
])
2213 && TAILQ_EMPTY(&hfsmp
->hfs_reserved_ranges
[HFS_LOCKED_BLOCKS
]));
2214 hfs_assert(!hfsmp
->lockedBlocks
);
2216 hfs_free(hfsmp
, sizeof(*hfsmp
));
2218 // decrement kext retain count
2220 OSDecrementAtomic(&hfs_active_mounts
);
2221 OSKextReleaseKextWithLoadTag(OSKextGetCurrentLoadTag());
2224 #if HFS_LEAK_DEBUG && TARGET_OS_OSX
2225 if (hfs_active_mounts
== 0) {
2226 if (hfs_dump_allocations())
2229 printf("hfs: last unmount and nothing was leaked!\n");
2230 msleep(hfs_unmount
, NULL
, PINOD
, "hfs_unmount",
2231 &(struct timespec
){ 5, 0 });
2240 hfs_end_transaction(hfsmp
);
2247 * Return the root of a filesystem.
2249 int hfs_vfs_root(struct mount
*mp
, struct vnode
**vpp
, __unused vfs_context_t context
)
2251 return hfs_vget(VFSTOHFS(mp
), (cnid_t
)kHFSRootFolderID
, vpp
, 1, 0);
2256 * Do operations associated with quotas
2260 hfs_quotactl(__unused
struct mount
*mp
, __unused
int cmds
, __unused uid_t uid
, __unused caddr_t datap
, __unused vfs_context_t context
)
2266 hfs_quotactl(struct mount
*mp
, int cmds
, uid_t uid
, caddr_t datap
, vfs_context_t context
)
2268 struct proc
*p
= vfs_context_proc(context
);
2269 int cmd
, type
, error
;
2272 uid
= kauth_cred_getuid(vfs_context_ucred(context
));
2273 cmd
= cmds
>> SUBCMDSHIFT
;
2280 if (uid
== kauth_cred_getuid(vfs_context_ucred(context
)))
2284 if ( (error
= vfs_context_suser(context
)) )
2288 type
= cmds
& SUBCMDMASK
;
2289 if ((u_int
)type
>= MAXQUOTAS
)
2291 if ((error
= vfs_busy(mp
, LK_NOWAIT
)) != 0)
2297 error
= hfs_quotaon(p
, mp
, type
, datap
);
2301 error
= hfs_quotaoff(p
, mp
, type
);
2305 error
= hfs_setquota(mp
, uid
, type
, datap
);
2309 error
= hfs_setuse(mp
, uid
, type
, datap
);
2313 error
= hfs_getquota(mp
, uid
, type
, datap
);
2317 error
= hfs_qsync(mp
);
2321 error
= hfs_quotastat(mp
, type
, datap
);
2334 /* Subtype is composite of bits */
2335 #define HFS_SUBTYPE_JOURNALED 0x01
2336 #define HFS_SUBTYPE_CASESENSITIVE 0x02
2337 /* bits 2 - 6 reserved */
2338 #define HFS_SUBTYPE_STANDARDHFS 0x80
2341 * Get file system statistics.
2344 hfs_statfs(struct mount
*mp
, register struct vfsstatfs
*sbp
, __unused vfs_context_t context
)
2346 ExtendedVCB
*vcb
= VFSTOVCB(mp
);
2347 struct hfsmount
*hfsmp
= VFSTOHFS(mp
);
2348 u_int16_t subtype
= 0;
2350 sbp
->f_bsize
= (u_int32_t
)vcb
->blockSize
;
2351 sbp
->f_iosize
= (size_t)cluster_max_io_size(mp
, 0);
2352 sbp
->f_blocks
= (u_int64_t
)((u_int32_t
)vcb
->totalBlocks
);
2353 sbp
->f_bfree
= (u_int64_t
)((u_int32_t
)hfs_freeblks(hfsmp
, 0));
2354 sbp
->f_bavail
= (u_int64_t
)((u_int32_t
)hfs_freeblks(hfsmp
, 1));
2355 sbp
->f_files
= (u_int64_t
)HFS_MAX_FILES
;
2356 sbp
->f_ffree
= (u_int64_t
)hfs_free_cnids(hfsmp
);
2359 * Subtypes (flavors) for HFS
2360 * 0: Mac OS Extended
2361 * 1: Mac OS Extended (Journaled)
2362 * 2: Mac OS Extended (Case Sensitive)
2363 * 3: Mac OS Extended (Case Sensitive, Journaled)
2365 * 128: Mac OS Standard
2368 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) == 0) {
2369 /* HFS+ & variants */
2371 subtype
|= HFS_SUBTYPE_JOURNALED
;
2373 if (hfsmp
->hfs_flags
& HFS_CASE_SENSITIVE
) {
2374 subtype
|= HFS_SUBTYPE_CASESENSITIVE
;
2380 subtype
= HFS_SUBTYPE_STANDARDHFS
;
2383 sbp
->f_fssubtype
= subtype
;
2390 // XXXdbg -- this is a callback to be used by the journal to
2391 // get meta data blocks flushed out to disk.
2393 // XXXdbg -- be smarter and don't flush *every* block on each
2394 // call. try to only flush some so we don't wind up
2395 // being too synchronous.
2398 hfs_sync_metadata(void *arg
)
2400 struct mount
*mp
= (struct mount
*)arg
;
2401 struct hfsmount
*hfsmp
;
2405 daddr64_t priIDSector
;
2406 hfsmp
= VFSTOHFS(mp
);
2407 vcb
= HFSTOVCB(hfsmp
);
2409 // now make sure the super block is flushed
2410 priIDSector
= (daddr64_t
)((vcb
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
2411 HFS_PRI_SECTOR(hfsmp
->hfs_logical_block_size
));
2413 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
2414 HFS_PHYSBLK_ROUNDDOWN(priIDSector
, hfsmp
->hfs_log_per_phys
),
2415 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
2416 if ((retval
!= 0 ) && (retval
!= ENXIO
)) {
2417 printf("hfs_sync_metadata: can't read volume header at %d! (retval 0x%x)\n",
2418 (int)priIDSector
, retval
);
2421 if (retval
== 0 && ((buf_flags(bp
) & (B_DELWRI
| B_LOCKED
)) == B_DELWRI
)) {
2427 /* Note that these I/Os bypass the journal (no calls to journal_start_modify_block) */
2429 // the alternate super block...
2430 // XXXdbg - we probably don't need to do this each and every time.
2431 // hfs_btreeio.c:FlushAlternate() should flag when it was
2433 if (hfsmp
->hfs_partition_avh_sector
) {
2434 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
2435 HFS_PHYSBLK_ROUNDDOWN(hfsmp
->hfs_partition_avh_sector
, hfsmp
->hfs_log_per_phys
),
2436 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
2437 if (retval
== 0 && ((buf_flags(bp
) & (B_DELWRI
| B_LOCKED
)) == B_DELWRI
)) {
2439 * note this I/O can fail if the partition shrank behind our backs!
2440 * So failure should be OK here.
2448 /* Is the FS's idea of the AVH different than the partition ? */
2449 if ((hfsmp
->hfs_fs_avh_sector
) && (hfsmp
->hfs_partition_avh_sector
!= hfsmp
->hfs_fs_avh_sector
)) {
2450 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
2451 HFS_PHYSBLK_ROUNDDOWN(hfsmp
->hfs_fs_avh_sector
, hfsmp
->hfs_log_per_phys
),
2452 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
2453 if (retval
== 0 && ((buf_flags(bp
) & (B_DELWRI
| B_LOCKED
)) == B_DELWRI
)) {
2463 struct hfs_sync_cargs
{
2468 int atime_only_syncs
;
2469 time_t sync_start_time
;
2474 hfs_sync_callback(struct vnode
*vp
, void *cargs
)
2476 struct cnode
*cp
= VTOC(vp
);
2477 struct hfs_sync_cargs
*args
;
2480 args
= (struct hfs_sync_cargs
*)cargs
;
2482 if (hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
) != 0) {
2483 return (VNODE_RETURNED
);
2486 hfs_dirty_t dirty_state
= hfs_is_dirty(cp
);
2488 bool sync
= dirty_state
== HFS_DIRTY
|| vnode_hasdirtyblks(vp
);
2490 if (!sync
&& dirty_state
== HFS_DIRTY_ATIME
2491 && args
->atime_only_syncs
< 256) {
2492 // We only update if the atime changed more than 60s ago
2493 if (args
->sync_start_time
- cp
->c_attr
.ca_atime
> 60) {
2495 ++args
->atime_only_syncs
;
2500 error
= hfs_fsync(vp
, args
->waitfor
, 0, args
->p
);
2503 args
->error
= error
;
2504 } else if (cp
->c_touch_acctime
)
2505 hfs_touchtimes(VTOHFS(vp
), cp
);
2508 return (VNODE_RETURNED
);
2514 * Go through the disk queues to initiate sandbagged IO;
2515 * go through the inodes to write those that have been modified;
2516 * initiate the writing of the super block if it has been modified.
2518 * Note: we are always called with the filesystem marked `MPBUSY'.
2521 hfs_sync(struct mount
*mp
, int waitfor
, vfs_context_t context
)
2523 struct proc
*p
= vfs_context_proc(context
);
2525 struct hfsmount
*hfsmp
;
2527 struct vnode
*meta_vp
[4];
2529 int error
, allerror
= 0;
2530 struct hfs_sync_cargs args
;
2532 hfsmp
= VFSTOHFS(mp
);
2534 // Back off if hfs_changefs or a freeze is underway
2535 hfs_lock_mount(hfsmp
);
2536 if ((hfsmp
->hfs_flags
& HFS_IN_CHANGEFS
)
2537 || hfsmp
->hfs_freeze_state
!= HFS_THAWED
) {
2538 hfs_unlock_mount(hfsmp
);
2542 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2543 hfs_unlock_mount(hfsmp
);
2547 ++hfsmp
->hfs_syncers
;
2548 hfs_unlock_mount(hfsmp
);
2550 args
.cred
= kauth_cred_get();
2551 args
.waitfor
= waitfor
;
2554 args
.atime_only_syncs
= 0;
2559 args
.sync_start_time
= tv
.tv_sec
;
2562 * hfs_sync_callback will be called for each vnode
2563 * hung off of this mount point... the vnode will be
2564 * properly referenced and unreferenced around the callback
2566 vnode_iterate(mp
, 0, hfs_sync_callback
, (void *)&args
);
2569 allerror
= args
.error
;
2571 vcb
= HFSTOVCB(hfsmp
);
2573 meta_vp
[0] = vcb
->extentsRefNum
;
2574 meta_vp
[1] = vcb
->catalogRefNum
;
2575 meta_vp
[2] = vcb
->allocationsRefNum
; /* This is NULL for standard HFS */
2576 meta_vp
[3] = hfsmp
->hfs_attribute_vp
; /* Optional file */
2578 /* Now sync our three metadata files */
2579 for (i
= 0; i
< 4; ++i
) {
2583 if ((btvp
==0) || (vnode_mount(btvp
) != mp
))
2586 /* XXX use hfs_systemfile_lock instead ? */
2587 (void) hfs_lock(VTOC(btvp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2590 if (!hfs_is_dirty(cp
) && !vnode_hasdirtyblks(btvp
)) {
2591 hfs_unlock(VTOC(btvp
));
2594 error
= vnode_get(btvp
);
2596 hfs_unlock(VTOC(btvp
));
2599 if ((error
= hfs_fsync(btvp
, waitfor
, 0, p
)))
2609 * Force stale file system control information to be flushed.
2611 if (vcb
->vcbSigWord
== kHFSSigWord
) {
2612 if ((error
= VNOP_FSYNC(hfsmp
->hfs_devvp
, waitfor
, context
))) {
2622 hfs_hotfilesync(hfsmp
, vfs_context_kernel());
2625 * Write back modified superblock.
2627 if (IsVCBDirty(vcb
)) {
2628 error
= hfs_flushvolumeheader(hfsmp
, waitfor
== MNT_WAIT
? HFS_FVH_WAIT
: 0);
2634 hfs_flush(hfsmp
, HFS_FLUSH_JOURNAL
);
2637 hfs_lock_mount(hfsmp
);
2638 boolean_t wake
= (!--hfsmp
->hfs_syncers
2639 && hfsmp
->hfs_freeze_state
== HFS_WANT_TO_FREEZE
);
2640 hfs_unlock_mount(hfsmp
);
2642 wakeup(&hfsmp
->hfs_freeze_state
);
2649 * File handle to vnode
2651 * Have to be really careful about stale file handles:
2652 * - check that the cnode id is valid
2653 * - call hfs_vget() to get the locked cnode
2654 * - check for an unallocated cnode (i_mode == 0)
2655 * - check that the given client host has export rights and return
2656 * those rights via. exflagsp and credanonp
2659 hfs_fhtovp(struct mount
*mp
, int fhlen
, unsigned char *fhp
, struct vnode
**vpp
, __unused vfs_context_t context
)
2661 struct hfsfid
*hfsfhp
;
2666 hfsfhp
= (struct hfsfid
*)fhp
;
2668 if (fhlen
< (int)sizeof(struct hfsfid
))
2671 result
= hfs_vget(VFSTOHFS(mp
), ntohl(hfsfhp
->hfsfid_cnid
), &nvp
, 0, 0);
2673 if (result
== ENOENT
)
2679 * We used to use the create time as the gen id of the file handle,
2680 * but it is not static enough because it can change at any point
2681 * via system calls. We still don't have another volume ID or other
2682 * unique identifier to use for a generation ID across reboots that
2683 * persists until the file is removed. Using only the CNID exposes
2684 * us to the potential wrap-around case, but as of 2/2008, it would take
2685 * over 2 months to wrap around if the machine did nothing but allocate
2686 * CNIDs. Using some kind of wrap counter would only be effective if
2687 * each file had the wrap counter associated with it. For now,
2688 * we use only the CNID to identify the file as it's good enough.
2693 hfs_unlock(VTOC(nvp
));
2699 * Vnode pointer to File handle
2703 hfs_vptofh(struct vnode
*vp
, int *fhlenp
, unsigned char *fhp
, __unused vfs_context_t context
)
2706 struct hfsfid
*hfsfhp
;
2708 if (ISHFS(VTOVCB(vp
)))
2709 return (ENOTSUP
); /* hfs standard is not exportable */
2711 if (*fhlenp
< (int)sizeof(struct hfsfid
))
2715 hfsfhp
= (struct hfsfid
*)fhp
;
2716 /* only the CNID is used to identify the file now */
2717 hfsfhp
->hfsfid_cnid
= htonl(cp
->c_fileid
);
2718 hfsfhp
->hfsfid_gen
= htonl(cp
->c_fileid
);
2719 *fhlenp
= sizeof(struct hfsfid
);
2726 * Initialize HFS filesystems, done only once per boot.
2728 * HFS is not a kext-based file system. This makes it difficult to find
2729 * out when the last HFS file system was unmounted and call hfs_uninit()
2730 * to deallocate data structures allocated in hfs_init(). Therefore we
2731 * never deallocate memory allocated by lock attribute and group initializations
2735 hfs_init(__unused
struct vfsconf
*vfsp
)
2737 static int done
= 0;
2746 hfs_lock_attr
= lck_attr_alloc_init();
2747 hfs_group_attr
= lck_grp_attr_alloc_init();
2748 hfs_mutex_group
= lck_grp_alloc_init("hfs-mutex", hfs_group_attr
);
2749 hfs_rwlock_group
= lck_grp_alloc_init("hfs-rwlock", hfs_group_attr
);
2750 hfs_spinlock_group
= lck_grp_alloc_init("hfs-spinlock", hfs_group_attr
);
2763 * Destroy all locks, mutexes and spinlocks in hfsmp on unmount or failed mount
2766 hfs_locks_destroy(struct hfsmount
*hfsmp
)
2769 lck_mtx_destroy(&hfsmp
->hfs_mutex
, hfs_mutex_group
);
2770 lck_mtx_destroy(&hfsmp
->hfc_mutex
, hfs_mutex_group
);
2771 lck_rw_destroy(&hfsmp
->hfs_global_lock
, hfs_rwlock_group
);
2772 lck_spin_destroy(&hfsmp
->vcbFreeExtLock
, hfs_spinlock_group
);
2779 hfs_getmountpoint(struct vnode
*vp
, struct hfsmount
**hfsmpp
)
2781 struct hfsmount
* hfsmp
;
2782 char fstypename
[MFSNAMELEN
];
2787 if (!vnode_isvroot(vp
))
2790 vnode_vfsname(vp
, fstypename
);
2791 if (strncmp(fstypename
, "hfs", sizeof(fstypename
)) != 0)
2796 if (HFSTOVCB(hfsmp
)->vcbSigWord
== kHFSSigWord
)
2804 // Replace user-space value
2805 static errno_t
ureplace(user_addr_t oldp
, size_t *oldlenp
,
2806 user_addr_t newp
, size_t newlen
,
2807 void *data
, size_t len
)
2812 if (oldp
&& *oldlenp
< len
)
2814 if (newp
&& newlen
!= len
)
2818 error
= copyout(data
, oldp
, len
);
2822 return newp
? copyin(newp
, data
, len
) : 0;
2825 #define UREPLACE(oldp, oldlenp, newp, newlenp, v) \
2826 ureplace(oldp, oldlenp, newp, newlenp, &v, sizeof(v))
2828 static hfsmount_t
*hfs_mount_from_cwd(vfs_context_t ctx
)
2830 vnode_t vp
= vfs_context_cwd(ctx
);
2836 * We could use vnode_tag, but it is probably more future proof to
2837 * compare fstypename.
2839 char fstypename
[MFSNAMELEN
];
2840 vnode_vfsname(vp
, fstypename
);
2842 if (strcmp(fstypename
, "hfs"))
2849 * HFS filesystem related variables.
2852 hfs_sysctl(int *name
, u_int namelen
, user_addr_t oldp
, size_t *oldlenp
,
2853 user_addr_t newp
, size_t newlen
, vfs_context_t context
)
2856 struct hfsmount
*hfsmp
;
2857 struct proc
*p
= NULL
;
2859 /* all sysctl names at this level are terminal */
2861 p
= vfs_context_proc(context
);
2862 if (name
[0] == HFS_ENCODINGBIAS
) {
2865 bias
= hfs_getencodingbias();
2867 error
= UREPLACE(oldp
, oldlenp
, newp
, newlen
, bias
);
2871 hfs_setencodingbias(bias
);
2876 if (name
[0] == HFS_EXTEND_FS
) {
2877 u_int64_t newsize
= 0;
2878 vnode_t vp
= vfs_context_cwd(context
);
2880 if (newp
== USER_ADDR_NULL
|| vp
== NULLVP
2881 || newlen
!= sizeof(quad_t
) || !oldlenp
)
2883 if ((error
= hfs_getmountpoint(vp
, &hfsmp
)))
2886 /* Start with the 'size' set to the current number of bytes in the filesystem */
2887 newsize
= ((uint64_t)hfsmp
->totalBlocks
) * ((uint64_t)hfsmp
->blockSize
);
2889 error
= UREPLACE(oldp
, oldlenp
, newp
, newlen
, newsize
);
2893 return hfs_extendfs(hfsmp
, newsize
, context
);
2894 } else if (name
[0] == HFS_ENABLE_JOURNALING
) {
2895 // make the file system journaled...
2898 struct cat_attr jnl_attr
;
2899 struct cat_attr jinfo_attr
;
2900 struct cat_fork jnl_fork
;
2901 struct cat_fork jinfo_fork
;
2905 uint64_t journal_byte_offset
;
2906 uint64_t journal_size
;
2907 vnode_t jib_vp
= NULLVP
;
2908 struct JournalInfoBlock local_jib
;
2913 /* Only root can enable journaling */
2914 if (!kauth_cred_issuser(kauth_cred_get())) {
2919 hfsmp
= hfs_mount_from_cwd(context
);
2923 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2926 if (HFSTOVCB(hfsmp
)->vcbSigWord
== kHFSSigWord
) {
2927 printf("hfs: can't make a plain hfs volume journaled.\n");
2932 printf("hfs: volume %s is already journaled!\n", hfsmp
->vcbVN
);
2935 vcb
= HFSTOVCB(hfsmp
);
2937 /* Set up local copies of the initialization info */
2938 tmpblkno
= (uint32_t) name
[1];
2939 jib_blkno
= (uint64_t) tmpblkno
;
2940 journal_byte_offset
= (uint64_t) name
[2];
2941 journal_byte_offset
*= hfsmp
->blockSize
;
2942 journal_byte_offset
+= hfsmp
->hfsPlusIOPosOffset
;
2943 journal_size
= (uint64_t)((unsigned)name
[3]);
2945 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_EXTENTS
, HFS_EXCLUSIVE_LOCK
);
2946 if (BTHasContiguousNodes(VTOF(vcb
->catalogRefNum
)) == 0 ||
2947 BTHasContiguousNodes(VTOF(vcb
->extentsRefNum
)) == 0) {
2949 printf("hfs: volume has a btree w/non-contiguous nodes. can not enable journaling.\n");
2950 hfs_systemfile_unlock(hfsmp
, lockflags
);
2953 hfs_systemfile_unlock(hfsmp
, lockflags
);
2955 // make sure these both exist!
2956 if ( GetFileInfo(vcb
, kHFSRootFolderID
, ".journal_info_block", &jinfo_attr
, &jinfo_fork
) == 0
2957 || GetFileInfo(vcb
, kHFSRootFolderID
, ".journal", &jnl_attr
, &jnl_fork
) == 0) {
2963 * At this point, we have a copy of the metadata that lives in the catalog for the
2964 * journal info block. Compare that the journal info block's single extent matches
2965 * that which was passed into this sysctl.
2967 * If it is different, deny the journal enable call.
2969 if (jinfo_fork
.cf_blocks
> 1) {
2970 /* too many blocks */
2974 if (jinfo_fork
.cf_extents
[0].startBlock
!= jib_blkno
) {
2980 * We want to immediately purge the vnode for the JIB.
2982 * Because it was written to from userland, there's probably
2983 * a vnode somewhere in the vnode cache (possibly with UBC backed blocks).
2984 * So we bring the vnode into core, then immediately do whatever
2985 * we can to flush/vclean it out. This is because those blocks will be
2986 * interpreted as user data, which may be treated separately on some platforms
2987 * than metadata. If the vnode is gone, then there cannot be backing blocks
2990 if (hfs_vget (hfsmp
, jinfo_attr
.ca_fileid
, &jib_vp
, 1, 0)) {
2994 * Now we have a vnode for the JIB. recycle it. Because we hold an iocount
2995 * on the vnode, we'll just mark it for termination when the last iocount
2996 * (hopefully ours), is dropped.
2998 vnode_recycle (jib_vp
);
2999 err
= vnode_put (jib_vp
);
3004 /* Initialize the local copy of the JIB (just like hfs.util) */
3005 memset (&local_jib
, 'Z', sizeof(struct JournalInfoBlock
));
3006 local_jib
.flags
= SWAP_BE32(kJIJournalInFSMask
);
3007 /* Note that the JIB's offset is in bytes */
3008 local_jib
.offset
= SWAP_BE64(journal_byte_offset
);
3009 local_jib
.size
= SWAP_BE64(journal_size
);
3012 * Now write out the local JIB. This essentially overwrites the userland
3013 * copy of the JIB. Read it as BLK_META to treat it as a metadata read/write.
3015 jib_buf
= buf_getblk (hfsmp
->hfs_devvp
,
3016 jib_blkno
* (hfsmp
->blockSize
/ hfsmp
->hfs_logical_block_size
),
3017 hfsmp
->blockSize
, 0, 0, BLK_META
);
3018 char* buf_ptr
= (char*) buf_dataptr (jib_buf
);
3020 /* Zero out the portion of the block that won't contain JIB data */
3021 memset (buf_ptr
, 0, hfsmp
->blockSize
);
3023 bcopy(&local_jib
, buf_ptr
, sizeof(local_jib
));
3024 if (buf_bwrite (jib_buf
)) {
3028 /* Force a flush track cache */
3029 hfs_flush(hfsmp
, HFS_FLUSH_CACHE
);
3031 /* Now proceed with full volume sync */
3032 hfs_sync(hfsmp
->hfs_mp
, MNT_WAIT
, context
);
3034 printf("hfs: Initializing the journal (joffset 0x%llx sz 0x%llx)...\n",
3035 (off_t
)name
[2], (off_t
)name
[3]);
3038 // XXXdbg - note that currently (Sept, 08) hfs_util does not support
3039 // enabling the journal on a separate device so it is safe
3040 // to just copy hfs_devvp here. If hfs_util gets the ability
3041 // to dynamically enable the journal on a separate device then
3042 // we will have to do the same thing as hfs_early_journal_init()
3043 // to locate and open the journal device.
3045 jvp
= hfsmp
->hfs_devvp
;
3046 jnl
= journal_create(jvp
, journal_byte_offset
, journal_size
,
3048 hfsmp
->hfs_logical_block_size
,
3051 hfs_sync_metadata
, hfsmp
->hfs_mp
,
3055 * Set up the trim callback function so that we can add
3056 * recently freed extents to the free extent cache once
3057 * the transaction that freed them is written to the
3061 journal_trim_set_callback(jnl
, hfs_trim_callback
, hfsmp
);
3064 printf("hfs: FAILED to create the journal!\n");
3068 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
3071 * Flush all dirty metadata buffers.
3073 buf_flushdirtyblks(hfsmp
->hfs_devvp
, TRUE
, 0, "hfs_sysctl");
3074 buf_flushdirtyblks(hfsmp
->hfs_extents_vp
, TRUE
, 0, "hfs_sysctl");
3075 buf_flushdirtyblks(hfsmp
->hfs_catalog_vp
, TRUE
, 0, "hfs_sysctl");
3076 buf_flushdirtyblks(hfsmp
->hfs_allocation_vp
, TRUE
, 0, "hfs_sysctl");
3077 if (hfsmp
->hfs_attribute_vp
)
3078 buf_flushdirtyblks(hfsmp
->hfs_attribute_vp
, TRUE
, 0, "hfs_sysctl");
3080 HFSTOVCB(hfsmp
)->vcbJinfoBlock
= name
[1];
3081 HFSTOVCB(hfsmp
)->vcbAtrb
|= kHFSVolumeJournaledMask
;
3085 // save this off for the hack-y check in hfs_remove()
3086 hfsmp
->jnl_start
= (u_int32_t
)name
[2];
3087 hfsmp
->jnl_size
= (off_t
)((unsigned)name
[3]);
3088 hfsmp
->hfs_jnlinfoblkid
= jinfo_attr
.ca_fileid
;
3089 hfsmp
->hfs_jnlfileid
= jnl_attr
.ca_fileid
;
3091 vfs_setflags(hfsmp
->hfs_mp
, (u_int64_t
)((unsigned int)MNT_JOURNALED
));
3093 hfs_unlock_global (hfsmp
);
3094 hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
| HFS_FVH_WRITE_ALT
);
3099 fsid
.val
[0] = (int32_t)hfsmp
->hfs_raw_dev
;
3100 fsid
.val
[1] = (int32_t)vfs_typenum(HFSTOVFS(hfsmp
));
3101 vfs_event_signal(&fsid
, VQ_UPDATE
, (intptr_t)NULL
);
3104 } else if (name
[0] == HFS_DISABLE_JOURNALING
) {
3105 // clear the journaling bit
3107 /* Only root can disable journaling */
3108 if (!kauth_cred_issuser(kauth_cred_get())) {
3112 hfsmp
= hfs_mount_from_cwd(context
);
3117 * Disabling journaling is disallowed on volumes with directory hard links
3118 * because we have not tested the relevant code path.
3120 if (hfsmp
->hfs_private_attr
[DIR_HARDLINKS
].ca_entries
!= 0){
3121 printf("hfs: cannot disable journaling on volumes with directory hardlinks\n");
3125 printf("hfs: disabling journaling for %s\n", hfsmp
->vcbVN
);
3127 hfs_lock_global (hfsmp
, HFS_EXCLUSIVE_LOCK
);
3129 // Lights out for you buddy!
3130 journal_close(hfsmp
->jnl
);
3133 hfs_close_jvp(hfsmp
);
3134 vfs_clearflags(hfsmp
->hfs_mp
, (u_int64_t
)((unsigned int)MNT_JOURNALED
));
3135 hfsmp
->jnl_start
= 0;
3136 hfsmp
->hfs_jnlinfoblkid
= 0;
3137 hfsmp
->hfs_jnlfileid
= 0;
3139 HFSTOVCB(hfsmp
)->vcbAtrb
&= ~kHFSVolumeJournaledMask
;
3141 hfs_unlock_global (hfsmp
);
3143 hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
| HFS_FVH_WRITE_ALT
);
3148 fsid
.val
[0] = (int32_t)hfsmp
->hfs_raw_dev
;
3149 fsid
.val
[1] = (int32_t)vfs_typenum(HFSTOVFS(hfsmp
));
3150 vfs_event_signal(&fsid
, VQ_UPDATE
, (intptr_t)NULL
);
3153 } else if (name
[0] == VFS_CTL_QUERY
) {
3154 #if TARGET_OS_IPHONE
3156 #else //!TARGET_OS_IPHONE
3157 struct sysctl_req
*req
;
3158 union union_vfsidctl vc
;
3162 req
= CAST_DOWN(struct sysctl_req
*, oldp
); /* we're new style vfs sysctl. */
3167 error
= SYSCTL_IN(req
, &vc
, proc_is64bit(p
)? sizeof(vc
.vc64
):sizeof(vc
.vc32
));
3168 if (error
) return (error
);
3170 mp
= vfs_getvfs(&vc
.vc32
.vc_fsid
); /* works for 32 and 64 */
3171 if (mp
== NULL
) return (ENOENT
);
3173 hfsmp
= VFSTOHFS(mp
);
3174 bzero(&vq
, sizeof(vq
));
3175 vq
.vq_flags
= hfsmp
->hfs_notification_conditions
;
3176 return SYSCTL_OUT(req
, &vq
, sizeof(vq
));;
3177 #endif // TARGET_OS_IPHONE
3178 } else if (name
[0] == HFS_REPLAY_JOURNAL
) {
3179 vnode_t devvp
= NULL
;
3184 device_fd
= name
[1];
3185 error
= file_vnode(device_fd
, &devvp
);
3189 error
= vnode_getwithref(devvp
);
3191 file_drop(device_fd
);
3194 error
= hfs_journal_replay(devvp
, context
);
3195 file_drop(device_fd
);
3199 #if DEBUG || TARGET_OS_OSX
3200 else if (name
[0] == HFS_ENABLE_RESIZE_DEBUG
) {
3201 if (!kauth_cred_issuser(kauth_cred_get())) {
3205 int old
= hfs_resize_debug
;
3207 int res
= UREPLACE(oldp
, oldlenp
, newp
, newlen
, hfs_resize_debug
);
3209 if (old
!= hfs_resize_debug
) {
3210 printf("hfs: %s resize debug\n",
3211 hfs_resize_debug
? "enabled" : "disabled");
3216 #endif // DEBUG || OSX
3222 * hfs_vfs_vget is not static since it is used in hfs_readwrite.c to support
3223 * the build_path ioctl. We use it to leverage the code below that updates
3224 * the origin list cache if necessary
3228 hfs_vfs_vget(struct mount
*mp
, ino64_t ino
, struct vnode
**vpp
, __unused vfs_context_t context
)
3232 struct hfsmount
*hfsmp
;
3234 hfsmp
= VFSTOHFS(mp
);
3236 error
= hfs_vget(hfsmp
, (cnid_t
)ino
, vpp
, 1, 0);
3241 * If the look-up was via the object ID (rather than the link ID),
3242 * then we make sure there's a parent here. We can't leave this
3243 * until hfs_vnop_getattr because if there's a problem getting the
3244 * parent at that point, all the caller will do is call
3245 * hfs_vfs_vget again and we'll end up in an infinite loop.
3248 cnode_t
*cp
= VTOC(*vpp
);
3250 if (ISSET(cp
->c_flag
, C_HARDLINK
) && ino
== cp
->c_fileid
) {
3251 hfs_lock_always(cp
, HFS_SHARED_LOCK
);
3253 if (!hfs_haslinkorigin(cp
)) {
3254 if (!hfs_lock_upgrade(cp
))
3255 hfs_lock_always(cp
, HFS_EXCLUSIVE_LOCK
);
3257 if (cp
->c_cnid
== cp
->c_fileid
) {
3259 * Descriptor is stale, so we need to refresh it. We
3260 * pick the first link.
3264 error
= hfs_first_link(hfsmp
, cp
, &link_id
);
3267 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
3268 error
= cat_findname(hfsmp
, link_id
, &cp
->c_desc
);
3269 hfs_systemfile_unlock(hfsmp
, lockflags
);
3272 // We'll use whatever link the descriptor happens to have
3276 hfs_savelinkorigin(cp
, cp
->c_parentcnid
);
3292 * Look up an HFS object by ID.
3294 * The object is returned with an iocount reference and the cnode locked.
3296 * If the object is a file then it will represent the data fork.
3299 hfs_vget(struct hfsmount
*hfsmp
, cnid_t cnid
, struct vnode
**vpp
, int skiplock
, int allow_deleted
)
3301 struct vnode
*vp
= NULLVP
;
3302 struct cat_desc cndesc
;
3303 struct cat_attr cnattr
;
3304 struct cat_fork cnfork
;
3305 u_int32_t linkref
= 0;
3308 /* Check for cnids that should't be exported. */
3309 if ((cnid
< kHFSFirstUserCatalogNodeID
) &&
3310 (cnid
!= kHFSRootFolderID
&& cnid
!= kHFSRootParentID
)) {
3313 /* Don't export our private directories. */
3314 if (cnid
== hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
||
3315 cnid
== hfsmp
->hfs_private_desc
[DIR_HARDLINKS
].cd_cnid
) {
3319 * Check the hash first
3321 vp
= hfs_chash_getvnode(hfsmp
, cnid
, 0, skiplock
, allow_deleted
);
3327 bzero(&cndesc
, sizeof(cndesc
));
3328 bzero(&cnattr
, sizeof(cnattr
));
3329 bzero(&cnfork
, sizeof(cnfork
));
3332 * Not in hash, lookup in catalog
3334 if (cnid
== kHFSRootParentID
) {
3335 static char hfs_rootname
[] = "/";
3337 cndesc
.cd_nameptr
= (const u_int8_t
*)&hfs_rootname
[0];
3338 cndesc
.cd_namelen
= 1;
3339 cndesc
.cd_parentcnid
= kHFSRootParentID
;
3340 cndesc
.cd_cnid
= kHFSRootFolderID
;
3341 cndesc
.cd_flags
= CD_ISDIR
;
3343 cnattr
.ca_fileid
= kHFSRootFolderID
;
3344 cnattr
.ca_linkcount
= 1;
3345 cnattr
.ca_entries
= 1;
3346 cnattr
.ca_dircount
= 1;
3347 cnattr
.ca_mode
= (S_IFDIR
| S_IRWXU
| S_IRWXG
| S_IRWXO
);
3351 const char *nameptr
;
3353 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
3354 error
= cat_idlookup(hfsmp
, cnid
, 0, 0, &cndesc
, &cnattr
, &cnfork
);
3355 hfs_systemfile_unlock(hfsmp
, lockflags
);
3363 * Check for a raw hardlink inode and save its linkref.
3365 pid
= cndesc
.cd_parentcnid
;
3366 nameptr
= (const char *)cndesc
.cd_nameptr
;
3368 if ((pid
== hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
) &&
3369 cndesc
.cd_namelen
> HFS_INODE_PREFIX_LEN
&&
3370 (bcmp(nameptr
, HFS_INODE_PREFIX
, HFS_INODE_PREFIX_LEN
) == 0)) {
3371 linkref
= strtoul(&nameptr
[HFS_INODE_PREFIX_LEN
], NULL
, 10);
3373 } else if ((pid
== hfsmp
->hfs_private_desc
[DIR_HARDLINKS
].cd_cnid
) &&
3374 cndesc
.cd_namelen
> HFS_DIRINODE_PREFIX_LEN
&&
3375 (bcmp(nameptr
, HFS_DIRINODE_PREFIX
, HFS_DIRINODE_PREFIX_LEN
) == 0)) {
3376 linkref
= strtoul(&nameptr
[HFS_DIRINODE_PREFIX_LEN
], NULL
, 10);
3378 } else if ((pid
== hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
) &&
3379 cndesc
.cd_namelen
> HFS_DELETE_PREFIX_LEN
&&
3380 (bcmp(nameptr
, HFS_DELETE_PREFIX
, HFS_DELETE_PREFIX_LEN
) == 0)) {
3382 cat_releasedesc(&cndesc
);
3383 return (ENOENT
); /* open unlinked file */
3388 * Finish initializing cnode descriptor for hardlinks.
3390 * We need a valid name and parent for reverse lookups.
3394 struct cat_desc linkdesc
;
3397 cnattr
.ca_linkref
= linkref
;
3398 bzero (&linkdesc
, sizeof (linkdesc
));
3401 * If the caller supplied the raw inode value, then we don't know exactly
3402 * which hardlink they wanted. It's likely that they acquired the raw inode
3403 * value BEFORE the item became a hardlink, in which case, they probably
3404 * want the oldest link. So request the oldest link from the catalog.
3406 * Unfortunately, this requires that we iterate through all N hardlinks. On the plus
3407 * side, since we know that we want the last linkID, we can also have this one
3408 * call give us back the name of the last ID, since it's going to have it in-hand...
3410 linkerr
= hfs_lookup_lastlink (hfsmp
, linkref
, &lastid
, &linkdesc
);
3411 if ((linkerr
== 0) && (lastid
!= 0)) {
3413 * Release any lingering buffers attached to our local descriptor.
3414 * Then copy the name and other business into the cndesc
3416 cat_releasedesc (&cndesc
);
3417 bcopy (&linkdesc
, &cndesc
, sizeof(linkdesc
));
3419 /* If it failed, the linkref code will just use whatever it had in-hand below. */
3423 int newvnode_flags
= 0;
3425 error
= hfs_getnewvnode(hfsmp
, NULL
, NULL
, &cndesc
, 0, &cnattr
,
3426 &cnfork
, &vp
, &newvnode_flags
);
3428 VTOC(vp
)->c_flag
|= C_HARDLINK
;
3429 vnode_setmultipath(vp
);
3432 int newvnode_flags
= 0;
3434 void *buf
= hfs_malloc(MAXPATHLEN
);
3436 /* Supply hfs_getnewvnode with a component name. */
3437 struct componentname cn
= {
3438 .cn_nameiop
= LOOKUP
,
3439 .cn_flags
= ISLASTCN
,
3440 .cn_pnlen
= MAXPATHLEN
,
3441 .cn_namelen
= cndesc
.cd_namelen
,
3446 bcopy(cndesc
.cd_nameptr
, cn
.cn_nameptr
, cndesc
.cd_namelen
+ 1);
3448 error
= hfs_getnewvnode(hfsmp
, NULLVP
, &cn
, &cndesc
, 0, &cnattr
,
3449 &cnfork
, &vp
, &newvnode_flags
);
3451 if (error
== 0 && (VTOC(vp
)->c_flag
& C_HARDLINK
)) {
3452 hfs_savelinkorigin(VTOC(vp
), cndesc
.cd_parentcnid
);
3455 hfs_free(buf
, MAXPATHLEN
);
3457 cat_releasedesc(&cndesc
);
3460 if (vp
&& skiplock
) {
3461 hfs_unlock(VTOC(vp
));
3468 * Flush out all the files in a filesystem.
3472 hfs_flushfiles(struct mount
*mp
, int flags
, struct proc
*p
)
3474 hfs_flushfiles(struct mount
*mp
, int flags
, __unused
struct proc
*p
)
3477 struct hfsmount
*hfsmp
;
3478 struct vnode
*skipvp
= NULLVP
;
3480 int accounted_root_usecounts
;
3485 hfsmp
= VFSTOHFS(mp
);
3487 accounted_root_usecounts
= 0;
3490 * The open quota files have an indirect reference on
3491 * the root directory vnode. We must account for this
3492 * extra reference when doing the intial vflush.
3494 if (((unsigned int)vfs_flags(mp
)) & MNT_QUOTA
) {
3495 /* Find out how many quota files we have open. */
3496 for (i
= 0; i
< MAXQUOTAS
; i
++) {
3497 if (hfsmp
->hfs_qfiles
[i
].qf_vp
!= NULLVP
)
3498 ++accounted_root_usecounts
;
3503 if (accounted_root_usecounts
> 0) {
3504 /* Obtain the root vnode so we can skip over it. */
3505 skipvp
= hfs_chash_getvnode(hfsmp
, kHFSRootFolderID
, 0, 0, 0);
3508 error
= vflush(mp
, skipvp
, SKIPSYSTEM
| SKIPSWAP
| flags
);
3512 error
= vflush(mp
, skipvp
, SKIPSYSTEM
| flags
);
3516 * See if there are additional references on the
3517 * root vp besides the ones obtained from the open
3518 * quota files and CoreStorage.
3521 (vnode_isinuse(skipvp
, accounted_root_usecounts
))) {
3522 error
= EBUSY
; /* root directory is still open */
3524 hfs_unlock(VTOC(skipvp
));
3525 /* release the iocount from the hfs_chash_getvnode call above. */
3528 if (error
&& (flags
& FORCECLOSE
) == 0)
3532 if (((unsigned int)vfs_flags(mp
)) & MNT_QUOTA
) {
3533 for (i
= 0; i
< MAXQUOTAS
; i
++) {
3534 if (hfsmp
->hfs_qfiles
[i
].qf_vp
== NULLVP
)
3536 hfs_quotaoff(p
, mp
, i
);
3542 error
= vflush(mp
, NULLVP
, SKIPSYSTEM
| flags
);
3549 * Update volume encoding bitmap (HFS Plus only)
3551 * Mark a legacy text encoding as in-use (as needed)
3552 * in the volume header of this HFS+ filesystem.
3555 hfs_setencodingbits(struct hfsmount
*hfsmp
, u_int32_t encoding
)
3557 #define kIndexMacUkrainian 48 /* MacUkrainian encoding is 152 */
3558 #define kIndexMacFarsi 49 /* MacFarsi encoding is 140 */
3563 case kTextEncodingMacUkrainian
:
3564 index
= kIndexMacUkrainian
;
3566 case kTextEncodingMacFarsi
:
3567 index
= kIndexMacFarsi
;
3574 /* Only mark the encoding as in-use if it wasn't already set */
3575 if (index
< 64 && (hfsmp
->encodingsBitmap
& (u_int64_t
)(1ULL << index
)) == 0) {
3576 hfs_lock_mount (hfsmp
);
3577 hfsmp
->encodingsBitmap
|= (u_int64_t
)(1ULL << index
);
3578 MarkVCBDirty(hfsmp
);
3579 hfs_unlock_mount(hfsmp
);
3584 * Update volume stats
3586 * On journal volumes this will cause a volume header flush
3589 hfs_volupdate(struct hfsmount
*hfsmp
, enum volop op
, int inroot
)
3595 hfs_lock_mount (hfsmp
);
3597 MarkVCBDirty(hfsmp
);
3598 hfsmp
->hfs_mtime
= tv
.tv_sec
;
3604 if (hfsmp
->hfs_dircount
!= 0xFFFFFFFF)
3605 ++hfsmp
->hfs_dircount
;
3606 if (inroot
&& hfsmp
->vcbNmRtDirs
!= 0xFFFF)
3607 ++hfsmp
->vcbNmRtDirs
;
3610 if (hfsmp
->hfs_dircount
!= 0)
3611 --hfsmp
->hfs_dircount
;
3612 if (inroot
&& hfsmp
->vcbNmRtDirs
!= 0xFFFF)
3613 --hfsmp
->vcbNmRtDirs
;
3616 if (hfsmp
->hfs_filecount
!= 0xFFFFFFFF)
3617 ++hfsmp
->hfs_filecount
;
3618 if (inroot
&& hfsmp
->vcbNmFls
!= 0xFFFF)
3622 if (hfsmp
->hfs_filecount
!= 0)
3623 --hfsmp
->hfs_filecount
;
3624 if (inroot
&& hfsmp
->vcbNmFls
!= 0xFFFF)
3629 hfs_unlock_mount (hfsmp
);
3632 hfs_flushvolumeheader(hfsmp
, 0);
3640 /* HFS Standard MDB flush */
3642 hfs_flushMDB(struct hfsmount
*hfsmp
, int waitfor
, int altflush
)
3644 ExtendedVCB
*vcb
= HFSTOVCB(hfsmp
);
3645 struct filefork
*fp
;
3646 HFSMasterDirectoryBlock
*mdb
;
3647 struct buf
*bp
= NULL
;
3652 sector_size
= hfsmp
->hfs_logical_block_size
;
3653 retval
= (int)buf_bread(hfsmp
->hfs_devvp
, (daddr64_t
)HFS_PRI_SECTOR(sector_size
), sector_size
, NOCRED
, &bp
);
3660 hfs_lock_mount (hfsmp
);
3662 mdb
= (HFSMasterDirectoryBlock
*)(buf_dataptr(bp
) + HFS_PRI_OFFSET(sector_size
));
3664 mdb
->drCrDate
= SWAP_BE32 (UTCToLocal(to_hfs_time(vcb
->hfs_itime
)));
3665 mdb
->drLsMod
= SWAP_BE32 (UTCToLocal(to_hfs_time(vcb
->vcbLsMod
)));
3666 mdb
->drAtrb
= SWAP_BE16 (vcb
->vcbAtrb
);
3667 mdb
->drNmFls
= SWAP_BE16 (vcb
->vcbNmFls
);
3668 mdb
->drAllocPtr
= SWAP_BE16 (vcb
->nextAllocation
);
3669 mdb
->drClpSiz
= SWAP_BE32 (vcb
->vcbClpSiz
);
3670 mdb
->drNxtCNID
= SWAP_BE32 (vcb
->vcbNxtCNID
);
3671 mdb
->drFreeBks
= SWAP_BE16 (vcb
->freeBlocks
);
3673 namelen
= strlen((char *)vcb
->vcbVN
);
3674 retval
= utf8_to_hfs(vcb
, namelen
, vcb
->vcbVN
, mdb
->drVN
);
3675 /* Retry with MacRoman in case that's how it was exported. */
3677 retval
= utf8_to_mac_roman(namelen
, vcb
->vcbVN
, mdb
->drVN
);
3679 mdb
->drVolBkUp
= SWAP_BE32 (UTCToLocal(to_hfs_time(vcb
->vcbVolBkUp
)));
3680 mdb
->drWrCnt
= SWAP_BE32 (vcb
->vcbWrCnt
);
3681 mdb
->drNmRtDirs
= SWAP_BE16 (vcb
->vcbNmRtDirs
);
3682 mdb
->drFilCnt
= SWAP_BE32 (vcb
->vcbFilCnt
);
3683 mdb
->drDirCnt
= SWAP_BE32 (vcb
->vcbDirCnt
);
3685 bcopy(vcb
->vcbFndrInfo
, mdb
->drFndrInfo
, sizeof(mdb
->drFndrInfo
));
3687 fp
= VTOF(vcb
->extentsRefNum
);
3688 mdb
->drXTExtRec
[0].startBlock
= SWAP_BE16 (fp
->ff_extents
[0].startBlock
);
3689 mdb
->drXTExtRec
[0].blockCount
= SWAP_BE16 (fp
->ff_extents
[0].blockCount
);
3690 mdb
->drXTExtRec
[1].startBlock
= SWAP_BE16 (fp
->ff_extents
[1].startBlock
);
3691 mdb
->drXTExtRec
[1].blockCount
= SWAP_BE16 (fp
->ff_extents
[1].blockCount
);
3692 mdb
->drXTExtRec
[2].startBlock
= SWAP_BE16 (fp
->ff_extents
[2].startBlock
);
3693 mdb
->drXTExtRec
[2].blockCount
= SWAP_BE16 (fp
->ff_extents
[2].blockCount
);
3694 mdb
->drXTFlSize
= SWAP_BE32 (fp
->ff_blocks
* vcb
->blockSize
);
3695 mdb
->drXTClpSiz
= SWAP_BE32 (fp
->ff_clumpsize
);
3696 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
3698 fp
= VTOF(vcb
->catalogRefNum
);
3699 mdb
->drCTExtRec
[0].startBlock
= SWAP_BE16 (fp
->ff_extents
[0].startBlock
);
3700 mdb
->drCTExtRec
[0].blockCount
= SWAP_BE16 (fp
->ff_extents
[0].blockCount
);
3701 mdb
->drCTExtRec
[1].startBlock
= SWAP_BE16 (fp
->ff_extents
[1].startBlock
);
3702 mdb
->drCTExtRec
[1].blockCount
= SWAP_BE16 (fp
->ff_extents
[1].blockCount
);
3703 mdb
->drCTExtRec
[2].startBlock
= SWAP_BE16 (fp
->ff_extents
[2].startBlock
);
3704 mdb
->drCTExtRec
[2].blockCount
= SWAP_BE16 (fp
->ff_extents
[2].blockCount
);
3705 mdb
->drCTFlSize
= SWAP_BE32 (fp
->ff_blocks
* vcb
->blockSize
);
3706 mdb
->drCTClpSiz
= SWAP_BE32 (fp
->ff_clumpsize
);
3707 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
3709 MarkVCBClean( vcb
);
3711 hfs_unlock_mount (hfsmp
);
3713 /* If requested, flush out the alternate MDB */
3715 struct buf
*alt_bp
= NULL
;
3717 if (buf_meta_bread(hfsmp
->hfs_devvp
, hfsmp
->hfs_partition_avh_sector
, sector_size
, NOCRED
, &alt_bp
) == 0) {
3718 bcopy(mdb
, (char *)buf_dataptr(alt_bp
) + HFS_ALT_OFFSET(sector_size
), kMDBSize
);
3720 (void) VNOP_BWRITE(alt_bp
);
3725 if (waitfor
!= MNT_WAIT
)
3728 retval
= VNOP_BWRITE(bp
);
3735 * Flush any dirty in-memory mount data to the on-disk
3738 * Note: the on-disk volume signature is intentionally
3739 * not flushed since the on-disk "H+" and "HX" signatures
3740 * are always stored in-memory as "H+".
3743 hfs_flushvolumeheader(struct hfsmount
*hfsmp
,
3744 hfs_flush_volume_header_options_t options
)
3746 ExtendedVCB
*vcb
= HFSTOVCB(hfsmp
);
3747 struct filefork
*fp
;
3748 HFSPlusVolumeHeader
*volumeHeader
, *altVH
;
3750 struct buf
*bp
, *alt_bp
;
3752 daddr64_t priIDSector
;
3753 bool critical
= false;
3754 u_int16_t signature
;
3755 u_int16_t hfsversion
;
3756 daddr64_t avh_sector
;
3757 bool altflush
= ISSET(options
, HFS_FVH_WRITE_ALT
);
3759 if (ISSET(options
, HFS_FVH_FLUSH_IF_DIRTY
)
3760 && !hfs_header_needs_flushing(hfsmp
)) {
3764 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
3768 if (hfsmp
->hfs_flags
& HFS_STANDARD
) {
3769 return hfs_flushMDB(hfsmp
, ISSET(options
, HFS_FVH_WAIT
) ? MNT_WAIT
: 0, altflush
);
3772 priIDSector
= (daddr64_t
)((vcb
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
3773 HFS_PRI_SECTOR(hfsmp
->hfs_logical_block_size
));
3775 if (hfs_start_transaction(hfsmp
) != 0) {
3782 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
3783 HFS_PHYSBLK_ROUNDDOWN(priIDSector
, hfsmp
->hfs_log_per_phys
),
3784 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp
);
3786 printf("hfs: err %d reading VH blk (vol=%s)\n", retval
, vcb
->vcbVN
);
3790 volumeHeader
= (HFSPlusVolumeHeader
*)((char *)buf_dataptr(bp
) +
3791 HFS_PRI_OFFSET(hfsmp
->hfs_physical_block_size
));
3794 * Sanity check what we just read. If it's bad, try the alternate
3797 signature
= SWAP_BE16 (volumeHeader
->signature
);
3798 hfsversion
= SWAP_BE16 (volumeHeader
->version
);
3799 if ((signature
!= kHFSPlusSigWord
&& signature
!= kHFSXSigWord
) ||
3800 (hfsversion
< kHFSPlusVersion
) || (hfsversion
> 100) ||
3801 (SWAP_BE32 (volumeHeader
->blockSize
) != vcb
->blockSize
)) {
3802 printf("hfs: corrupt VH on %s, sig 0x%04x, ver %d, blksize %d\n",
3803 vcb
->vcbVN
, signature
, hfsversion
,
3804 SWAP_BE32 (volumeHeader
->blockSize
));
3805 hfs_mark_inconsistent(hfsmp
, HFS_INCONSISTENCY_DETECTED
);
3807 /* Almost always we read AVH relative to the partition size */
3808 avh_sector
= hfsmp
->hfs_partition_avh_sector
;
3810 if (hfsmp
->hfs_partition_avh_sector
!= hfsmp
->hfs_fs_avh_sector
) {
3812 * The two altVH offsets do not match --- which means that a smaller file
3813 * system exists in a larger partition. Verify that we have the correct
3814 * alternate volume header sector as per the current parititon size.
3815 * The GPT device that we are mounted on top could have changed sizes
3816 * without us knowing.
3818 * We're in a transaction, so it's safe to modify the partition_avh_sector
3819 * field if necessary.
3822 uint64_t sector_count
;
3824 /* Get underlying device block count */
3825 if ((retval
= VNOP_IOCTL(hfsmp
->hfs_devvp
, DKIOCGETBLOCKCOUNT
,
3826 (caddr_t
)§or_count
, 0, vfs_context_current()))) {
3827 printf("hfs_flushVH: err %d getting block count (%s) \n", retval
, vcb
->vcbVN
);
3832 /* Partition size was changed without our knowledge */
3833 if (sector_count
!= (uint64_t)hfsmp
->hfs_logical_block_count
) {
3834 hfsmp
->hfs_partition_avh_sector
= (hfsmp
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
3835 HFS_ALT_SECTOR(hfsmp
->hfs_logical_block_size
, sector_count
);
3836 /* Note: hfs_fs_avh_sector will remain unchanged */
3837 printf ("hfs_flushVH: partition size changed, partition_avh_sector=%qu, fs_avh_sector=%qu\n",
3838 hfsmp
->hfs_partition_avh_sector
, hfsmp
->hfs_fs_avh_sector
);
3841 * We just updated the offset for AVH relative to
3842 * the partition size, so the content of that AVH
3843 * will be invalid. But since we are also maintaining
3844 * a valid AVH relative to the file system size, we
3845 * can read it since primary VH and partition AVH
3848 avh_sector
= hfsmp
->hfs_fs_avh_sector
;
3852 printf ("hfs: trying alternate (for %s) avh_sector=%qu\n",
3853 (avh_sector
== hfsmp
->hfs_fs_avh_sector
) ? "file system" : "partition", avh_sector
);
3856 retval
= buf_meta_bread(hfsmp
->hfs_devvp
,
3857 HFS_PHYSBLK_ROUNDDOWN(avh_sector
, hfsmp
->hfs_log_per_phys
),
3858 hfsmp
->hfs_physical_block_size
, NOCRED
, &alt_bp
);
3860 printf("hfs: err %d reading alternate VH (%s)\n", retval
, vcb
->vcbVN
);
3864 altVH
= (HFSPlusVolumeHeader
*)((char *)buf_dataptr(alt_bp
) +
3865 HFS_ALT_OFFSET(hfsmp
->hfs_physical_block_size
));
3866 signature
= SWAP_BE16(altVH
->signature
);
3867 hfsversion
= SWAP_BE16(altVH
->version
);
3869 if ((signature
!= kHFSPlusSigWord
&& signature
!= kHFSXSigWord
) ||
3870 (hfsversion
< kHFSPlusVersion
) || (kHFSPlusVersion
> 100) ||
3871 (SWAP_BE32(altVH
->blockSize
) != vcb
->blockSize
)) {
3872 printf("hfs: corrupt alternate VH on %s, sig 0x%04x, ver %d, blksize %d\n",
3873 vcb
->vcbVN
, signature
, hfsversion
,
3874 SWAP_BE32(altVH
->blockSize
));
3879 /* The alternate is plausible, so use it. */
3880 bcopy(altVH
, volumeHeader
, kMDBSize
);
3884 /* No alternate VH, nothing more we can do. */
3891 journal_modify_block_start(hfsmp
->jnl
, bp
);
3895 * For embedded HFS+ volumes, update create date if it changed
3896 * (ie from a setattrlist call)
3898 if ((vcb
->hfsPlusIOPosOffset
!= 0) &&
3899 (SWAP_BE32 (volumeHeader
->createDate
) != vcb
->localCreateDate
)) {
3901 HFSMasterDirectoryBlock
*mdb
;
3903 retval
= (int)buf_meta_bread(hfsmp
->hfs_devvp
,
3904 HFS_PHYSBLK_ROUNDDOWN(HFS_PRI_SECTOR(hfsmp
->hfs_logical_block_size
), hfsmp
->hfs_log_per_phys
),
3905 hfsmp
->hfs_physical_block_size
, NOCRED
, &bp2
);
3911 mdb
= (HFSMasterDirectoryBlock
*)(buf_dataptr(bp2
) +
3912 HFS_PRI_OFFSET(hfsmp
->hfs_physical_block_size
));
3914 if ( SWAP_BE32 (mdb
->drCrDate
) != vcb
->localCreateDate
)
3917 journal_modify_block_start(hfsmp
->jnl
, bp2
);
3920 mdb
->drCrDate
= SWAP_BE32 (vcb
->localCreateDate
); /* pick up the new create date */
3923 journal_modify_block_end(hfsmp
->jnl
, bp2
, NULL
, NULL
);
3925 (void) VNOP_BWRITE(bp2
); /* write out the changes */
3930 buf_brelse(bp2
); /* just release it */
3935 hfs_lock_mount (hfsmp
);
3937 /* Note: only update the lower 16 bits worth of attributes */
3938 volumeHeader
->attributes
= SWAP_BE32 (vcb
->vcbAtrb
);
3939 volumeHeader
->journalInfoBlock
= SWAP_BE32 (vcb
->vcbJinfoBlock
);
3941 volumeHeader
->lastMountedVersion
= SWAP_BE32 (kHFSJMountVersion
);
3943 volumeHeader
->lastMountedVersion
= SWAP_BE32 (kHFSPlusMountVersion
);
3945 volumeHeader
->createDate
= SWAP_BE32 (vcb
->localCreateDate
); /* volume create date is in local time */
3946 volumeHeader
->modifyDate
= SWAP_BE32 (to_hfs_time(vcb
->vcbLsMod
));
3947 volumeHeader
->backupDate
= SWAP_BE32 (to_hfs_time(vcb
->vcbVolBkUp
));
3948 volumeHeader
->fileCount
= SWAP_BE32 (vcb
->vcbFilCnt
);
3949 volumeHeader
->folderCount
= SWAP_BE32 (vcb
->vcbDirCnt
);
3950 volumeHeader
->totalBlocks
= SWAP_BE32 (vcb
->totalBlocks
);
3951 volumeHeader
->freeBlocks
= SWAP_BE32 (vcb
->freeBlocks
+ vcb
->reclaimBlocks
);
3952 volumeHeader
->nextAllocation
= SWAP_BE32 (vcb
->nextAllocation
);
3953 volumeHeader
->rsrcClumpSize
= SWAP_BE32 (vcb
->vcbClpSiz
);
3954 volumeHeader
->dataClumpSize
= SWAP_BE32 (vcb
->vcbClpSiz
);
3955 volumeHeader
->nextCatalogID
= SWAP_BE32 (vcb
->vcbNxtCNID
);
3956 volumeHeader
->writeCount
= SWAP_BE32 (vcb
->vcbWrCnt
);
3957 volumeHeader
->encodingsBitmap
= SWAP_BE64 (vcb
->encodingsBitmap
);
3959 if (bcmp(vcb
->vcbFndrInfo
, volumeHeader
->finderInfo
, sizeof(volumeHeader
->finderInfo
)) != 0) {
3960 bcopy(vcb
->vcbFndrInfo
, volumeHeader
->finderInfo
, sizeof(volumeHeader
->finderInfo
));
3964 if (!altflush
&& !ISSET(options
, HFS_FVH_FLUSH_IF_DIRTY
)) {
3968 /* Sync Extents over-flow file meta data */
3969 fp
= VTOF(vcb
->extentsRefNum
);
3970 if (FTOC(fp
)->c_flag
& C_MODIFIED
) {
3971 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
3972 volumeHeader
->extentsFile
.extents
[i
].startBlock
=
3973 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
3974 volumeHeader
->extentsFile
.extents
[i
].blockCount
=
3975 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
3977 volumeHeader
->extentsFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
3978 volumeHeader
->extentsFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
3979 volumeHeader
->extentsFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
3980 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
3984 /* Sync Catalog file meta data */
3985 fp
= VTOF(vcb
->catalogRefNum
);
3986 if (FTOC(fp
)->c_flag
& C_MODIFIED
) {
3987 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
3988 volumeHeader
->catalogFile
.extents
[i
].startBlock
=
3989 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
3990 volumeHeader
->catalogFile
.extents
[i
].blockCount
=
3991 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
3993 volumeHeader
->catalogFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
3994 volumeHeader
->catalogFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
3995 volumeHeader
->catalogFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
3996 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
4000 /* Sync Allocation file meta data */
4001 fp
= VTOF(vcb
->allocationsRefNum
);
4002 if (FTOC(fp
)->c_flag
& C_MODIFIED
) {
4003 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
4004 volumeHeader
->allocationFile
.extents
[i
].startBlock
=
4005 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
4006 volumeHeader
->allocationFile
.extents
[i
].blockCount
=
4007 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
4009 volumeHeader
->allocationFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
4010 volumeHeader
->allocationFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
4011 volumeHeader
->allocationFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
4012 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
4016 /* Sync Attribute file meta data */
4017 if (hfsmp
->hfs_attribute_vp
) {
4018 fp
= VTOF(hfsmp
->hfs_attribute_vp
);
4019 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
4020 volumeHeader
->attributesFile
.extents
[i
].startBlock
=
4021 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
4022 volumeHeader
->attributesFile
.extents
[i
].blockCount
=
4023 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
4025 if (ISSET(FTOC(fp
)->c_flag
, C_MODIFIED
)) {
4026 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
4029 volumeHeader
->attributesFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
4030 volumeHeader
->attributesFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
4031 volumeHeader
->attributesFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
4034 /* Sync Startup file meta data */
4035 if (hfsmp
->hfs_startup_vp
) {
4036 fp
= VTOF(hfsmp
->hfs_startup_vp
);
4037 if (FTOC(fp
)->c_flag
& C_MODIFIED
) {
4038 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
4039 volumeHeader
->startupFile
.extents
[i
].startBlock
=
4040 SWAP_BE32 (fp
->ff_extents
[i
].startBlock
);
4041 volumeHeader
->startupFile
.extents
[i
].blockCount
=
4042 SWAP_BE32 (fp
->ff_extents
[i
].blockCount
);
4044 volumeHeader
->startupFile
.logicalSize
= SWAP_BE64 (fp
->ff_size
);
4045 volumeHeader
->startupFile
.totalBlocks
= SWAP_BE32 (fp
->ff_blocks
);
4046 volumeHeader
->startupFile
.clumpSize
= SWAP_BE32 (fp
->ff_clumpsize
);
4047 FTOC(fp
)->c_flag
&= ~C_MODIFIED
;
4056 MarkVCBClean(hfsmp
);
4057 hfs_unlock_mount (hfsmp
);
4059 /* If requested, flush out the alternate volume header */
4062 * The two altVH offsets do not match --- which means that a smaller file
4063 * system exists in a larger partition. Verify that we have the correct
4064 * alternate volume header sector as per the current parititon size.
4065 * The GPT device that we are mounted on top could have changed sizes
4066 * without us knowning.
4068 * We're in a transaction, so it's safe to modify the partition_avh_sector
4069 * field if necessary.
4071 if (hfsmp
->hfs_partition_avh_sector
!= hfsmp
->hfs_fs_avh_sector
) {
4072 uint64_t sector_count
;
4074 /* Get underlying device block count */
4075 if ((retval
= VNOP_IOCTL(hfsmp
->hfs_devvp
, DKIOCGETBLOCKCOUNT
,
4076 (caddr_t
)§or_count
, 0, vfs_context_current()))) {
4077 printf("hfs_flushVH: err %d getting block count (%s) \n", retval
, vcb
->vcbVN
);
4082 /* Partition size was changed without our knowledge */
4083 if (sector_count
!= (uint64_t)hfsmp
->hfs_logical_block_count
) {
4084 hfsmp
->hfs_partition_avh_sector
= (hfsmp
->hfsPlusIOPosOffset
/ hfsmp
->hfs_logical_block_size
) +
4085 HFS_ALT_SECTOR(hfsmp
->hfs_logical_block_size
, sector_count
);
4086 /* Note: hfs_fs_avh_sector will remain unchanged */
4087 printf ("hfs_flushVH: altflush: partition size changed, partition_avh_sector=%qu, fs_avh_sector=%qu\n",
4088 hfsmp
->hfs_partition_avh_sector
, hfsmp
->hfs_fs_avh_sector
);
4093 * First see if we need to write I/O to the "secondary" AVH
4094 * located at FS Size - 1024 bytes, because this one will
4095 * always go into the journal. We put this AVH into the journal
4096 * because even if the filesystem size has shrunk, this LBA should be
4097 * reachable after the partition-size modification has occurred.
4098 * The one where we need to be careful is partitionsize-1024, since the
4099 * partition size should hopefully shrink.
4101 * Most of the time this block will not execute.
4103 if ((hfsmp
->hfs_fs_avh_sector
) &&
4104 (hfsmp
->hfs_partition_avh_sector
!= hfsmp
->hfs_fs_avh_sector
)) {
4105 if (buf_meta_bread(hfsmp
->hfs_devvp
,
4106 HFS_PHYSBLK_ROUNDDOWN(hfsmp
->hfs_fs_avh_sector
, hfsmp
->hfs_log_per_phys
),
4107 hfsmp
->hfs_physical_block_size
, NOCRED
, &alt_bp
) == 0) {
4109 journal_modify_block_start(hfsmp
->jnl
, alt_bp
);
4112 bcopy(volumeHeader
, (char *)buf_dataptr(alt_bp
) +
4113 HFS_ALT_OFFSET(hfsmp
->hfs_physical_block_size
),
4117 journal_modify_block_end(hfsmp
->jnl
, alt_bp
, NULL
, NULL
);
4119 (void) VNOP_BWRITE(alt_bp
);
4121 } else if (alt_bp
) {
4127 * Flush out alternate volume header located at 1024 bytes before
4128 * end of the partition as part of journal transaction. In
4129 * most cases, this will be the only alternate volume header
4130 * that we need to worry about because the file system size is
4131 * same as the partition size, therefore hfs_fs_avh_sector is
4132 * same as hfs_partition_avh_sector. This is the "priority" AVH.
4134 * However, do not always put this I/O into the journal. If we skipped the
4135 * FS-Size AVH write above, then we will put this I/O into the journal as
4136 * that indicates the two were in sync. However, if the FS size is
4137 * not the same as the partition size, we are tracking two. We don't
4138 * put it in the journal in that case, since if the partition
4139 * size changes between uptimes, and we need to replay the journal,
4140 * this I/O could generate an EIO if during replay it is now trying
4141 * to access blocks beyond the device EOF.
4143 if (hfsmp
->hfs_partition_avh_sector
) {
4144 if (buf_meta_bread(hfsmp
->hfs_devvp
,
4145 HFS_PHYSBLK_ROUNDDOWN(hfsmp
->hfs_partition_avh_sector
, hfsmp
->hfs_log_per_phys
),
4146 hfsmp
->hfs_physical_block_size
, NOCRED
, &alt_bp
) == 0) {
4148 /* only one AVH, put this I/O in the journal. */
4149 if ((hfsmp
->jnl
) && (hfsmp
->hfs_partition_avh_sector
== hfsmp
->hfs_fs_avh_sector
)) {
4150 journal_modify_block_start(hfsmp
->jnl
, alt_bp
);
4153 bcopy(volumeHeader
, (char *)buf_dataptr(alt_bp
) +
4154 HFS_ALT_OFFSET(hfsmp
->hfs_physical_block_size
),
4157 /* If journaled and we only have one AVH to track */
4158 if ((hfsmp
->jnl
) && (hfsmp
->hfs_partition_avh_sector
== hfsmp
->hfs_fs_avh_sector
)) {
4159 journal_modify_block_end (hfsmp
->jnl
, alt_bp
, NULL
, NULL
);
4162 * If we don't have a journal or there are two AVH's at the
4163 * moment, then this one doesn't go in the journal. Note that
4164 * this one may generate I/O errors, since the partition
4165 * can be resized behind our backs at any moment and this I/O
4166 * may now appear to be beyond the device EOF.
4168 (void) VNOP_BWRITE(alt_bp
);
4169 hfs_flush(hfsmp
, HFS_FLUSH_CACHE
);
4171 } else if (alt_bp
) {
4177 /* Finish modifying the block for the primary VH */
4179 journal_modify_block_end(hfsmp
->jnl
, bp
, NULL
, NULL
);
4181 if (!ISSET(options
, HFS_FVH_WAIT
)) {
4184 retval
= VNOP_BWRITE(bp
);
4185 /* When critical data changes, flush the device cache */
4186 if (critical
&& (retval
== 0)) {
4187 hfs_flush(hfsmp
, HFS_FLUSH_CACHE
);
4191 hfs_end_transaction(hfsmp
);
4200 hfs_end_transaction(hfsmp
);
4206 * Creates a UUID from a unique "name" in the HFS UUID Name space.
4207 * See version 3 UUID.
4210 hfs_getvoluuid(struct hfsmount
*hfsmp
, uuid_t result_uuid
)
4213 if (uuid_is_null(hfsmp
->hfs_full_uuid
)) {
4219 ((uint32_t *)rawUUID
)[0] = hfsmp
->vcbFndrInfo
[6];
4220 ((uint32_t *)rawUUID
)[1] = hfsmp
->vcbFndrInfo
[7];
4223 MD5Update( &md5c
, HFS_UUID_NAMESPACE_ID
, sizeof( uuid_t
) );
4224 MD5Update( &md5c
, rawUUID
, sizeof (rawUUID
) );
4225 MD5Final( result
, &md5c
);
4227 result
[6] = 0x30 | ( result
[6] & 0x0F );
4228 result
[8] = 0x80 | ( result
[8] & 0x3F );
4230 uuid_copy(hfsmp
->hfs_full_uuid
, result
);
4232 uuid_copy (result_uuid
, hfsmp
->hfs_full_uuid
);
4237 * Get file system attributes.
4240 hfs_vfs_getattr(struct mount
*mp
, struct vfs_attr
*fsap
, __unused vfs_context_t context
)
4242 #define HFS_ATTR_FILE_VALIDMASK (ATTR_FILE_VALIDMASK & ~(ATTR_FILE_FILETYPE | ATTR_FILE_FORKCOUNT | ATTR_FILE_FORKLIST | ATTR_FILE_CLUMPSIZE))
4243 #define HFS_ATTR_CMN_VOL_VALIDMASK (ATTR_CMN_VALIDMASK & ~(ATTR_CMN_DATA_PROTECT_FLAGS))
4245 ExtendedVCB
*vcb
= VFSTOVCB(mp
);
4246 struct hfsmount
*hfsmp
= VFSTOHFS(mp
);
4248 int searchfs_on
= 0;
4249 int exchangedata_on
= 1;
4256 if (cp_fs_protected(mp
)) {
4257 exchangedata_on
= 0;
4261 VFSATTR_RETURN(fsap
, f_objcount
, (u_int64_t
)hfsmp
->vcbFilCnt
+ (u_int64_t
)hfsmp
->vcbDirCnt
);
4262 VFSATTR_RETURN(fsap
, f_filecount
, (u_int64_t
)hfsmp
->vcbFilCnt
);
4263 VFSATTR_RETURN(fsap
, f_dircount
, (u_int64_t
)hfsmp
->vcbDirCnt
);
4264 VFSATTR_RETURN(fsap
, f_maxobjcount
, (u_int64_t
)0xFFFFFFFF);
4265 VFSATTR_RETURN(fsap
, f_iosize
, (size_t)cluster_max_io_size(mp
, 0));
4266 VFSATTR_RETURN(fsap
, f_blocks
, (u_int64_t
)hfsmp
->totalBlocks
);
4267 VFSATTR_RETURN(fsap
, f_bfree
, (u_int64_t
)hfs_freeblks(hfsmp
, 0));
4268 VFSATTR_RETURN(fsap
, f_bavail
, (u_int64_t
)hfs_freeblks(hfsmp
, 1));
4269 VFSATTR_RETURN(fsap
, f_bsize
, (u_int32_t
)vcb
->blockSize
);
4270 /* XXX needs clarification */
4271 VFSATTR_RETURN(fsap
, f_bused
, hfsmp
->totalBlocks
- hfs_freeblks(hfsmp
, 1));
4272 VFSATTR_RETURN(fsap
, f_files
, (u_int64_t
)HFS_MAX_FILES
);
4273 VFSATTR_RETURN(fsap
, f_ffree
, (u_int64_t
)hfs_free_cnids(hfsmp
));
4275 fsap
->f_fsid
.val
[0] = hfsmp
->hfs_raw_dev
;
4276 fsap
->f_fsid
.val
[1] = vfs_typenum(mp
);
4277 VFSATTR_SET_SUPPORTED(fsap
, f_fsid
);
4279 VFSATTR_RETURN(fsap
, f_signature
, vcb
->vcbSigWord
);
4280 VFSATTR_RETURN(fsap
, f_carbon_fsid
, 0);
4282 if (VFSATTR_IS_ACTIVE(fsap
, f_capabilities
)) {
4283 vol_capabilities_attr_t
*cap
;
4285 cap
= &fsap
->f_capabilities
;
4287 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) == 0) {
4288 /* HFS+ & variants */
4289 cap
->capabilities
[VOL_CAPABILITIES_FORMAT
] =
4290 VOL_CAP_FMT_PERSISTENTOBJECTIDS
|
4291 VOL_CAP_FMT_SYMBOLICLINKS
|
4292 VOL_CAP_FMT_HARDLINKS
|
4293 VOL_CAP_FMT_JOURNAL
|
4294 VOL_CAP_FMT_ZERO_RUNS
|
4295 (hfsmp
->jnl
? VOL_CAP_FMT_JOURNAL_ACTIVE
: 0) |
4296 (hfsmp
->hfs_flags
& HFS_CASE_SENSITIVE
? VOL_CAP_FMT_CASE_SENSITIVE
: 0) |
4297 VOL_CAP_FMT_CASE_PRESERVING
|
4298 VOL_CAP_FMT_FAST_STATFS
|
4299 VOL_CAP_FMT_2TB_FILESIZE
|
4300 VOL_CAP_FMT_HIDDEN_FILES
|
4302 VOL_CAP_FMT_DECMPFS_COMPRESSION
|
4304 #if CONFIG_HFS_DIRLINK
4305 VOL_CAP_FMT_DIR_HARDLINKS
|
4307 #ifdef VOL_CAP_FMT_DOCUMENT_ID
4308 VOL_CAP_FMT_DOCUMENT_ID
|
4309 #endif /* VOL_CAP_FMT_DOCUMENT_ID */
4310 #ifdef VOL_CAP_FMT_WRITE_GENERATION_COUNT
4311 VOL_CAP_FMT_WRITE_GENERATION_COUNT
|
4312 #endif /* VOL_CAP_FMT_WRITE_GENERATION_COUNT */
4313 VOL_CAP_FMT_PATH_FROM_ID
;
4318 cap
->capabilities
[VOL_CAPABILITIES_FORMAT
] =
4319 VOL_CAP_FMT_PERSISTENTOBJECTIDS
|
4320 VOL_CAP_FMT_CASE_PRESERVING
|
4321 VOL_CAP_FMT_FAST_STATFS
|
4322 VOL_CAP_FMT_HIDDEN_FILES
|
4323 VOL_CAP_FMT_PATH_FROM_ID
;
4328 * The capabilities word in 'cap' tell you whether or not
4329 * this particular filesystem instance has feature X enabled.
4332 cap
->capabilities
[VOL_CAPABILITIES_INTERFACES
] =
4333 VOL_CAP_INT_ATTRLIST
|
4334 VOL_CAP_INT_NFSEXPORT
|
4335 VOL_CAP_INT_READDIRATTR
|
4336 VOL_CAP_INT_ALLOCATE
|
4337 VOL_CAP_INT_VOL_RENAME
|
4338 VOL_CAP_INT_ADVLOCK
|
4340 #if VOL_CAP_INT_RENAME_EXCL
4341 VOL_CAP_INT_RENAME_EXCL
|
4344 VOL_CAP_INT_EXTENDED_ATTR
|
4345 VOL_CAP_INT_NAMEDSTREAMS
;
4347 VOL_CAP_INT_EXTENDED_ATTR
;
4350 /* HFS may conditionally support searchfs and exchangedata depending on the runtime */
4353 cap
->capabilities
[VOL_CAPABILITIES_INTERFACES
] |= VOL_CAP_INT_SEARCHFS
;
4355 if (exchangedata_on
) {
4356 cap
->capabilities
[VOL_CAPABILITIES_INTERFACES
] |= VOL_CAP_INT_EXCHANGEDATA
;
4359 cap
->capabilities
[VOL_CAPABILITIES_RESERVED1
] = 0;
4360 cap
->capabilities
[VOL_CAPABILITIES_RESERVED2
] = 0;
4362 cap
->valid
[VOL_CAPABILITIES_FORMAT
] =
4363 VOL_CAP_FMT_PERSISTENTOBJECTIDS
|
4364 VOL_CAP_FMT_SYMBOLICLINKS
|
4365 VOL_CAP_FMT_HARDLINKS
|
4366 VOL_CAP_FMT_JOURNAL
|
4367 VOL_CAP_FMT_JOURNAL_ACTIVE
|
4368 VOL_CAP_FMT_NO_ROOT_TIMES
|
4369 VOL_CAP_FMT_SPARSE_FILES
|
4370 VOL_CAP_FMT_ZERO_RUNS
|
4371 VOL_CAP_FMT_CASE_SENSITIVE
|
4372 VOL_CAP_FMT_CASE_PRESERVING
|
4373 VOL_CAP_FMT_FAST_STATFS
|
4374 VOL_CAP_FMT_2TB_FILESIZE
|
4375 VOL_CAP_FMT_OPENDENYMODES
|
4376 VOL_CAP_FMT_HIDDEN_FILES
|
4377 VOL_CAP_FMT_PATH_FROM_ID
|
4378 VOL_CAP_FMT_DECMPFS_COMPRESSION
|
4379 #ifdef VOL_CAP_FMT_DOCUMENT_ID
4380 VOL_CAP_FMT_DOCUMENT_ID
|
4381 #endif /* VOL_CAP_FMT_DOCUMENT_ID */
4382 #ifdef VOL_CAP_FMT_WRITE_GENERATION_COUNT
4383 VOL_CAP_FMT_WRITE_GENERATION_COUNT
|
4384 #endif /* VOL_CAP_FMT_WRITE_GENERATION_COUNT */
4385 VOL_CAP_FMT_DIR_HARDLINKS
;
4388 * Bits in the "valid" field tell you whether or not the on-disk
4389 * format supports feature X.
4392 cap
->valid
[VOL_CAPABILITIES_INTERFACES
] =
4393 VOL_CAP_INT_ATTRLIST
|
4394 VOL_CAP_INT_NFSEXPORT
|
4395 VOL_CAP_INT_READDIRATTR
|
4396 VOL_CAP_INT_COPYFILE
|
4397 VOL_CAP_INT_ALLOCATE
|
4398 VOL_CAP_INT_VOL_RENAME
|
4399 VOL_CAP_INT_ADVLOCK
|
4401 VOL_CAP_INT_MANLOCK
|
4402 #if VOL_CAP_INT_RENAME_EXCL
4403 VOL_CAP_INT_RENAME_EXCL
|
4407 VOL_CAP_INT_EXTENDED_ATTR
|
4408 VOL_CAP_INT_NAMEDSTREAMS
;
4410 VOL_CAP_INT_EXTENDED_ATTR
;
4413 /* HFS always supports exchangedata and searchfs in the on-disk format natively */
4414 cap
->valid
[VOL_CAPABILITIES_INTERFACES
] |= (VOL_CAP_INT_SEARCHFS
| VOL_CAP_INT_EXCHANGEDATA
);
4417 cap
->valid
[VOL_CAPABILITIES_RESERVED1
] = 0;
4418 cap
->valid
[VOL_CAPABILITIES_RESERVED2
] = 0;
4419 VFSATTR_SET_SUPPORTED(fsap
, f_capabilities
);
4421 if (VFSATTR_IS_ACTIVE(fsap
, f_attributes
)) {
4422 vol_attributes_attr_t
*attrp
= &fsap
->f_attributes
;
4424 attrp
->validattr
.commonattr
= HFS_ATTR_CMN_VOL_VALIDMASK
;
4426 attrp
->validattr
.commonattr
|= ATTR_CMN_DATA_PROTECT_FLAGS
;
4427 #endif // CONFIG_PROTECT
4429 attrp
->validattr
.volattr
= ATTR_VOL_VALIDMASK
& ~ATTR_VOL_INFO
;
4430 attrp
->validattr
.dirattr
= ATTR_DIR_VALIDMASK
;
4431 attrp
->validattr
.fileattr
= HFS_ATTR_FILE_VALIDMASK
;
4432 attrp
->validattr
.forkattr
= 0;
4434 attrp
->nativeattr
.commonattr
= HFS_ATTR_CMN_VOL_VALIDMASK
;
4436 attrp
->nativeattr
.commonattr
|= ATTR_CMN_DATA_PROTECT_FLAGS
;
4437 #endif // CONFIG_PROTECT
4439 attrp
->nativeattr
.volattr
= ATTR_VOL_VALIDMASK
& ~ATTR_VOL_INFO
;
4440 attrp
->nativeattr
.dirattr
= ATTR_DIR_VALIDMASK
;
4441 attrp
->nativeattr
.fileattr
= HFS_ATTR_FILE_VALIDMASK
;
4442 attrp
->nativeattr
.forkattr
= 0;
4443 VFSATTR_SET_SUPPORTED(fsap
, f_attributes
);
4445 fsap
->f_create_time
.tv_sec
= hfsmp
->hfs_itime
;
4446 fsap
->f_create_time
.tv_nsec
= 0;
4447 VFSATTR_SET_SUPPORTED(fsap
, f_create_time
);
4448 fsap
->f_modify_time
.tv_sec
= hfsmp
->vcbLsMod
;
4449 fsap
->f_modify_time
.tv_nsec
= 0;
4450 VFSATTR_SET_SUPPORTED(fsap
, f_modify_time
);
4451 // We really don't have volume access time, they should check the root node, fake it up
4452 if (VFSATTR_IS_ACTIVE(fsap
, f_access_time
)) {
4456 fsap
->f_access_time
.tv_sec
= tv
.tv_sec
;
4457 fsap
->f_access_time
.tv_nsec
= 0;
4458 VFSATTR_SET_SUPPORTED(fsap
, f_access_time
);
4461 fsap
->f_backup_time
.tv_sec
= hfsmp
->vcbVolBkUp
;
4462 fsap
->f_backup_time
.tv_nsec
= 0;
4463 VFSATTR_SET_SUPPORTED(fsap
, f_backup_time
);
4465 if (VFSATTR_IS_ACTIVE(fsap
, f_fssubtype
)) {
4466 u_int16_t subtype
= 0;
4469 * Subtypes (flavors) for HFS
4470 * 0: Mac OS Extended
4471 * 1: Mac OS Extended (Journaled)
4472 * 2: Mac OS Extended (Case Sensitive)
4473 * 3: Mac OS Extended (Case Sensitive, Journaled)
4475 * 128: Mac OS Standard
4478 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) == 0) {
4480 subtype
|= HFS_SUBTYPE_JOURNALED
;
4482 if (hfsmp
->hfs_flags
& HFS_CASE_SENSITIVE
) {
4483 subtype
|= HFS_SUBTYPE_CASESENSITIVE
;
4488 subtype
= HFS_SUBTYPE_STANDARDHFS
;
4491 fsap
->f_fssubtype
= subtype
;
4492 VFSATTR_SET_SUPPORTED(fsap
, f_fssubtype
);
4495 if (VFSATTR_IS_ACTIVE(fsap
, f_vol_name
)) {
4496 strlcpy(fsap
->f_vol_name
, (char *) hfsmp
->vcbVN
, MAXPATHLEN
);
4497 VFSATTR_SET_SUPPORTED(fsap
, f_vol_name
);
4499 if (VFSATTR_IS_ACTIVE(fsap
, f_uuid
)) {
4500 hfs_getvoluuid(hfsmp
, fsap
->f_uuid
);
4501 VFSATTR_SET_SUPPORTED(fsap
, f_uuid
);
4507 * Perform a volume rename. Requires the FS' root vp.
4510 hfs_rename_volume(struct vnode
*vp
, const char *name
, proc_t p
)
4512 ExtendedVCB
*vcb
= VTOVCB(vp
);
4513 struct cnode
*cp
= VTOC(vp
);
4514 struct hfsmount
*hfsmp
= VTOHFS(vp
);
4515 struct cat_desc to_desc
;
4516 struct cat_desc todir_desc
;
4517 struct cat_desc new_desc
;
4518 cat_cookie_t cookie
;
4521 char converted_volname
[256];
4522 size_t volname_length
= 0;
4523 size_t conv_volname_length
= 0;
4527 * Ignore attempts to rename a volume to a zero-length name.
4532 bzero(&to_desc
, sizeof(to_desc
));
4533 bzero(&todir_desc
, sizeof(todir_desc
));
4534 bzero(&new_desc
, sizeof(new_desc
));
4535 bzero(&cookie
, sizeof(cookie
));
4537 todir_desc
.cd_parentcnid
= kHFSRootParentID
;
4538 todir_desc
.cd_cnid
= kHFSRootFolderID
;
4539 todir_desc
.cd_flags
= CD_ISDIR
;
4541 to_desc
.cd_nameptr
= (const u_int8_t
*)name
;
4542 to_desc
.cd_namelen
= strlen(name
);
4543 to_desc
.cd_parentcnid
= kHFSRootParentID
;
4544 to_desc
.cd_cnid
= cp
->c_cnid
;
4545 to_desc
.cd_flags
= CD_ISDIR
;
4547 if ((error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
)) == 0) {
4548 if ((error
= hfs_start_transaction(hfsmp
)) == 0) {
4549 if ((error
= cat_preflight(hfsmp
, CAT_RENAME
, &cookie
, p
)) == 0) {
4550 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
4552 error
= cat_rename(hfsmp
, &cp
->c_desc
, &todir_desc
, &to_desc
, &new_desc
);
4555 * If successful, update the name in the VCB, ensure it's terminated.
4558 strlcpy((char *)vcb
->vcbVN
, name
, sizeof(vcb
->vcbVN
));
4560 volname_length
= strlen ((const char*)vcb
->vcbVN
);
4561 /* Send the volume name down to CoreStorage if necessary */
4562 error
= utf8_normalizestr(vcb
->vcbVN
, volname_length
, (u_int8_t
*)converted_volname
, &conv_volname_length
, 256, UTF_PRECOMPOSED
);
4564 (void) VNOP_IOCTL (hfsmp
->hfs_devvp
, _DKIOCCSSETLVNAME
, converted_volname
, 0, vfs_context_current());
4569 hfs_systemfile_unlock(hfsmp
, lockflags
);
4570 cat_postflight(hfsmp
, &cookie
, p
);
4574 (void) hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
);
4576 hfs_end_transaction(hfsmp
);
4579 /* Release old allocated name buffer */
4580 if (cp
->c_desc
.cd_flags
& CD_HASBUF
) {
4581 const char *tmp_name
= (const char *)cp
->c_desc
.cd_nameptr
;
4583 cp
->c_desc
.cd_nameptr
= 0;
4584 cp
->c_desc
.cd_namelen
= 0;
4585 cp
->c_desc
.cd_flags
&= ~CD_HASBUF
;
4586 vfs_removename(tmp_name
);
4588 /* Update cnode's catalog descriptor */
4589 replace_desc(cp
, &new_desc
);
4590 vcb
->volumeNameEncodingHint
= new_desc
.cd_encoding
;
4591 cp
->c_touch_chgtime
= TRUE
;
4601 * Get file system attributes.
4604 hfs_vfs_setattr(struct mount
*mp
, struct vfs_attr
*fsap
, vfs_context_t context
)
4606 kauth_cred_t cred
= vfs_context_ucred(context
);
4610 * Must be superuser or owner of filesystem to change volume attributes
4612 if (!kauth_cred_issuser(cred
) && (kauth_cred_getuid(cred
) != vfs_statfs(mp
)->f_owner
))
4615 if (VFSATTR_IS_ACTIVE(fsap
, f_vol_name
)) {
4618 error
= hfs_vfs_root(mp
, &root_vp
, context
);
4622 error
= hfs_rename_volume(root_vp
, fsap
->f_vol_name
, vfs_context_proc(context
));
4623 (void) vnode_put(root_vp
);
4627 VFSATTR_SET_SUPPORTED(fsap
, f_vol_name
);
4634 /* If a runtime corruption is detected, set the volume inconsistent
4635 * bit in the volume attributes. The volume inconsistent bit is a persistent
4636 * bit which represents that the volume is corrupt and needs repair.
4637 * The volume inconsistent bit can be set from the kernel when it detects
4638 * runtime corruption or from file system repair utilities like fsck_hfs when
4639 * a repair operation fails. The bit should be cleared only from file system
4640 * verify/repair utility like fsck_hfs when a verify/repair succeeds.
4642 void hfs_mark_inconsistent(struct hfsmount
*hfsmp
,
4643 hfs_inconsistency_reason_t reason
)
4645 hfs_lock_mount (hfsmp
);
4646 if ((hfsmp
->vcbAtrb
& kHFSVolumeInconsistentMask
) == 0) {
4647 hfsmp
->vcbAtrb
|= kHFSVolumeInconsistentMask
;
4648 MarkVCBDirty(hfsmp
);
4650 if ((hfsmp
->hfs_flags
& HFS_READ_ONLY
)==0) {
4652 case HFS_INCONSISTENCY_DETECTED
:
4653 printf("hfs_mark_inconsistent: Runtime corruption detected on %s, fsck will be forced on next mount.\n",
4656 case HFS_ROLLBACK_FAILED
:
4657 printf("hfs_mark_inconsistent: Failed to roll back; volume `%s' might be inconsistent; fsck will be forced on next mount.\n",
4660 case HFS_OP_INCOMPLETE
:
4661 printf("hfs_mark_inconsistent: Failed to complete operation; volume `%s' might be inconsistent; fsck will be forced on next mount.\n",
4664 case HFS_FSCK_FORCED
:
4665 printf("hfs_mark_inconsistent: fsck requested for `%s'; fsck will be forced on next mount.\n",
4670 hfs_unlock_mount (hfsmp
);
4673 /* Replay the journal on the device node provided. Returns zero if
4674 * journal replay succeeded or no journal was supposed to be replayed.
4676 static int hfs_journal_replay(vnode_t devvp
, vfs_context_t context
)
4681 /* Replay allowed only on raw devices */
4682 if (!vnode_ischr(devvp
) && !vnode_isblk(devvp
))
4685 retval
= hfs_mountfs(devvp
, NULL
, NULL
, /* journal_replay_only: */ 1, context
);
4686 buf_flushdirtyblks(devvp
, TRUE
, 0, "hfs_journal_replay");
4688 /* FSYNC the devnode to be sure all data has been flushed */
4689 error
= VNOP_FSYNC(devvp
, MNT_WAIT
, context
);
4702 hfs_syncer_free(struct hfsmount
*hfsmp
)
4704 if (hfsmp
&& ISSET(hfsmp
->hfs_flags
, HFS_RUN_SYNCER
)) {
4705 hfs_syncer_lock(hfsmp
);
4706 CLR(hfsmp
->hfs_flags
, HFS_RUN_SYNCER
);
4707 hfs_syncer_unlock(hfsmp
);
4709 // Wait for the syncer thread to finish
4710 if (hfsmp
->hfs_syncer_thread
) {
4711 hfs_syncer_wakeup(hfsmp
);
4712 hfs_syncer_lock(hfsmp
);
4713 while (hfsmp
->hfs_syncer_thread
)
4714 hfs_syncer_wait(hfsmp
, NULL
);
4715 hfs_syncer_unlock(hfsmp
);
4720 static int hfs_vfs_ioctl(struct mount
*mp
, u_long command
, caddr_t data
,
4721 __unused
int flags
, __unused vfs_context_t context
)
4725 case FIODEVICELOCKED
:
4726 cp_device_locked_callback(mp
, (cp_lock_state_t
)data
);
4734 * hfs vfs operations.
4736 const struct vfsops hfs_vfsops
= {
4737 .vfs_mount
= hfs_mount
,
4738 .vfs_start
= hfs_start
,
4739 .vfs_unmount
= hfs_unmount
,
4740 .vfs_root
= hfs_vfs_root
,
4741 .vfs_quotactl
= hfs_quotactl
,
4742 .vfs_getattr
= hfs_vfs_getattr
,
4743 .vfs_sync
= hfs_sync
,
4744 .vfs_vget
= hfs_vfs_vget
,
4745 .vfs_fhtovp
= hfs_fhtovp
,
4746 .vfs_vptofh
= hfs_vptofh
,
4747 .vfs_init
= hfs_init
,
4748 .vfs_sysctl
= hfs_sysctl
,
4749 .vfs_setattr
= hfs_vfs_setattr
,
4750 .vfs_ioctl
= hfs_vfs_ioctl
,