2 * Copyright (c) 2000-2015 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* @(#)hfs_readwrite.c 1.0
30 * (c) 1998-2001 Apple Inc. All Rights Reserved
32 * hfs_readwrite.c -- vnode operations to deal with reading and writing files.
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/fcntl.h>
43 #include <sys/kauth.h>
44 #include <sys/vnode.h>
46 #include <sys/vfs_context.h>
48 #include <sys/sysctl.h>
49 #include <sys/fsctl.h>
51 #include <sys/fsevents.h>
52 #include <uuid/uuid.h>
54 #include <libkern/OSDebug.h>
56 #include <miscfs/specfs/specdev.h>
60 #include <vm/vm_pageout.h>
61 #include <vm/vm_kern.h>
63 #include <IOKit/IOBSD.h>
65 #include <sys/kdebug.h>
68 #include "hfs_attrlist.h"
69 #include "hfs_endian.h"
70 #include "hfs_fsctl.h"
71 #include "hfs_quota.h"
72 #include "FileMgrInternal.h"
73 #include "BTreesInternal.h"
74 #include "hfs_cnode.h"
77 #if HFS_CONFIG_KEY_ROLL
78 #include "hfs_key_roll.h"
81 #define can_cluster(size) ((((size & (4096-1))) == 0) && (size <= (MAXPHYSIO/2)))
84 MAXHFSFILESIZE
= 0x7FFFFFFF /* this needs to go in the mount structure */
87 /* from bsd/hfs/hfs_vfsops.c */
88 extern int hfs_vfs_vget (struct mount
*mp
, ino64_t ino
, struct vnode
**vpp
, vfs_context_t context
);
90 /* from hfs_hotfiles.c */
91 extern int hfs_pin_overflow_extents (struct hfsmount
*hfsmp
, uint32_t fileid
,
92 uint8_t forktype
, uint32_t *pinned
);
94 static int hfs_clonefile(struct vnode
*, int, int, int);
95 static int hfs_clonesysfile(struct vnode
*, int, int, int, kauth_cred_t
, struct proc
*);
96 static int do_hfs_truncate(struct vnode
*vp
, off_t length
, int flags
, int skip
, vfs_context_t context
);
100 * Read data from a file.
103 hfs_vnop_read(struct vnop_read_args
*ap
)
106 struct vnop_read_args {
107 struct vnodeop_desc *a_desc;
111 vfs_context_t a_context;
115 uio_t uio
= ap
->a_uio
;
116 struct vnode
*vp
= ap
->a_vp
;
119 struct hfsmount
*hfsmp
;
122 off_t start_resid
= uio_resid(uio
);
123 off_t offset
= uio_offset(uio
);
125 int took_truncate_lock
= 0;
127 int throttled_count
= 0;
129 /* Preflight checks */
130 if (!vnode_isreg(vp
)) {
131 /* can only read regular files */
137 if (start_resid
== 0)
138 return (0); /* Nothing left to do */
140 return (EINVAL
); /* cant read from a negative offset */
143 if ((ap
->a_ioflag
& (IO_SKIP_ENCRYPTION
|IO_SYSCALL_DISPATCH
)) ==
144 (IO_SKIP_ENCRYPTION
|IO_SYSCALL_DISPATCH
)) {
145 /* Don't allow unencrypted io request from user space */
151 if (VNODE_IS_RSRC(vp
)) {
152 if (hfs_hides_rsrc(ap
->a_context
, VTOC(vp
), 1)) { /* 1 == don't take the cnode lock */
155 /* otherwise read the resource fork normally */
157 int compressed
= hfs_file_is_compressed(VTOC(vp
), 1); /* 1 == don't take the cnode lock */
159 retval
= decmpfs_read_compressed(ap
, &compressed
, VTOCMP(vp
));
160 if (retval
== 0 && !(ap
->a_ioflag
& IO_EVTONLY
) && vnode_isfastdevicecandidate(vp
)) {
161 (void) hfs_addhotfile(vp
);
165 /* successful read, update the access time */
166 VTOC(vp
)->c_touch_acctime
= TRUE
;
169 // compressed files are not traditional hot file candidates
170 // but they may be for CF (which ignores the ff_bytesread
173 if (VTOHFS(vp
)->hfc_stage
== HFC_RECORDING
) {
174 VTOF(vp
)->ff_bytesread
= 0;
179 /* otherwise the file was converted back to a regular file while we were reading it */
181 } else if ((VTOC(vp
)->c_bsdflags
& UF_COMPRESSED
)) {
184 error
= check_for_dataless_file(vp
, NAMESPACE_HANDLER_READ_OP
);
191 #endif /* HFS_COMPRESSION */
198 if ((retval
= cp_handle_vnop (vp
, CP_READ_ACCESS
, ap
->a_ioflag
)) != 0) {
202 #if HFS_CONFIG_KEY_ROLL
203 if (ISSET(ap
->a_ioflag
, IO_ENCRYPTED
)) {
204 off_rsrc_t off_rsrc
= off_rsrc_make(offset
+ start_resid
,
207 retval
= hfs_key_roll_up_to(ap
->a_context
, vp
, off_rsrc
);
211 #endif // HFS_CONFIG_KEY_ROLL
212 #endif // CONFIG_PROTECT
215 * If this read request originated from a syscall (as opposed to
216 * an in-kernel page fault or something), then set it up for
219 if (ap
->a_ioflag
& IO_SYSCALL_DISPATCH
) {
220 io_throttle
= IO_RETURN_ON_THROTTLE
;
225 /* Protect against a size change. */
226 hfs_lock_truncate(cp
, HFS_SHARED_LOCK
, HFS_LOCK_DEFAULT
);
227 took_truncate_lock
= 1;
229 filesize
= fp
->ff_size
;
230 filebytes
= (off_t
)fp
->ff_blocks
* (off_t
)hfsmp
->blockSize
;
233 * Check the file size. Note that per POSIX spec, we return 0 at
234 * file EOF, so attempting a read at an offset that is too big
235 * should just return 0 on HFS+. Since the return value was initialized
236 * to 0 above, we just jump to exit. HFS Standard has its own behavior.
238 if (offset
> filesize
) {
240 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) &&
241 (offset
> (off_t
)MAXHFSFILESIZE
)) {
248 KERNEL_DEBUG(HFSDBG_READ
| DBG_FUNC_START
,
249 (int)uio_offset(uio
), uio_resid(uio
), (int)filesize
, (int)filebytes
, 0);
251 retval
= cluster_read(vp
, uio
, filesize
, ap
->a_ioflag
|io_throttle
);
253 cp
->c_touch_acctime
= TRUE
;
255 KERNEL_DEBUG(HFSDBG_READ
| DBG_FUNC_END
,
256 (int)uio_offset(uio
), uio_resid(uio
), (int)filesize
, (int)filebytes
, 0);
259 * Keep track blocks read
261 if (hfsmp
->hfc_stage
== HFC_RECORDING
&& retval
== 0) {
262 int took_cnode_lock
= 0;
265 bytesread
= start_resid
- uio_resid(uio
);
267 /* When ff_bytesread exceeds 32-bits, update it behind the cnode lock. */
268 if ((fp
->ff_bytesread
+ bytesread
) > 0x00000000ffffffff) {
269 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
273 * If this file hasn't been seen since the start of
274 * the current sampling period then start over.
276 if (cp
->c_atime
< hfsmp
->hfc_timebase
) {
279 fp
->ff_bytesread
= bytesread
;
281 cp
->c_atime
= tv
.tv_sec
;
283 fp
->ff_bytesread
+= bytesread
;
286 if (!(ap
->a_ioflag
& IO_EVTONLY
) && vnode_isfastdevicecandidate(vp
)) {
288 // We don't add hotfiles for processes doing IO_EVTONLY I/O
289 // on the assumption that they're system processes such as
290 // mdworker which scan everything in the system (and thus
291 // do not represent user-initiated access to files)
293 (void) hfs_addhotfile(vp
);
299 if (took_truncate_lock
) {
300 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
302 if (retval
== EAGAIN
) {
303 throttle_lowpri_io(1);
310 throttle_info_reset_window(NULL
);
315 * Ideally, this wouldn't be necessary; the cluster code should be
316 * able to handle this on the read-side. See <rdar://20420068>.
318 static errno_t
hfs_zero_eof_page(vnode_t vp
, off_t zero_up_to
)
320 hfs_assert(VTOC(vp
)->c_lockowner
!= current_thread());
321 hfs_assert(VTOC(vp
)->c_truncatelockowner
== current_thread());
323 struct filefork
*fp
= VTOF(vp
);
325 if (!(fp
->ff_size
& PAGE_MASK_64
) || zero_up_to
<= fp
->ff_size
) {
330 zero_up_to
= MIN(zero_up_to
, (off_t
)round_page_64(fp
->ff_size
));
332 /* N.B. At present, @zero_up_to is not important because the cluster
333 code will always zero up to the end of the page anyway. */
334 return cluster_write(vp
, NULL
, fp
->ff_size
, zero_up_to
,
335 fp
->ff_size
, 0, IO_HEADZEROFILL
);
339 * Write data to a file.
342 hfs_vnop_write(struct vnop_write_args
*ap
)
344 uio_t uio
= ap
->a_uio
;
345 struct vnode
*vp
= ap
->a_vp
;
348 struct hfsmount
*hfsmp
;
349 kauth_cred_t cred
= NULL
;
352 off_t bytesToAdd
= 0;
353 off_t actualBytesAdded
;
358 int ioflag
= ap
->a_ioflag
;
361 int cnode_locked
= 0;
362 int partialwrite
= 0;
364 time_t orig_ctime
=VTOC(vp
)->c_ctime
;
365 int took_truncate_lock
= 0;
366 int io_return_on_throttle
= 0;
367 int throttled_count
= 0;
370 if ( hfs_file_is_compressed(VTOC(vp
), 1) ) { /* 1 == don't take the cnode lock */
371 int state
= decmpfs_cnode_get_vnode_state(VTOCMP(vp
));
373 case FILE_IS_COMPRESSED
:
375 case FILE_IS_CONVERTING
:
376 /* if FILE_IS_CONVERTING, we allow writes but do not
377 bother with snapshots or else we will deadlock.
382 printf("invalid state %d for compressed file\n", state
);
385 } else if ((VTOC(vp
)->c_bsdflags
& UF_COMPRESSED
)) {
388 error
= check_for_dataless_file(vp
, NAMESPACE_HANDLER_WRITE_OP
);
395 nspace_snapshot_event(vp
, orig_ctime
, NAMESPACE_HANDLER_WRITE_OP
, uio
);
401 if ((ioflag
& (IO_SKIP_ENCRYPTION
|IO_SYSCALL_DISPATCH
)) ==
402 (IO_SKIP_ENCRYPTION
|IO_SYSCALL_DISPATCH
)) {
403 /* Don't allow unencrypted io request from user space */
408 resid
= uio_resid(uio
);
409 offset
= uio_offset(uio
);
415 if (!vnode_isreg(vp
))
416 return (EPERM
); /* Can only write regular files */
423 if ((retval
= cp_handle_vnop (vp
, CP_WRITE_ACCESS
, 0)) != 0) {
428 eflags
= kEFDeferMask
; /* defer file block allocations */
431 * When the underlying device is sparse and space
432 * is low (< 8MB), stop doing delayed allocations
433 * and begin doing synchronous I/O.
435 if ((hfsmp
->hfs_flags
& HFS_HAS_SPARSE_DEVICE
) &&
436 (hfs_freeblks(hfsmp
, 0) < 2048)) {
437 eflags
&= ~kEFDeferMask
;
440 #endif /* HFS_SPARSE_DEV */
442 if ((ioflag
& (IO_SINGLE_WRITER
| IO_SYSCALL_DISPATCH
)) ==
443 (IO_SINGLE_WRITER
| IO_SYSCALL_DISPATCH
)) {
444 io_return_on_throttle
= IO_RETURN_ON_THROTTLE
;
449 * Protect against a size change.
451 * Note: If took_truncate_lock is true, then we previously got the lock shared
452 * but needed to upgrade to exclusive. So try getting it exclusive from the
455 if (ioflag
& IO_APPEND
|| took_truncate_lock
) {
456 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
459 hfs_lock_truncate(cp
, HFS_SHARED_LOCK
, HFS_LOCK_DEFAULT
);
461 took_truncate_lock
= 1;
464 if (ioflag
& IO_APPEND
) {
465 uio_setoffset(uio
, fp
->ff_size
);
466 offset
= fp
->ff_size
;
468 if ((cp
->c_bsdflags
& APPEND
) && offset
!= fp
->ff_size
) {
473 cred
= vfs_context_ucred(ap
->a_context
);
474 if (cred
&& suser(cred
, NULL
) != 0)
475 eflags
|= kEFReserveMask
;
477 origFileSize
= fp
->ff_size
;
478 writelimit
= offset
+ resid
;
481 * We may need an exclusive truncate lock for several reasons, all
482 * of which are because we may be writing to a (portion of a) block
483 * for the first time, and we need to make sure no readers see the
484 * prior, uninitialized contents of the block. The cases are:
486 * 1. We have unallocated (delayed allocation) blocks. We may be
487 * allocating new blocks to the file and writing to them.
488 * (A more precise check would be whether the range we're writing
489 * to contains delayed allocation blocks.)
490 * 2. We need to extend the file. The bytes between the old EOF
491 * and the new EOF are not yet initialized. This is important
492 * even if we're not allocating new blocks to the file. If the
493 * old EOF and new EOF are in the same block, we still need to
494 * protect that range of bytes until they are written for the
497 * If we had a shared lock with the above cases, we need to try to upgrade
498 * to an exclusive lock. If the upgrade fails, we will lose the shared
499 * lock, and will need to take the truncate lock again; the took_truncate_lock
500 * flag will still be set, causing us to try for an exclusive lock next time.
502 if ((cp
->c_truncatelockowner
== HFS_SHARED_OWNER
) &&
503 ((fp
->ff_unallocblocks
!= 0) ||
504 (writelimit
> origFileSize
))) {
505 if (lck_rw_lock_shared_to_exclusive(&cp
->c_truncatelock
) == FALSE
) {
507 * Lock upgrade failed and we lost our shared lock, try again.
508 * Note: we do not set took_truncate_lock=0 here. Leaving it
509 * set to 1 will cause us to try to get the lock exclusive.
514 /* Store the owner in the c_truncatelockowner field if we successfully upgrade */
515 cp
->c_truncatelockowner
= current_thread();
519 if ( (retval
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
))) {
524 filebytes
= hfs_blk_to_bytes(fp
->ff_blocks
, hfsmp
->blockSize
);
526 if (offset
> filebytes
527 && (hfs_blk_to_bytes(hfs_freeblks(hfsmp
, ISSET(eflags
, kEFReserveMask
)),
528 hfsmp
->blockSize
) < offset
- filebytes
)) {
533 KERNEL_DEBUG(HFSDBG_WRITE
| DBG_FUNC_START
,
534 (int)offset
, uio_resid(uio
), (int)fp
->ff_size
,
537 /* Check if we do not need to extend the file */
538 if (writelimit
<= filebytes
) {
542 bytesToAdd
= writelimit
- filebytes
;
545 retval
= hfs_chkdq(cp
, (int64_t)(roundup(bytesToAdd
, hfsmp
->blockSize
)),
551 if (hfs_start_transaction(hfsmp
) != 0) {
556 while (writelimit
> filebytes
) {
557 bytesToAdd
= writelimit
- filebytes
;
559 /* Protect extents b-tree and allocation bitmap */
560 lockflags
= SFL_BITMAP
;
561 if (overflow_extents(fp
))
562 lockflags
|= SFL_EXTENTS
;
563 lockflags
= hfs_systemfile_lock(hfsmp
, lockflags
, HFS_EXCLUSIVE_LOCK
);
565 /* Files that are changing size are not hot file candidates. */
566 if (hfsmp
->hfc_stage
== HFC_RECORDING
) {
567 fp
->ff_bytesread
= 0;
569 retval
= MacToVFSError(ExtendFileC (hfsmp
, (FCB
*)fp
, bytesToAdd
,
570 0, eflags
, &actualBytesAdded
));
572 hfs_systemfile_unlock(hfsmp
, lockflags
);
574 if ((actualBytesAdded
== 0) && (retval
== E_NONE
))
576 if (retval
!= E_NONE
)
578 filebytes
= (off_t
)fp
->ff_blocks
* (off_t
)hfsmp
->blockSize
;
579 KERNEL_DEBUG(HFSDBG_WRITE
| DBG_FUNC_NONE
,
580 (int)offset
, uio_resid(uio
), (int)fp
->ff_size
, (int)filebytes
, 0);
582 (void) hfs_update(vp
, 0);
583 (void) hfs_volupdate(hfsmp
, VOL_UPDATE
, 0);
584 (void) hfs_end_transaction(hfsmp
);
587 * If we didn't grow the file enough try a partial write.
588 * POSIX expects this behavior.
590 if ((retval
== ENOSPC
) && (filebytes
> offset
)) {
593 uio_setresid(uio
, (uio_resid(uio
) - bytesToAdd
));
595 writelimit
= filebytes
;
598 if (retval
== E_NONE
) {
603 if (writelimit
> fp
->ff_size
) {
604 filesize
= writelimit
;
606 rl_add(fp
->ff_size
, writelimit
- 1 , &fp
->ff_invalidranges
);
608 cp
->c_zftimeout
= tv
.tv_sec
+ ZFTIMELIMIT
;
610 filesize
= fp
->ff_size
;
612 lflag
= ioflag
& ~(IO_TAILZEROFILL
| IO_HEADZEROFILL
| IO_NOZEROVALID
| IO_NOZERODIRTY
);
615 * We no longer use IO_HEADZEROFILL or IO_TAILZEROFILL (except
616 * for one case below). For the regions that lie before the
617 * beginning and after the end of this write that are in the
618 * same page, we let the cluster code handle zeroing that out
619 * if necessary. If those areas are not cached, the cluster
620 * code will try and read those areas in, and in the case
621 * where those regions have never been written to,
622 * hfs_vnop_blockmap will consult the invalid ranges and then
623 * indicate that. The cluster code will zero out those areas.
626 head_off
= trunc_page_64(offset
);
628 if (head_off
< offset
&& head_off
>= fp
->ff_size
) {
630 * The first page is beyond current EOF, so as an
631 * optimisation, we can pass IO_HEADZEROFILL.
633 lflag
|= IO_HEADZEROFILL
;
640 * We need to tell UBC the fork's new size BEFORE calling
641 * cluster_write, in case any of the new pages need to be
642 * paged out before cluster_write completes (which does happen
643 * in embedded systems due to extreme memory pressure).
644 * Similarly, we need to tell hfs_vnop_pageout what the new EOF
645 * will be, so that it can pass that on to cluster_pageout, and
646 * allow those pageouts.
648 * We don't update ff_size yet since we don't want pageins to
649 * be able to see uninitialized data between the old and new
650 * EOF, until cluster_write has completed and initialized that
653 * The vnode pager relies on the file size last given to UBC via
654 * ubc_setsize. hfs_vnop_pageout relies on fp->ff_new_size or
655 * ff_size (whichever is larger). NOTE: ff_new_size is always
656 * zero, unless we are extending the file via write.
658 if (filesize
> fp
->ff_size
) {
659 retval
= hfs_zero_eof_page(vp
, offset
);
662 fp
->ff_new_size
= filesize
;
663 ubc_setsize(vp
, filesize
);
665 retval
= cluster_write(vp
, uio
, fp
->ff_size
, filesize
, head_off
,
666 0, lflag
| IO_NOZERODIRTY
| io_return_on_throttle
);
668 fp
->ff_new_size
= 0; /* no longer extending; use ff_size */
670 if (retval
== EAGAIN
) {
672 * EAGAIN indicates that we still have I/O to do, but
673 * that we now need to be throttled
675 if (resid
!= uio_resid(uio
)) {
677 * did manage to do some I/O before returning EAGAIN
679 resid
= uio_resid(uio
);
680 offset
= uio_offset(uio
);
682 cp
->c_touch_chgtime
= TRUE
;
683 cp
->c_touch_modtime
= TRUE
;
684 hfs_incr_gencount(cp
);
686 if (filesize
> fp
->ff_size
) {
688 * we called ubc_setsize before the call to
689 * cluster_write... since we only partially
690 * completed the I/O, we need to
691 * re-adjust our idea of the filesize based
694 ubc_setsize(vp
, offset
);
696 fp
->ff_size
= offset
;
700 if (filesize
> origFileSize
) {
701 ubc_setsize(vp
, origFileSize
);
706 if (filesize
> origFileSize
) {
707 fp
->ff_size
= filesize
;
709 /* Files that are changing size are not hot file candidates. */
710 if (hfsmp
->hfc_stage
== HFC_RECORDING
) {
711 fp
->ff_bytesread
= 0;
714 fp
->ff_new_size
= 0; /* ff_size now has the correct size */
717 uio_setresid(uio
, (uio_resid(uio
) + bytesToAdd
));
721 if (vnode_should_flush_after_write(vp
, ioflag
))
722 hfs_flush(hfsmp
, HFS_FLUSH_CACHE
);
726 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
730 if (resid
> uio_resid(uio
)) {
731 cp
->c_touch_chgtime
= TRUE
;
732 cp
->c_touch_modtime
= TRUE
;
733 hfs_incr_gencount(cp
);
736 * If we successfully wrote any data, and we are not the superuser
737 * we clear the setuid and setgid bits as a precaution against
740 if (cp
->c_mode
& (S_ISUID
| S_ISGID
)) {
741 cred
= vfs_context_ucred(ap
->a_context
);
742 if (cred
&& suser(cred
, NULL
)) {
743 cp
->c_mode
&= ~(S_ISUID
| S_ISGID
);
748 if (ioflag
& IO_UNIT
) {
749 (void)hfs_truncate(vp
, origFileSize
, ioflag
& IO_SYNC
,
751 uio_setoffset(uio
, (uio_offset(uio
) - (resid
- uio_resid(uio
))));
752 uio_setresid(uio
, resid
);
753 filebytes
= (off_t
)fp
->ff_blocks
* (off_t
)hfsmp
->blockSize
;
755 } else if ((ioflag
& IO_SYNC
) && (resid
> uio_resid(uio
)))
756 retval
= hfs_update(vp
, 0);
758 /* Updating vcbWrCnt doesn't need to be atomic. */
761 KERNEL_DEBUG(HFSDBG_WRITE
| DBG_FUNC_END
,
762 (int)uio_offset(uio
), uio_resid(uio
), (int)fp
->ff_size
, (int)filebytes
, 0);
764 if (retval
&& took_truncate_lock
765 && cp
->c_truncatelockowner
== current_thread()) {
767 rl_remove(fp
->ff_size
, RL_INFINITY
, &fp
->ff_invalidranges
);
773 if (took_truncate_lock
) {
774 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
776 if (retval
== EAGAIN
) {
777 throttle_lowpri_io(1);
784 throttle_info_reset_window(NULL
);
788 /* support for the "bulk-access" fcntl */
790 #define CACHE_LEVELS 16
791 #define NUM_CACHE_ENTRIES (64*16)
792 #define PARENT_IDS_FLAG 0x100
794 struct access_cache
{
796 int cachehits
; /* these two for statistics gathering */
798 unsigned int *acache
;
799 unsigned char *haveaccess
;
803 uid_t uid
; /* IN: effective user id */
804 short flags
; /* IN: access requested (i.e. R_OK) */
805 short num_groups
; /* IN: number of groups user belongs to */
806 int num_files
; /* IN: number of files to process */
807 int *file_ids
; /* IN: array of file ids */
808 gid_t
*groups
; /* IN: array of groups */
809 short *access
; /* OUT: access info for each file (0 for 'has access') */
810 } __attribute__((unavailable
)); // this structure is for reference purposes only
812 struct user32_access_t
{
813 uid_t uid
; /* IN: effective user id */
814 short flags
; /* IN: access requested (i.e. R_OK) */
815 short num_groups
; /* IN: number of groups user belongs to */
816 int num_files
; /* IN: number of files to process */
817 user32_addr_t file_ids
; /* IN: array of file ids */
818 user32_addr_t groups
; /* IN: array of groups */
819 user32_addr_t access
; /* OUT: access info for each file (0 for 'has access') */
822 struct user64_access_t
{
823 uid_t uid
; /* IN: effective user id */
824 short flags
; /* IN: access requested (i.e. R_OK) */
825 short num_groups
; /* IN: number of groups user belongs to */
826 int num_files
; /* IN: number of files to process */
827 user64_addr_t file_ids
; /* IN: array of file ids */
828 user64_addr_t groups
; /* IN: array of groups */
829 user64_addr_t access
; /* OUT: access info for each file (0 for 'has access') */
833 // these are the "extended" versions of the above structures
834 // note that it is crucial that they be different sized than
835 // the regular version
836 struct ext_access_t
{
837 uint32_t flags
; /* IN: access requested (i.e. R_OK) */
838 uint32_t num_files
; /* IN: number of files to process */
839 uint32_t map_size
; /* IN: size of the bit map */
840 uint32_t *file_ids
; /* IN: Array of file ids */
841 char *bitmap
; /* OUT: hash-bitmap of interesting directory ids */
842 short *access
; /* OUT: access info for each file (0 for 'has access') */
843 uint32_t num_parents
; /* future use */
844 cnid_t
*parents
; /* future use */
845 } __attribute__((unavailable
)); // this structure is for reference purposes only
847 struct user32_ext_access_t
{
848 uint32_t flags
; /* IN: access requested (i.e. R_OK) */
849 uint32_t num_files
; /* IN: number of files to process */
850 uint32_t map_size
; /* IN: size of the bit map */
851 user32_addr_t file_ids
; /* IN: Array of file ids */
852 user32_addr_t bitmap
; /* OUT: hash-bitmap of interesting directory ids */
853 user32_addr_t access
; /* OUT: access info for each file (0 for 'has access') */
854 uint32_t num_parents
; /* future use */
855 user32_addr_t parents
; /* future use */
858 struct user64_ext_access_t
{
859 uint32_t flags
; /* IN: access requested (i.e. R_OK) */
860 uint32_t num_files
; /* IN: number of files to process */
861 uint32_t map_size
; /* IN: size of the bit map */
862 user64_addr_t file_ids
; /* IN: array of file ids */
863 user64_addr_t bitmap
; /* IN: array of groups */
864 user64_addr_t access
; /* OUT: access info for each file (0 for 'has access') */
865 uint32_t num_parents
;/* future use */
866 user64_addr_t parents
;/* future use */
871 * Perform a binary search for the given parent_id. Return value is
872 * the index if there is a match. If no_match_indexp is non-NULL it
873 * will be assigned with the index to insert the item (even if it was
876 static int cache_binSearch(cnid_t
*array
, unsigned int hi
, cnid_t parent_id
, int *no_match_indexp
)
882 unsigned int mid
= ((hi
- lo
)/2) + lo
;
883 unsigned int this_id
= array
[mid
];
885 if (parent_id
== this_id
) {
890 if (parent_id
< this_id
) {
895 if (parent_id
> this_id
) {
901 /* check if lo and hi converged on the match */
902 if (parent_id
== array
[hi
]) {
906 if (no_match_indexp
) {
907 *no_match_indexp
= hi
;
915 lookup_bucket(struct access_cache
*cache
, int *indexp
, cnid_t parent_id
)
919 int index
, no_match_index
;
921 if (cache
->numcached
== 0) {
923 return 0; // table is empty, so insert at index=0 and report no match
926 if (cache
->numcached
> NUM_CACHE_ENTRIES
) {
927 cache
->numcached
= NUM_CACHE_ENTRIES
;
930 hi
= cache
->numcached
- 1;
932 index
= cache_binSearch(cache
->acache
, hi
, parent_id
, &no_match_index
);
934 /* if no existing entry found, find index for new one */
936 index
= no_match_index
;
947 * Add a node to the access_cache at the given index (or do a lookup first
948 * to find the index if -1 is passed in). We currently do a replace rather
949 * than an insert if the cache is full.
952 add_node(struct access_cache
*cache
, int index
, cnid_t nodeID
, int access
)
954 int lookup_index
= -1;
956 /* need to do a lookup first if -1 passed for index */
958 if (lookup_bucket(cache
, &lookup_index
, nodeID
)) {
959 if (cache
->haveaccess
[lookup_index
] != access
&& cache
->haveaccess
[lookup_index
] == ESRCH
) {
960 // only update an entry if the previous access was ESRCH (i.e. a scope checking error)
961 cache
->haveaccess
[lookup_index
] = access
;
964 /* mission accomplished */
967 index
= lookup_index
;
972 /* if the cache is full, do a replace rather than an insert */
973 if (cache
->numcached
>= NUM_CACHE_ENTRIES
) {
974 cache
->numcached
= NUM_CACHE_ENTRIES
-1;
976 if (index
> cache
->numcached
) {
977 index
= cache
->numcached
;
981 if (index
< cache
->numcached
&& index
< NUM_CACHE_ENTRIES
&& nodeID
> cache
->acache
[index
]) {
985 if (index
>= 0 && index
< cache
->numcached
) {
986 /* only do bcopy if we're inserting */
987 bcopy( cache
->acache
+index
, cache
->acache
+(index
+1), (cache
->numcached
- index
)*sizeof(int) );
988 bcopy( cache
->haveaccess
+index
, cache
->haveaccess
+(index
+1), (cache
->numcached
- index
)*sizeof(unsigned char) );
991 cache
->acache
[index
] = nodeID
;
992 cache
->haveaccess
[index
] = access
;
1006 snoop_callback(const cnode_t
*cp
, void *arg
)
1008 struct cinfo
*cip
= arg
;
1010 cip
->uid
= cp
->c_uid
;
1011 cip
->gid
= cp
->c_gid
;
1012 cip
->mode
= cp
->c_mode
;
1013 cip
->parentcnid
= cp
->c_parentcnid
;
1014 cip
->recflags
= cp
->c_attr
.ca_recflags
;
1020 * Lookup the cnid's attr info (uid, gid, and mode) as well as its parent id. If the item
1021 * isn't incore, then go to the catalog.
1024 do_attr_lookup(struct hfsmount
*hfsmp
, struct access_cache
*cache
, cnid_t cnid
,
1025 struct cnode
*skip_cp
, CatalogKey
*keyp
, struct cat_attr
*cnattrp
)
1029 /* if this id matches the one the fsctl was called with, skip the lookup */
1030 if (cnid
== skip_cp
->c_cnid
) {
1031 cnattrp
->ca_uid
= skip_cp
->c_uid
;
1032 cnattrp
->ca_gid
= skip_cp
->c_gid
;
1033 cnattrp
->ca_mode
= skip_cp
->c_mode
;
1034 cnattrp
->ca_recflags
= skip_cp
->c_attr
.ca_recflags
;
1035 keyp
->hfsPlus
.parentID
= skip_cp
->c_parentcnid
;
1037 struct cinfo c_info
;
1039 /* otherwise, check the cnode hash incase the file/dir is incore */
1040 error
= hfs_chash_snoop(hfsmp
, cnid
, 0, snoop_callback
, &c_info
);
1042 if (error
== EACCES
) {
1045 } else if (!error
) {
1046 cnattrp
->ca_uid
= c_info
.uid
;
1047 cnattrp
->ca_gid
= c_info
.gid
;
1048 cnattrp
->ca_mode
= c_info
.mode
;
1049 cnattrp
->ca_recflags
= c_info
.recflags
;
1050 keyp
->hfsPlus
.parentID
= c_info
.parentcnid
;
1054 if (throttle_io_will_be_throttled(-1, HFSTOVFS(hfsmp
)))
1055 throttle_lowpri_io(1);
1057 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
1059 /* lookup this cnid in the catalog */
1060 error
= cat_getkeyplusattr(hfsmp
, cnid
, keyp
, cnattrp
);
1062 hfs_systemfile_unlock(hfsmp
, lockflags
);
1073 * Compute whether we have access to the given directory (nodeID) and all its parents. Cache
1074 * up to CACHE_LEVELS as we progress towards the root.
1077 do_access_check(struct hfsmount
*hfsmp
, int *err
, struct access_cache
*cache
, HFSCatalogNodeID nodeID
,
1078 struct cnode
*skip_cp
, struct proc
*theProcPtr
, kauth_cred_t myp_ucred
,
1079 struct vfs_context
*my_context
,
1083 uint32_t num_parents
)
1087 HFSCatalogNodeID thisNodeID
;
1088 unsigned int myPerms
;
1089 struct cat_attr cnattr
;
1090 int cache_index
= -1, scope_index
= -1, scope_idx_start
= -1;
1093 int i
= 0, ids_to_cache
= 0;
1094 int parent_ids
[CACHE_LEVELS
];
1096 thisNodeID
= nodeID
;
1097 while (thisNodeID
>= kRootDirID
) {
1098 myResult
= 0; /* default to "no access" */
1100 /* check the cache before resorting to hitting the catalog */
1102 /* ASSUMPTION: access info of cached entries is "final"... i.e. no need
1103 * to look any further after hitting cached dir */
1105 if (lookup_bucket(cache
, &cache_index
, thisNodeID
)) {
1107 myErr
= cache
->haveaccess
[cache_index
];
1108 if (scope_index
!= -1) {
1109 if (myErr
== ESRCH
) {
1113 scope_index
= 0; // so we'll just use the cache result
1114 scope_idx_start
= ids_to_cache
;
1116 myResult
= (myErr
== 0) ? 1 : 0;
1117 goto ExitThisRoutine
;
1123 tmp
= cache_binSearch(parents
, num_parents
-1, thisNodeID
, NULL
);
1124 if (scope_index
== -1)
1126 if (tmp
!= -1 && scope_idx_start
== -1 && ids_to_cache
< CACHE_LEVELS
) {
1127 scope_idx_start
= ids_to_cache
;
1131 /* remember which parents we want to cache */
1132 if (ids_to_cache
< CACHE_LEVELS
) {
1133 parent_ids
[ids_to_cache
] = thisNodeID
;
1136 // Inefficient (using modulo) and we might want to use a hash function, not rely on the node id to be "nice"...
1137 if (bitmap
&& map_size
) {
1138 bitmap
[(thisNodeID
/8)%(map_size
)]|=(1<<(thisNodeID
&7));
1142 /* do the lookup (checks the cnode hash, then the catalog) */
1143 myErr
= do_attr_lookup(hfsmp
, cache
, thisNodeID
, skip_cp
, &catkey
, &cnattr
);
1145 goto ExitThisRoutine
; /* no access */
1148 /* Root always gets access. */
1149 if (suser(myp_ucred
, NULL
) == 0) {
1150 thisNodeID
= catkey
.hfsPlus
.parentID
;
1155 // if the thing has acl's, do the full permission check
1156 if ((cnattr
.ca_recflags
& kHFSHasSecurityMask
) != 0) {
1159 /* get the vnode for this cnid */
1160 myErr
= hfs_vget(hfsmp
, thisNodeID
, &vp
, 0, 0);
1163 goto ExitThisRoutine
;
1166 thisNodeID
= VTOC(vp
)->c_parentcnid
;
1168 hfs_unlock(VTOC(vp
));
1170 if (vnode_vtype(vp
) == VDIR
) {
1171 myErr
= vnode_authorize(vp
, NULL
, (KAUTH_VNODE_SEARCH
| KAUTH_VNODE_LIST_DIRECTORY
), my_context
);
1173 myErr
= vnode_authorize(vp
, NULL
, KAUTH_VNODE_READ_DATA
, my_context
);
1179 goto ExitThisRoutine
;
1183 int mode
= cnattr
.ca_mode
& S_IFMT
;
1184 myPerms
= DerivePermissionSummary(cnattr
.ca_uid
, cnattr
.ca_gid
, cnattr
.ca_mode
, hfsmp
->hfs_mp
,myp_ucred
, theProcPtr
);
1186 if (mode
== S_IFDIR
) {
1187 flags
= R_OK
| X_OK
;
1191 if ( (myPerms
& flags
) != flags
) {
1194 goto ExitThisRoutine
; /* no access */
1197 /* up the hierarchy we go */
1198 thisNodeID
= catkey
.hfsPlus
.parentID
;
1202 /* if here, we have access to this node */
1206 if (parents
&& myErr
== 0 && scope_index
== -1) {
1215 /* cache the parent directory(ies) */
1216 for (i
= 0; i
< ids_to_cache
; i
++) {
1217 if (myErr
== 0 && parents
&& (scope_idx_start
== -1 || i
> scope_idx_start
)) {
1218 add_node(cache
, -1, parent_ids
[i
], ESRCH
);
1220 add_node(cache
, -1, parent_ids
[i
], myErr
);
1228 do_bulk_access_check(struct hfsmount
*hfsmp
, struct vnode
*vp
,
1229 struct vnop_ioctl_args
*ap
, int arg_size
, vfs_context_t context
)
1234 * NOTE: on entry, the vnode has an io_ref. In case this vnode
1235 * happens to be in our list of file_ids, we'll note it
1236 * avoid calling hfs_chashget_nowait() on that id as that
1237 * will cause a "locking against myself" panic.
1239 Boolean check_leaf
= true;
1241 struct user64_ext_access_t
*user_access_structp
;
1242 struct user64_ext_access_t tmp_user_access
;
1243 struct access_cache cache
;
1245 int error
= 0, prev_parent_check_ok
=1;
1249 unsigned int num_files
= 0;
1251 int num_parents
= 0;
1255 cnid_t
*parents
=NULL
;
1259 cnid_t prevParent_cnid
= 0;
1260 unsigned int myPerms
;
1262 struct cat_attr cnattr
;
1264 struct cnode
*skip_cp
= VTOC(vp
);
1265 kauth_cred_t cred
= vfs_context_ucred(context
);
1266 proc_t p
= vfs_context_proc(context
);
1268 is64bit
= proc_is64bit(p
);
1270 /* initialize the local cache and buffers */
1271 cache
.numcached
= 0;
1272 cache
.cachehits
= 0;
1274 cache
.acache
= NULL
;
1275 cache
.haveaccess
= NULL
;
1277 /* struct copyin done during dispatch... need to copy file_id array separately */
1278 if (ap
->a_data
== NULL
) {
1280 goto err_exit_bulk_access
;
1284 if (arg_size
!= sizeof(struct user64_ext_access_t
)) {
1286 goto err_exit_bulk_access
;
1289 user_access_structp
= (struct user64_ext_access_t
*)ap
->a_data
;
1291 } else if (arg_size
== sizeof(struct user32_access_t
)) {
1292 struct user32_access_t
*accessp
= (struct user32_access_t
*)ap
->a_data
;
1294 // convert an old style bulk-access struct to the new style
1295 tmp_user_access
.flags
= accessp
->flags
;
1296 tmp_user_access
.num_files
= accessp
->num_files
;
1297 tmp_user_access
.map_size
= 0;
1298 tmp_user_access
.file_ids
= CAST_USER_ADDR_T(accessp
->file_ids
);
1299 tmp_user_access
.bitmap
= USER_ADDR_NULL
;
1300 tmp_user_access
.access
= CAST_USER_ADDR_T(accessp
->access
);
1301 tmp_user_access
.num_parents
= 0;
1302 user_access_structp
= &tmp_user_access
;
1304 } else if (arg_size
== sizeof(struct user32_ext_access_t
)) {
1305 struct user32_ext_access_t
*accessp
= (struct user32_ext_access_t
*)ap
->a_data
;
1307 // up-cast from a 32-bit version of the struct
1308 tmp_user_access
.flags
= accessp
->flags
;
1309 tmp_user_access
.num_files
= accessp
->num_files
;
1310 tmp_user_access
.map_size
= accessp
->map_size
;
1311 tmp_user_access
.num_parents
= accessp
->num_parents
;
1313 tmp_user_access
.file_ids
= CAST_USER_ADDR_T(accessp
->file_ids
);
1314 tmp_user_access
.bitmap
= CAST_USER_ADDR_T(accessp
->bitmap
);
1315 tmp_user_access
.access
= CAST_USER_ADDR_T(accessp
->access
);
1316 tmp_user_access
.parents
= CAST_USER_ADDR_T(accessp
->parents
);
1318 user_access_structp
= &tmp_user_access
;
1321 goto err_exit_bulk_access
;
1324 map_size
= user_access_structp
->map_size
;
1326 num_files
= user_access_structp
->num_files
;
1328 num_parents
= user_access_structp
->num_parents
;
1330 if (num_files
< 1) {
1331 goto err_exit_bulk_access
;
1333 if (num_files
> 1024) {
1335 goto err_exit_bulk_access
;
1338 if (num_parents
> 1024) {
1340 goto err_exit_bulk_access
;
1343 file_ids
= hfs_malloc(sizeof(int) * num_files
);
1344 access
= hfs_malloc(sizeof(short) * num_files
);
1346 bitmap
= hfs_mallocz(sizeof(char) * map_size
);
1350 parents
= hfs_malloc(sizeof(cnid_t
) * num_parents
);
1353 cache
.acache
= hfs_malloc(sizeof(int) * NUM_CACHE_ENTRIES
);
1354 cache
.haveaccess
= hfs_malloc(sizeof(unsigned char) * NUM_CACHE_ENTRIES
);
1356 if ((error
= copyin(user_access_structp
->file_ids
, (caddr_t
)file_ids
,
1357 num_files
* sizeof(int)))) {
1358 goto err_exit_bulk_access
;
1362 if ((error
= copyin(user_access_structp
->parents
, (caddr_t
)parents
,
1363 num_parents
* sizeof(cnid_t
)))) {
1364 goto err_exit_bulk_access
;
1368 flags
= user_access_structp
->flags
;
1369 if ((flags
& (F_OK
| R_OK
| W_OK
| X_OK
)) == 0) {
1373 /* check if we've been passed leaf node ids or parent ids */
1374 if (flags
& PARENT_IDS_FLAG
) {
1378 /* Check access to each file_id passed in */
1379 for (i
= 0; i
< num_files
; i
++) {
1381 cnid
= (cnid_t
) file_ids
[i
];
1383 /* root always has access */
1384 if ((!parents
) && (!suser(cred
, NULL
))) {
1390 /* do the lookup (checks the cnode hash, then the catalog) */
1391 error
= do_attr_lookup(hfsmp
, &cache
, cnid
, skip_cp
, &catkey
, &cnattr
);
1393 access
[i
] = (short) error
;
1398 // Check if the leaf matches one of the parent scopes
1399 leaf_index
= cache_binSearch(parents
, num_parents
-1, cnid
, NULL
);
1400 if (leaf_index
>= 0 && parents
[leaf_index
] == cnid
)
1401 prev_parent_check_ok
= 0;
1402 else if (leaf_index
>= 0)
1403 prev_parent_check_ok
= 1;
1406 // if the thing has acl's, do the full permission check
1407 if ((cnattr
.ca_recflags
& kHFSHasSecurityMask
) != 0) {
1410 /* get the vnode for this cnid */
1411 myErr
= hfs_vget(hfsmp
, cnid
, &cvp
, 0, 0);
1417 hfs_unlock(VTOC(cvp
));
1419 if (vnode_vtype(cvp
) == VDIR
) {
1420 myErr
= vnode_authorize(cvp
, NULL
, (KAUTH_VNODE_SEARCH
| KAUTH_VNODE_LIST_DIRECTORY
), context
);
1422 myErr
= vnode_authorize(cvp
, NULL
, KAUTH_VNODE_READ_DATA
, context
);
1431 /* before calling CheckAccess(), check the target file for read access */
1432 myPerms
= DerivePermissionSummary(cnattr
.ca_uid
, cnattr
.ca_gid
,
1433 cnattr
.ca_mode
, hfsmp
->hfs_mp
, cred
, p
);
1435 /* fail fast if no access */
1436 if ((myPerms
& flags
) == 0) {
1442 /* we were passed an array of parent ids */
1443 catkey
.hfsPlus
.parentID
= cnid
;
1446 /* if the last guy had the same parent and had access, we're done */
1447 if (i
> 0 && catkey
.hfsPlus
.parentID
== prevParent_cnid
&& access
[i
-1] == 0 && prev_parent_check_ok
) {
1453 myaccess
= do_access_check(hfsmp
, &error
, &cache
, catkey
.hfsPlus
.parentID
,
1454 skip_cp
, p
, cred
, context
,bitmap
, map_size
, parents
, num_parents
);
1456 if (myaccess
|| (error
== ESRCH
&& leaf_index
!= -1)) {
1457 access
[i
] = 0; // have access.. no errors to report
1459 access
[i
] = (error
!= 0 ? (short) error
: EACCES
);
1462 prevParent_cnid
= catkey
.hfsPlus
.parentID
;
1465 /* copyout the access array */
1466 if ((error
= copyout((caddr_t
)access
, user_access_structp
->access
,
1467 num_files
* sizeof (short)))) {
1468 goto err_exit_bulk_access
;
1470 if (map_size
&& bitmap
) {
1471 if ((error
= copyout((caddr_t
)bitmap
, user_access_structp
->bitmap
,
1472 map_size
* sizeof (char)))) {
1473 goto err_exit_bulk_access
;
1478 err_exit_bulk_access
:
1480 hfs_free(file_ids
, sizeof(int) * num_files
);
1481 hfs_free(parents
, sizeof(cnid_t
) * num_parents
);
1482 hfs_free(bitmap
, sizeof(char) * map_size
);
1483 hfs_free(access
, sizeof(short) * num_files
);
1484 hfs_free(cache
.acache
, sizeof(int) * NUM_CACHE_ENTRIES
);
1485 hfs_free(cache
.haveaccess
, sizeof(unsigned char) * NUM_CACHE_ENTRIES
);
1491 /* end "bulk-access" support */
1495 * Control filesystem operating characteristics.
1498 hfs_vnop_ioctl( struct vnop_ioctl_args
/* {
1503 vfs_context_t a_context;
1506 struct vnode
* vp
= ap
->a_vp
;
1507 struct hfsmount
*hfsmp
= VTOHFS(vp
);
1508 vfs_context_t context
= ap
->a_context
;
1509 kauth_cred_t cred
= vfs_context_ucred(context
);
1510 proc_t p
= vfs_context_proc(context
);
1511 struct vfsstatfs
*vfsp
;
1513 off_t jnl_start
, jnl_size
;
1514 struct hfs_journal_info
*jip
;
1517 off_t uncompressed_size
= -1;
1518 int decmpfs_error
= 0;
1520 if (ap
->a_command
== F_RDADVISE
) {
1521 /* we need to inspect the decmpfs state of the file as early as possible */
1522 compressed
= hfs_file_is_compressed(VTOC(vp
), 0);
1524 if (VNODE_IS_RSRC(vp
)) {
1525 /* if this is the resource fork, treat it as if it were empty */
1526 uncompressed_size
= 0;
1528 decmpfs_error
= hfs_uncompressed_size_of_compressed_file(NULL
, vp
, 0, &uncompressed_size
, 0);
1529 if (decmpfs_error
!= 0) {
1530 /* failed to get the uncompressed size, we'll check for this later */
1531 uncompressed_size
= -1;
1536 #endif /* HFS_COMPRESSION */
1538 is64bit
= proc_is64bit(p
);
1541 #if HFS_CONFIG_KEY_ROLL
1542 // The HFSIOC_KEY_ROLL fsctl does its own access checks
1543 if (ap
->a_command
!= HFSIOC_KEY_ROLL
)
1547 if ((error
= cp_handle_vnop(vp
, CP_WRITE_ACCESS
, 0)) != 0) {
1551 #endif /* CONFIG_PROTECT */
1553 switch (ap
->a_command
) {
1555 case HFSIOC_GETPATH
:
1557 struct vnode
*file_vp
;
1564 /* Caller must be owner of file system. */
1565 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
1566 if (suser(cred
, NULL
) &&
1567 kauth_cred_getuid(cred
) != vfsp
->f_owner
) {
1570 /* Target vnode must be file system's root. */
1571 if (!vnode_isvroot(vp
)) {
1574 bufptr
= (char *)ap
->a_data
;
1575 cnid
= strtoul(bufptr
, NULL
, 10);
1576 if (ap
->a_fflag
& HFS_GETPATH_VOLUME_RELATIVE
) {
1577 flags
|= BUILDPATH_VOLUME_RELATIVE
;
1580 /* We need to call hfs_vfs_vget to leverage the code that will
1581 * fix the origin list for us if needed, as opposed to calling
1582 * hfs_vget, since we will need the parent for build_path call.
1585 if ((error
= hfs_vfs_vget(HFSTOVFS(hfsmp
), cnid
, &file_vp
, context
))) {
1589 error
= build_path(file_vp
, bufptr
, sizeof(pathname_t
), &outlen
, flags
, context
);
1595 case HFSIOC_SET_MAX_DEFRAG_SIZE
:
1597 int error
= 0; /* Assume success */
1598 u_int32_t maxsize
= 0;
1600 if (vnode_vfsisrdonly(vp
)) {
1603 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
1604 if (!kauth_cred_issuser(cred
)) {
1605 return (EACCES
); /* must be root */
1608 maxsize
= *(u_int32_t
*)ap
->a_data
;
1610 hfs_lock_mount(hfsmp
);
1611 if (maxsize
> HFS_MAX_DEFRAG_SIZE
) {
1615 hfsmp
->hfs_defrag_max
= maxsize
;
1617 hfs_unlock_mount(hfsmp
);
1622 case HFSIOC_FORCE_ENABLE_DEFRAG
:
1624 int error
= 0; /* Assume success */
1625 u_int32_t do_enable
= 0;
1627 if (vnode_vfsisrdonly(vp
)) {
1630 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
1631 if (!kauth_cred_issuser(cred
)) {
1632 return (EACCES
); /* must be root */
1635 do_enable
= *(u_int32_t
*)ap
->a_data
;
1637 hfs_lock_mount(hfsmp
);
1638 if (do_enable
!= 0) {
1639 hfsmp
->hfs_defrag_nowait
= 1;
1645 hfs_unlock_mount(hfsmp
);
1651 case HFSIOC_TRANSFER_DOCUMENT_ID
:
1653 struct cnode
*cp
= NULL
;
1655 u_int32_t to_fd
= *(u_int32_t
*)ap
->a_data
;
1656 struct fileproc
*to_fp
;
1657 struct vnode
*to_vp
;
1658 struct cnode
*to_cp
;
1662 if ((error
= fp_getfvp(p
, to_fd
, &to_fp
, &to_vp
)) != 0) {
1663 //printf("could not get the vnode for fd %d (err %d)\n", to_fd, error);
1666 if ( (error
= vnode_getwithref(to_vp
)) ) {
1671 if (VTOHFS(to_vp
) != hfsmp
) {
1673 goto transfer_cleanup
;
1676 int need_unlock
= 1;
1677 to_cp
= VTOC(to_vp
);
1678 error
= hfs_lockpair(cp
, to_cp
, HFS_EXCLUSIVE_LOCK
);
1680 //printf("could not lock the pair of cnodes (error %d)\n", error);
1681 goto transfer_cleanup
;
1684 if (!(cp
->c_bsdflags
& UF_TRACKED
)) {
1686 } else if (to_cp
->c_bsdflags
& UF_TRACKED
) {
1688 // if the destination is already tracked, return an error
1689 // as otherwise it's a silent deletion of the target's
1693 } else if (S_ISDIR(cp
->c_attr
.ca_mode
) || S_ISREG(cp
->c_attr
.ca_mode
) || S_ISLNK(cp
->c_attr
.ca_mode
)) {
1695 // we can use the FndrExtendedFileInfo because the doc-id is the first
1696 // thing in both it and the ExtendedDirInfo struct which is fixed in
1697 // format and can not change layout
1699 struct FndrExtendedFileInfo
*f_extinfo
= (struct FndrExtendedFileInfo
*)((u_int8_t
*)cp
->c_finderinfo
+ 16);
1700 struct FndrExtendedFileInfo
*to_extinfo
= (struct FndrExtendedFileInfo
*)((u_int8_t
*)to_cp
->c_finderinfo
+ 16);
1702 if (f_extinfo
->document_id
== 0) {
1705 hfs_unlockpair(cp
, to_cp
); // have to unlock to be able to get a new-id
1707 if ((error
= hfs_generate_document_id(hfsmp
, &new_id
)) == 0) {
1709 // re-lock the pair now that we have the document-id
1711 hfs_lockpair(cp
, to_cp
, HFS_EXCLUSIVE_LOCK
);
1712 f_extinfo
->document_id
= new_id
;
1714 goto transfer_cleanup
;
1718 to_extinfo
->document_id
= f_extinfo
->document_id
;
1719 f_extinfo
->document_id
= 0;
1720 //printf("TRANSFERRING: doc-id %d from ino %d to ino %d\n", to_extinfo->document_id, cp->c_fileid, to_cp->c_fileid);
1722 // make sure the destination is also UF_TRACKED
1723 to_cp
->c_bsdflags
|= UF_TRACKED
;
1724 cp
->c_bsdflags
&= ~UF_TRACKED
;
1726 // mark the cnodes dirty
1727 cp
->c_flag
|= C_MODIFIED
;
1728 to_cp
->c_flag
|= C_MODIFIED
;
1731 if ((error
= hfs_start_transaction(hfsmp
)) == 0) {
1733 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
1735 (void) cat_update(hfsmp
, &cp
->c_desc
, &cp
->c_attr
, NULL
, NULL
);
1736 (void) cat_update(hfsmp
, &to_cp
->c_desc
, &to_cp
->c_attr
, NULL
, NULL
);
1738 hfs_systemfile_unlock (hfsmp
, lockflags
);
1739 (void) hfs_end_transaction(hfsmp
);
1742 add_fsevent(FSE_DOCID_CHANGED
, context
,
1743 FSE_ARG_DEV
, hfsmp
->hfs_raw_dev
,
1744 FSE_ARG_INO
, (ino64_t
)cp
->c_fileid
, // src inode #
1745 FSE_ARG_INO
, (ino64_t
)to_cp
->c_fileid
, // dst inode #
1746 FSE_ARG_INT32
, to_extinfo
->document_id
,
1749 hfs_unlockpair(cp
, to_cp
); // unlock this so we can send the fsevents
1752 if (need_fsevent(FSE_STAT_CHANGED
, vp
)) {
1753 add_fsevent(FSE_STAT_CHANGED
, context
, FSE_ARG_VNODE
, vp
, FSE_ARG_DONE
);
1755 if (need_fsevent(FSE_STAT_CHANGED
, to_vp
)) {
1756 add_fsevent(FSE_STAT_CHANGED
, context
, FSE_ARG_VNODE
, to_vp
, FSE_ARG_DONE
);
1761 hfs_unlockpair(cp
, to_cp
);
1773 case HFSIOC_PREV_LINK
:
1774 case HFSIOC_NEXT_LINK
:
1781 /* Caller must be owner of file system. */
1782 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
1783 if (suser(cred
, NULL
) &&
1784 kauth_cred_getuid(cred
) != vfsp
->f_owner
) {
1787 /* Target vnode must be file system's root. */
1788 if (!vnode_isvroot(vp
)) {
1791 linkfileid
= *(cnid_t
*)ap
->a_data
;
1792 if (linkfileid
< kHFSFirstUserCatalogNodeID
) {
1795 if ((error
= hfs_lookup_siblinglinks(hfsmp
, linkfileid
, &prevlinkid
, &nextlinkid
))) {
1798 if (ap
->a_command
== HFSIOC_NEXT_LINK
) {
1799 *(cnid_t
*)ap
->a_data
= nextlinkid
;
1801 *(cnid_t
*)ap
->a_data
= prevlinkid
;
1806 case HFSIOC_RESIZE_PROGRESS
: {
1808 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
1809 if (suser(cred
, NULL
) &&
1810 kauth_cred_getuid(cred
) != vfsp
->f_owner
) {
1811 return (EACCES
); /* must be owner of file system */
1813 if (!vnode_isvroot(vp
)) {
1816 /* file system must not be mounted read-only */
1817 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
1821 return hfs_resize_progress(hfsmp
, (u_int32_t
*)ap
->a_data
);
1824 case HFSIOC_RESIZE_VOLUME
: {
1829 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
1830 if (suser(cred
, NULL
) &&
1831 kauth_cred_getuid(cred
) != vfsp
->f_owner
) {
1832 return (EACCES
); /* must be owner of file system */
1834 if (!vnode_isvroot(vp
)) {
1838 /* filesystem must not be mounted read only */
1839 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
1842 newsize
= *(u_int64_t
*)ap
->a_data
;
1843 cursize
= (u_int64_t
)hfsmp
->totalBlocks
* (u_int64_t
)hfsmp
->blockSize
;
1845 if (newsize
== cursize
) {
1848 IOBSDMountChange(hfsmp
->hfs_mp
, kIOMountChangeWillResize
);
1849 if (newsize
> cursize
) {
1850 ret
= hfs_extendfs(hfsmp
, *(u_int64_t
*)ap
->a_data
, context
);
1852 ret
= hfs_truncatefs(hfsmp
, *(u_int64_t
*)ap
->a_data
, context
);
1854 IOBSDMountChange(hfsmp
->hfs_mp
, kIOMountChangeDidResize
);
1857 case HFSIOC_CHANGE_NEXT_ALLOCATION
: {
1858 int error
= 0; /* Assume success */
1861 if (vnode_vfsisrdonly(vp
)) {
1864 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
1865 if (suser(cred
, NULL
) &&
1866 kauth_cred_getuid(cred
) != vfsp
->f_owner
) {
1867 return (EACCES
); /* must be owner of file system */
1869 if (!vnode_isvroot(vp
)) {
1872 hfs_lock_mount(hfsmp
);
1873 location
= *(u_int32_t
*)ap
->a_data
;
1874 if ((location
>= hfsmp
->allocLimit
) &&
1875 (location
!= HFS_NO_UPDATE_NEXT_ALLOCATION
)) {
1877 goto fail_change_next_allocation
;
1879 /* Return previous value. */
1880 *(u_int32_t
*)ap
->a_data
= hfsmp
->nextAllocation
;
1881 if (location
== HFS_NO_UPDATE_NEXT_ALLOCATION
) {
1882 /* On magic value for location, set nextAllocation to next block
1883 * after metadata zone and set flag in mount structure to indicate
1884 * that nextAllocation should not be updated again.
1886 if (hfsmp
->hfs_metazone_end
!= 0) {
1887 HFS_UPDATE_NEXT_ALLOCATION(hfsmp
, hfsmp
->hfs_metazone_end
+ 1);
1889 hfsmp
->hfs_flags
|= HFS_SKIP_UPDATE_NEXT_ALLOCATION
;
1891 hfsmp
->hfs_flags
&= ~HFS_SKIP_UPDATE_NEXT_ALLOCATION
;
1892 HFS_UPDATE_NEXT_ALLOCATION(hfsmp
, location
);
1894 MarkVCBDirty(hfsmp
);
1895 fail_change_next_allocation
:
1896 hfs_unlock_mount(hfsmp
);
1901 case HFSIOC_SETBACKINGSTOREINFO
: {
1902 struct vnode
* di_vp
;
1903 struct hfs_backingstoreinfo
*bsdata
;
1906 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
1909 if (hfsmp
->hfs_flags
& HFS_HAS_SPARSE_DEVICE
) {
1912 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
1913 if (suser(cred
, NULL
) &&
1914 kauth_cred_getuid(cred
) != vfsp
->f_owner
) {
1915 return (EACCES
); /* must be owner of file system */
1917 bsdata
= (struct hfs_backingstoreinfo
*)ap
->a_data
;
1918 if (bsdata
== NULL
) {
1921 if ((error
= file_vnode(bsdata
->backingfd
, &di_vp
))) {
1924 if ((error
= vnode_getwithref(di_vp
))) {
1925 file_drop(bsdata
->backingfd
);
1929 if (vnode_mount(vp
) == vnode_mount(di_vp
)) {
1930 (void)vnode_put(di_vp
);
1931 file_drop(bsdata
->backingfd
);
1935 // Dropped in unmount
1938 hfs_lock_mount(hfsmp
);
1939 hfsmp
->hfs_backingvp
= di_vp
;
1940 hfsmp
->hfs_flags
|= HFS_HAS_SPARSE_DEVICE
;
1941 hfsmp
->hfs_sparsebandblks
= bsdata
->bandsize
/ hfsmp
->blockSize
* 4;
1942 hfs_unlock_mount(hfsmp
);
1944 /* We check the MNTK_VIRTUALDEV bit instead of marking the dependent process */
1947 * If the sparse image is on a sparse image file (as opposed to a sparse
1948 * bundle), then we may need to limit the free space to the maximum size
1949 * of a file on that volume. So we query (using pathconf), and if we get
1950 * a meaningful result, we cache the number of blocks for later use in
1953 hfsmp
->hfs_backingfs_maxblocks
= 0;
1954 if (vnode_vtype(di_vp
) == VREG
) {
1957 terr
= vn_pathconf(di_vp
, _PC_FILESIZEBITS
, &hostbits
, context
);
1958 if (terr
== 0 && hostbits
!= 0 && hostbits
< 64) {
1959 u_int64_t hostfilesizemax
= ((u_int64_t
)1) << hostbits
;
1961 hfsmp
->hfs_backingfs_maxblocks
= hostfilesizemax
/ hfsmp
->blockSize
;
1965 /* The free extent cache is managed differently for sparse devices.
1966 * There is a window between which the volume is mounted and the
1967 * device is marked as sparse, so the free extent cache for this
1968 * volume is currently initialized as normal volume (sorted by block
1969 * count). Reset the cache so that it will be rebuilt again
1970 * for sparse device (sorted by start block).
1972 ResetVCBFreeExtCache(hfsmp
);
1974 (void)vnode_put(di_vp
);
1975 file_drop(bsdata
->backingfd
);
1979 case HFSIOC_CLRBACKINGSTOREINFO
: {
1980 struct vnode
* tmpvp
;
1982 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
1983 if (suser(cred
, NULL
) &&
1984 kauth_cred_getuid(cred
) != vfsp
->f_owner
) {
1985 return (EACCES
); /* must be owner of file system */
1987 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
1991 if ((hfsmp
->hfs_flags
& HFS_HAS_SPARSE_DEVICE
) &&
1992 hfsmp
->hfs_backingvp
) {
1994 hfs_lock_mount(hfsmp
);
1995 hfsmp
->hfs_flags
&= ~HFS_HAS_SPARSE_DEVICE
;
1996 tmpvp
= hfsmp
->hfs_backingvp
;
1997 hfsmp
->hfs_backingvp
= NULLVP
;
1998 hfsmp
->hfs_sparsebandblks
= 0;
1999 hfs_unlock_mount(hfsmp
);
2005 #endif /* HFS_SPARSE_DEV */
2007 /* Change the next CNID stored in the VH */
2008 case HFSIOC_CHANGE_NEXTCNID
: {
2009 int error
= 0; /* Assume success */
2014 if (vnode_vfsisrdonly(vp
)) {
2017 vfsp
= vfs_statfs(HFSTOVFS(hfsmp
));
2018 if (suser(cred
, NULL
) &&
2019 kauth_cred_getuid(cred
) != vfsp
->f_owner
) {
2020 return (EACCES
); /* must be owner of file system */
2023 fileid
= *(u_int32_t
*)ap
->a_data
;
2025 /* Must have catalog lock excl. to advance the CNID pointer */
2026 lockflags
= hfs_systemfile_lock (hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
2028 hfs_lock_mount(hfsmp
);
2030 /* If it is less than the current next CNID, force the wraparound bit to be set */
2031 if (fileid
< hfsmp
->vcbNxtCNID
) {
2035 /* Return previous value. */
2036 *(u_int32_t
*)ap
->a_data
= hfsmp
->vcbNxtCNID
;
2038 hfsmp
->vcbNxtCNID
= fileid
;
2041 hfsmp
->vcbAtrb
|= kHFSCatalogNodeIDsReusedMask
;
2044 MarkVCBDirty(hfsmp
);
2045 hfs_unlock_mount(hfsmp
);
2046 hfs_systemfile_unlock (hfsmp
, lockflags
);
2054 mp
= vnode_mount(vp
);
2055 hfsmp
= VFSTOHFS(mp
);
2060 vfsp
= vfs_statfs(mp
);
2062 if (kauth_cred_getuid(cred
) != vfsp
->f_owner
&&
2063 !kauth_cred_issuser(cred
))
2066 return hfs_freeze(hfsmp
);
2070 vfsp
= vfs_statfs(vnode_mount(vp
));
2071 if (kauth_cred_getuid(cred
) != vfsp
->f_owner
&&
2072 !kauth_cred_issuser(cred
))
2075 return hfs_thaw(hfsmp
, current_proc());
2078 case HFSIOC_EXT_BULKACCESS32
:
2079 case HFSIOC_EXT_BULKACCESS64
: {
2082 if (hfsmp
->hfs_flags
& HFS_STANDARD
) {
2088 size
= sizeof(struct user64_ext_access_t
);
2090 size
= sizeof(struct user32_ext_access_t
);
2093 return do_bulk_access_check(hfsmp
, vp
, ap
, size
, context
);
2096 case HFSIOC_SET_XATTREXTENTS_STATE
: {
2099 if (ap
->a_data
== NULL
) {
2103 state
= *(int *)ap
->a_data
;
2105 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2109 /* Super-user can enable or disable extent-based extended
2110 * attribute support on a volume
2111 * Note: Starting Mac OS X 10.7, extent-based extended attributes
2112 * are enabled by default, so any change will be transient only
2113 * till the volume is remounted.
2115 if (!kauth_cred_issuser(kauth_cred_get())) {
2118 if (state
== 0 || state
== 1)
2119 return hfs_set_volxattr(hfsmp
, HFSIOC_SET_XATTREXTENTS_STATE
, state
);
2124 case F_SETSTATICCONTENT
: {
2126 int enable_static
= 0;
2127 struct cnode
*cp
= NULL
;
2129 * lock the cnode, decorate the cnode flag, and bail out.
2130 * VFS should have already authenticated the caller for us.
2135 * Note that even though ap->a_data is of type caddr_t,
2136 * the fcntl layer at the syscall handler will pass in NULL
2137 * or 1 depending on what the argument supplied to the fcntl
2138 * was. So it is in fact correct to check the ap->a_data
2139 * argument for zero or non-zero value when deciding whether or not
2140 * to enable the static bit in the cnode.
2144 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2149 error
= hfs_lock (cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2151 if (enable_static
) {
2152 cp
->c_flag
|= C_SSD_STATIC
;
2155 cp
->c_flag
&= ~C_SSD_STATIC
;
2162 case F_SET_GREEDY_MODE
: {
2164 int enable_greedy_mode
= 0;
2165 struct cnode
*cp
= NULL
;
2167 * lock the cnode, decorate the cnode flag, and bail out.
2168 * VFS should have already authenticated the caller for us.
2173 * Note that even though ap->a_data is of type caddr_t,
2174 * the fcntl layer at the syscall handler will pass in NULL
2175 * or 1 depending on what the argument supplied to the fcntl
2176 * was. So it is in fact correct to check the ap->a_data
2177 * argument for zero or non-zero value when deciding whether or not
2178 * to enable the greedy mode bit in the cnode.
2180 enable_greedy_mode
= 1;
2182 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2187 error
= hfs_lock (cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2189 if (enable_greedy_mode
) {
2190 cp
->c_flag
|= C_SSD_GREEDY_MODE
;
2193 cp
->c_flag
&= ~C_SSD_GREEDY_MODE
;
2202 uint32_t iotypeflag
= 0;
2204 struct cnode
*cp
= NULL
;
2206 * lock the cnode, decorate the cnode flag, and bail out.
2207 * VFS should have already authenticated the caller for us.
2210 if (ap
->a_data
== NULL
) {
2215 * Note that even though ap->a_data is of type caddr_t, we
2216 * can only use 32 bits of flag values.
2218 iotypeflag
= (uint32_t) ap
->a_data
;
2219 switch (iotypeflag
) {
2220 case F_IOTYPE_ISOCHRONOUS
:
2227 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2232 error
= hfs_lock (cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2234 switch (iotypeflag
) {
2235 case F_IOTYPE_ISOCHRONOUS
:
2236 cp
->c_flag
|= C_IO_ISOCHRONOUS
;
2246 case F_MAKECOMPRESSED
: {
2248 uint32_t gen_counter
;
2249 struct cnode
*cp
= NULL
;
2250 int reset_decmp
= 0;
2252 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2257 * acquire & lock the cnode.
2258 * VFS should have already authenticated the caller for us.
2263 * Cast the pointer into a uint32_t so we can extract the
2264 * supplied generation counter.
2266 gen_counter
= *((uint32_t*)ap
->a_data
);
2274 /* Grab truncate lock first; we may truncate the file */
2275 hfs_lock_truncate (cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2277 error
= hfs_lock (cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2279 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
2283 /* Are there any other usecounts/FDs? */
2284 if (vnode_isinuse(vp
, 1)) {
2286 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
2290 /* now we have the cnode locked down; Validate arguments */
2291 if (cp
->c_attr
.ca_flags
& (UF_IMMUTABLE
| UF_COMPRESSED
)) {
2292 /* EINVAL if you are trying to manipulate an IMMUTABLE file */
2294 hfs_unlock_truncate (cp
, HFS_LOCK_DEFAULT
);
2298 if ((hfs_get_gencount (cp
)) == gen_counter
) {
2300 * OK, the gen_counter matched. Go for it:
2301 * Toggle state bits, truncate file, and suppress mtime update
2304 cp
->c_bsdflags
|= UF_COMPRESSED
;
2306 error
= hfs_truncate(vp
, 0, IO_NDELAY
, HFS_TRUNCATE_SKIPTIMES
,
2313 /* Unlock cnode before executing decmpfs ; they may need to get an EA */
2317 * Reset the decmp state while still holding the truncate lock. We need to
2318 * serialize here against a listxattr on this node which may occur at any
2321 * Even if '0/skiplock' is passed in 2nd argument to hfs_file_is_compressed,
2322 * that will still potentially require getting the com.apple.decmpfs EA. If the
2323 * EA is required, then we can't hold the cnode lock, because the getxattr call is
2324 * generic(through VFS), and can't pass along any info telling it that we're already
2325 * holding it (the lock). If we don't serialize, then we risk listxattr stopping
2326 * and trying to fill in the hfs_file_is_compressed info during the callback
2327 * operation, which will result in deadlock against the b-tree node.
2329 * So, to serialize against listxattr (which will grab buf_t meta references on
2330 * the b-tree blocks), we hold the truncate lock as we're manipulating the
2333 if ((reset_decmp
) && (error
== 0)) {
2334 decmpfs_cnode
*dp
= VTOCMP (vp
);
2336 decmpfs_cnode_set_vnode_state(dp
, FILE_TYPE_UNKNOWN
, 0);
2339 /* Initialize the decmpfs node as needed */
2340 (void) hfs_file_is_compressed (cp
, 0); /* ok to take lock */
2343 hfs_unlock_truncate (cp
, HFS_LOCK_DEFAULT
);
2349 case F_SETBACKINGSTORE
: {
2354 * See comment in F_SETSTATICCONTENT re: using
2355 * a null check for a_data
2358 error
= hfs_set_backingstore (vp
, 1);
2361 error
= hfs_set_backingstore (vp
, 0);
2367 case F_GETPATH_MTMINFO
: {
2370 int *data
= (int*) ap
->a_data
;
2372 /* Ask if this is a backingstore vnode */
2373 error
= hfs_is_backingstore (vp
, data
);
2381 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2384 error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2386 error
= hfs_fsync(vp
, MNT_WAIT
, HFS_FSYNC_FULL
, p
);
2387 hfs_unlock(VTOC(vp
));
2393 case F_BARRIERFSYNC
: {
2396 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2399 error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2401 error
= hfs_fsync(vp
, MNT_WAIT
, HFS_FSYNC_BARRIER
, p
);
2402 hfs_unlock(VTOC(vp
));
2409 register struct cnode
*cp
;
2412 if (!vnode_isreg(vp
))
2415 error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2419 * used by regression test to determine if
2420 * all the dirty pages (via write) have been cleaned
2421 * after a call to 'fsysnc'.
2423 error
= is_file_clean(vp
, VTOF(vp
)->ff_size
);
2430 register struct radvisory
*ra
;
2431 struct filefork
*fp
;
2434 if (!vnode_isreg(vp
))
2437 ra
= (struct radvisory
*)(ap
->a_data
);
2440 /* Protect against a size change. */
2441 hfs_lock_truncate(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2445 if (uncompressed_size
== -1) {
2446 /* fetching the uncompressed size failed above, so return the error */
2447 error
= decmpfs_error
;
2448 } else if (ra
->ra_offset
>= uncompressed_size
) {
2451 error
= advisory_read(vp
, uncompressed_size
, ra
->ra_offset
, ra
->ra_count
);
2454 #endif /* HFS_COMPRESSION */
2455 if (ra
->ra_offset
>= fp
->ff_size
) {
2458 error
= advisory_read(vp
, fp
->ff_size
, ra
->ra_offset
, ra
->ra_count
);
2461 hfs_unlock_truncate(VTOC(vp
), HFS_LOCK_DEFAULT
);
2465 case HFSIOC_GET_VOL_CREATE_TIME_32
: {
2466 *(user32_time_t
*)(ap
->a_data
) = (user32_time_t
) (to_bsd_time(VTOVCB(vp
)->localCreateDate
));
2470 case HFSIOC_GET_VOL_CREATE_TIME_64
: {
2471 *(user64_time_t
*)(ap
->a_data
) = (user64_time_t
) (to_bsd_time(VTOVCB(vp
)->localCreateDate
));
2475 case SPOTLIGHT_IOC_GET_MOUNT_TIME
:
2476 *(uint32_t *)ap
->a_data
= hfsmp
->hfs_mount_time
;
2479 case SPOTLIGHT_IOC_GET_LAST_MTIME
:
2480 *(uint32_t *)ap
->a_data
= hfsmp
->hfs_last_mounted_mtime
;
2483 case HFSIOC_GET_VERY_LOW_DISK
:
2484 *(uint32_t*)ap
->a_data
= hfsmp
->hfs_freespace_notify_dangerlimit
;
2487 case HFSIOC_SET_VERY_LOW_DISK
:
2488 if (*(uint32_t *)ap
->a_data
>= hfsmp
->hfs_freespace_notify_warninglimit
) {
2492 hfsmp
->hfs_freespace_notify_dangerlimit
= *(uint32_t *)ap
->a_data
;
2495 case HFSIOC_GET_LOW_DISK
:
2496 *(uint32_t*)ap
->a_data
= hfsmp
->hfs_freespace_notify_warninglimit
;
2499 case HFSIOC_SET_LOW_DISK
:
2500 if ( *(uint32_t *)ap
->a_data
>= hfsmp
->hfs_freespace_notify_desiredlevel
2501 || *(uint32_t *)ap
->a_data
<= hfsmp
->hfs_freespace_notify_dangerlimit
) {
2506 hfsmp
->hfs_freespace_notify_warninglimit
= *(uint32_t *)ap
->a_data
;
2509 /* The following two fsctls were ported from apfs. */
2510 case APFSIOC_GET_NEAR_LOW_DISK
:
2511 *(uint32_t*)ap
->a_data
= hfsmp
->hfs_freespace_notify_nearwarninglimit
;
2514 case APFSIOC_SET_NEAR_LOW_DISK
:
2515 if ( *(uint32_t *)ap
->a_data
>= hfsmp
->hfs_freespace_notify_desiredlevel
2516 || *(uint32_t *)ap
->a_data
<= hfsmp
->hfs_freespace_notify_warninglimit
) {
2520 hfsmp
->hfs_freespace_notify_nearwarninglimit
= *(uint32_t *)ap
->a_data
;
2523 case HFSIOC_GET_DESIRED_DISK
:
2524 *(uint32_t*)ap
->a_data
= hfsmp
->hfs_freespace_notify_desiredlevel
;
2527 case HFSIOC_SET_DESIRED_DISK
:
2528 if (*(uint32_t *)ap
->a_data
<= hfsmp
->hfs_freespace_notify_warninglimit
) {
2532 hfsmp
->hfs_freespace_notify_desiredlevel
= *(uint32_t *)ap
->a_data
;
2535 case HFSIOC_VOLUME_STATUS
:
2536 *(uint32_t *)ap
->a_data
= hfsmp
->hfs_notification_conditions
;
2539 case HFS_SET_BOOT_INFO
:
2540 if (!vnode_isvroot(vp
))
2542 if (!kauth_cred_issuser(cred
) && (kauth_cred_getuid(cred
) != vfs_statfs(HFSTOVFS(hfsmp
))->f_owner
))
2543 return(EACCES
); /* must be superuser or owner of filesystem */
2544 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2547 hfs_lock_mount (hfsmp
);
2548 bcopy(ap
->a_data
, &hfsmp
->vcbFndrInfo
, sizeof(hfsmp
->vcbFndrInfo
));
2549 /* Null out the cached UUID, to be safe */
2550 uuid_clear (hfsmp
->hfs_full_uuid
);
2551 hfs_unlock_mount (hfsmp
);
2552 (void) hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
);
2555 case HFS_GET_BOOT_INFO
:
2556 if (!vnode_isvroot(vp
))
2558 hfs_lock_mount (hfsmp
);
2559 bcopy(&hfsmp
->vcbFndrInfo
, ap
->a_data
, sizeof(hfsmp
->vcbFndrInfo
));
2560 hfs_unlock_mount(hfsmp
);
2563 /* case HFS_MARK_BOOT_CORRUPT: _IO are the same */
2564 case HFSIOC_MARK_BOOT_CORRUPT
:
2565 /* Mark the boot volume corrupt by setting
2566 * kHFSVolumeInconsistentBit in the volume header. This will
2567 * force fsck_hfs on next mount.
2569 if (!kauth_cred_issuser(kauth_cred_get())) {
2573 /* Allowed only on the root vnode of the boot volume */
2574 if (!(vfs_flags(HFSTOVFS(hfsmp
)) & MNT_ROOTFS
) ||
2575 !vnode_isvroot(vp
)) {
2578 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2581 printf ("hfs_vnop_ioctl: Marking the boot volume corrupt.\n");
2582 hfs_mark_inconsistent(hfsmp
, HFS_FSCK_FORCED
);
2585 case HFSIOC_GET_JOURNAL_INFO
:
2586 jip
= (struct hfs_journal_info
*)ap
->a_data
;
2591 if (hfsmp
->jnl
== NULL
) {
2595 jnl_start
= hfs_blk_to_bytes(hfsmp
->jnl_start
, hfsmp
->blockSize
) + hfsmp
->hfsPlusIOPosOffset
;
2596 jnl_size
= hfsmp
->jnl_size
;
2599 jip
->jstart
= jnl_start
;
2600 jip
->jsize
= jnl_size
;
2603 case HFSIOC_SET_ALWAYS_ZEROFILL
: {
2604 struct cnode
*cp
= VTOC(vp
);
2606 if (*(int *)ap
->a_data
) {
2607 cp
->c_flag
|= C_ALWAYS_ZEROFILL
;
2609 cp
->c_flag
&= ~C_ALWAYS_ZEROFILL
;
2614 /* case HFS_DISABLE_METAZONE: _IO are the same */
2615 case HFSIOC_DISABLE_METAZONE
: {
2616 /* Only root can disable metadata zone */
2617 if (!kauth_cred_issuser(kauth_cred_get())) {
2620 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2624 /* Disable metadata zone now */
2625 (void) hfs_metadatazone_init(hfsmp
, true);
2626 printf ("hfs: Disabling metadata zone on %s\n", hfsmp
->vcbVN
);
2631 case HFSIOC_FSINFO_METADATA_BLOCKS
: {
2633 struct hfsinfo_metadata
*hinfo
;
2635 hinfo
= (struct hfsinfo_metadata
*)ap
->a_data
;
2637 /* Get information about number of metadata blocks */
2638 error
= hfs_getinfo_metadata_blocks(hfsmp
, hinfo
);
2646 case HFSIOC_GET_FSINFO
: {
2647 hfs_fsinfo
*fsinfo
= (hfs_fsinfo
*)ap
->a_data
;
2649 /* Only root is allowed to get fsinfo */
2650 if (!kauth_cred_issuser(kauth_cred_get())) {
2655 * Make sure that the caller's version number matches with
2656 * the kernel's version number. This will make sure that
2657 * if the structures being read/written into are changed
2658 * by the kernel, the caller will not read incorrect data.
2660 * The first three fields --- request_type, version and
2661 * flags are same for all the hfs_fsinfo structures, so
2662 * we can access the version number by assuming any
2663 * structure for now.
2665 if (fsinfo
->header
.version
!= HFS_FSINFO_VERSION
) {
2669 /* Make sure that the current file system is not marked inconsistent */
2670 if (hfsmp
->vcbAtrb
& kHFSVolumeInconsistentMask
) {
2674 return hfs_get_fsinfo(hfsmp
, ap
->a_data
);
2677 case HFSIOC_CS_FREESPACE_TRIM
: {
2681 /* Only root allowed */
2682 if (!kauth_cred_issuser(kauth_cred_get())) {
2687 * This core functionality is similar to hfs_scan_blocks().
2688 * The main difference is that hfs_scan_blocks() is called
2689 * as part of mount where we are assured that the journal is
2690 * empty to start with. This fcntl() can be called on a
2691 * mounted volume, therefore it has to flush the content of
2692 * the journal as well as ensure the state of summary table.
2694 * This fcntl scans over the entire allocation bitmap,
2695 * creates list of all the free blocks, and issues TRIM
2696 * down to the underlying device. This can take long time
2697 * as it can generate up to 512MB of read I/O.
2700 if ((hfsmp
->hfs_flags
& HFS_SUMMARY_TABLE
) == 0) {
2701 error
= hfs_init_summary(hfsmp
);
2703 printf("hfs: fsctl() could not initialize summary table for %s\n", hfsmp
->vcbVN
);
2709 * The journal maintains list of recently deallocated blocks to
2710 * issue DKIOCUNMAPs when the corresponding journal transaction is
2711 * flushed to the disk. To avoid any race conditions, we only
2712 * want one active trim list and only one thread issuing DKIOCUNMAPs.
2713 * Therefore we make sure that the journal trim list is sync'ed,
2714 * empty, and not modifiable for the duration of our scan.
2716 * Take the journal lock before flushing the journal to the disk.
2717 * We will keep on holding the journal lock till we don't get the
2718 * bitmap lock to make sure that no new journal transactions can
2719 * start. This will make sure that the journal trim list is not
2720 * modified after the journal flush and before getting bitmap lock.
2721 * We can release the journal lock after we acquire the bitmap
2722 * lock as it will prevent any further block deallocations.
2724 hfs_journal_lock(hfsmp
);
2726 /* Flush the journal and wait for all I/Os to finish up */
2727 error
= hfs_flush(hfsmp
, HFS_FLUSH_JOURNAL_META
);
2729 hfs_journal_unlock(hfsmp
);
2733 /* Take bitmap lock to ensure it is not being modified */
2734 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_BITMAP
, HFS_EXCLUSIVE_LOCK
);
2736 /* Release the journal lock */
2737 hfs_journal_unlock(hfsmp
);
2740 * ScanUnmapBlocks reads the bitmap in large block size
2741 * (up to 1MB) unlike the runtime which reads the bitmap
2742 * in the 4K block size. This can cause buf_t collisions
2743 * and potential data corruption. To avoid this, we
2744 * invalidate all the existing buffers associated with
2745 * the bitmap vnode before scanning it.
2747 * Note: ScanUnmapBlock() cleans up all the buffers
2748 * after itself, so there won't be any large buffers left
2749 * for us to clean up after it returns.
2751 error
= buf_invalidateblks(hfsmp
->hfs_allocation_vp
, 0, 0, 0);
2753 hfs_systemfile_unlock(hfsmp
, lockflags
);
2757 /* Traverse bitmap and issue DKIOCUNMAPs */
2758 error
= ScanUnmapBlocks(hfsmp
);
2759 hfs_systemfile_unlock(hfsmp
, lockflags
);
2767 case HFSIOC_SET_HOTFILE_STATE
: {
2769 struct cnode
*cp
= VTOC(vp
);
2770 uint32_t hf_state
= *((uint32_t*)ap
->a_data
);
2771 uint32_t num_unpinned
= 0;
2773 error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2778 // printf("hfs: setting hotfile state %d on %s\n", hf_state, vp->v_name);
2779 if (hf_state
== HFS_MARK_FASTDEVCANDIDATE
) {
2780 vnode_setfastdevicecandidate(vp
);
2782 cp
->c_attr
.ca_recflags
|= kHFSFastDevCandidateMask
;
2783 cp
->c_attr
.ca_recflags
&= ~kHFSDoNotFastDevPinMask
;
2784 cp
->c_flag
|= C_MODIFIED
;
2785 } else if (hf_state
== HFS_UNMARK_FASTDEVCANDIDATE
|| hf_state
== HFS_NEVER_FASTDEVCANDIDATE
) {
2786 vnode_clearfastdevicecandidate(vp
);
2787 hfs_removehotfile(vp
);
2789 if (cp
->c_attr
.ca_recflags
& kHFSFastDevPinnedMask
) {
2790 hfs_pin_vnode(hfsmp
, vp
, HFS_UNPIN_IT
, &num_unpinned
);
2793 if (hf_state
== HFS_NEVER_FASTDEVCANDIDATE
) {
2794 cp
->c_attr
.ca_recflags
|= kHFSDoNotFastDevPinMask
;
2796 cp
->c_attr
.ca_recflags
&= ~(kHFSFastDevCandidateMask
|kHFSFastDevPinnedMask
);
2797 cp
->c_flag
|= C_MODIFIED
;
2803 if (num_unpinned
!= 0) {
2804 lck_mtx_lock(&hfsmp
->hfc_mutex
);
2805 hfsmp
->hfs_hotfile_freeblks
+= num_unpinned
;
2806 lck_mtx_unlock(&hfsmp
->hfc_mutex
);
2813 case HFSIOC_REPIN_HOTFILE_STATE
: {
2815 uint32_t repin_what
= *((uint32_t*)ap
->a_data
);
2817 /* Only root allowed */
2818 if (!kauth_cred_issuser(kauth_cred_get())) {
2822 if (!(hfsmp
->hfs_flags
& (HFS_CS_METADATA_PIN
| HFS_CS_HOTFILE_PIN
))) {
2823 // this system is neither regular Fusion or Cooperative Fusion
2824 // so this fsctl makes no sense.
2829 // After a converting a CoreStorage volume to be encrypted, the
2830 // extents could have moved around underneath us. This call
2831 // allows corestoraged to re-pin everything that should be
2832 // pinned (it would happen on the next reboot too but that could
2833 // be a long time away).
2835 if ((repin_what
& HFS_REPIN_METADATA
) && (hfsmp
->hfs_flags
& HFS_CS_METADATA_PIN
)) {
2836 hfs_pin_fs_metadata(hfsmp
);
2838 if ((repin_what
& HFS_REPIN_USERDATA
) && (hfsmp
->hfs_flags
& HFS_CS_HOTFILE_PIN
)) {
2839 hfs_repin_hotfiles(hfsmp
);
2841 if ((repin_what
& HFS_REPIN_USERDATA
) && (hfsmp
->hfs_flags
& HFS_CS_SWAPFILE_PIN
)) {
2842 //XXX Swapfiles (marked SWAP_PINNED) may have moved too.
2843 //XXX Do we care? They have a more transient/dynamic nature/lifetime.
2849 #if HFS_CONFIG_KEY_ROLL
2851 case HFSIOC_KEY_ROLL
: {
2852 if (!kauth_cred_issuser(kauth_cred_get()))
2855 hfs_key_roll_args_t
*args
= (hfs_key_roll_args_t
*)ap
->a_data
;
2857 return hfs_key_roll_op(ap
->a_context
, ap
->a_vp
, args
);
2860 case HFSIOC_GET_KEY_AUTO_ROLL
: {
2861 if (!kauth_cred_issuser(kauth_cred_get()))
2864 hfs_key_auto_roll_args_t
*args
= (hfs_key_auto_roll_args_t
*)ap
->a_data
;
2865 if (args
->api_version
!= HFS_KEY_AUTO_ROLL_API_VERSION_1
)
2867 args
->flags
= (ISSET(hfsmp
->cproot_flags
, CP_ROOT_AUTO_ROLL_OLD_CLASS_GENERATION
)
2868 ? HFS_KEY_AUTO_ROLL_OLD_CLASS_GENERATION
: 0);
2869 args
->min_key_os_version
= hfsmp
->hfs_auto_roll_min_key_os_version
;
2870 args
->max_key_os_version
= hfsmp
->hfs_auto_roll_max_key_os_version
;
2874 case HFSIOC_SET_KEY_AUTO_ROLL
: {
2875 if (!kauth_cred_issuser(kauth_cred_get()))
2878 hfs_key_auto_roll_args_t
*args
= (hfs_key_auto_roll_args_t
*)ap
->a_data
;
2879 if (args
->api_version
!= HFS_KEY_AUTO_ROLL_API_VERSION_1
)
2881 return cp_set_auto_roll(hfsmp
, args
);
2884 #endif // HFS_CONFIG_KEY_ROLL
2887 case F_TRANSCODEKEY
:
2889 * This API is only supported when called via kernel so
2890 * a_fflag must be set to 1 (it's not possible to get here
2891 * with it set to 1 via fsctl).
2893 if (ap
->a_fflag
!= 1)
2895 return cp_vnode_transcode(vp
, (cp_key_t
*)ap
->a_data
);
2897 case F_GETPROTECTIONLEVEL
:
2898 return cp_get_root_major_vers (vp
, (uint32_t *)ap
->a_data
);
2900 case F_GETDEFAULTPROTLEVEL
:
2901 return cp_get_default_level(vp
, (uint32_t *)ap
->a_data
);
2902 #endif // CONFIG_PROTECT
2905 return hfs_pin_vnode(hfsmp
, vp
, HFS_PIN_IT
| HFS_DATALESS_PIN
,
2908 case FSIOC_CAS_BSDFLAGS
: {
2909 if (hfsmp
->hfs_flags
& HFS_READ_ONLY
) {
2914 struct fsioc_cas_bsdflags
*cas
= (void *)ap
->a_data
;
2915 struct cnode
*cp
= VTOC(vp
);
2916 u_int32_t document_id
= 0;
2917 int decmpfs_reset_state
= 0;
2920 /* Don't allow modification of the journal. */
2921 if (hfs_is_journal_file(hfsmp
, cp
)) {
2925 if ((error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
))) {
2929 cas
->actual_flags
= cp
->c_bsdflags
;
2930 if (cas
->actual_flags
!= cas
->expected_flags
) {
2936 // Check if we'll need a document_id. If so, we need to drop the lock
2937 // (to avoid any possible deadlock with the root vnode which has to get
2938 // locked to get the document id), generate the document_id, re-acquire
2939 // the lock, and perform the CAS check again. We do it in this sequence
2940 // in order to avoid throwing away document_ids in the case where the
2941 // CAS check fails. Note that it can still happen, but by performing
2942 // the check first, hopefully we can reduce the ocurrence.
2944 if ((cas
->new_flags
& UF_TRACKED
) && !(VTOC(vp
)->c_bsdflags
& UF_TRACKED
)) {
2945 struct FndrExtendedDirInfo
*fip
= (struct FndrExtendedDirInfo
*)((char *)&(VTOC(vp
)->c_attr
.ca_finderinfo
) + 16);
2947 // If the document_id is not set, get a new one. It will be set
2948 // on the file down below once we hold the cnode lock.
2950 if (fip
->document_id
== 0) {
2952 // Drat, we have to generate one. Unlock the cnode, do the
2953 // deed, re-lock the cnode, and then to the CAS check again
2954 // to see if we lost the race.
2957 if (hfs_generate_document_id(hfsmp
, &document_id
) != 0) {
2960 if ((error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
))) {
2963 cas
->actual_flags
= cp
->c_bsdflags
;
2964 if (cas
->actual_flags
!= cas
->expected_flags
) {
2971 bool setting_compression
= false;
2973 if (!(cas
->actual_flags
& UF_COMPRESSED
) && (cas
->new_flags
& UF_COMPRESSED
))
2974 setting_compression
= true;
2976 if (setting_compression
) {
2977 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
2978 if (VTOF(vp
)->ff_size
) {
2979 // hfs_truncate will deal with the cnode lock
2980 error
= hfs_truncate(vp
, 0, IO_NDELAY
, 0, ap
->a_context
);
2982 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
2986 error
= hfs_set_bsd_flags(hfsmp
, cp
, cas
->new_flags
,
2987 document_id
, ap
->a_context
,
2988 &decmpfs_reset_state
);
2990 error
= hfs_update(vp
, 0);
2998 if (decmpfs_reset_state
) {
3000 * we've changed the UF_COMPRESSED flag, so reset the decmpfs state for this cnode
3001 * but don't do it while holding the hfs cnode lock
3003 decmpfs_cnode
*dp
= VTOCMP(vp
);
3006 * call hfs_lazy_init_decmpfs_cnode() to make sure that the decmpfs_cnode
3007 * is filled in; we need a decmpfs_cnode to prevent decmpfs state changes
3008 * on this file if it's locked
3010 dp
= hfs_lazy_init_decmpfs_cnode(VTOC(vp
));
3012 /* failed to allocate a decmpfs_cnode */
3013 return ENOMEM
; /* what should this be? */
3016 decmpfs_cnode_set_vnode_state(dp
, FILE_TYPE_UNKNOWN
, 0);
3035 hfs_vnop_select(__unused
struct vnop_select_args
*ap
)
3037 struct vnop_select_args {
3042 vfs_context_t a_context;
3047 * We should really check to see if I/O is possible.
3053 * Converts a logical block number to a physical block, and optionally returns
3054 * the amount of remaining blocks in a run. The logical block is based on hfsNode.logBlockSize.
3055 * The physical block number is based on the device block size, currently its 512.
3056 * The block run is returned in logical blocks, and is the REMAINING amount of blocks
3059 hfs_bmap(struct vnode
*vp
, daddr_t bn
, struct vnode
**vpp
, daddr64_t
*bnp
, unsigned int *runp
)
3061 struct filefork
*fp
= VTOF(vp
);
3062 struct hfsmount
*hfsmp
= VTOHFS(vp
);
3063 int retval
= E_NONE
;
3064 u_int32_t logBlockSize
;
3065 size_t bytesContAvail
= 0;
3066 off_t blockposition
;
3071 * Check for underlying vnode requests and ensure that logical
3072 * to physical mapping is requested.
3075 *vpp
= hfsmp
->hfs_devvp
;
3079 logBlockSize
= GetLogicalBlockSize(vp
);
3080 blockposition
= (off_t
)bn
* logBlockSize
;
3082 lockExtBtree
= overflow_extents(fp
);
3085 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_EXTENTS
, HFS_EXCLUSIVE_LOCK
);
3087 retval
= MacToVFSError(
3088 MapFileBlockC (HFSTOVCB(hfsmp
),
3096 hfs_systemfile_unlock(hfsmp
, lockflags
);
3098 if (retval
== E_NONE
) {
3099 /* Figure out how many read ahead blocks there are */
3101 if (can_cluster(logBlockSize
)) {
3102 /* Make sure this result never goes negative: */
3103 *runp
= (bytesContAvail
< logBlockSize
) ? 0 : (bytesContAvail
/ logBlockSize
) - 1;
3113 * Convert logical block number to file offset.
3116 hfs_vnop_blktooff(struct vnop_blktooff_args
*ap
)
3118 struct vnop_blktooff_args {
3125 if (ap
->a_vp
== NULL
)
3127 *ap
->a_offset
= (off_t
)ap
->a_lblkno
* (off_t
)GetLogicalBlockSize(ap
->a_vp
);
3133 * Convert file offset to logical block number.
3136 hfs_vnop_offtoblk(struct vnop_offtoblk_args
*ap
)
3138 struct vnop_offtoblk_args {
3141 daddr64_t *a_lblkno;
3145 if (ap
->a_vp
== NULL
)
3147 *ap
->a_lblkno
= (daddr64_t
)(ap
->a_offset
/ (off_t
)GetLogicalBlockSize(ap
->a_vp
));
3153 * Map file offset to physical block number.
3155 * If this function is called for write operation, and if the file
3156 * had virtual blocks allocated (delayed allocation), real blocks
3157 * are allocated by calling ExtendFileC().
3159 * If this function is called for read operation, and if the file
3160 * had virtual blocks allocated (delayed allocation), no change
3161 * to the size of file is done, and if required, rangelist is
3162 * searched for mapping.
3164 * System file cnodes are expected to be locked (shared or exclusive).
3166 * -- INVALID RANGES --
3168 * Invalid ranges are used to keep track of where we have extended a
3169 * file, but have not yet written that data to disk. In the past we
3170 * would clear up the invalid ranges as we wrote to those areas, but
3171 * before data was actually flushed to disk. The problem with that
3172 * approach is that the data can be left in the cache and is therefore
3173 * still not valid on disk. So now we clear up the ranges here, when
3174 * the flags field has VNODE_WRITE set, indicating a write is about to
3175 * occur. This isn't ideal (ideally we want to clear them up when
3176 * know the data has been successfully written), but it's the best we
3179 * For reads, we use the invalid ranges here in block map to indicate
3180 * to the caller that the data should be zeroed (a_bpn == -1). We
3181 * have to be careful about what ranges we return to the cluster code.
3182 * Currently the cluster code can only handle non-rounded values for
3183 * the EOF; it cannot handle funny sized ranges in the middle of the
3184 * file (the main problem is that it sends down odd sized I/Os to the
3185 * disk). Our code currently works because whilst the very first
3186 * offset and the last offset in the invalid ranges are not aligned,
3187 * gaps in the invalid ranges between the first and last, have to be
3188 * aligned (because we always write page sized blocks). For example,
3189 * consider this arrangement:
3191 * +-------------+-----+-------+------+
3192 * | |XXXXX| |XXXXXX|
3193 * +-------------+-----+-------+------+
3196 * This shows two invalid ranges <a, b> and <c, d>. Whilst a and d
3197 * are not necessarily aligned, b and c *must* be.
3199 * Zero-filling occurs in a number of ways:
3201 * 1. When a read occurs and we return with a_bpn == -1.
3203 * 2. When hfs_fsync or hfs_filedone calls hfs_flush_invalid_ranges
3204 * which will cause us to iterate over the ranges bringing in
3205 * pages that are not present in the cache and zeroing them. Any
3206 * pages that are already in the cache are left untouched. Note
3207 * that hfs_fsync does not always flush invalid ranges.
3209 * 3. When we extend a file we zero out from the old EOF to the end
3210 * of the page. It would be nice if we didn't have to do this if
3211 * the page wasn't present (and could defer it), but because of
3212 * the problem described above, we have to.
3214 * The invalid ranges are also used to restrict the size that we write
3215 * out on disk: see hfs_prepare_fork_for_update.
3217 * Note that invalid ranges are ignored when neither the VNODE_READ or
3218 * the VNODE_WRITE flag is specified. This is useful for the
3219 * F_LOG2PHYS* fcntls which are not interested in invalid ranges: they
3220 * just want to know whether blocks are physically allocated or not.
3223 hfs_vnop_blockmap(struct vnop_blockmap_args
*ap
)
3225 struct vnop_blockmap_args {
3233 vfs_context_t a_context;
3237 struct vnode
*vp
= ap
->a_vp
;
3239 struct filefork
*fp
;
3240 struct hfsmount
*hfsmp
;
3241 size_t bytesContAvail
= ap
->a_size
;
3242 int retval
= E_NONE
;
3245 struct rl_entry
*invalid_range
;
3246 enum rl_overlaptype overlaptype
;
3251 if (VNODE_IS_RSRC(vp
)) {
3252 /* allow blockmaps to the resource fork */
3254 if ( hfs_file_is_compressed(VTOC(vp
), 1) ) { /* 1 == don't take the cnode lock */
3255 int state
= decmpfs_cnode_get_vnode_state(VTOCMP(vp
));
3257 case FILE_IS_COMPRESSED
:
3259 case FILE_IS_CONVERTING
:
3260 /* if FILE_IS_CONVERTING, we allow blockmap */
3263 printf("invalid state %d for compressed file\n", state
);
3268 #endif /* HFS_COMPRESSION */
3270 /* Do not allow blockmap operation on a directory */
3271 if (vnode_isdir(vp
)) {
3276 * Check for underlying vnode requests and ensure that logical
3277 * to physical mapping is requested.
3279 if (ap
->a_bpn
== NULL
)
3286 if ( !vnode_issystem(vp
) && !vnode_islnk(vp
) && !vnode_isswap(vp
)) {
3287 if (cp
->c_lockowner
!= current_thread()) {
3288 hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
3292 // For reads, check the invalid ranges
3293 if (ISSET(ap
->a_flags
, VNODE_READ
)) {
3294 if (ap
->a_foffset
>= fp
->ff_size
) {
3299 overlaptype
= rl_scan(&fp
->ff_invalidranges
, ap
->a_foffset
,
3300 ap
->a_foffset
+ (off_t
)bytesContAvail
- 1,
3302 switch(overlaptype
) {
3303 case RL_MATCHINGOVERLAP
:
3304 case RL_OVERLAPCONTAINSRANGE
:
3305 case RL_OVERLAPSTARTSBEFORE
:
3306 /* There's no valid block for this byte offset */
3307 *ap
->a_bpn
= (daddr64_t
)-1;
3308 /* There's no point limiting the amount to be returned
3309 * if the invalid range that was hit extends all the way
3310 * to the EOF (i.e. there's no valid bytes between the
3311 * end of this range and the file's EOF):
3313 if (((off_t
)fp
->ff_size
> (invalid_range
->rl_end
+ 1)) &&
3314 ((size_t)(invalid_range
->rl_end
+ 1 - ap
->a_foffset
) < bytesContAvail
)) {
3315 bytesContAvail
= invalid_range
->rl_end
+ 1 - ap
->a_foffset
;
3321 case RL_OVERLAPISCONTAINED
:
3322 case RL_OVERLAPENDSAFTER
:
3323 /* The range of interest hits an invalid block before the end: */
3324 if (invalid_range
->rl_start
== ap
->a_foffset
) {
3325 /* There's actually no valid information to be had starting here: */
3326 *ap
->a_bpn
= (daddr64_t
)-1;
3327 if (((off_t
)fp
->ff_size
> (invalid_range
->rl_end
+ 1)) &&
3328 ((size_t)(invalid_range
->rl_end
+ 1 - ap
->a_foffset
) < bytesContAvail
)) {
3329 bytesContAvail
= invalid_range
->rl_end
+ 1 - ap
->a_foffset
;
3336 * Sadly, the lower layers don't like us to
3337 * return unaligned ranges, so we skip over
3338 * any invalid ranges here that are less than
3339 * a page: zeroing of those bits is not our
3340 * responsibility (it's dealt with elsewhere).
3343 off_t rounded_start
= round_page_64(invalid_range
->rl_start
);
3344 if ((off_t
)bytesContAvail
< rounded_start
- ap
->a_foffset
)
3346 if (rounded_start
< invalid_range
->rl_end
+ 1) {
3347 bytesContAvail
= rounded_start
- ap
->a_foffset
;
3350 } while ((invalid_range
= TAILQ_NEXT(invalid_range
,
3362 if (cp
->c_cpentry
) {
3363 const int direction
= (ISSET(ap
->a_flags
, VNODE_WRITE
)
3364 ? VNODE_WRITE
: VNODE_READ
);
3366 cp_io_params_t io_params
;
3367 cp_io_params(hfsmp
, cp
->c_cpentry
,
3368 off_rsrc_make(ap
->a_foffset
, VNODE_IS_RSRC(vp
)),
3369 direction
, &io_params
);
3371 if (io_params
.max_len
< (off_t
)bytesContAvail
)
3372 bytesContAvail
= io_params
.max_len
;
3374 if (io_params
.phys_offset
!= -1) {
3375 *ap
->a_bpn
= ((io_params
.phys_offset
+ hfsmp
->hfsPlusIOPosOffset
)
3376 / hfsmp
->hfs_logical_block_size
);
3386 /* Check virtual blocks only when performing write operation */
3387 if ((ap
->a_flags
& VNODE_WRITE
) && (fp
->ff_unallocblocks
!= 0)) {
3388 if (hfs_start_transaction(hfsmp
) != 0) {
3394 syslocks
= SFL_EXTENTS
| SFL_BITMAP
;
3396 } else if (overflow_extents(fp
)) {
3397 syslocks
= SFL_EXTENTS
;
3401 lockflags
= hfs_systemfile_lock(hfsmp
, syslocks
, HFS_EXCLUSIVE_LOCK
);
3404 * Check for any delayed allocations.
3406 if ((ap
->a_flags
& VNODE_WRITE
) && (fp
->ff_unallocblocks
!= 0)) {
3408 u_int32_t loanedBlocks
;
3411 // Make sure we have a transaction. It's possible
3412 // that we came in and fp->ff_unallocblocks was zero
3413 // but during the time we blocked acquiring the extents
3414 // btree, ff_unallocblocks became non-zero and so we
3415 // will need to start a transaction.
3417 if (started_tr
== 0) {
3419 hfs_systemfile_unlock(hfsmp
, lockflags
);
3426 * Note: ExtendFileC will Release any blocks on loan and
3427 * aquire real blocks. So we ask to extend by zero bytes
3428 * since ExtendFileC will account for the virtual blocks.
3431 loanedBlocks
= fp
->ff_unallocblocks
;
3432 retval
= ExtendFileC(hfsmp
, (FCB
*)fp
, 0, 0,
3433 kEFAllMask
| kEFNoClumpMask
, &actbytes
);
3436 fp
->ff_unallocblocks
= loanedBlocks
;
3437 cp
->c_blocks
+= loanedBlocks
;
3438 fp
->ff_blocks
+= loanedBlocks
;
3440 hfs_lock_mount (hfsmp
);
3441 hfsmp
->loanedBlocks
+= loanedBlocks
;
3442 hfs_unlock_mount (hfsmp
);
3444 hfs_systemfile_unlock(hfsmp
, lockflags
);
3445 cp
->c_flag
|= C_MODIFIED
;
3447 (void) hfs_update(vp
, 0);
3448 (void) hfs_volupdate(hfsmp
, VOL_UPDATE
, 0);
3450 hfs_end_transaction(hfsmp
);
3457 retval
= MapFileBlockC(hfsmp
, (FCB
*)fp
, bytesContAvail
, ap
->a_foffset
,
3458 ap
->a_bpn
, &bytesContAvail
);
3460 hfs_systemfile_unlock(hfsmp
, lockflags
);
3465 /* On write, always return error because virtual blocks, if any,
3466 * should have been allocated in ExtendFileC(). We do not
3467 * allocate virtual blocks on read, therefore return error
3468 * only if no virtual blocks are allocated. Otherwise we search
3469 * rangelist for zero-fills
3471 if ((MacToVFSError(retval
) != ERANGE
) ||
3472 (ap
->a_flags
& VNODE_WRITE
) ||
3473 ((ap
->a_flags
& VNODE_READ
) && (fp
->ff_unallocblocks
== 0))) {
3477 /* Validate if the start offset is within logical file size */
3478 if (ap
->a_foffset
>= fp
->ff_size
) {
3483 * At this point, we have encountered a failure during
3484 * MapFileBlockC that resulted in ERANGE, and we are not
3485 * servicing a write, and there are borrowed blocks.
3487 * However, the cluster layer will not call blockmap for
3488 * blocks that are borrowed and in-cache. We have to assume
3489 * that because we observed ERANGE being emitted from
3490 * MapFileBlockC, this extent range is not valid on-disk. So
3491 * we treat this as a mapping that needs to be zero-filled
3495 if (fp
->ff_size
- ap
->a_foffset
< (off_t
)bytesContAvail
)
3496 bytesContAvail
= fp
->ff_size
- ap
->a_foffset
;
3498 *ap
->a_bpn
= (daddr64_t
) -1;
3506 if (ISSET(ap
->a_flags
, VNODE_WRITE
)) {
3507 struct rl_entry
*r
= TAILQ_FIRST(&fp
->ff_invalidranges
);
3509 // See if we might be overlapping invalid ranges...
3510 if (r
&& (ap
->a_foffset
+ (off_t
)bytesContAvail
) > r
->rl_start
) {
3512 * Mark the file as needing an update if we think the
3513 * on-disk EOF has changed.
3515 if (ap
->a_foffset
<= r
->rl_start
)
3516 SET(cp
->c_flag
, C_MODIFIED
);
3519 * This isn't the ideal place to put this. Ideally, we
3520 * should do something *after* we have successfully
3521 * written to the range, but that's difficult to do
3522 * because we cannot take locks in the callback. At
3523 * present, the cluster code will call us with VNODE_WRITE
3524 * set just before it's about to write the data so we know
3525 * that data is about to be written. If we get an I/O
3526 * error at this point then chances are the metadata
3527 * update to follow will also have an I/O error so the
3528 * risk here is small.
3530 rl_remove(ap
->a_foffset
, ap
->a_foffset
+ bytesContAvail
- 1,
3531 &fp
->ff_invalidranges
);
3533 if (!TAILQ_FIRST(&fp
->ff_invalidranges
)) {
3534 cp
->c_flag
&= ~C_ZFWANTSYNC
;
3535 cp
->c_zftimeout
= 0;
3541 *ap
->a_run
= bytesContAvail
;
3544 *(int *)ap
->a_poff
= 0;
3548 hfs_update(vp
, TRUE
);
3549 hfs_volupdate(hfsmp
, VOL_UPDATE
, 0);
3550 hfs_end_transaction(hfsmp
);
3557 return (MacToVFSError(retval
));
3561 * prepare and issue the I/O
3562 * buf_strategy knows how to deal
3563 * with requests that require
3567 hfs_vnop_strategy(struct vnop_strategy_args
*ap
)
3569 buf_t bp
= ap
->a_bp
;
3570 vnode_t vp
= buf_vnode(bp
);
3573 /* Mark buffer as containing static data if cnode flag set */
3574 if (VTOC(vp
)->c_flag
& C_SSD_STATIC
) {
3578 /* Mark buffer as containing static data if cnode flag set */
3579 if (VTOC(vp
)->c_flag
& C_SSD_GREEDY_MODE
) {
3580 bufattr_markgreedymode(buf_attr(bp
));
3583 /* mark buffer as containing burst mode data if cnode flag set */
3584 if (VTOC(vp
)->c_flag
& C_IO_ISOCHRONOUS
) {
3585 bufattr_markisochronous(buf_attr(bp
));
3589 error
= cp_handle_strategy(bp
);
3595 error
= buf_strategy(VTOHFS(vp
)->hfs_devvp
, ap
);
3601 do_hfs_truncate(struct vnode
*vp
, off_t length
, int flags
, int truncateflags
, vfs_context_t context
)
3603 register struct cnode
*cp
= VTOC(vp
);
3604 struct filefork
*fp
= VTOF(vp
);
3605 kauth_cred_t cred
= vfs_context_ucred(context
);
3608 off_t actualBytesAdded
;
3610 u_int32_t fileblocks
;
3612 struct hfsmount
*hfsmp
;
3614 int suppress_times
= (truncateflags
& HFS_TRUNCATE_SKIPTIMES
);
3616 blksize
= VTOVCB(vp
)->blockSize
;
3617 fileblocks
= fp
->ff_blocks
;
3618 filebytes
= (off_t
)fileblocks
* (off_t
)blksize
;
3620 KERNEL_DEBUG(HFSDBG_TRUNCATE
| DBG_FUNC_START
,
3621 (int)length
, (int)fp
->ff_size
, (int)filebytes
, 0, 0);
3626 /* This should only happen with a corrupt filesystem */
3627 if ((off_t
)fp
->ff_size
< 0)
3630 if ((!ISHFSPLUS(VTOVCB(vp
))) && (length
> (off_t
)MAXHFSFILESIZE
))
3637 /* Files that are changing size are not hot file candidates. */
3638 if (hfsmp
->hfc_stage
== HFC_RECORDING
) {
3639 fp
->ff_bytesread
= 0;
3643 * We cannot just check if fp->ff_size == length (as an optimization)
3644 * since there may be extra physical blocks that also need truncation.
3647 if ((retval
= hfs_getinoquota(cp
)))
3652 * Lengthen the size of the file. We must ensure that the
3653 * last byte of the file is allocated. Since the smallest
3654 * value of ff_size is 0, length will be at least 1.
3656 if (length
> (off_t
)fp
->ff_size
) {
3658 retval
= hfs_chkdq(cp
, (int64_t)(roundup(length
- filebytes
, blksize
)),
3664 * If we don't have enough physical space then
3665 * we need to extend the physical size.
3667 if (length
> filebytes
) {
3669 u_int32_t blockHint
= 0;
3671 /* All or nothing and don't round up to clumpsize. */
3672 eflags
= kEFAllMask
| kEFNoClumpMask
;
3674 if (cred
&& (suser(cred
, NULL
) != 0)) {
3675 eflags
|= kEFReserveMask
; /* keep a reserve */
3679 * Allocate Journal and Quota files in metadata zone.
3681 if (filebytes
== 0 &&
3682 hfsmp
->hfs_flags
& HFS_METADATA_ZONE
&&
3683 hfs_virtualmetafile(cp
)) {
3684 eflags
|= kEFMetadataMask
;
3685 blockHint
= hfsmp
->hfs_metazone_start
;
3687 if (hfs_start_transaction(hfsmp
) != 0) {
3692 /* Protect extents b-tree and allocation bitmap */
3693 lockflags
= SFL_BITMAP
;
3694 if (overflow_extents(fp
))
3695 lockflags
|= SFL_EXTENTS
;
3696 lockflags
= hfs_systemfile_lock(hfsmp
, lockflags
, HFS_EXCLUSIVE_LOCK
);
3699 * Keep growing the file as long as the current EOF is
3700 * less than the desired value.
3702 while ((length
> filebytes
) && (retval
== E_NONE
)) {
3703 bytesToAdd
= length
- filebytes
;
3704 retval
= MacToVFSError(ExtendFileC(VTOVCB(vp
),
3709 &actualBytesAdded
));
3711 filebytes
= (off_t
)fp
->ff_blocks
* (off_t
)blksize
;
3712 if (actualBytesAdded
== 0 && retval
== E_NONE
) {
3713 if (length
> filebytes
)
3719 hfs_systemfile_unlock(hfsmp
, lockflags
);
3723 hfs_volupdate(hfsmp
, VOL_UPDATE
, 0);
3726 hfs_end_transaction(hfsmp
);
3731 KERNEL_DEBUG(HFSDBG_TRUNCATE
| DBG_FUNC_NONE
,
3732 (int)length
, (int)fp
->ff_size
, (int)filebytes
, 0, 0);
3735 if (ISSET(flags
, IO_NOZEROFILL
)) {
3736 // An optimisation for the hibernation file
3737 if (vnode_isswap(vp
))
3738 rl_remove_all(&fp
->ff_invalidranges
);
3740 if (!vnode_issystem(vp
) && retval
== E_NONE
) {
3741 if (length
> (off_t
)fp
->ff_size
) {
3744 /* Extending the file: time to fill out the current last page w. zeroes? */
3745 if (fp
->ff_size
& PAGE_MASK_64
) {
3746 /* There might be some valid data at the start of the (current) last page
3747 of the file, so zero out the remainder of that page to ensure the
3748 entire page contains valid data. */
3750 retval
= hfs_zero_eof_page(vp
, length
);
3751 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
3752 if (retval
) goto Err_Exit
;
3755 rl_add(fp
->ff_size
, length
- 1, &fp
->ff_invalidranges
);
3756 cp
->c_zftimeout
= tv
.tv_sec
+ ZFTIMELIMIT
;
3759 panic("hfs_truncate: invoked on non-UBC object?!");
3762 if (suppress_times
== 0) {
3763 cp
->c_touch_modtime
= TRUE
;
3765 fp
->ff_size
= length
;
3767 } else { /* Shorten the size of the file */
3769 // An optimisation for the hibernation file
3770 if (ISSET(flags
, IO_NOZEROFILL
) && vnode_isswap(vp
)) {
3771 rl_remove_all(&fp
->ff_invalidranges
);
3772 } else if ((off_t
)fp
->ff_size
> length
) {
3773 /* Any space previously marked as invalid is now irrelevant: */
3774 rl_remove(length
, fp
->ff_size
- 1, &fp
->ff_invalidranges
);
3778 * Account for any unmapped blocks. Note that the new
3779 * file length can still end up with unmapped blocks.
3781 if (fp
->ff_unallocblocks
> 0) {
3782 u_int32_t finalblks
;
3783 u_int32_t loanedBlocks
;
3785 hfs_lock_mount(hfsmp
);
3786 loanedBlocks
= fp
->ff_unallocblocks
;
3787 cp
->c_blocks
-= loanedBlocks
;
3788 fp
->ff_blocks
-= loanedBlocks
;
3789 fp
->ff_unallocblocks
= 0;
3791 hfsmp
->loanedBlocks
-= loanedBlocks
;
3793 finalblks
= (length
+ blksize
- 1) / blksize
;
3794 if (finalblks
> fp
->ff_blocks
) {
3795 /* calculate required unmapped blocks */
3796 loanedBlocks
= finalblks
- fp
->ff_blocks
;
3797 hfsmp
->loanedBlocks
+= loanedBlocks
;
3799 fp
->ff_unallocblocks
= loanedBlocks
;
3800 cp
->c_blocks
+= loanedBlocks
;
3801 fp
->ff_blocks
+= loanedBlocks
;
3803 hfs_unlock_mount (hfsmp
);
3806 off_t savedbytes
= ((off_t
)fp
->ff_blocks
* (off_t
)blksize
);
3807 if (hfs_start_transaction(hfsmp
) != 0) {
3812 if (fp
->ff_unallocblocks
== 0) {
3813 /* Protect extents b-tree and allocation bitmap */
3814 lockflags
= SFL_BITMAP
;
3815 if (overflow_extents(fp
))
3816 lockflags
|= SFL_EXTENTS
;
3817 lockflags
= hfs_systemfile_lock(hfsmp
, lockflags
, HFS_EXCLUSIVE_LOCK
);
3819 retval
= MacToVFSError(TruncateFileC(VTOVCB(vp
), (FCB
*)fp
, length
, 0,
3820 FORK_IS_RSRC (fp
), FTOC(fp
)->c_fileid
, false));
3822 hfs_systemfile_unlock(hfsmp
, lockflags
);
3826 fp
->ff_size
= length
;
3829 hfs_volupdate(hfsmp
, VOL_UPDATE
, 0);
3831 hfs_end_transaction(hfsmp
);
3833 filebytes
= (off_t
)fp
->ff_blocks
* (off_t
)blksize
;
3837 /* These are bytesreleased */
3838 (void) hfs_chkdq(cp
, (int64_t)-(savedbytes
- filebytes
), NOCRED
, 0);
3842 // Unlike when growing a file, we adjust the hotfile block count here
3843 // instead of deeper down in the block allocation code because we do
3844 // not necessarily have a vnode or "fcb" at the time we're deleting
3845 // the file and so we wouldn't know if it was hotfile cached or not
3847 hfs_hotfile_adjust_blocks(vp
, (int64_t)((savedbytes
- filebytes
) / blksize
));
3851 * Only set update flag if the logical length changes & we aren't
3852 * suppressing modtime updates.
3854 if (((off_t
)fp
->ff_size
!= length
) && (suppress_times
== 0)) {
3855 cp
->c_touch_modtime
= TRUE
;
3857 fp
->ff_size
= length
;
3859 if (cp
->c_mode
& (S_ISUID
| S_ISGID
)) {
3860 if (!vfs_context_issuser(context
))
3861 cp
->c_mode
&= ~(S_ISUID
| S_ISGID
);
3863 cp
->c_flag
|= C_MODIFIED
;
3864 cp
->c_touch_chgtime
= TRUE
; /* status changed */
3865 if (suppress_times
== 0) {
3866 cp
->c_touch_modtime
= TRUE
; /* file data was modified */
3869 * If we are not suppressing the modtime update, then
3870 * update the gen count as well.
3872 if (S_ISREG(cp
->c_attr
.ca_mode
) || S_ISLNK (cp
->c_attr
.ca_mode
)) {
3873 hfs_incr_gencount(cp
);
3877 retval
= hfs_update(vp
, 0);
3879 KERNEL_DEBUG(HFSDBG_TRUNCATE
| DBG_FUNC_NONE
,
3880 -1, -1, -1, retval
, 0);
3885 KERNEL_DEBUG(HFSDBG_TRUNCATE
| DBG_FUNC_END
,
3886 (int)length
, (int)fp
->ff_size
, (int)filebytes
, retval
, 0);
3892 * Preparation which must be done prior to deleting the catalog record
3893 * of a file or directory. In order to make the on-disk as safe as possible,
3894 * we remove the catalog entry before releasing the bitmap blocks and the
3895 * overflow extent records. However, some work must be done prior to deleting
3896 * the catalog record.
3898 * When calling this function, the cnode must exist both in memory and on-disk.
3899 * If there are both resource fork and data fork vnodes, this function should
3900 * be called on both.
3904 hfs_prepare_release_storage (struct hfsmount
*hfsmp
, struct vnode
*vp
) {
3906 struct filefork
*fp
= VTOF(vp
);
3907 struct cnode
*cp
= VTOC(vp
);
3912 /* Cannot truncate an HFS directory! */
3913 if (vnode_isdir(vp
)) {
3918 * See the comment below in hfs_truncate for why we need to call
3919 * setsize here. Essentially we want to avoid pending IO if we
3920 * already know that the blocks are going to be released here.
3921 * This function is only called when totally removing all storage for a file, so
3922 * we can take a shortcut and immediately setsize (0);
3926 /* This should only happen with a corrupt filesystem */
3927 if ((off_t
)fp
->ff_size
< 0)
3931 * We cannot just check if fp->ff_size == length (as an optimization)
3932 * since there may be extra physical blocks that also need truncation.
3935 if ((retval
= hfs_getinoquota(cp
))) {
3940 /* Wipe out any invalid ranges which have yet to be backed by disk */
3941 rl_remove(0, fp
->ff_size
- 1, &fp
->ff_invalidranges
);
3944 * Account for any unmapped blocks. Since we're deleting the
3945 * entire file, we don't have to worry about just shrinking
3946 * to a smaller number of borrowed blocks.
3948 if (fp
->ff_unallocblocks
> 0) {
3949 u_int32_t loanedBlocks
;
3951 hfs_lock_mount (hfsmp
);
3952 loanedBlocks
= fp
->ff_unallocblocks
;
3953 cp
->c_blocks
-= loanedBlocks
;
3954 fp
->ff_blocks
-= loanedBlocks
;
3955 fp
->ff_unallocblocks
= 0;
3957 hfsmp
->loanedBlocks
-= loanedBlocks
;
3959 hfs_unlock_mount (hfsmp
);
3967 * Special wrapper around calling TruncateFileC. This function is useable
3968 * even when the catalog record does not exist any longer, making it ideal
3969 * for use when deleting a file. The simplification here is that we know
3970 * that we are releasing all blocks.
3972 * Note that this function may be called when there is no vnode backing
3973 * the file fork in question. We may call this from hfs_vnop_inactive
3974 * to clear out resource fork data (and may not want to clear out the data
3975 * fork yet). As a result, we pointer-check both sets of inputs before
3976 * doing anything with them.
3978 * The caller is responsible for saving off a copy of the filefork(s)
3979 * embedded within the cnode prior to calling this function. The pointers
3980 * supplied as arguments must be valid even if the cnode is no longer valid.
3984 hfs_release_storage (struct hfsmount
*hfsmp
, struct filefork
*datafork
,
3985 struct filefork
*rsrcfork
, u_int32_t fileid
) {
3988 u_int32_t fileblocks
;
3993 blksize
= hfsmp
->blockSize
;
3997 off_t prev_filebytes
;
3999 datafork
->ff_size
= 0;
4001 fileblocks
= datafork
->ff_blocks
;
4002 filebytes
= (off_t
)fileblocks
* (off_t
)blksize
;
4003 prev_filebytes
= filebytes
;
4005 /* We killed invalid ranges and loaned blocks before we removed the catalog entry */
4007 while (filebytes
> 0) {
4008 if (filebytes
> HFS_BIGFILE_SIZE
) {
4009 filebytes
-= HFS_BIGFILE_SIZE
;
4014 /* Start a transaction, and wipe out as many blocks as we can in this iteration */
4015 if (hfs_start_transaction(hfsmp
) != 0) {
4020 if (datafork
->ff_unallocblocks
== 0) {
4021 /* Protect extents b-tree and allocation bitmap */
4022 lockflags
= SFL_BITMAP
;
4023 if (overflow_extents(datafork
))
4024 lockflags
|= SFL_EXTENTS
;
4025 lockflags
= hfs_systemfile_lock(hfsmp
, lockflags
, HFS_EXCLUSIVE_LOCK
);
4027 error
= MacToVFSError(TruncateFileC(HFSTOVCB(hfsmp
), datafork
, filebytes
, 1, 0, fileid
, false));
4029 hfs_systemfile_unlock(hfsmp
, lockflags
);
4031 (void) hfs_volupdate(hfsmp
, VOL_UPDATE
, 0);
4033 struct cnode
*cp
= datafork
? FTOC(datafork
) : NULL
;
4035 vp
= cp
? CTOV(cp
, 0) : NULL
;
4036 hfs_hotfile_adjust_blocks(vp
, (int64_t)((prev_filebytes
- filebytes
) / blksize
));
4037 prev_filebytes
= filebytes
;
4039 /* Finish the transaction and start over if necessary */
4040 hfs_end_transaction(hfsmp
);
4049 if (error
== 0 && rsrcfork
) {
4050 rsrcfork
->ff_size
= 0;
4052 fileblocks
= rsrcfork
->ff_blocks
;
4053 filebytes
= (off_t
)fileblocks
* (off_t
)blksize
;
4055 /* We killed invalid ranges and loaned blocks before we removed the catalog entry */
4057 while (filebytes
> 0) {
4058 if (filebytes
> HFS_BIGFILE_SIZE
) {
4059 filebytes
-= HFS_BIGFILE_SIZE
;
4064 /* Start a transaction, and wipe out as many blocks as we can in this iteration */
4065 if (hfs_start_transaction(hfsmp
) != 0) {
4070 if (rsrcfork
->ff_unallocblocks
== 0) {
4071 /* Protect extents b-tree and allocation bitmap */
4072 lockflags
= SFL_BITMAP
;
4073 if (overflow_extents(rsrcfork
))
4074 lockflags
|= SFL_EXTENTS
;
4075 lockflags
= hfs_systemfile_lock(hfsmp
, lockflags
, HFS_EXCLUSIVE_LOCK
);
4077 error
= MacToVFSError(TruncateFileC(HFSTOVCB(hfsmp
), rsrcfork
, filebytes
, 1, 1, fileid
, false));
4079 hfs_systemfile_unlock(hfsmp
, lockflags
);
4081 (void) hfs_volupdate(hfsmp
, VOL_UPDATE
, 0);
4083 /* Finish the transaction and start over if necessary */
4084 hfs_end_transaction(hfsmp
);
4095 errno_t
hfs_ubc_setsize(vnode_t vp
, off_t len
, bool have_cnode_lock
)
4100 * Call ubc_setsize to give the VM subsystem a chance to do
4101 * whatever it needs to with existing pages before we delete
4102 * blocks. Note that symlinks don't use the UBC so we'll
4103 * get back ENOENT in that case.
4105 if (have_cnode_lock
) {
4106 error
= ubc_setsize_ex(vp
, len
, UBC_SETSIZE_NO_FS_REENTRY
);
4107 if (error
== EAGAIN
) {
4108 cnode_t
*cp
= VTOC(vp
);
4110 if (cp
->c_truncatelockowner
!= current_thread())
4111 hfs_warn("hfs: hfs_ubc_setsize called without exclusive truncate lock!");
4114 error
= ubc_setsize_ex(vp
, len
, 0);
4115 hfs_lock_always(cp
, HFS_EXCLUSIVE_LOCK
);
4118 error
= ubc_setsize_ex(vp
, len
, 0);
4120 return error
== ENOENT
? 0 : error
;
4124 * Truncate a cnode to at most length size, freeing (or adding) the
4128 hfs_truncate(struct vnode
*vp
, off_t length
, int flags
,
4129 int truncateflags
, vfs_context_t context
)
4131 struct filefork
*fp
= VTOF(vp
);
4133 u_int32_t fileblocks
;
4136 struct cnode
*cp
= VTOC(vp
);
4137 hfsmount_t
*hfsmp
= VTOHFS(vp
);
4139 /* Cannot truncate an HFS directory! */
4140 if (vnode_isdir(vp
)) {
4143 /* A swap file cannot change size. */
4144 if (vnode_isswap(vp
) && length
&& !ISSET(flags
, IO_NOAUTH
)) {
4148 blksize
= hfsmp
->blockSize
;
4149 fileblocks
= fp
->ff_blocks
;
4150 filebytes
= (off_t
)fileblocks
* (off_t
)blksize
;
4152 bool caller_has_cnode_lock
= (cp
->c_lockowner
== current_thread());
4154 error
= hfs_ubc_setsize(vp
, length
, caller_has_cnode_lock
);
4158 if (!caller_has_cnode_lock
) {
4159 error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
4164 if (vnode_islnk(vp
) && cp
->c_datafork
->ff_symlinkptr
) {
4165 hfs_free(cp
->c_datafork
->ff_symlinkptr
, cp
->c_datafork
->ff_size
);
4166 cp
->c_datafork
->ff_symlinkptr
= NULL
;
4169 // have to loop truncating or growing files that are
4170 // really big because otherwise transactions can get
4171 // enormous and consume too many kernel resources.
4173 if (length
< filebytes
) {
4174 while (filebytes
> length
) {
4175 if ((filebytes
- length
) > HFS_BIGFILE_SIZE
) {
4176 filebytes
-= HFS_BIGFILE_SIZE
;
4180 error
= do_hfs_truncate(vp
, filebytes
, flags
, truncateflags
, context
);
4184 } else if (length
> filebytes
) {
4185 kauth_cred_t cred
= vfs_context_ucred(context
);
4186 const bool keep_reserve
= cred
&& suser(cred
, NULL
) != 0;
4188 if (hfs_freeblks(hfsmp
, keep_reserve
)
4189 < howmany(length
- filebytes
, blksize
)) {
4192 while (filebytes
< length
) {
4193 if ((length
- filebytes
) > HFS_BIGFILE_SIZE
) {
4194 filebytes
+= HFS_BIGFILE_SIZE
;
4198 error
= do_hfs_truncate(vp
, filebytes
, flags
, truncateflags
, context
);
4203 } else /* Same logical size */ {
4205 error
= do_hfs_truncate(vp
, length
, flags
, truncateflags
, context
);
4207 /* Files that are changing size are not hot file candidates. */
4208 if (VTOHFS(vp
)->hfc_stage
== HFC_RECORDING
) {
4209 fp
->ff_bytesread
= 0;
4212 #if HFS_CONFIG_KEY_ROLL
4213 if (!error
&& cp
->c_truncatelockowner
== current_thread()) {
4214 hfs_key_roll_check(cp
, true);
4218 if (!caller_has_cnode_lock
)
4221 // Make sure UBC's size matches up (in case we didn't completely succeed)
4222 errno_t err2
= hfs_ubc_setsize(vp
, fp
->ff_size
, caller_has_cnode_lock
);
4231 * Preallocate file storage space.
4234 hfs_vnop_allocate(struct vnop_allocate_args
/* {
4238 off_t *a_bytesallocated;
4240 vfs_context_t a_context;
4243 struct vnode
*vp
= ap
->a_vp
;
4245 struct filefork
*fp
;
4247 off_t length
= ap
->a_length
;
4249 off_t moreBytesRequested
;
4250 off_t actualBytesAdded
;
4252 u_int32_t fileblocks
;
4253 int retval
, retval2
;
4254 u_int32_t blockHint
;
4255 u_int32_t extendFlags
; /* For call to ExtendFileC */
4256 struct hfsmount
*hfsmp
;
4257 kauth_cred_t cred
= vfs_context_ucred(ap
->a_context
);
4261 *(ap
->a_bytesallocated
) = 0;
4263 if (!vnode_isreg(vp
))
4265 if (length
< (off_t
)0)
4270 orig_ctime
= VTOC(vp
)->c_ctime
;
4272 nspace_snapshot_event(vp
, orig_ctime
, ap
->a_length
== 0 ? NAMESPACE_HANDLER_TRUNCATE_OP
|NAMESPACE_HANDLER_DELETE_OP
: NAMESPACE_HANDLER_TRUNCATE_OP
, NULL
);
4274 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
4276 if ((retval
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
))) {
4284 fileblocks
= fp
->ff_blocks
;
4285 filebytes
= (off_t
)fileblocks
* (off_t
)vcb
->blockSize
;
4287 if ((ap
->a_flags
& ALLOCATEFROMVOL
) && (length
< filebytes
)) {
4292 /* Fill in the flags word for the call to Extend the file */
4294 extendFlags
= kEFNoClumpMask
;
4295 if (ap
->a_flags
& ALLOCATECONTIG
)
4296 extendFlags
|= kEFContigMask
;
4297 if (ap
->a_flags
& ALLOCATEALL
)
4298 extendFlags
|= kEFAllMask
;
4299 if (cred
&& suser(cred
, NULL
) != 0)
4300 extendFlags
|= kEFReserveMask
;
4301 if (hfs_virtualmetafile(cp
))
4302 extendFlags
|= kEFMetadataMask
;
4306 startingPEOF
= filebytes
;
4308 if (ap
->a_flags
& ALLOCATEFROMPEOF
)
4309 length
+= filebytes
;
4310 else if (ap
->a_flags
& ALLOCATEFROMVOL
)
4311 blockHint
= ap
->a_offset
/ VTOVCB(vp
)->blockSize
;
4313 /* If no changes are necesary, then we're done */
4314 if (filebytes
== length
)
4318 * Lengthen the size of the file. We must ensure that the
4319 * last byte of the file is allocated. Since the smallest
4320 * value of filebytes is 0, length will be at least 1.
4322 if (length
> filebytes
) {
4323 if (ISSET(extendFlags
, kEFAllMask
)
4324 && (hfs_freeblks(hfsmp
, ISSET(extendFlags
, kEFReserveMask
))
4325 < howmany(length
- filebytes
, hfsmp
->blockSize
))) {
4330 off_t total_bytes_added
= 0, orig_request_size
;
4332 orig_request_size
= moreBytesRequested
= length
- filebytes
;
4335 retval
= hfs_chkdq(cp
,
4336 (int64_t)(roundup(moreBytesRequested
, vcb
->blockSize
)),
4343 * Metadata zone checks.
4345 if (hfsmp
->hfs_flags
& HFS_METADATA_ZONE
) {
4347 * Allocate Journal and Quota files in metadata zone.
4349 if (hfs_virtualmetafile(cp
)) {
4350 blockHint
= hfsmp
->hfs_metazone_start
;
4351 } else if ((blockHint
>= hfsmp
->hfs_metazone_start
) &&
4352 (blockHint
<= hfsmp
->hfs_metazone_end
)) {
4354 * Move blockHint outside metadata zone.
4356 blockHint
= hfsmp
->hfs_metazone_end
+ 1;
4361 while ((length
> filebytes
) && (retval
== E_NONE
)) {
4362 off_t bytesRequested
;
4364 if (hfs_start_transaction(hfsmp
) != 0) {
4369 /* Protect extents b-tree and allocation bitmap */
4370 lockflags
= SFL_BITMAP
;
4371 if (overflow_extents(fp
))
4372 lockflags
|= SFL_EXTENTS
;
4373 lockflags
= hfs_systemfile_lock(hfsmp
, lockflags
, HFS_EXCLUSIVE_LOCK
);
4375 if (moreBytesRequested
>= HFS_BIGFILE_SIZE
) {
4376 bytesRequested
= HFS_BIGFILE_SIZE
;
4378 bytesRequested
= moreBytesRequested
;
4381 if (extendFlags
& kEFContigMask
) {
4382 // if we're on a sparse device, this will force it to do a
4383 // full scan to find the space needed.
4384 hfsmp
->hfs_flags
&= ~HFS_DID_CONTIG_SCAN
;
4387 retval
= MacToVFSError(ExtendFileC(vcb
,
4392 &actualBytesAdded
));
4394 if (retval
== E_NONE
) {
4395 *(ap
->a_bytesallocated
) += actualBytesAdded
;
4396 total_bytes_added
+= actualBytesAdded
;
4397 moreBytesRequested
-= actualBytesAdded
;
4398 if (blockHint
!= 0) {
4399 blockHint
+= actualBytesAdded
/ vcb
->blockSize
;
4402 filebytes
= (off_t
)fp
->ff_blocks
* (off_t
)vcb
->blockSize
;
4404 hfs_systemfile_unlock(hfsmp
, lockflags
);
4407 (void) hfs_update(vp
, 0);
4408 (void) hfs_volupdate(hfsmp
, VOL_UPDATE
, 0);
4411 hfs_end_transaction(hfsmp
);
4416 * if we get an error and no changes were made then exit
4417 * otherwise we must do the hfs_update to reflect the changes
4419 if (retval
&& (startingPEOF
== filebytes
))
4423 * Adjust actualBytesAdded to be allocation block aligned, not
4424 * clump size aligned.
4425 * NOTE: So what we are reporting does not affect reality
4426 * until the file is closed, when we truncate the file to allocation
4429 if (total_bytes_added
!= 0 && orig_request_size
< total_bytes_added
)
4430 *(ap
->a_bytesallocated
) =
4431 roundup(orig_request_size
, (off_t
)vcb
->blockSize
);
4433 } else { /* Shorten the size of the file */
4436 * N.B. At present, this code is never called. If and when we
4437 * do start using it, it looks like there might be slightly
4438 * strange semantics with the file size: it's possible for the
4439 * file size to *increase* e.g. if current file size is 5,
4440 * length is 1024 and filebytes is 4096, the file size will
4441 * end up being 1024 bytes. This isn't necessarily a problem
4442 * but it's not consistent with the code above which doesn't
4443 * change the file size.
4446 retval
= hfs_truncate(vp
, length
, 0, 0, ap
->a_context
);
4447 filebytes
= (off_t
)fp
->ff_blocks
* (off_t
)vcb
->blockSize
;
4450 * if we get an error and no changes were made then exit
4451 * otherwise we must do the hfs_update to reflect the changes
4453 if (retval
&& (startingPEOF
== filebytes
)) goto Err_Exit
;
4455 /* These are bytesreleased */
4456 (void) hfs_chkdq(cp
, (int64_t)-((startingPEOF
- filebytes
)), NOCRED
,0);
4459 if (fp
->ff_size
> filebytes
) {
4460 fp
->ff_size
= filebytes
;
4462 hfs_ubc_setsize(vp
, fp
->ff_size
, true);
4467 cp
->c_flag
|= C_MODIFIED
;
4468 cp
->c_touch_chgtime
= TRUE
;
4469 cp
->c_touch_modtime
= TRUE
;
4470 retval2
= hfs_update(vp
, 0);
4475 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
4482 * Pagein for HFS filesystem
4485 hfs_vnop_pagein(struct vnop_pagein_args
*ap
)
4487 struct vnop_pagein_args {
4490 vm_offset_t a_pl_offset,
4494 vfs_context_t a_context;
4500 struct filefork
*fp
;
4503 upl_page_info_t
*pl
;
4505 off_t page_needed_f_offset
;
4510 boolean_t truncate_lock_held
= FALSE
;
4511 boolean_t file_converted
= FALSE
;
4519 if ((error
= cp_handle_vnop(vp
, CP_READ_ACCESS
| CP_WRITE_ACCESS
, 0)) != 0) {
4521 * If we errored here, then this means that one of two things occurred:
4522 * 1. there was a problem with the decryption of the key.
4523 * 2. the device is locked and we are not allowed to access this particular file.
4525 * Either way, this means that we need to shut down this upl now. As long as
4526 * the pl pointer is NULL (meaning that we're supposed to create the UPL ourselves)
4527 * then we create a upl and immediately abort it.
4529 if (ap
->a_pl
== NULL
) {
4530 /* create the upl */
4531 ubc_create_upl (vp
, ap
->a_f_offset
, ap
->a_size
, &upl
, &pl
,
4532 UPL_UBC_PAGEIN
| UPL_RET_ONLY_ABSENT
);
4533 /* mark the range as needed so it doesn't immediately get discarded upon abort */
4534 ubc_upl_range_needed (upl
, ap
->a_pl_offset
/ PAGE_SIZE
, 1);
4536 /* Abort the range */
4537 ubc_upl_abort_range (upl
, 0, ap
->a_size
, UPL_ABORT_FREE_ON_EMPTY
| UPL_ABORT_ERROR
);
4543 #endif /* CONFIG_PROTECT */
4545 if (ap
->a_pl
!= NULL
) {
4547 * this can only happen for swap files now that
4548 * we're asking for V2 paging behavior...
4549 * so don't need to worry about decompression, or
4550 * keeping track of blocks read or taking the truncate lock
4552 error
= cluster_pagein(vp
, ap
->a_pl
, ap
->a_pl_offset
, ap
->a_f_offset
,
4553 ap
->a_size
, (off_t
)fp
->ff_size
, ap
->a_flags
);
4557 page_needed_f_offset
= ap
->a_f_offset
+ ap
->a_pl_offset
;
4561 * take truncate lock (shared/recursive) to guard against
4562 * zero-fill thru fsync interfering, but only for v2
4564 * the HFS_RECURSE_TRUNCLOCK arg indicates that we want the
4565 * lock shared and we are allowed to recurse 1 level if this thread already
4566 * owns the lock exclusively... this can legally occur
4567 * if we are doing a shrinking ftruncate against a file
4568 * that is mapped private, and the pages being truncated
4569 * do not currently exist in the cache... in that case
4570 * we will have to page-in the missing pages in order
4571 * to provide them to the private mapping... we must
4572 * also call hfs_unlock_truncate with a postive been_recursed
4573 * arg to indicate that if we have recursed, there is no need to drop
4574 * the lock. Allowing this simple recursion is necessary
4575 * in order to avoid a certain deadlock... since the ftruncate
4576 * already holds the truncate lock exclusively, if we try
4577 * to acquire it shared to protect the pagein path, we will
4580 * NOTE: The if () block below is a workaround in order to prevent a
4581 * VM deadlock. See rdar://7853471.
4583 * If we are in a forced unmount, then launchd will still have the
4584 * dyld_shared_cache file mapped as it is trying to reboot. If we
4585 * take the truncate lock here to service a page fault, then our
4586 * thread could deadlock with the forced-unmount. The forced unmount
4587 * thread will try to reclaim the dyld_shared_cache vnode, but since it's
4588 * marked C_DELETED, it will call ubc_setsize(0). As a result, the unmount
4589 * thread will think it needs to copy all of the data out of the file
4590 * and into a VM copy object. If we hold the cnode lock here, then that
4591 * VM operation will not be able to proceed, because we'll set a busy page
4592 * before attempting to grab the lock. Note that this isn't as simple as "don't
4593 * call ubc_setsize" because doing that would just shift the problem to the
4594 * ubc_msync done before the vnode is reclaimed.
4596 * So, if a forced unmount on this volume is in flight AND the cnode is
4597 * marked C_DELETED, then just go ahead and do the page in without taking
4598 * the lock (thus suspending pagein_v2 semantics temporarily). Since it's on a file
4599 * that is not going to be available on the next mount, this seems like a
4600 * OK solution from a correctness point of view, even though it is hacky.
4602 if (vfs_isforce(vnode_mount(vp
))) {
4603 if (cp
->c_flag
& C_DELETED
) {
4604 /* If we don't get it, then just go ahead and operate without the lock */
4605 truncate_lock_held
= hfs_try_trunclock(cp
, HFS_SHARED_LOCK
, HFS_LOCK_SKIP_IF_EXCLUSIVE
);
4609 hfs_lock_truncate(cp
, HFS_SHARED_LOCK
, HFS_LOCK_SKIP_IF_EXCLUSIVE
);
4610 truncate_lock_held
= TRUE
;
4613 kret
= ubc_create_upl(vp
, ap
->a_f_offset
, ap
->a_size
, &upl
, &pl
, UPL_UBC_PAGEIN
| UPL_RET_ONLY_ABSENT
);
4615 if ((kret
!= KERN_SUCCESS
) || (upl
== (upl_t
) NULL
)) {
4619 ubc_upl_range_needed(upl
, ap
->a_pl_offset
/ PAGE_SIZE
, 1);
4621 upl_size
= isize
= ap
->a_size
;
4624 * Scan from the back to find the last page in the UPL, so that we
4625 * aren't looking at a UPL that may have already been freed by the
4626 * preceding aborts/completions.
4628 for (pg_index
= ((isize
) / PAGE_SIZE
); pg_index
> 0;) {
4629 if (upl_page_present(pl
, --pg_index
))
4631 if (pg_index
== 0) {
4633 * no absent pages were found in the range specified
4634 * just abort the UPL to get rid of it and then we're done
4636 ubc_upl_abort_range(upl
, 0, isize
, UPL_ABORT_FREE_ON_EMPTY
);
4641 * initialize the offset variables before we touch the UPL.
4642 * f_offset is the position into the file, in bytes
4643 * offset is the position into the UPL, in bytes
4644 * pg_index is the pg# of the UPL we're operating on
4645 * isize is the offset into the UPL of the last page that is present.
4647 isize
= ((pg_index
+ 1) * PAGE_SIZE
);
4650 f_offset
= ap
->a_f_offset
;
4656 if ( !upl_page_present(pl
, pg_index
)) {
4658 * we asked for RET_ONLY_ABSENT, so it's possible
4659 * to get back empty slots in the UPL.
4660 * just skip over them
4662 f_offset
+= PAGE_SIZE
;
4663 offset
+= PAGE_SIZE
;
4670 * We know that we have at least one absent page.
4671 * Now checking to see how many in a row we have
4674 xsize
= isize
- PAGE_SIZE
;
4677 if ( !upl_page_present(pl
, pg_index
+ num_of_pages
))
4682 xsize
= num_of_pages
* PAGE_SIZE
;
4685 if (VNODE_IS_RSRC(vp
)) {
4686 /* allow pageins of the resource fork */
4688 int compressed
= hfs_file_is_compressed(VTOC(vp
), 1); /* 1 == don't take the cnode lock */
4692 if (truncate_lock_held
) {
4694 * can't hold the truncate lock when calling into the decmpfs layer
4695 * since it calls back into this layer... even though we're only
4696 * holding the lock in shared mode, and the re-entrant path only
4697 * takes the lock shared, we can deadlock if some other thread
4698 * tries to grab the lock exclusively in between.
4700 hfs_unlock_truncate(cp
, HFS_LOCK_SKIP_IF_EXCLUSIVE
);
4701 truncate_lock_held
= FALSE
;
4704 ap
->a_pl_offset
= offset
;
4705 ap
->a_f_offset
= f_offset
;
4708 error
= decmpfs_pagein_compressed(ap
, &compressed
, VTOCMP(vp
));
4710 * note that decpfs_pagein_compressed can change the state of
4711 * 'compressed'... it will set it to 0 if the file is no longer
4712 * compressed once the compression lock is successfully taken
4713 * i.e. we would block on that lock while the file is being inflated
4715 if (error
== 0 && vnode_isfastdevicecandidate(vp
)) {
4716 (void) hfs_addhotfile(vp
);
4720 /* successful page-in, update the access time */
4721 VTOC(vp
)->c_touch_acctime
= TRUE
;
4724 // compressed files are not traditional hot file candidates
4725 // but they may be for CF (which ignores the ff_bytesread
4728 if (VTOHFS(vp
)->hfc_stage
== HFC_RECORDING
) {
4729 fp
->ff_bytesread
= 0;
4731 } else if (error
== EAGAIN
) {
4733 * EAGAIN indicates someone else already holds the compression lock...
4734 * to avoid deadlocking, we'll abort this range of pages with an
4735 * indication that the pagein needs to be redriven
4737 ubc_upl_abort_range(upl
, (upl_offset_t
) offset
, xsize
, UPL_ABORT_FREE_ON_EMPTY
| UPL_ABORT_RESTART
);
4738 } else if (error
== ENOSPC
) {
4740 if (upl_size
== PAGE_SIZE
)
4741 panic("decmpfs_pagein_compressed: couldn't ubc_upl_map a single page\n");
4743 ubc_upl_abort_range(upl
, (upl_offset_t
) offset
, isize
, UPL_ABORT_FREE_ON_EMPTY
);
4745 ap
->a_size
= PAGE_SIZE
;
4747 ap
->a_pl_offset
= 0;
4748 ap
->a_f_offset
= page_needed_f_offset
;
4752 ubc_upl_abort(upl
, UPL_ABORT_FREE_ON_EMPTY
| UPL_ABORT_ERROR
);
4755 goto pagein_next_range
;
4759 * Set file_converted only if the file became decompressed while we were
4760 * paging in. If it were still compressed, we would re-start the loop using the goto
4761 * in the above block. This avoid us overloading truncate_lock_held as our retry_pagein
4762 * condition below, since we could have avoided taking the truncate lock to prevent
4763 * a deadlock in the force unmount case.
4765 file_converted
= TRUE
;
4768 if (file_converted
== TRUE
) {
4770 * the file was converted back to a regular file after we first saw it as compressed
4771 * we need to abort the upl, retake the truncate lock, recreate the UPL and start over
4772 * reset a_size so that we consider what remains of the original request
4773 * and null out a_upl and a_pl_offset.
4775 * We should only be able to get into this block if the decmpfs_pagein_compressed
4776 * successfully decompressed the range in question for this file.
4778 ubc_upl_abort_range(upl
, (upl_offset_t
) offset
, isize
, UPL_ABORT_FREE_ON_EMPTY
);
4782 ap
->a_pl_offset
= 0;
4784 /* Reset file_converted back to false so that we don't infinite-loop. */
4785 file_converted
= FALSE
;
4790 error
= cluster_pagein(vp
, upl
, offset
, f_offset
, xsize
, (off_t
)fp
->ff_size
, ap
->a_flags
);
4793 * Keep track of blocks read.
4795 if ( !vnode_isswap(vp
) && VTOHFS(vp
)->hfc_stage
== HFC_RECORDING
&& error
== 0) {
4797 int took_cnode_lock
= 0;
4799 if (ap
->a_f_offset
== 0 && fp
->ff_size
< PAGE_SIZE
)
4800 bytesread
= fp
->ff_size
;
4804 /* When ff_bytesread exceeds 32-bits, update it behind the cnode lock. */
4805 if ((fp
->ff_bytesread
+ bytesread
) > 0x00000000ffffffff && cp
->c_lockowner
!= current_thread()) {
4806 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
4807 took_cnode_lock
= 1;
4810 * If this file hasn't been seen since the start of
4811 * the current sampling period then start over.
4813 if (cp
->c_atime
< VTOHFS(vp
)->hfc_timebase
) {
4816 fp
->ff_bytesread
= bytesread
;
4818 cp
->c_atime
= tv
.tv_sec
;
4820 fp
->ff_bytesread
+= bytesread
;
4822 cp
->c_touch_acctime
= TRUE
;
4824 if (vnode_isfastdevicecandidate(vp
)) {
4825 (void) hfs_addhotfile(vp
);
4827 if (took_cnode_lock
)
4834 pg_index
+= num_of_pages
;
4840 if (truncate_lock_held
== TRUE
) {
4841 /* Note 1 is passed to hfs_unlock_truncate in been_recursed argument */
4842 hfs_unlock_truncate(cp
, HFS_LOCK_SKIP_IF_EXCLUSIVE
);
4849 * Pageout for HFS filesystem.
4852 hfs_vnop_pageout(struct vnop_pageout_args
*ap
)
4854 struct vnop_pageout_args {
4857 vm_offset_t a_pl_offset,
4861 vfs_context_t a_context;
4865 vnode_t vp
= ap
->a_vp
;
4867 struct filefork
*fp
;
4871 upl_page_info_t
* pl
= NULL
;
4872 vm_offset_t a_pl_offset
;
4874 int is_pageoutv2
= 0;
4880 a_flags
= ap
->a_flags
;
4881 a_pl_offset
= ap
->a_pl_offset
;
4884 * we can tell if we're getting the new or old behavior from the UPL
4886 if ((upl
= ap
->a_pl
) == NULL
) {
4891 * we're in control of any UPL we commit
4892 * make sure someone hasn't accidentally passed in UPL_NOCOMMIT
4894 a_flags
&= ~UPL_NOCOMMIT
;
4898 * For V2 semantics, we want to take the cnode truncate lock
4899 * shared to guard against the file size changing via zero-filling.
4901 * However, we have to be careful because we may be invoked
4902 * via the ubc_msync path to write out dirty mmap'd pages
4903 * in response to a lock event on a content-protected
4904 * filesystem (e.g. to write out class A files).
4905 * As a result, we want to take the truncate lock 'SHARED' with
4906 * the mini-recursion locktype so that we don't deadlock/panic
4907 * because we may be already holding the truncate lock exclusive to force any other
4908 * IOs to have blocked behind us.
4910 hfs_lock_truncate(cp
, HFS_SHARED_LOCK
, HFS_LOCK_SKIP_IF_EXCLUSIVE
);
4912 if (a_flags
& UPL_MSYNC
) {
4913 request_flags
= UPL_UBC_MSYNC
| UPL_RET_ONLY_DIRTY
;
4916 request_flags
= UPL_UBC_PAGEOUT
| UPL_RET_ONLY_DIRTY
;
4919 kret
= ubc_create_upl(vp
, ap
->a_f_offset
, ap
->a_size
, &upl
, &pl
, request_flags
);
4921 if ((kret
!= KERN_SUCCESS
) || (upl
== (upl_t
) NULL
)) {
4927 * from this point forward upl points at the UPL we're working with
4928 * it was either passed in or we succesfully created it
4932 * Figure out where the file ends, for pageout purposes. If
4933 * ff_new_size > ff_size, then we're in the middle of extending the
4934 * file via a write, so it is safe (and necessary) that we be able
4935 * to pageout up to that point.
4937 filesize
= fp
->ff_size
;
4938 if (fp
->ff_new_size
> filesize
)
4939 filesize
= fp
->ff_new_size
;
4942 * Now that HFS is opting into VFC_VFSVNOP_PAGEOUTV2, we may need to operate on our own
4943 * UPL instead of relying on the UPL passed into us. We go ahead and do that here,
4944 * scanning for dirty ranges. We'll issue our own N cluster_pageout calls, for
4945 * N dirty ranges in the UPL. Note that this is almost a direct copy of the
4946 * logic in vnode_pageout except that we need to do it after grabbing the truncate
4947 * lock in HFS so that we don't lock invert ourselves.
4949 * Note that we can still get into this function on behalf of the default pager with
4950 * non-V2 behavior (swapfiles). However in that case, we did not grab locks above
4951 * since fsync and other writing threads will grab the locks, then mark the
4952 * relevant pages as busy. But the pageout codepath marks the pages as busy,
4953 * and THEN would attempt to grab the truncate lock, which would result in deadlock. So
4954 * we do not try to grab anything for the pre-V2 case, which should only be accessed
4955 * by the paging/VM system.
4967 f_offset
= ap
->a_f_offset
;
4970 * Scan from the back to find the last page in the UPL, so that we
4971 * aren't looking at a UPL that may have already been freed by the
4972 * preceding aborts/completions.
4974 for (pg_index
= ((isize
) / PAGE_SIZE
); pg_index
> 0;) {
4975 if (upl_page_present(pl
, --pg_index
))
4977 if (pg_index
== 0) {
4978 ubc_upl_abort_range(upl
, 0, isize
, UPL_ABORT_FREE_ON_EMPTY
);
4984 * initialize the offset variables before we touch the UPL.
4985 * a_f_offset is the position into the file, in bytes
4986 * offset is the position into the UPL, in bytes
4987 * pg_index is the pg# of the UPL we're operating on.
4988 * isize is the offset into the UPL of the last non-clean page.
4990 isize
= ((pg_index
+ 1) * PAGE_SIZE
);
4999 if ( !upl_page_present(pl
, pg_index
)) {
5001 * we asked for RET_ONLY_DIRTY, so it's possible
5002 * to get back empty slots in the UPL.
5003 * just skip over them
5005 f_offset
+= PAGE_SIZE
;
5006 offset
+= PAGE_SIZE
;
5012 if ( !upl_dirty_page(pl
, pg_index
)) {
5013 panic ("hfs_vnop_pageout: unforeseen clean page @ index %d for UPL %p\n", pg_index
, upl
);
5017 * We know that we have at least one dirty page.
5018 * Now checking to see how many in a row we have
5021 xsize
= isize
- PAGE_SIZE
;
5024 if ( !upl_dirty_page(pl
, pg_index
+ num_of_pages
))
5029 xsize
= num_of_pages
* PAGE_SIZE
;
5031 if ((error
= cluster_pageout(vp
, upl
, offset
, f_offset
,
5032 xsize
, filesize
, a_flags
))) {
5039 pg_index
+= num_of_pages
;
5041 /* capture errnos bubbled out of cluster_pageout if they occurred */
5042 if (error_ret
!= 0) {
5045 } /* end block for v2 pageout behavior */
5048 * just call cluster_pageout for old pre-v2 behavior
5050 retval
= cluster_pageout(vp
, upl
, a_pl_offset
, ap
->a_f_offset
,
5051 ap
->a_size
, filesize
, a_flags
);
5055 * If data was written, update the modification time of the file
5056 * but only if it's mapped writable; we will have touched the
5057 * modifcation time for direct writes.
5059 if (retval
== 0 && (ubc_is_mapped_writable(vp
)
5060 || ISSET(cp
->c_flag
, C_MIGHT_BE_DIRTY_FROM_MAPPING
))) {
5061 hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
5063 // Check again with lock
5064 bool mapped_writable
= ubc_is_mapped_writable(vp
);
5066 || ISSET(cp
->c_flag
, C_MIGHT_BE_DIRTY_FROM_MAPPING
)) {
5067 cp
->c_touch_modtime
= TRUE
;
5068 cp
->c_touch_chgtime
= TRUE
;
5071 * We only need to increment the generation counter if
5072 * it's currently mapped writable because we incremented
5073 * the counter in hfs_vnop_mnomap.
5075 if (mapped_writable
)
5076 hfs_incr_gencount(VTOC(vp
));
5079 * If setuid or setgid bits are set and this process is
5080 * not the superuser then clear the setuid and setgid bits
5081 * as a precaution against tampering.
5083 if ((cp
->c_mode
& (S_ISUID
| S_ISGID
)) &&
5084 (vfs_context_suser(ap
->a_context
) != 0)) {
5085 cp
->c_mode
&= ~(S_ISUID
| S_ISGID
);
5095 * Release the truncate lock. Note that because
5096 * we may have taken the lock recursively by
5097 * being invoked via ubc_msync due to lockdown,
5098 * we should release it recursively, too.
5100 hfs_unlock_truncate(cp
, HFS_LOCK_SKIP_IF_EXCLUSIVE
);
5106 * Intercept B-Tree node writes to unswap them if necessary.
5109 hfs_vnop_bwrite(struct vnop_bwrite_args
*ap
)
5112 register struct buf
*bp
= ap
->a_bp
;
5113 register struct vnode
*vp
= buf_vnode(bp
);
5114 BlockDescriptor block
;
5116 /* Trap B-Tree writes */
5117 if ((VTOC(vp
)->c_fileid
== kHFSExtentsFileID
) ||
5118 (VTOC(vp
)->c_fileid
== kHFSCatalogFileID
) ||
5119 (VTOC(vp
)->c_fileid
== kHFSAttributesFileID
) ||
5120 (vp
== VTOHFS(vp
)->hfc_filevp
)) {
5123 * Swap and validate the node if it is in native byte order.
5124 * This is always be true on big endian, so we always validate
5125 * before writing here. On little endian, the node typically has
5126 * been swapped and validated when it was written to the journal,
5127 * so we won't do anything here.
5129 if (((u_int16_t
*)((char *)buf_dataptr(bp
) + buf_count(bp
) - 2))[0] == 0x000e) {
5130 /* Prepare the block pointer */
5131 block
.blockHeader
= bp
;
5132 block
.buffer
= (char *)buf_dataptr(bp
);
5133 block
.blockNum
= buf_lblkno(bp
);
5134 /* not found in cache ==> came from disk */
5135 block
.blockReadFromDisk
= (buf_fromcache(bp
) == 0);
5136 block
.blockSize
= buf_count(bp
);
5138 /* Endian un-swap B-Tree node */
5139 retval
= hfs_swap_BTNode (&block
, vp
, kSwapBTNodeHostToBig
, false);
5141 panic("hfs_vnop_bwrite: about to write corrupt node!\n");
5145 /* This buffer shouldn't be locked anymore but if it is clear it */
5146 if ((buf_flags(bp
) & B_LOCKED
)) {
5148 if (VTOHFS(vp
)->jnl
) {
5149 panic("hfs: CLEARING the lock bit on bp %p\n", bp
);
5151 buf_clearflags(bp
, B_LOCKED
);
5153 retval
= vn_bwrite (ap
);
5160 hfs_pin_block_range(struct hfsmount
*hfsmp
, int pin_state
, uint32_t start_block
, uint32_t nblocks
)
5166 memset(&pin
, 0, sizeof(pin
));
5167 pin
.cp_extent
.offset
= ((uint64_t)start_block
) * HFSTOVCB(hfsmp
)->blockSize
;
5168 pin
.cp_extent
.length
= ((uint64_t)nblocks
) * HFSTOVCB(hfsmp
)->blockSize
;
5169 switch (pin_state
) {
5171 ioc
= _DKIOCCSPINEXTENT
;
5172 pin
.cp_flags
= _DKIOCCSPINTOFASTMEDIA
;
5174 case HFS_PIN_IT
| HFS_TEMP_PIN
:
5175 ioc
= _DKIOCCSPINEXTENT
;
5176 pin
.cp_flags
= _DKIOCCSPINTOFASTMEDIA
| _DKIOCCSTEMPORARYPIN
;
5178 case HFS_PIN_IT
| HFS_DATALESS_PIN
:
5179 ioc
= _DKIOCCSPINEXTENT
;
5180 pin
.cp_flags
= _DKIOCCSPINTOFASTMEDIA
| _DKIOCCSPINFORSWAPFILE
;
5183 ioc
= _DKIOCCSUNPINEXTENT
;
5186 case HFS_UNPIN_IT
| HFS_EVICT_PIN
:
5187 ioc
= _DKIOCCSPINEXTENT
;
5188 pin
.cp_flags
= _DKIOCCSPINTOSLOWMEDIA
;
5193 err
= VNOP_IOCTL(hfsmp
->hfs_devvp
, ioc
, (caddr_t
)&pin
, 0, vfs_context_kernel());
5198 // The cnode lock should already be held on entry to this function
5201 hfs_pin_vnode(struct hfsmount
*hfsmp
, struct vnode
*vp
, int pin_state
, uint32_t *num_blocks_pinned
)
5203 struct filefork
*fp
= VTOF(vp
);
5204 int i
, err
=0, need_put
=0;
5205 struct vnode
*rsrc_vp
=NULL
;
5206 uint32_t npinned
= 0;
5209 if (num_blocks_pinned
) {
5210 *num_blocks_pinned
= 0;
5213 if (vnode_vtype(vp
) != VREG
) {
5214 /* Not allowed to pin directories or symlinks */
5215 printf("hfs: can't pin vnode of type %d\n", vnode_vtype(vp
));
5219 if (fp
->ff_unallocblocks
) {
5220 printf("hfs: can't pin a vnode w/unalloced blocks (%d)\n", fp
->ff_unallocblocks
);
5225 * It is possible that if the caller unlocked/re-locked the cnode after checking
5226 * for C_NOEXISTS|C_DELETED that the file could have been deleted while the
5227 * cnode was unlocked. So check the condition again and return ENOENT so that
5228 * the caller knows why we failed to pin the vnode.
5230 if (VTOC(vp
)->c_flag
& (C_NOEXISTS
|C_DELETED
)) {
5231 // makes no sense to pin something that's pending deletion
5235 if (fp
->ff_blocks
== 0 && (VTOC(vp
)->c_bsdflags
& UF_COMPRESSED
)) {
5236 if (!VNODE_IS_RSRC(vp
) && hfs_vgetrsrc(hfsmp
, vp
, &rsrc_vp
) == 0) {
5237 //printf("hfs: fileid %d resource fork nblocks: %d / size: %lld\n", VTOC(vp)->c_fileid,
5238 // VTOC(rsrc_vp)->c_rsrcfork->ff_blocks,VTOC(rsrc_vp)->c_rsrcfork->ff_size);
5240 fp
= VTOC(rsrc_vp
)->c_rsrcfork
;
5244 if (fp
->ff_blocks
== 0) {
5247 // use a distinct error code for a compressed file that has no resource fork;
5248 // we return EALREADY to indicate that the data is already probably hot file
5249 // cached because it's in an EA and the attributes btree is on the ssd
5259 for (i
= 0; i
< kHFSPlusExtentDensity
; i
++) {
5260 if (fp
->ff_extents
[i
].startBlock
== 0) {
5264 err
= hfs_pin_block_range(hfsmp
, pin_state
, fp
->ff_extents
[i
].startBlock
, fp
->ff_extents
[i
].blockCount
);
5268 npinned
+= fp
->ff_extents
[i
].blockCount
;
5272 if (err
|| npinned
== 0) {
5276 if (fp
->ff_extents
[kHFSPlusExtentDensity
-1].startBlock
) {
5278 uint8_t forktype
= 0;
5280 if (fp
== VTOC(vp
)->c_rsrcfork
) {
5284 * The file could have overflow extents, better pin them.
5286 * We assume that since we are holding the cnode lock for this cnode,
5287 * the files extents cannot be manipulated, but the tree could, so we
5288 * need to ensure that it doesn't change behind our back as we iterate it.
5290 int lockflags
= hfs_systemfile_lock (hfsmp
, SFL_EXTENTS
, HFS_SHARED_LOCK
);
5291 err
= hfs_pin_overflow_extents(hfsmp
, VTOC(vp
)->c_fileid
, forktype
, &pblocks
);
5292 hfs_systemfile_unlock (hfsmp
, lockflags
);
5301 if (num_blocks_pinned
) {
5302 *num_blocks_pinned
= npinned
;
5305 if (need_put
&& rsrc_vp
) {
5307 // have to unlock the cnode since it's shared between the
5308 // resource fork vnode and the data fork vnode (and the
5309 // vnode_put() may need to re-acquire the cnode lock to
5310 // reclaim the resource fork vnode)
5312 hfs_unlock(VTOC(vp
));
5314 hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
5321 * Relocate a file to a new location on disk
5322 * cnode must be locked on entry
5324 * Relocation occurs by cloning the file's data from its
5325 * current set of blocks to a new set of blocks. During
5326 * the relocation all of the blocks (old and new) are
5327 * owned by the file.
5334 * ----------------- -----------------
5335 * |///////////////| | | STEP 1 (acquire new blocks)
5336 * ----------------- -----------------
5339 * ----------------- -----------------
5340 * |///////////////| |///////////////| STEP 2 (clone data)
5341 * ----------------- -----------------
5345 * |///////////////| STEP 3 (head truncate blocks)
5349 * During steps 2 and 3 page-outs to file offsets less
5350 * than or equal to N are suspended.
5352 * During step 3 page-ins to the file get suspended.
5355 hfs_relocate(struct vnode
*vp
, u_int32_t blockHint
, kauth_cred_t cred
,
5359 struct filefork
*fp
;
5360 struct hfsmount
*hfsmp
;
5365 u_int32_t nextallocsave
;
5366 daddr64_t sector_a
, sector_b
;
5371 int took_trunc_lock
= 0;
5373 enum vtype vnodetype
;
5375 vnodetype
= vnode_vtype(vp
);
5376 if (vnodetype
!= VREG
) {
5377 /* Not allowed to move symlinks. */
5382 if (hfsmp
->hfs_flags
& HFS_FRAGMENTED_FREESPACE
) {
5388 if (fp
->ff_unallocblocks
)
5393 * <rdar://problem/9118426>
5394 * Disable HFS file relocation on content-protected filesystems
5396 if (cp_fs_protected (hfsmp
->hfs_mp
)) {
5400 /* If it's an SSD, also disable HFS relocation */
5401 if (hfsmp
->hfs_flags
& HFS_SSD
) {
5406 blksize
= hfsmp
->blockSize
;
5408 blockHint
= hfsmp
->nextAllocation
;
5410 if (fp
->ff_size
> 0x7fffffff) {
5414 if (!vnode_issystem(vp
) && (vnodetype
!= VLNK
)) {
5416 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_DEFAULT
);
5417 /* Force lock since callers expects lock to be held. */
5418 if ((retval
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
))) {
5419 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
5422 /* No need to continue if file was removed. */
5423 if (cp
->c_flag
& C_NOEXISTS
) {
5424 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
5427 took_trunc_lock
= 1;
5429 headblks
= fp
->ff_blocks
;
5430 datablks
= howmany(fp
->ff_size
, blksize
);
5431 growsize
= datablks
* blksize
;
5432 eflags
= kEFContigMask
| kEFAllMask
| kEFNoClumpMask
;
5433 if (blockHint
>= hfsmp
->hfs_metazone_start
&&
5434 blockHint
<= hfsmp
->hfs_metazone_end
)
5435 eflags
|= kEFMetadataMask
;
5437 if (hfs_start_transaction(hfsmp
) != 0) {
5438 if (took_trunc_lock
)
5439 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
5444 * Protect the extents b-tree and the allocation bitmap
5445 * during MapFileBlockC and ExtendFileC operations.
5447 lockflags
= SFL_BITMAP
;
5448 if (overflow_extents(fp
))
5449 lockflags
|= SFL_EXTENTS
;
5450 lockflags
= hfs_systemfile_lock(hfsmp
, lockflags
, HFS_EXCLUSIVE_LOCK
);
5452 retval
= MapFileBlockC(hfsmp
, (FCB
*)fp
, 1, growsize
- 1, §or_a
, NULL
);
5454 retval
= MacToVFSError(retval
);
5459 * STEP 1 - acquire new allocation blocks.
5461 nextallocsave
= hfsmp
->nextAllocation
;
5462 retval
= ExtendFileC(hfsmp
, (FCB
*)fp
, growsize
, blockHint
, eflags
, &newbytes
);
5463 if (eflags
& kEFMetadataMask
) {
5464 hfs_lock_mount(hfsmp
);
5465 HFS_UPDATE_NEXT_ALLOCATION(hfsmp
, nextallocsave
);
5466 MarkVCBDirty(hfsmp
);
5467 hfs_unlock_mount(hfsmp
);
5470 retval
= MacToVFSError(retval
);
5472 cp
->c_flag
|= C_MODIFIED
;
5473 if (newbytes
< growsize
) {
5476 } else if (fp
->ff_blocks
< (headblks
+ datablks
)) {
5477 printf("hfs_relocate: allocation failed id=%u, vol=%s\n", cp
->c_cnid
, hfsmp
->vcbVN
);
5482 retval
= MapFileBlockC(hfsmp
, (FCB
*)fp
, 1, growsize
, §or_b
, NULL
);
5484 retval
= MacToVFSError(retval
);
5485 } else if ((sector_a
+ 1) == sector_b
) {
5488 } else if ((eflags
& kEFMetadataMask
) &&
5489 ((((u_int64_t
)sector_b
* hfsmp
->hfs_logical_block_size
) / blksize
) >
5490 hfsmp
->hfs_metazone_end
)) {
5492 const char * filestr
;
5493 char emptystr
= '\0';
5495 if (cp
->c_desc
.cd_nameptr
!= NULL
) {
5496 filestr
= (const char *)&cp
->c_desc
.cd_nameptr
[0];
5497 } else if (vnode_name(vp
) != NULL
) {
5498 filestr
= vnode_name(vp
);
5500 filestr
= &emptystr
;
5507 /* Done with system locks and journal for now. */
5508 hfs_systemfile_unlock(hfsmp
, lockflags
);
5510 hfs_end_transaction(hfsmp
);
5515 * Check to see if failure is due to excessive fragmentation.
5517 if ((retval
== ENOSPC
) &&
5518 (hfs_freeblks(hfsmp
, 0) > (datablks
* 2))) {
5519 hfsmp
->hfs_flags
|= HFS_FRAGMENTED_FREESPACE
;
5524 * STEP 2 - clone file data into the new allocation blocks.
5527 if (vnodetype
== VLNK
)
5529 else if (vnode_issystem(vp
))
5530 retval
= hfs_clonesysfile(vp
, headblks
, datablks
, blksize
, cred
, p
);
5532 retval
= hfs_clonefile(vp
, headblks
, datablks
, blksize
);
5534 /* Start transaction for step 3 or for a restore. */
5535 if (hfs_start_transaction(hfsmp
) != 0) {
5544 * STEP 3 - switch to cloned data and remove old blocks.
5546 lockflags
= SFL_BITMAP
;
5547 if (overflow_extents(fp
))
5548 lockflags
|= SFL_EXTENTS
;
5549 lockflags
= hfs_systemfile_lock(hfsmp
, lockflags
, HFS_EXCLUSIVE_LOCK
);
5551 retval
= HeadTruncateFile(hfsmp
, (FCB
*)fp
, headblks
);
5553 hfs_systemfile_unlock(hfsmp
, lockflags
);
5558 if (took_trunc_lock
)
5559 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
5562 hfs_systemfile_unlock(hfsmp
, lockflags
);
5566 /* Push cnode's new extent data to disk. */
5571 if (cp
->c_cnid
< kHFSFirstUserCatalogNodeID
)
5572 (void) hfs_flushvolumeheader(hfsmp
, HFS_FVH_WAIT
| HFS_FVH_WRITE_ALT
);
5574 (void) hfs_flushvolumeheader(hfsmp
, 0);
5578 hfs_end_transaction(hfsmp
);
5583 if (fp
->ff_blocks
== headblks
) {
5584 if (took_trunc_lock
)
5585 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
5589 * Give back any newly allocated space.
5591 if (lockflags
== 0) {
5592 lockflags
= SFL_BITMAP
;
5593 if (overflow_extents(fp
))
5594 lockflags
|= SFL_EXTENTS
;
5595 lockflags
= hfs_systemfile_lock(hfsmp
, lockflags
, HFS_EXCLUSIVE_LOCK
);
5598 (void) TruncateFileC(hfsmp
, (FCB
*)fp
, fp
->ff_size
, 0, FORK_IS_RSRC(fp
),
5599 FTOC(fp
)->c_fileid
, false);
5601 hfs_systemfile_unlock(hfsmp
, lockflags
);
5604 if (took_trunc_lock
)
5605 hfs_unlock_truncate(cp
, HFS_LOCK_DEFAULT
);
5611 * Clone a file's data within the file.
5615 hfs_clonefile(struct vnode
*vp
, int blkstart
, int blkcnt
, int blksize
)
5626 writebase
= blkstart
* blksize
;
5627 copysize
= blkcnt
* blksize
;
5628 iosize
= bufsize
= MIN(copysize
, 128 * 1024);
5631 hfs_unlock(VTOC(vp
));
5634 if ((error
= cp_handle_vnop(vp
, CP_WRITE_ACCESS
, 0)) != 0) {
5635 hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
5638 #endif /* CONFIG_PROTECT */
5640 bufp
= hfs_malloc(bufsize
);
5642 auio
= uio_create(1, 0, UIO_SYSSPACE
, UIO_READ
);
5644 while (offset
< copysize
) {
5645 iosize
= MIN(copysize
- offset
, iosize
);
5647 uio_reset(auio
, offset
, UIO_SYSSPACE
, UIO_READ
);
5648 uio_addiov(auio
, (uintptr_t)bufp
, iosize
);
5650 error
= cluster_read(vp
, auio
, copysize
, IO_NOCACHE
);
5652 printf("hfs_clonefile: cluster_read failed - %d\n", error
);
5655 if (uio_resid(auio
) != 0) {
5656 printf("hfs_clonefile: cluster_read: uio_resid = %lld\n", (int64_t)uio_resid(auio
));
5661 uio_reset(auio
, writebase
+ offset
, UIO_SYSSPACE
, UIO_WRITE
);
5662 uio_addiov(auio
, (uintptr_t)bufp
, iosize
);
5664 error
= cluster_write(vp
, auio
, writebase
+ offset
,
5665 writebase
+ offset
+ iosize
,
5666 uio_offset(auio
), 0, IO_NOCACHE
| IO_SYNC
);
5668 printf("hfs_clonefile: cluster_write failed - %d\n", error
);
5671 if (uio_resid(auio
) != 0) {
5672 printf("hfs_clonefile: cluster_write failed - uio_resid not zero\n");
5680 if ((blksize
& PAGE_MASK
)) {
5682 * since the copy may not have started on a PAGE
5683 * boundary (or may not have ended on one), we
5684 * may have pages left in the cache since NOCACHE
5685 * will let partially written pages linger...
5686 * lets just flush the entire range to make sure
5687 * we don't have any pages left that are beyond
5688 * (or intersect) the real LEOF of this file
5690 ubc_msync(vp
, writebase
, writebase
+ offset
, NULL
, UBC_INVALIDATE
| UBC_PUSHDIRTY
);
5693 * No need to call ubc_msync or hfs_invalbuf
5694 * since the file was copied using IO_NOCACHE and
5695 * the copy was done starting and ending on a page
5696 * boundary in the file.
5699 hfs_free(bufp
, bufsize
);
5701 hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
, HFS_LOCK_ALLOW_NOEXISTS
);
5706 * Clone a system (metadata) file.
5710 hfs_clonesysfile(struct vnode
*vp
, int blkstart
, int blkcnt
, int blksize
,
5711 kauth_cred_t cred
, struct proc
*p
)
5717 struct buf
*bp
= NULL
;
5720 daddr64_t start_blk
;
5727 iosize
= GetLogicalBlockSize(vp
);
5728 bufsize
= MIN(blkcnt
* blksize
, 1024 * 1024) & ~(iosize
- 1);
5729 breadcnt
= bufsize
/ iosize
;
5731 bufp
= hfs_malloc(bufsize
);
5733 start_blk
= ((daddr64_t
)blkstart
* blksize
) / iosize
;
5734 last_blk
= ((daddr64_t
)blkcnt
* blksize
) / iosize
;
5737 while (blkno
< last_blk
) {
5739 * Read up to a megabyte
5742 for (i
= 0, blk
= blkno
; (i
< breadcnt
) && (blk
< last_blk
); ++i
, ++blk
) {
5743 error
= (int)buf_meta_bread(vp
, blk
, iosize
, cred
, &bp
);
5745 printf("hfs_clonesysfile: meta_bread error %d\n", error
);
5748 if (buf_count(bp
) != iosize
) {
5749 printf("hfs_clonesysfile: b_bcount is only %d\n", buf_count(bp
));
5752 bcopy((char *)buf_dataptr(bp
), offset
, iosize
);
5754 buf_markinvalid(bp
);
5762 * Write up to a megabyte
5765 for (i
= 0; (i
< breadcnt
) && (blkno
< last_blk
); ++i
, ++blkno
) {
5766 bp
= buf_getblk(vp
, start_blk
+ blkno
, iosize
, 0, 0, BLK_META
);
5768 printf("hfs_clonesysfile: getblk failed on blk %qd\n", start_blk
+ blkno
);
5772 bcopy(offset
, (char *)buf_dataptr(bp
), iosize
);
5773 error
= (int)buf_bwrite(bp
);
5785 hfs_free(bufp
, bufsize
);
5787 error
= hfs_fsync(vp
, MNT_WAIT
, 0, p
);
5792 errno_t
hfs_flush_invalid_ranges(vnode_t vp
)
5794 cnode_t
*cp
= VTOC(vp
);
5796 hfs_assert(cp
->c_lockowner
== current_thread());
5797 hfs_assert(cp
->c_truncatelockowner
== current_thread());
5799 if (!ISSET(cp
->c_flag
, C_ZFWANTSYNC
) && !cp
->c_zftimeout
)
5802 filefork_t
*fp
= VTOF(vp
);
5805 * We can't hold the cnode lock whilst we call cluster_write so we
5806 * need to copy the extents into a local buffer.
5811 } exts_buf
[max_exts
]; // 256 bytes
5812 struct ext
*exts
= exts_buf
;
5816 struct rl_entry
*r
= TAILQ_FIRST(&fp
->ff_invalidranges
);
5819 /* If we have more than can fit in our stack buffer, switch
5820 to a heap buffer. */
5821 if (exts
== exts_buf
&& ext_count
== max_exts
) {
5823 exts
= hfs_malloc(sizeof(struct ext
) * max_exts
);
5824 memcpy(exts
, exts_buf
, ext_count
* sizeof(struct ext
));
5827 struct rl_entry
*next
= TAILQ_NEXT(r
, rl_link
);
5829 exts
[ext_count
++] = (struct ext
){ r
->rl_start
, r
->rl_end
};
5831 if (!next
|| (ext_count
== max_exts
&& exts
!= exts_buf
)) {
5833 for (int i
= 0; i
< ext_count
; ++i
) {
5834 ret
= cluster_write(vp
, NULL
, fp
->ff_size
, exts
[i
].end
+ 1,
5836 IO_HEADZEROFILL
| IO_NOZERODIRTY
| IO_NOCACHE
);
5838 hfs_lock_always(cp
, HFS_EXCLUSIVE_LOCK
);
5844 hfs_lock_always(cp
, HFS_EXCLUSIVE_LOCK
);
5848 /* Push any existing clusters which should clean up our invalid
5849 ranges as they go through hfs_vnop_blockmap. */
5850 cluster_push(vp
, 0);
5852 hfs_lock_always(cp
, HFS_EXCLUSIVE_LOCK
);
5855 * Get back to where we were (given we dropped the lock).
5856 * This shouldn't be many because we pushed above.
5858 TAILQ_FOREACH(r
, &fp
->ff_invalidranges
, rl_link
) {
5859 if (r
->rl_end
> exts
[ext_count
- 1].end
)
5872 if (exts
!= exts_buf
)
5873 hfs_free(exts
, sizeof(struct ext
) * max_exts
);