dyld-640.2.tar.gz
[apple/dyld.git] / include / objc-shared-cache.h
1 /*
2 * Copyright (c) 2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
11 * file.
12 *
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
20 *
21 * @APPLE_LICENSE_HEADER_END@
22 */
23
24 /*
25 Portions derived from:
26
27 --------------------------------------------------------------------
28 lookup8.c, by Bob Jenkins, January 4 1997, Public Domain.
29 hash(), hash2(), hash3, and mix() are externally useful functions.
30 Routines to test the hash are included if SELF_TEST is defined.
31 You can use this free for any purpose. It has no warranty.
32 --------------------------------------------------------------------
33
34 ------------------------------------------------------------------------------
35 perfect.c: code to generate code for a hash for perfect hashing.
36 (c) Bob Jenkins, September 1996, December 1999
37 You may use this code in any way you wish, and it is free. No warranty.
38 I hereby place this in the public domain.
39 Source is http://burtleburtle.net/bob/c/perfect.c
40 ------------------------------------------------------------------------------
41 */
42
43 /*
44 * objc-selopt.h
45 * Interface between libobjc and dyld
46 * for selector uniquing in the dyld shared cache.
47 *
48 * When building the shared cache, dyld locates all selectors and selector
49 * references in the cached images. It builds a perfect hash table out of
50 * them and writes the table into the shared cache copy of libobjc.
51 * libobjc then uses that table as the builtin selector list.
52 *
53 * Versioning
54 * The table has a version number. dyld and objc can both ignore the table
55 * if the other used the wrong version number.
56 *
57 * Completeness
58 * Not all libraries are in the shared cache. Libraries that are in the
59 * shared cache and were optimized are specially marked. Libraries on
60 * disk never include those marks.
61 *
62 * Coherency
63 * Libraries optimized in the shared cache can be replaced by unoptimized
64 * copies from disk when loaded. The copy from disk is not marked and will
65 * be fixed up by libobjc. The shared cache copy is still mapped into the
66 * process, so the table can point to cstring data in that library's part
67 * of the shared cache without trouble.
68 *
69 * Atomicity
70 * dyld writes the table itself last. If dyld marks some metadata as
71 * updated but then fails to write a table for some reason, libobjc
72 * fixes up all metadata as if it were not marked.
73 */
74
75 #ifndef _OBJC_SELOPT_H
76 #define _OBJC_SELOPT_H
77
78 /*
79 DO NOT INCLUDE ANY objc HEADERS HERE
80 dyld USES THIS FILE AND CANNOT SEE THEM
81 */
82 #include <stdint.h>
83 #include <stdlib.h>
84 #ifdef SELOPT_WRITE
85 #include <unordered_map>
86 #endif
87 /*
88 DO NOT INCLUDE ANY objc HEADERS HERE
89 dyld USES THIS FILE AND CANNOT SEE THEM
90 */
91
92 #ifndef STATIC_ASSERT
93 # define STATIC_ASSERT(x) _STATIC_ASSERT2(x, __LINE__)
94 # define _STATIC_ASSERT2(x, line) _STATIC_ASSERT3(x, line)
95 # define _STATIC_ASSERT3(x, line) \
96 typedef struct { \
97 int _static_assert[(x) ? 0 : -1]; \
98 } _static_assert_ ## line __attribute__((unavailable))
99 #endif
100
101 #define SELOPT_DEBUG 0
102
103 #define S32(x) x = little_endian ? OSSwapHostToLittleInt32(x) : OSSwapHostToBigInt32(x)
104 #define S64(x) x = little_endian ? OSSwapHostToLittleInt64(x) : OSSwapHostToBigInt64(x)
105
106 namespace objc_opt {
107
108 typedef int32_t objc_stringhash_offset_t;
109 typedef uint8_t objc_stringhash_check_t;
110
111 static uint64_t lookup8( uint8_t *k, size_t length, uint64_t level);
112
113 #ifdef SELOPT_WRITE
114
115 // Perfect hash code is at the end of this file.
116
117 struct __attribute__((packed)) perfect_hash {
118 uint32_t capacity;
119 uint32_t occupied;
120 uint32_t shift;
121 uint32_t mask;
122 uint64_t salt;
123
124 uint32_t scramble[256];
125 uint8_t *tab; // count == mask+1; free with delete[]
126
127 perfect_hash() : tab(0) { }
128
129 ~perfect_hash() { if (tab) delete[] tab; }
130 };
131
132 struct eqstr {
133 bool operator()(const char* s1, const char* s2) const {
134 return strcmp(s1, s2) == 0;
135 }
136 };
137
138 struct hashstr {
139 size_t operator()(const char *s) const {
140 return (size_t)lookup8((uint8_t *)s, strlen(s), 0);
141 }
142 };
143
144 // cstring => cstring's vmaddress
145 // (used for selector names and class names)
146 typedef std::unordered_map<const char *, uint64_t, hashstr, eqstr> string_map;
147
148 // protocol name => protocol vmaddress
149 typedef std::unordered_map<const char *, uint64_t, hashstr, eqstr> protocol_map;
150
151 // class name => (class vmaddress, header_info vmaddress)
152 typedef std::unordered_multimap<const char *, std::pair<uint64_t, uint64_t>, hashstr, eqstr> class_map;
153
154 static perfect_hash make_perfect(const string_map& strings);
155
156 #endif
157
158
159 // Precomputed perfect hash table of strings.
160 // Base class for precomputed selector table and class table.
161 // Edit objc-sel-table.s if you change this structure.
162 struct __attribute__((packed)) objc_stringhash_t {
163 uint32_t capacity;
164 uint32_t occupied;
165 uint32_t shift;
166 uint32_t mask;
167 uint32_t unused1; // was zero
168 uint32_t unused2; // alignment pad
169 uint64_t salt;
170
171 uint32_t scramble[256];
172 uint8_t tab[0]; /* tab[mask+1] (always power-of-2) */
173 // uint8_t checkbytes[capacity]; /* check byte for each string */
174 // int32_t offsets[capacity]; /* offsets from &capacity to cstrings */
175
176 objc_stringhash_check_t *checkbytes() { return (objc_stringhash_check_t *)&tab[mask+1]; }
177 const objc_stringhash_check_t *checkbytes() const { return (const objc_stringhash_check_t *)&tab[mask+1]; }
178
179 objc_stringhash_offset_t *offsets() { return (objc_stringhash_offset_t *)&checkbytes()[capacity]; }
180 const objc_stringhash_offset_t *offsets() const { return (const objc_stringhash_offset_t *)&checkbytes()[capacity]; }
181
182 uint32_t hash(const char *key, size_t keylen) const
183 {
184 uint64_t val = lookup8((uint8_t*)key, keylen, salt);
185 uint32_t index = (uint32_t)(val>>shift) ^ scramble[tab[val&mask]];
186 return index;
187 }
188
189 uint32_t hash(const char *key) const
190 {
191 return hash(key, strlen(key));
192 }
193
194 // The check bytes areused to reject strings that aren't in the table
195 // without paging in the table's cstring data. This checkbyte calculation
196 // catches 4785/4815 rejects when launching Safari; a perfect checkbyte
197 // would catch 4796/4815.
198 objc_stringhash_check_t checkbyte(const char *key, size_t keylen) const
199 {
200 return
201 ((key[0] & 0x7) << 5)
202 |
203 ((uint8_t)keylen & 0x1f);
204 }
205
206 objc_stringhash_check_t checkbyte(const char *key) const
207 {
208 return checkbyte(key, strlen(key));
209 }
210
211
212 #define INDEX_NOT_FOUND (~(uint32_t)0)
213
214 uint32_t getIndex(const char *key) const
215 {
216 size_t keylen = strlen(key);
217 uint32_t h = hash(key, keylen);
218
219 // Use check byte to reject without paging in the table's cstrings
220 objc_stringhash_check_t h_check = checkbytes()[h];
221 objc_stringhash_check_t key_check = checkbyte(key, keylen);
222 bool check_fail = (h_check != key_check);
223 #if ! SELOPT_DEBUG
224 if (check_fail) return INDEX_NOT_FOUND;
225 #endif
226
227 objc_stringhash_offset_t offset = offsets()[h];
228 if (offset == 0) return INDEX_NOT_FOUND;
229 const char *result = (const char *)this + offset;
230 if (0 != strcmp(key, result)) return INDEX_NOT_FOUND;
231
232 #if SELOPT_DEBUG
233 if (check_fail) abort();
234 #endif
235
236 return h;
237 }
238
239 #ifdef SELOPT_WRITE
240
241 size_t size()
242 {
243 return sizeof(objc_stringhash_t)
244 + mask+1
245 + capacity * sizeof(objc_stringhash_check_t)
246 + capacity * sizeof(objc_stringhash_offset_t);
247 }
248
249 void byteswap(bool little_endian)
250 {
251 // tab and checkbytes are arrays of bytes, no swap needed
252 for (uint32_t i = 0; i < 256; i++) {
253 S32(scramble[i]);
254 }
255 objc_stringhash_offset_t *o = offsets();
256 for (uint32_t i = 0; i < capacity; i++) {
257 S32(o[i]);
258 }
259
260 S32(capacity);
261 S32(occupied);
262 S32(shift);
263 S32(mask);
264 S64(salt);
265 }
266
267 const char *write(uint64_t base, size_t remaining, string_map& strings)
268 {
269 if (sizeof(objc_stringhash_t) > remaining) {
270 return "selector section too small (metadata not optimized)";
271 }
272
273 if (strings.size() == 0) {
274 bzero(this, sizeof(objc_stringhash_t));
275 return NULL;
276 }
277
278 perfect_hash phash = make_perfect(strings);
279 if (phash.capacity == 0) {
280 return "perfect hash failed (metadata not optimized)";
281 }
282
283 // Set header
284 capacity = phash.capacity;
285 occupied = phash.occupied;
286 shift = phash.shift;
287 mask = phash.mask;
288 unused1 = 0;
289 unused2 = 0;
290 salt = phash.salt;
291
292 if (size() > remaining) {
293 return "selector section too small (metadata not optimized)";
294 }
295
296 // Set hash data
297 for (uint32_t i = 0; i < 256; i++) {
298 scramble[i] = phash.scramble[i];
299 }
300 for (uint32_t i = 0; i < phash.mask+1; i++) {
301 tab[i] = phash.tab[i];
302 }
303
304 // Set offsets to 0
305 for (uint32_t i = 0; i < phash.capacity; i++) {
306 offsets()[i] = 0;
307 }
308 // Set checkbytes to 0
309 for (uint32_t i = 0; i < phash.capacity; i++) {
310 checkbytes()[i] = 0;
311 }
312
313 // Set real string offsets and checkbytes
314 # define SHIFT (64 - 8*sizeof(objc_stringhash_offset_t))
315 string_map::const_iterator s;
316 for (s = strings.begin(); s != strings.end(); ++s) {
317 int64_t offset = s->second - base;
318 if ((offset<<SHIFT)>>SHIFT != offset) {
319 return "selector offset too big (metadata not optimized)";
320 }
321
322 uint32_t h = hash(s->first);
323 offsets()[h] = (objc_stringhash_offset_t)offset;
324 checkbytes()[h] = checkbyte(s->first);
325 }
326 # undef SHIFT
327
328 return NULL;
329 }
330
331 // SELOPT_WRITE
332 #endif
333 };
334
335
336 // Precomputed selector table.
337 // Edit objc-sel-table.s if you change this structure.
338 struct objc_selopt_t : objc_stringhash_t {
339 const char *get(const char *key) const
340 {
341 uint32_t h = getIndex(key);
342 if (h == INDEX_NOT_FOUND) return NULL;
343
344 return (const char *)this + offsets()[h];
345 }
346 };
347
348 // Precomputed class list.
349 // Edit objc-sel-table.s if you change these structures.
350
351 struct objc_classheader_t {
352 objc_stringhash_offset_t clsOffset;
353 objc_stringhash_offset_t hiOffset;
354
355 // For duplicate class names:
356 // clsOffset = count<<1 | 1
357 // duplicated classes are duplicateOffsets[hiOffset..hiOffset+count-1]
358 bool isDuplicate() const { return clsOffset & 1; }
359 uint32_t duplicateCount() const { return clsOffset >> 1; }
360 uint32_t duplicateIndex() const { return hiOffset; }
361 };
362
363
364 struct objc_clsopt_t : objc_stringhash_t {
365 // ...objc_stringhash_t fields...
366 // objc_classheader_t classOffsets[capacity]; /* offsets from &capacity to class_t and header_info */
367 // uint32_t duplicateCount;
368 // objc_classheader_t duplicateOffsets[duplicatedClasses];
369
370 objc_classheader_t *classOffsets() { return (objc_classheader_t *)&offsets()[capacity]; }
371 const objc_classheader_t *classOffsets() const { return (const objc_classheader_t *)&offsets()[capacity]; }
372
373 uint32_t& duplicateCount() { return *(uint32_t *)&classOffsets()[capacity]; }
374 const uint32_t& duplicateCount() const { return *(const uint32_t *)&classOffsets()[capacity]; }
375
376 objc_classheader_t *duplicateOffsets() { return (objc_classheader_t *)(&duplicateCount()+1); }
377 const objc_classheader_t *duplicateOffsets() const { return (const objc_classheader_t *)(&duplicateCount()+1); }
378
379 // 0/NULL/NULL: not found
380 // 1/ptr/ptr: found exactly one
381 // n/NULL/NULL: found N - use getClassesAndHeaders() instead
382 uint32_t getClassAndHeader(const char *key, void*& cls, void*& hi) const
383 {
384 uint32_t h = getIndex(key);
385 if (h == INDEX_NOT_FOUND) {
386 cls = NULL;
387 hi = NULL;
388 return 0;
389 }
390
391 const objc_classheader_t& clshi = classOffsets()[h];
392 if (! clshi.isDuplicate()) {
393 // class appears in exactly one header
394 cls = (void *)((const char *)this + clshi.clsOffset);
395 hi = (void *)((const char *)this + clshi.hiOffset);
396 return 1;
397 }
398 else {
399 // class appears in more than one header - use getClassesAndHeaders
400 cls = NULL;
401 hi = NULL;
402 return clshi.duplicateCount();
403 }
404 }
405
406 void getClassesAndHeaders(const char *key, void **cls, void **hi) const
407 {
408 uint32_t h = getIndex(key);
409 if (h == INDEX_NOT_FOUND) return;
410
411 const objc_classheader_t& clshi = classOffsets()[h];
412 if (! clshi.isDuplicate()) {
413 // class appears in exactly one header
414 cls[0] = (void *)((const char *)this + clshi.clsOffset);
415 hi[0] = (void *)((const char *)this + clshi.hiOffset);
416 }
417 else {
418 // class appears in more than one header
419 uint32_t count = clshi.duplicateCount();
420 const objc_classheader_t *list =
421 &duplicateOffsets()[clshi.duplicateIndex()];
422 for (uint32_t i = 0; i < count; i++) {
423 cls[i] = (void *)((const char *)this + list[i].clsOffset);
424 hi[i] = (void *)((const char *)this + list[i].hiOffset);
425 }
426 }
427 }
428
429 #ifdef SELOPT_WRITE
430
431 size_t size()
432 {
433 return
434 objc_stringhash_t::size()
435 + capacity * sizeof(objc_classheader_t)
436 + sizeof(duplicateCount())
437 + duplicateCount() * sizeof(objc_classheader_t);
438 }
439
440 void byteswap(bool little_endian)
441 {
442 objc_classheader_t *o;
443
444 o = classOffsets();
445 for (uint32_t i = 0; i < capacity; i++) {
446 S32(o[i].clsOffset);
447 S32(o[i].hiOffset);
448 }
449
450 o = duplicateOffsets();
451 for (uint32_t i = 0; i < duplicateCount(); i++) {
452 S32(o[i].clsOffset);
453 S32(o[i].hiOffset);
454 }
455
456 S32(duplicateCount());
457
458 objc_stringhash_t::byteswap(little_endian);
459 }
460
461 const char *write(uint64_t base, size_t remaining,
462 string_map& strings, class_map& classes, bool verbose)
463 {
464 const char *err;
465 err = objc_stringhash_t::write(base, remaining, strings);
466 if (err) return err;
467
468 if (size() > remaining) {
469 return "selector section too small (metadata not optimized)";
470 }
471
472 // Set class offsets to 0
473 for (uint32_t i = 0; i < capacity; i++) {
474 classOffsets()[i].clsOffset = 0;
475 classOffsets()[i].hiOffset = 0;
476 }
477
478 // Set real class offsets
479 # define SHIFT (64 - 8*sizeof(objc_stringhash_offset_t))
480 class_map::const_iterator c;
481 for (c = classes.begin(); c != classes.end(); ++c) {
482 uint32_t h = getIndex(c->first);
483 if (h == INDEX_NOT_FOUND) {
484 return "class list busted (metadata not optimized)";
485 }
486
487 if (classOffsets()[h].clsOffset != 0) {
488 // already did this class
489 continue;
490 }
491
492 uint32_t count = (uint32_t)classes.count(c->first);
493 if (count == 1) {
494 // only one class with this name
495
496 int64_t coff = c->second.first - base;
497 int64_t hoff = c->second.second - base;
498 if ((coff<<SHIFT)>>SHIFT != coff) {
499 return "class offset too big (metadata not optimized)";
500 }
501 if ((hoff<<SHIFT)>>SHIFT != hoff) {
502 return "header offset too big (metadata not optimized)";
503 }
504
505 classOffsets()[h].clsOffset = (objc_stringhash_offset_t)coff;
506 classOffsets()[h].hiOffset = (objc_stringhash_offset_t)hoff;
507 }
508 else {
509 // class name has duplicates - write them all now
510 if (verbose) {
511 fprintf(stderr, "update_dyld_shared_cache: %u duplicates of Objective-C class %s\n", count, c->first);
512 }
513
514 uint32_t dest = duplicateCount();
515 duplicateCount() += count;
516 if (size() > remaining) {
517 return "selector section too small (metadata not optimized)";
518 }
519
520 // classOffsets() instead contains count and array index
521 classOffsets()[h].clsOffset = count*2 + 1;
522 classOffsets()[h].hiOffset = dest;
523
524 std::pair<class_map::const_iterator, class_map::const_iterator>
525 duplicates = classes.equal_range(c->first);
526 class_map::const_iterator dup;
527 for (dup = duplicates.first; dup != duplicates.second; ++dup) {
528 int64_t coff = dup->second.first - base;
529 int64_t hoff = dup->second.second - base;
530 if ((coff<<SHIFT)>>SHIFT != coff) {
531 return "class offset too big (metadata not optimized)";
532 }
533 if ((hoff<<SHIFT)>>SHIFT != hoff) {
534 return "header offset too big (metadata not optimized)";
535 }
536
537 duplicateOffsets()[dest].clsOffset = (objc_stringhash_offset_t)coff;
538 duplicateOffsets()[dest].hiOffset = (objc_stringhash_offset_t)hoff;
539 dest++;
540 }
541 }
542 }
543 # undef SHIFT
544
545 return NULL;
546 }
547
548 // SELOPT_WRITE
549 #endif
550 };
551
552
553
554 struct objc_protocolopt_t : objc_stringhash_t {
555 // ...objc_stringhash_t fields...
556 // uint32_t protocolOffsets[capacity]; /* offsets from &capacity to protocol_t */
557
558 objc_stringhash_offset_t *protocolOffsets() { return (objc_stringhash_offset_t *)&offsets()[capacity]; }
559 const objc_stringhash_offset_t *protocolOffsets() const { return (const objc_stringhash_offset_t *)&offsets()[capacity]; }
560
561 void* getProtocol(const char *key) const
562 {
563 uint32_t h = getIndex(key);
564 if (h == INDEX_NOT_FOUND) {
565 return NULL;
566 }
567
568 return (void *)((const char *)this + protocolOffsets()[h]);
569 }
570
571 #ifdef SELOPT_WRITE
572
573 size_t size()
574 {
575 return
576 objc_stringhash_t::size() + capacity * sizeof(objc_stringhash_offset_t);
577 }
578
579 void byteswap(bool little_endian)
580 {
581 objc_stringhash_offset_t *o;
582
583 o = protocolOffsets();
584 for (objc_stringhash_offset_t i = 0; i < (int)capacity; i++) {
585 S32(o[i]);
586 }
587
588 objc_stringhash_t::byteswap(little_endian);
589 }
590
591 const char *write(uint64_t base, size_t remaining,
592 string_map& strings, protocol_map& protocols,
593 bool verbose)
594 {
595 const char *err;
596 err = objc_stringhash_t::write(base, remaining, strings);
597 if (err) return err;
598
599 if (size() > remaining) {
600 return "selector section too small (metadata not optimized)";
601 }
602
603 // Set protocol offsets to 0
604 for (uint32_t i = 0; i < capacity; i++) {
605 protocolOffsets()[i] = 0;
606 }
607
608 // Set real protocol offsets
609 # define SHIFT (64 - 8*sizeof(objc_stringhash_offset_t))
610 protocol_map::const_iterator c;
611 for (c = protocols.begin(); c != protocols.end(); ++c) {
612 uint32_t h = getIndex(c->first);
613 if (h == INDEX_NOT_FOUND) {
614 return "protocol list busted (metadata not optimized)";
615 }
616
617 int64_t offset = c->second - base;
618 if ((offset<<SHIFT)>>SHIFT != offset) {
619 return "protocol offset too big (metadata not optimized)";
620 }
621
622 protocolOffsets()[h] = (objc_stringhash_offset_t)offset;
623 }
624 # undef SHIFT
625
626 return NULL;
627 }
628
629 // SELOPT_WRITE
630 #endif
631 };
632
633
634 // Precomputed image list.
635 struct objc_headeropt_ro_t;
636
637 // Precomputed image list.
638 struct objc_headeropt_rw_t;
639
640 // Precomputed class list.
641 struct objc_clsopt_t;
642
643 // Edit objc-sel-table.s if you change this value.
644 // lldb and Symbolication read these structures. Inform them of any changes.
645 enum { VERSION = 15 };
646
647 // Values for objc_opt_t::flags
648 enum : uint32_t {
649 IsProduction = (1 << 0), // never set in development cache
650 NoMissingWeakSuperclasses = (1 << 1), // never set in development cache
651 };
652
653 // Top-level optimization structure.
654 // Edit objc-sel-table.s if you change this structure.
655 struct alignas(alignof(void*)) objc_opt_t {
656 uint32_t version;
657 uint32_t flags;
658 int32_t selopt_offset;
659 int32_t headeropt_ro_offset;
660 int32_t clsopt_offset;
661 int32_t protocolopt_offset;
662 int32_t headeropt_rw_offset;
663
664 const objc_selopt_t* selopt() const {
665 if (selopt_offset == 0) return NULL;
666 return (objc_selopt_t *)((uint8_t *)this + selopt_offset);
667 }
668 objc_selopt_t* selopt() {
669 if (selopt_offset == 0) return NULL;
670 return (objc_selopt_t *)((uint8_t *)this + selopt_offset);
671 }
672
673 struct objc_headeropt_ro_t* headeropt_ro() const {
674 if (headeropt_ro_offset == 0) return NULL;
675 return (struct objc_headeropt_ro_t *)((uint8_t *)this + headeropt_ro_offset);
676 }
677
678 struct objc_clsopt_t* clsopt() const {
679 if (clsopt_offset == 0) return NULL;
680 return (objc_clsopt_t *)((uint8_t *)this + clsopt_offset);
681 }
682
683 struct objc_protocolopt_t* protocolopt() const {
684 if (protocolopt_offset == 0) return NULL;
685 return (objc_protocolopt_t *)((uint8_t *)this + protocolopt_offset);
686 }
687
688 struct objc_headeropt_rw_t* headeropt_rw() const {
689 if (headeropt_rw_offset == 0) return NULL;
690 return (struct objc_headeropt_rw_t *)((uint8_t *)this + headeropt_rw_offset);
691 }
692 };
693
694 // sizeof(objc_opt_t) must be pointer-aligned
695 STATIC_ASSERT(sizeof(objc_opt_t) % sizeof(void*) == 0);
696
697
698 // List of offsets in libobjc that the shared cache optimization needs to use.
699 template <typename T>
700 struct objc_opt_pointerlist_tt {
701 T protocolClass;
702 };
703 typedef struct objc_opt_pointerlist_tt<uintptr_t> objc_opt_pointerlist_t;
704
705
706 /*
707 --------------------------------------------------------------------
708 mix -- mix 3 64-bit values reversibly.
709 mix() takes 48 machine instructions, but only 24 cycles on a superscalar
710 machine (like Intel's new MMX architecture). It requires 4 64-bit
711 registers for 4::2 parallelism.
712 All 1-bit deltas, all 2-bit deltas, all deltas composed of top bits of
713 (a,b,c), and all deltas of bottom bits were tested. All deltas were
714 tested both on random keys and on keys that were nearly all zero.
715 These deltas all cause every bit of c to change between 1/3 and 2/3
716 of the time (well, only 113/400 to 287/400 of the time for some
717 2-bit delta). These deltas all cause at least 80 bits to change
718 among (a,b,c) when the mix is run either forward or backward (yes it
719 is reversible).
720 This implies that a hash using mix64 has no funnels. There may be
721 characteristics with 3-bit deltas or bigger, I didn't test for
722 those.
723 --------------------------------------------------------------------
724 */
725 #define mix64(a,b,c) \
726 { \
727 a -= b; a -= c; a ^= (c>>43); \
728 b -= c; b -= a; b ^= (a<<9); \
729 c -= a; c -= b; c ^= (b>>8); \
730 a -= b; a -= c; a ^= (c>>38); \
731 b -= c; b -= a; b ^= (a<<23); \
732 c -= a; c -= b; c ^= (b>>5); \
733 a -= b; a -= c; a ^= (c>>35); \
734 b -= c; b -= a; b ^= (a<<49); \
735 c -= a; c -= b; c ^= (b>>11); \
736 a -= b; a -= c; a ^= (c>>12); \
737 b -= c; b -= a; b ^= (a<<18); \
738 c -= a; c -= b; c ^= (b>>22); \
739 }
740
741 /*
742 --------------------------------------------------------------------
743 hash() -- hash a variable-length key into a 64-bit value
744 k : the key (the unaligned variable-length array of bytes)
745 len : the length of the key, counting by bytes
746 level : can be any 8-byte value
747 Returns a 64-bit value. Every bit of the key affects every bit of
748 the return value. No funnels. Every 1-bit and 2-bit delta achieves
749 avalanche. About 41+5len instructions.
750
751 The best hash table sizes are powers of 2. There is no need to do
752 mod a prime (mod is sooo slow!). If you need less than 64 bits,
753 use a bitmask. For example, if you need only 10 bits, do
754 h = (h & hashmask(10));
755 In which case, the hash table should have hashsize(10) elements.
756
757 If you are hashing n strings (uint8_t **)k, do it like this:
758 for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
759
760 By Bob Jenkins, Jan 4 1997. bob_jenkins@burtleburtle.net. You may
761 use this code any way you wish, private, educational, or commercial,
762 but I would appreciate if you give me credit.
763
764 See http://burtleburtle.net/bob/hash/evahash.html
765 Use for hash table lookup, or anything where one collision in 2^^64
766 is acceptable. Do NOT use for cryptographic purposes.
767 --------------------------------------------------------------------
768 */
769
770 static uint64_t lookup8( uint8_t *k, size_t length, uint64_t level)
771 // uint8_t *k; /* the key */
772 // uint64_t length; /* the length of the key */
773 // uint64_t level; /* the previous hash, or an arbitrary value */
774 {
775 uint64_t a,b,c;
776 size_t len;
777
778 /* Set up the internal state */
779 len = length;
780 a = b = level; /* the previous hash value */
781 c = 0x9e3779b97f4a7c13LL; /* the golden ratio; an arbitrary value */
782
783 /*---------------------------------------- handle most of the key */
784 while (len >= 24)
785 {
786 a += (k[0] +((uint64_t)k[ 1]<< 8)+((uint64_t)k[ 2]<<16)+((uint64_t)k[ 3]<<24)
787 +((uint64_t)k[4 ]<<32)+((uint64_t)k[ 5]<<40)+((uint64_t)k[ 6]<<48)+((uint64_t)k[ 7]<<56));
788 b += (k[8] +((uint64_t)k[ 9]<< 8)+((uint64_t)k[10]<<16)+((uint64_t)k[11]<<24)
789 +((uint64_t)k[12]<<32)+((uint64_t)k[13]<<40)+((uint64_t)k[14]<<48)+((uint64_t)k[15]<<56));
790 c += (k[16] +((uint64_t)k[17]<< 8)+((uint64_t)k[18]<<16)+((uint64_t)k[19]<<24)
791 +((uint64_t)k[20]<<32)+((uint64_t)k[21]<<40)+((uint64_t)k[22]<<48)+((uint64_t)k[23]<<56));
792 mix64(a,b,c);
793 k += 24; len -= 24;
794 }
795
796 /*------------------------------------- handle the last 23 bytes */
797 c += length;
798 switch(len) /* all the case statements fall through */
799 {
800 case 23: c+=((uint64_t)k[22]<<56);
801 case 22: c+=((uint64_t)k[21]<<48);
802 case 21: c+=((uint64_t)k[20]<<40);
803 case 20: c+=((uint64_t)k[19]<<32);
804 case 19: c+=((uint64_t)k[18]<<24);
805 case 18: c+=((uint64_t)k[17]<<16);
806 case 17: c+=((uint64_t)k[16]<<8);
807 /* the first byte of c is reserved for the length */
808 case 16: b+=((uint64_t)k[15]<<56);
809 case 15: b+=((uint64_t)k[14]<<48);
810 case 14: b+=((uint64_t)k[13]<<40);
811 case 13: b+=((uint64_t)k[12]<<32);
812 case 12: b+=((uint64_t)k[11]<<24);
813 case 11: b+=((uint64_t)k[10]<<16);
814 case 10: b+=((uint64_t)k[ 9]<<8);
815 case 9: b+=((uint64_t)k[ 8]);
816 case 8: a+=((uint64_t)k[ 7]<<56);
817 case 7: a+=((uint64_t)k[ 6]<<48);
818 case 6: a+=((uint64_t)k[ 5]<<40);
819 case 5: a+=((uint64_t)k[ 4]<<32);
820 case 4: a+=((uint64_t)k[ 3]<<24);
821 case 3: a+=((uint64_t)k[ 2]<<16);
822 case 2: a+=((uint64_t)k[ 1]<<8);
823 case 1: a+=((uint64_t)k[ 0]);
824 /* case 0: nothing left to add */
825 }
826 mix64(a,b,c);
827 /*-------------------------------------------- report the result */
828 return c;
829 }
830
831
832 #ifdef SELOPT_WRITE
833
834 /*
835 ------------------------------------------------------------------------------
836 This generates a minimal perfect hash function. That means, given a
837 set of n keys, this determines a hash function that maps each of
838 those keys into a value in 0..n-1 with no collisions.
839
840 The perfect hash function first uses a normal hash function on the key
841 to determine (a,b) such that the pair (a,b) is distinct for all
842 keys, then it computes a^scramble[tab[b]] to get the final perfect hash.
843 tab[] is an array of 1-byte values and scramble[] is a 256-term array of
844 2-byte or 4-byte values. If there are n keys, the length of tab[] is a
845 power of two between n/3 and n.
846
847 I found the idea of computing distinct (a,b) values in "Practical minimal
848 perfect hash functions for large databases", Fox, Heath, Chen, and Daoud,
849 Communications of the ACM, January 1992. They found the idea in Chichelli
850 (CACM Jan 1980). Beyond that, our methods differ.
851
852 The key is hashed to a pair (a,b) where a in 0..*alen*-1 and b in
853 0..*blen*-1. A fast hash function determines both a and b
854 simultaneously. Any decent hash function is likely to produce
855 hashes so that (a,b) is distinct for all pairs. I try the hash
856 using different values of *salt* until all pairs are distinct.
857
858 The final hash is (a XOR scramble[tab[b]]). *scramble* is a
859 predetermined mapping of 0..255 into 0..smax-1. *tab* is an
860 array that we fill in in such a way as to make the hash perfect.
861
862 First we fill in all values of *tab* that are used by more than one
863 key. We try all possible values for each position until one works.
864
865 This leaves m unmapped keys and m values that something could hash to.
866 If you treat unmapped keys as lefthand nodes and unused hash values
867 as righthand nodes, and draw a line connecting each key to each hash
868 value it could map to, you get a bipartite graph. We attempt to
869 find a perfect matching in this graph. If we succeed, we have
870 determined a perfect hash for the whole set of keys.
871
872 *scramble* is used because (a^tab[i]) clusters keys around *a*.
873 ------------------------------------------------------------------------------
874 */
875
876 typedef uint64_t ub8;
877 #define UB8MAXVAL 0xffffffffffffffffLL
878 #define UB8BITS 64
879 typedef uint32_t ub4;
880 #define UB4MAXVAL 0xffffffff
881 #define UB4BITS 32
882 typedef uint16_t ub2;
883 #define UB2MAXVAL 0xffff
884 #define UB2BITS 16
885 typedef uint8_t ub1;
886 #define UB1MAXVAL 0xff
887 #define UB1BITS 8
888
889 #define TRUE 1
890 #define FALSE 0
891
892 #define SCRAMBLE_LEN 256 // ((ub4)1<<16) /* length of *scramble* */
893 #define RETRY_INITKEY 2048 /* number of times to try to find distinct (a,b) */
894 #define RETRY_PERFECT 4 /* number of times to try to make a perfect hash */
895
896
897 /* representation of a key */
898 struct key
899 {
900 ub1 *name_k; /* the actual key */
901 ub4 len_k; /* the length of the actual key */
902 ub4 hash_k; /* the initial hash value for this key */
903 /* beyond this point is mapping-dependent */
904 ub4 a_k; /* a, of the key maps to (a,b) */
905 ub4 b_k; /* b, of the key maps to (a,b) */
906 struct key *nextb_k; /* next key with this b */
907 };
908 typedef struct key key;
909
910 /* things indexed by b of original (a,b) pair */
911 struct bstuff
912 {
913 ub2 val_b; /* hash=a^tabb[b].val_b */
914 key *list_b; /* tabb[i].list_b is list of keys with b==i */
915 ub4 listlen_b; /* length of list_b */
916 ub4 water_b; /* high watermark of who has visited this map node */
917 };
918 typedef struct bstuff bstuff;
919
920 /* things indexed by final hash value */
921 struct hstuff
922 {
923 key *key_h; /* tabh[i].key_h is the key with a hash of i */
924 };
925 typedef struct hstuff hstuff;
926
927 /* things indexed by queue position */
928 struct qstuff
929 {
930 bstuff *b_q; /* b that currently occupies this hash */
931 ub4 parent_q; /* queue position of parent that could use this hash */
932 ub2 newval_q; /* what to change parent tab[b] to to use this hash */
933 ub2 oldval_q; /* original value of tab[b] */
934 };
935 typedef struct qstuff qstuff;
936
937
938 /*
939 ------------------------------------------------------------------------------
940 Find the mapping that will produce a perfect hash
941 ------------------------------------------------------------------------------
942 */
943
944 /* return the ceiling of the log (base 2) of val */
945 static ub4 log2u(ub4 val)
946 {
947 ub4 i;
948 for (i=0; ((ub4)1<<i) < val; ++i)
949 ;
950 return i;
951 }
952
953 /* compute p(x), where p is a permutation of 0..(1<<nbits)-1 */
954 /* permute(0)=0. This is intended and useful. */
955 static ub4 permute(ub4 x, ub4 nbits)
956 // ub4 x; /* input, a value in some range */
957 // ub4 nbits; /* input, number of bits in range */
958 {
959 int i;
960 int mask = ((ub4)1<<nbits)-1; /* all ones */
961 int const2 = 1+nbits/2;
962 int const3 = 1+nbits/3;
963 int const4 = 1+nbits/4;
964 int const5 = 1+nbits/5;
965 for (i=0; i<20; ++i)
966 {
967 x = (x+(x<<const2)) & mask;
968 x = (x^(x>>const3));
969 x = (x+(x<<const4)) & mask;
970 x = (x^(x>>const5));
971 }
972 return x;
973 }
974
975 /* initialize scramble[] with distinct random values in 0..smax-1 */
976 static void scrambleinit(ub4 *scramble, ub4 smax)
977 // ub4 *scramble; /* hash is a^scramble[tab[b]] */
978 // ub4 smax; /* scramble values should be in 0..smax-1 */
979 {
980 ub4 i;
981
982 /* fill scramble[] with distinct random integers in 0..smax-1 */
983 for (i=0; i<SCRAMBLE_LEN; ++i)
984 {
985 scramble[i] = permute(i, log2u(smax));
986 }
987 }
988
989
990 /*
991 * put keys in tabb according to key->b_k
992 * check if the initial hash might work
993 */
994 static int inittab(bstuff *tabb, ub4 blen, key *keys, ub4 nkeys, int complete)
995 // bstuff *tabb; /* output, list of keys with b for (a,b) */
996 // ub4 blen; /* length of tabb */
997 // key *keys; /* list of keys already hashed */
998 // int complete; /* TRUE means to complete init despite collisions */
999 {
1000 int nocollision = TRUE;
1001 ub4 i;
1002
1003 memset((void *)tabb, 0, (size_t)(sizeof(bstuff)*blen));
1004
1005 /* Two keys with the same (a,b) guarantees a collision */
1006 for (i = 0; i < nkeys; i++) {
1007 key *mykey = keys+i;
1008 key *otherkey;
1009
1010 for (otherkey=tabb[mykey->b_k].list_b;
1011 otherkey;
1012 otherkey=otherkey->nextb_k)
1013 {
1014 if (mykey->a_k == otherkey->a_k)
1015 {
1016 nocollision = FALSE;
1017 if (!complete)
1018 return FALSE;
1019 }
1020 }
1021 ++tabb[mykey->b_k].listlen_b;
1022 mykey->nextb_k = tabb[mykey->b_k].list_b;
1023 tabb[mykey->b_k].list_b = mykey;
1024 }
1025
1026 /* no two keys have the same (a,b) pair */
1027 return nocollision;
1028 }
1029
1030
1031 /* Do the initial hash for normal mode (use lookup and checksum) */
1032 static void initnorm(key *keys, ub4 nkeys, ub4 alen, ub4 blen, ub4 smax, ub8 salt)
1033 // key *keys; /* list of all keys */
1034 // ub4 alen; /* (a,b) has a in 0..alen-1, a power of 2 */
1035 // ub4 blen; /* (a,b) has b in 0..blen-1, a power of 2 */
1036 // ub4 smax; /* maximum range of computable hash values */
1037 // ub4 salt; /* used to initialize the hash function */
1038 // gencode *final; /* output, code for the final hash */
1039 {
1040 ub4 loga = log2u(alen); /* log based 2 of blen */
1041 dispatch_apply(nkeys, DISPATCH_APPLY_AUTO, ^(size_t index) {
1042 ub4 i = (ub4)index;
1043 key *mykey = keys+i;
1044 ub8 hash = lookup8(mykey->name_k, mykey->len_k, salt);
1045 mykey->a_k = (loga > 0) ? (ub4)(hash >> (UB8BITS-loga)) : 0;
1046 mykey->b_k = (blen > 1) ? (hash & (blen-1)) : 0;
1047 });
1048 }
1049
1050
1051 /* Try to apply an augmenting list */
1052 static int apply(bstuff *tabb, hstuff *tabh, qstuff *tabq, ub4 blen, ub4 *scramble, ub4 tail, int rollback)
1053 // bstuff *tabb;
1054 // hstuff *tabh;
1055 // qstuff *tabq;
1056 // ub4 blen;
1057 // ub4 *scramble;
1058 // ub4 tail;
1059 // int rollback; /* FALSE applies augmenting path, TRUE rolls back */
1060 {
1061 ub4 hash;
1062 key *mykey;
1063 bstuff *pb;
1064 ub4 child;
1065 ub4 parent;
1066 ub4 stabb; /* scramble[tab[b]] */
1067
1068 /* walk from child to parent */
1069 for (child=tail-1; child; child=parent)
1070 {
1071 parent = tabq[child].parent_q; /* find child's parent */
1072 pb = tabq[parent].b_q; /* find parent's list of siblings */
1073
1074 /* erase old hash values */
1075 stabb = scramble[pb->val_b];
1076 for (mykey=pb->list_b; mykey; mykey=mykey->nextb_k)
1077 {
1078 hash = mykey->a_k^stabb;
1079 if (mykey == tabh[hash].key_h)
1080 { /* erase hash for all of child's siblings */
1081 tabh[hash].key_h = (key *)0;
1082 }
1083 }
1084
1085 /* change pb->val_b, which will change the hashes of all parent siblings */
1086 pb->val_b = (rollback ? tabq[child].oldval_q : tabq[child].newval_q);
1087
1088 /* set new hash values */
1089 stabb = scramble[pb->val_b];
1090 for (mykey=pb->list_b; mykey; mykey=mykey->nextb_k)
1091 {
1092 hash = mykey->a_k^stabb;
1093 if (rollback)
1094 {
1095 if (parent == 0) continue; /* root never had a hash */
1096 }
1097 else if (tabh[hash].key_h)
1098 {
1099 /* very rare: roll back any changes */
1100 apply(tabb, tabh, tabq, blen, scramble, tail, TRUE);
1101 return FALSE; /* failure, collision */
1102 }
1103 tabh[hash].key_h = mykey;
1104 }
1105 }
1106 return TRUE;
1107 }
1108
1109
1110 /*
1111 -------------------------------------------------------------------------------
1112 augment(): Add item to the mapping.
1113
1114 Construct a spanning tree of *b*s with *item* as root, where each
1115 parent can have all its hashes changed (by some new val_b) with
1116 at most one collision, and each child is the b of that collision.
1117
1118 I got this from Tarjan's "Data Structures and Network Algorithms". The
1119 path from *item* to a *b* that can be remapped with no collision is
1120 an "augmenting path". Change values of tab[b] along the path so that
1121 the unmapped key gets mapped and the unused hash value gets used.
1122
1123 Assuming 1 key per b, if m out of n hash values are still unused,
1124 you should expect the transitive closure to cover n/m nodes before
1125 an unused node is found. Sum(i=1..n)(n/i) is about nlogn, so expect
1126 this approach to take about nlogn time to map all single-key b's.
1127 -------------------------------------------------------------------------------
1128 */
1129 static int augment(bstuff *tabb, hstuff *tabh, qstuff *tabq, ub4 blen, ub4 *scramble, ub4 smax, bstuff *item, ub4 nkeys,
1130 ub4 highwater)
1131 // bstuff *tabb; /* stuff indexed by b */
1132 // hstuff *tabh; /* which key is associated with which hash, indexed by hash */
1133 // qstuff *tabq; /* queue of *b* values, this is the spanning tree */
1134 // ub4 blen; /* length of tabb */
1135 // ub4 *scramble; /* final hash is a^scramble[tab[b]] */
1136 // ub4 smax; /* highest value in scramble */
1137 // bstuff *item; /* &tabb[b] for the b to be mapped */
1138 // ub4 nkeys; /* final hash must be in 0..nkeys-1 */
1139 // ub4 highwater; /* a value higher than any now in tabb[].water_b */
1140 {
1141 ub4 q; /* current position walking through the queue */
1142 ub4 tail; /* tail of the queue. 0 is the head of the queue. */
1143 ub4 limit=UB1MAXVAL+1;
1144 ub4 highhash = smax;
1145
1146 /* initialize the root of the spanning tree */
1147 tabq[0].b_q = item;
1148 tail = 1;
1149
1150 /* construct the spanning tree by walking the queue, add children to tail */
1151 for (q=0; q<tail; ++q)
1152 {
1153 bstuff *myb = tabq[q].b_q; /* the b for this node */
1154 ub4 i; /* possible value for myb->val_b */
1155
1156 if (q == 1)
1157 break; /* don't do transitive closure */
1158
1159 for (i=0; i<limit; ++i)
1160 {
1161 bstuff *childb = (bstuff *)0; /* the b that this i maps to */
1162 key *mykey; /* for walking through myb's keys */
1163
1164 for (mykey = myb->list_b; mykey; mykey=mykey->nextb_k)
1165 {
1166 key *childkey;
1167 ub4 hash = mykey->a_k^scramble[i];
1168
1169 if (hash >= highhash) break; /* out of bounds */
1170 childkey = tabh[hash].key_h;
1171
1172 if (childkey)
1173 {
1174 bstuff *hitb = &tabb[childkey->b_k];
1175
1176 if (childb)
1177 {
1178 if (childb != hitb) break; /* hit at most one child b */
1179 }
1180 else
1181 {
1182 childb = hitb; /* remember this as childb */
1183 if (childb->water_b == highwater) break; /* already explored */
1184 }
1185 }
1186 }
1187 if (mykey) continue; /* myb with i has multiple collisions */
1188
1189 /* add childb to the queue of reachable things */
1190 if (childb) childb->water_b = highwater;
1191 tabq[tail].b_q = childb;
1192 tabq[tail].newval_q = i; /* how to make parent (myb) use this hash */
1193 tabq[tail].oldval_q = myb->val_b; /* need this for rollback */
1194 tabq[tail].parent_q = q;
1195 ++tail;
1196
1197 if (!childb)
1198 { /* found an *i* with no collisions? */
1199 /* try to apply the augmenting path */
1200 if (apply(tabb, tabh, tabq, blen, scramble, tail, FALSE))
1201 return TRUE; /* success, item was added to the perfect hash */
1202
1203 --tail; /* don't know how to handle such a child! */
1204 }
1205 }
1206 }
1207 return FALSE;
1208 }
1209
1210
1211 /* find a mapping that makes this a perfect hash */
1212 static int perfect(bstuff *tabb, hstuff *tabh, qstuff *tabq, ub4 blen, ub4 smax, ub4 *scramble, ub4 nkeys)
1213 {
1214 ub4 maxkeys; /* maximum number of keys for any b */
1215 ub4 i, j;
1216
1217 #if SELOPT_DEBUG
1218 fprintf(stderr, " blen %d smax %d nkeys %d\n", blen, smax, nkeys);
1219 #endif
1220
1221 /* clear any state from previous attempts */
1222 memset((void *)tabh, 0, sizeof(hstuff)*smax);
1223 memset((void *)tabq, 0, sizeof(qstuff)*(blen+1));
1224
1225 for (maxkeys=0,i=0; i<blen; ++i)
1226 if (tabb[i].listlen_b > maxkeys)
1227 maxkeys = tabb[i].listlen_b;
1228
1229 /* In descending order by number of keys, map all *b*s */
1230 for (j=maxkeys; j>0; --j)
1231 for (i=0; i<blen; ++i)
1232 if (tabb[i].listlen_b == j)
1233 if (!augment(tabb, tabh, tabq, blen, scramble, smax, &tabb[i], nkeys,
1234 i+1))
1235 {
1236 return FALSE;
1237 }
1238
1239 /* Success! We found a perfect hash of all keys into 0..nkeys-1. */
1240 return TRUE;
1241 }
1242
1243
1244 /* guess initial values for alen and blen */
1245 static void initalen(ub4 *alen, ub4 *blen, ub4 smax, ub4 nkeys)
1246 // ub4 *alen; /* output, initial alen */
1247 // ub4 *blen; /* output, initial blen */
1248 // ub4 smax; /* input, power of two greater or equal to max hash value */
1249 // ub4 nkeys; /* number of keys being hashed */
1250 {
1251 /*
1252 * Find initial *alen, *blen
1253 * Initial alen and blen values were found empirically. Some factors:
1254 *
1255 * If smax<256 there is no scramble, so tab[b] needs to cover 0..smax-1.
1256 *
1257 * alen and blen must be powers of 2 because the values in 0..alen-1 and
1258 * 0..blen-1 are produced by applying a bitmask to the initial hash function.
1259 *
1260 * alen must be less than smax, in fact less than nkeys, because otherwise
1261 * there would often be no i such that a^scramble[i] is in 0..nkeys-1 for
1262 * all the *a*s associated with a given *b*, so there would be no legal
1263 * value to assign to tab[b]. This only matters when we're doing a minimal
1264 * perfect hash.
1265 *
1266 * It takes around 800 trials to find distinct (a,b) with nkey=smax*(5/8)
1267 * and alen*blen = smax*smax/32.
1268 *
1269 * Values of blen less than smax/4 never work, and smax/2 always works.
1270 *
1271 * We want blen as small as possible because it is the number of bytes in
1272 * the huge array we must create for the perfect hash.
1273 *
1274 * When nkey <= smax*(5/8), blen=smax/4 works much more often with
1275 * alen=smax/8 than with alen=smax/4. Above smax*(5/8), blen=smax/4
1276 * doesn't seem to care whether alen=smax/8 or alen=smax/4. I think it
1277 * has something to do with 5/8 = 1/8 * 5. For example examine 80000,
1278 * 85000, and 90000 keys with different values of alen. This only matters
1279 * if we're doing a minimal perfect hash.
1280 *
1281 * When alen*blen <= 1<<UB4BITS, the initial hash must produce one integer.
1282 * Bigger than that it must produce two integers, which increases the
1283 * cost of the hash per character hashed.
1284 */
1285 *alen = smax; /* no reason to restrict alen to smax/2 */
1286 *blen = ((nkeys <= smax*0.6) ? smax/16 :
1287 (nkeys <= smax*0.8) ? smax/8 : smax/4);
1288
1289 if (*alen < 1) *alen = 1;
1290 if (*blen < 1) *blen = 1;
1291
1292 #if SELOPT_DEBUG
1293 fprintf(stderr, "alen %d blen %d smax %d nkeys %d\n", *alen, *blen, smax, nkeys);
1294 #endif
1295 }
1296
1297 /*
1298 ** Try to find a perfect hash function.
1299 ** Return the successful initializer for the initial hash.
1300 ** Return 0 if no perfect hash could be found.
1301 */
1302 static int findhash(bstuff **tabb, ub4 *alen, ub4 *blen, ub8 *salt,
1303 ub4 *scramble, ub4 smax, key *keys, ub4 nkeys)
1304 // bstuff **tabb; /* output, tab[] of the perfect hash, length *blen */
1305 // ub4 *alen; /* output, 0..alen-1 is range for a of (a,b) */
1306 // ub4 *blen; /* output, 0..blen-1 is range for b of (a,b) */
1307 // ub4 *salt; /* output, initializes initial hash */
1308 // ub4 *scramble; /* input, hash = a^scramble[tab[b]] */
1309 // ub4 smax; /* input, scramble[i] in 0..smax-1 */
1310 // key *keys; /* input, keys to hash */
1311 // ub4 nkeys; /* input, number of keys being hashed */
1312 {
1313 ub4 bad_initkey; /* how many times did initkey fail? */
1314 ub4 bad_perfect; /* how many times did perfect fail? */
1315 ub4 si; /* trial initializer for initial hash */
1316 ub4 maxalen;
1317 hstuff *tabh; /* table of keys indexed by hash value */
1318 qstuff *tabq; /* table of stuff indexed by queue value, used by augment */
1319
1320 /* guess initial values for alen and blen */
1321 initalen(alen, blen, smax, nkeys);
1322
1323 scrambleinit(scramble, smax);
1324
1325 maxalen = smax;
1326
1327 /* allocate working memory */
1328 *tabb = new bstuff[*blen];
1329 tabq = new qstuff[*blen+1];
1330 tabh = new hstuff[smax];
1331
1332 /* Actually find the perfect hash */
1333 *salt = 0;
1334 bad_initkey = 0;
1335 bad_perfect = 0;
1336 for (si=1; ; ++si)
1337 {
1338 ub4 rslinit;
1339 /* Try to find distinct (A,B) for all keys */
1340 *salt = si * 0x9e3779b97f4a7c13LL; /* golden ratio (arbitrary value) */
1341 initnorm(keys, nkeys, *alen, *blen, smax, *salt);
1342 rslinit = inittab(*tabb, *blen, keys, nkeys, FALSE);
1343 if (rslinit == 0)
1344 {
1345 /* didn't find distinct (a,b) */
1346 if (++bad_initkey >= RETRY_INITKEY)
1347 {
1348 /* Try to put more bits in (A,B) to make distinct (A,B) more likely */
1349 if (*alen < maxalen)
1350 {
1351 *alen *= 2;
1352 }
1353 else if (*blen < smax)
1354 {
1355 *blen *= 2;
1356 delete[] tabq;
1357 delete[] *tabb;
1358 *tabb = new bstuff[*blen];
1359 tabq = new qstuff[*blen+1];
1360 }
1361 bad_initkey = 0;
1362 bad_perfect = 0;
1363 }
1364 continue; /* two keys have same (a,b) pair */
1365 }
1366
1367 /* Given distinct (A,B) for all keys, build a perfect hash */
1368 if (!perfect(*tabb, tabh, tabq, *blen, smax, scramble, nkeys))
1369 {
1370 if (++bad_perfect >= RETRY_PERFECT)
1371 {
1372 if (*blen < smax)
1373 {
1374 *blen *= 2;
1375 delete[] *tabb;
1376 delete[] tabq;
1377 *tabb = new bstuff[*blen];
1378 tabq = new qstuff[*blen+1];
1379 --si; /* we know this salt got distinct (A,B) */
1380 }
1381 else
1382 {
1383 return 0;
1384 }
1385 bad_perfect = 0;
1386 }
1387 continue;
1388 }
1389
1390 break;
1391 }
1392
1393 /* free working memory */
1394 delete[] tabh;
1395 delete[] tabq;
1396
1397 return 1;
1398 }
1399
1400 /*
1401 ------------------------------------------------------------------------------
1402 Input/output type routines
1403 ------------------------------------------------------------------------------
1404 */
1405
1406 /* get the list of keys */
1407 static void getkeys(key **keys, ub4 *nkeys, const string_map& strings)
1408 {
1409 key *buf = new key[strings.size()];
1410 size_t i;
1411 string_map::const_iterator s;
1412 for (i = 0, s = strings.begin(); s != strings.end(); ++s, ++i) {
1413 key *mykey = buf+i;
1414 mykey->name_k = (ub1 *)s->first;
1415 mykey->len_k = (ub4)strlen(s->first);
1416 }
1417 *keys = buf;
1418 *nkeys = (ub4)strings.size();
1419 }
1420
1421
1422 static perfect_hash
1423 make_perfect(const string_map& strings)
1424 {
1425 ub4 nkeys; /* number of keys */
1426 key *keys; /* head of list of keys */
1427 bstuff *tab; /* table indexed by b */
1428 ub4 smax; /* scramble[] values in 0..smax-1, a power of 2 */
1429 ub4 alen; /* a in 0..alen-1, a power of 2 */
1430 ub4 blen; /* b in 0..blen-1, a power of 2 */
1431 ub8 salt; /* a parameter to the hash function */
1432 ub4 scramble[SCRAMBLE_LEN]; /* used in final hash function */
1433 int ok;
1434 uint32_t i;
1435 perfect_hash result;
1436
1437 /* read in the list of keywords */
1438 getkeys(&keys, &nkeys, strings);
1439
1440 /* find the hash */
1441 smax = ((ub4)1<<log2u(nkeys));
1442 ok = findhash(&tab, &alen, &blen, &salt,
1443 scramble, smax, keys, nkeys);
1444 if (!ok) {
1445 smax = 2 * ((ub4)1<<log2u(nkeys));
1446 ok = findhash(&tab, &alen, &blen, &salt,
1447 scramble, smax, keys, nkeys);
1448 }
1449 if (!ok) {
1450 bzero(&result, sizeof(result));
1451 } else {
1452 /* build the tables */
1453 result.capacity = smax;
1454 result.occupied = nkeys;
1455 result.shift = UB8BITS - log2u(alen);
1456 result.mask = blen - 1;
1457 result.salt = salt;
1458
1459 result.tab = new uint8_t[blen];
1460 for (i = 0; i < blen; i++) {
1461 result.tab[i] = tab[i].val_b;
1462 }
1463 for (i = 0; i < 256; i++) {
1464 result.scramble[i] = scramble[i];
1465 }
1466 }
1467
1468 delete[] keys;
1469 delete[] tab;
1470
1471 return result;
1472 }
1473
1474 // SELOPT_WRITE
1475 #endif
1476
1477 // namespace objc_selopt
1478 };
1479
1480 #undef S32
1481 #undef S64
1482
1483 #endif